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Abstract

The ability to perceive and reason about individual components in
a visual scene is a fundamental aspect of human cognition, enabling a
robust understanding of the world and its dynamics. Replicating these
abilities in artificial systems would mean reaching a significant milestone
toward building intelligent agents. While the last few years have been
characterized by an increasing intensity of publications in the object-
centric representation learning area, the current solutions still present
non-negligible constraints. Most of the proposed architectures tend indeed
to represent per-object information in ways that do not consent to isolate
specific features such as position, angle, scale, shape, and color. Other
methods instead succeed in shaping a disentangled and interpretable
latent space, though they are particularly expensive in terms of data
and gradient steps, even on simple synthetic datasets. These drawbacks
probably contributed to limiting the adoption of such techniques in fields
such as reinforcement learning and planning, that in contrast, would
strongly benefit from encoding the visual information in a structured
and interpretable way. Nonetheless, various approaches either using pre-
learned object-based representations (as [33] in model-fre reinforcement
learning and [30] in planning) or learning structured encoding (as C-SWM
[13]) arose. The latter presents a class of world models enabling learning
entities’ representations and interactions, though these models cannot
disambiguate multiple instances of the same object and have not been tested
in environments requiring learning more features than just the position.
This thesis proposes Slot Attention-based Structured World Models (SA-
SWM), a class of world models replacing the C-SWM object extractor
with a pretrained Slot Attention encoder, and provides an augmented
version of Spriteworld [29] to challenge object-based world models with
more complex dynamics. The results showed that SA-SWMs drastically
improve the performances and generalization abilities of C-SWMs, which
showed to be particularly prone to overfitting in the proposed environment.
The absence of disentanglement in Slot Attention encodings leaves space
for a wide margin of improvement, as it compromises their utility for
relational reasoning. The latter undesired fact prevented us from collecting
meaningful observations on the involvement of Slot Attention and SA-
SWNMs in a reinforcement learning setting.
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1 Introduction

Being able to distinguish individual components of a visual scene and reason in
terms of their features and relations allows humans to build a solid comprehen-
sion of the environment they are part of. Hence, such abilities are considered
fundamental aspects of human cognition [25], and therefore a necessary step to
take in order to build intelligent artificial systems.

In line with these preliminaries, the number of computer vision approaches
focusing on unsupervised object discovery significantly grew in the last few years.
Works such as [17, 14, 4, 16, 3, 24, 9], took important steps toward this goal,
and methods such as [4, 16] have already been involved respectively in planning
and reinforcement learning tasks.

The usage of such structured representations has been hypothesized to bring
numerous advantages to reinforcement learning; prominent among the others are
improved sample efficiency and generalization to novel and out-of-distribution
scenes. Works such as [33, 8, 10, 34], provided empirical shreds of evidence of
these assumptions.

As the environmental dynamics are usually task-independent, learning a struc-
tured model of the environment would bring a boost to generalization. Hence
such a model would allow an artificial agent to develop knowledge regarding
the (non-task-specific) consequences of its action on the rest of the environ-
ment. Such knowledge can be exploited to learn new tasks with no need to
re-learn how the environment works every time the objective changes. Although
affected by several limitations, the most notable approaches to learning an
object-based structured world model are, to the best of our knowledge, COBRA
[30] and C-SWM [13]. For instance, the visual model adopted in COBRA is
[4], which produces accurate and disentangled per-object representations, being
at the same time far less training and data efficient than more recent SOTA
approaches based on Slot Attention [16] (which, however, offer a latent space
much less interpretable). The C-SWM visual module instead does not manage
to disambiguate multiple instances of the same object and struggles to encode
complex object features using just the contrastive objective. Moving the focus
on the transition models, COBRA presents a simple MLP-based model applied
object-wisely that cannot model object interactions. This limitation could be
ignored in the experiments in [30], as the Spriteworld environment [29] used to
test the method does not include any form of physics. The C-SWM transition
model instead is implemented as a graph neural network (GNN) [22] and can
therefore model object interactions. Nevertheless, the environment involved in
the experimentation presents very simple physics (e. g collisions do not cause
the movement of static objects) that can be modeled with a single round of
message passing. To overcome these limitations we propose SA-SWMs, a class
of structured world models inherited by C-SWMs that removes the contrastive
objective and replaces the vision model with a pretrained Slot Attention encoder.
We further enhance the transition model through an iterative message-passing
mechanism that allows learning complex object interactions and dynamics. In
this regard, we extended Spriteworld with rudimental physics, preventing object
occlusion and allowing an embodied agent to carry multiple objects at once and in
a chain. The results obtained show that, in addition to overcoming the instance
disambiguation problem, SA-SWMs drastically improve C-SWMs generalization
capabilities as the pre-learned object embeddings are much more informative



than those learned contrastively. Nonetheless, the object representations offered
by Slot Attention do not separate the information related to specific features
(e. g position, color, shape, scale, angle, etc...) into specific vector components,
but instead mix this information. In this way, slight transitions in space can
determine significant and sometimes unpredictable shifts in the latent space
limiting generalization and accuracy in predicting future environment states.
This kind of representation does not allow us to grasp many of the features
characterizing an object and, as the reward functions of the tasks investigated
rely on these features, it was not possible to learn an object-based policy to solve
such tasks.

The document is structured as follows: Section 2 recalls concepts useful
to understand the rest of the document and introduces the notation adopted;
Section 3 offers a wide overview of previous works related with object-centric
representation learning and its involvement in reinforcement learning; Section
4 describes the environment and the tasks proposed; Section 5 introduces the
methodology; Section 6 furnish quantitative and qualitative measures of SA-
SWMs and C-SWMs performances; and Section 7 draws extensive conclusion
regarding the observations.



2 Background and preliminaries

This section provides the reader with concepts and notation useful to understand
the rest of the document. Specifically, it provides an overview of the reinforcement
learning objectives and methods with a specific focus on the reason behind
the need for planning over a learned model of the environment. After these
preliminary, we provide a description of the methods on which we built the ones
proposed in this work.

Reinforcement Learning Reinforcement Learning is a machine learning
paradigm whose aim is to build autonomous agents able to take decisions final-
ized to the reaching of a goal. Different from supervised learning, this approach
does not rely on labeled data and instead needs interactions with an environment
whose feedback measures the usefulness of actions based on the context. Formally,
reinforcement learning addresses Markov Decision Process (MDP) optimization
problems. MDPs are defined [20] by the tuple {S, A, T, R,p(so),v} where: S
is the state space, A is the action space, T : & x A — p(S) is the transition
function of the environment, R : § x A x § — R the reward function, and
is a discount factor. The initial state of the environment is sampled from the
distribution p(sg), then at each timestep ¢t € N the agent executes an action a;
and the environment returns the next state s;11 ~ T (- | 8¢, a¢) and a reward
r+ = R(St, a4, 8t41). The function with which the agent selects its action is
known as the policy function and is defined as 7 : S — p(A).

7—(’3I = {807a07T07817”~a8n7an7rn75n+1} (1)

Denotes an n-steps long trajectory (trace) starting from the initial state and

N
R(rY) = Z’Yi Tt (2)
=0

defines the discounted cumulative reward of an N-steps long trace starting
from an arbitrary timestep t¢.

The value function V7™ : § — R expressed as:

o0

=0

Vﬂ(s) = ]EW,T

s = s] (3)

ndicates the expected cumulative reward following the policy 7 from state s,
while the action-value function Q™ : S x A — R expressed as:

=0

Q" (s,a) =Er 1 [Z ’Yi cTii|St = S, 0 = a] (4)



indicates the expected cumulative reward following the policy 7 from state
s’ after taking action a in the state s.

Given these preliminaries, we can now move on to how we can build and
optimize a policy. In this regard, we can distinguish between two approaches:

e Value-Based: in this approach, the policy is not explicitly learned. In-
stead, we optimize a Q-function, and the policy is derived as m(s) =
argmazq(Q(s,a)). The Q-function can be stored in a table (Tabular RL)
or approximated by a neural network (Deep RL). This approach is only
suitable for discrete action spaces. A very popular method belonging to
this class is DQN [18].

e Policy-Based: in this approach the policy is explicitly defined and opti-
mized. This approach is suitable for both discrete and continuous action
spaces. In this class of methods we find (among the others) REINFORCE
[32], Actor-Critic [15], and PPO [23]. The latter is the method adopted in
this work and is introduced in the next paragraph.

Proximal Policy Optimization Proximal Policy Optimization (PPO) is a
class of policy gradient methods introduced in [23] to overcome the limitations
of classical policy gradient methods. Specifically, the objective of classical
policy-based algorithms is to maximize a function

M
1 .
J(0) = 72> iy At - log malas]se)] (5)
i=1

where M is the number of trajectories 7; sampled from the policy 7 parametrized
by 6, and A, is an arbitrary advantage function. As highlighted in [23], optimiz-
ing such a function empirically leads to very large policy updates, and the large
magnitude of policy changes limits sample efficiency.

To overcome this limitation and improve sample efficiency over the classical
policy gradient methods, PPO introduces a simple and elegant surrogate objec-
tive defined as follows:

let the ratio

T (at ‘St)
T 0014 (at|5t) (6)

be denoted as r(6). Since the goal is to prevent action probabilities from
increasing or decreasing "too much” after a gradient update, the goal is to
keep 7¢(6) close to one. To do this, the authors of [23] introduce a clip term
in the objective function to ensure 7¢(0)crippeq differs at most e from 1. Then
taking the minimum between r,(0) A, and clip(r4(6),1—€,1+¢€)A;) the objective



discourages taking large steps. The clipped surrogate objective is then defined as:

J(0) =Ernny,,, (r) min(ry(0) Ay, clip(ry(0),1 — ¢, 1 + G)At)} (7)

where € is a hyperparameter.

Model-based reinforcement learning As clear at this point of the reading,
reinforcement learning is a useful tool designed to optimize a value or a policy
function (or both, as in Actor-Critic). Optimizing such functions allows agents to
”understand” how their actions impact the reward they receive, but not to learn
their consequences on the environment. In most of the MDPs, the transition
function is unknown to the agent, and being unaware of it leads to two undesired
consequences:

e the agent cannot predict the next state and can only interact with the
environment to collect the experience necessary to learn how to act in a
way that maximizes the reward it gets;

e this way the agent can only move forward in time and cannot backtrack
its steps as they alter the environment irreversibly.

Having access to a model of the environment, on the other hand, would allow
the agent to make guesses about the next state and most importantly, the agent
can interrogate the model instead of taking irreversible steps. In this way, it is
possible to retrace the steps taken to plan and select the action that leads to
the best outcome in the long run.

As planning over an entire state space is unfeasible, this class of approaches
can only store a solution that applies just to a local subset of states. In
contrast, reinforcement learning methods (assuming an adequate exploration)
can approximate the entire state space and store a global solution.

The authors of [19] define Model-based reinforcement learning methods as
the combination of planning and learning or more formally as a class of MDP
algorithms that make use of a model and store a global solution.

For a taxonomy of planning methods and their integration with learning
approaches, we refer the reader to [19], as in the rest of this section, we will only
describe the one adopted in this work.

Monte Carlo Tree Search Monte Carlo Tree Search (MCTS) is a class of
adaptive search algorithms used to approximate the utility of an action as the
average reward of multiple simulated traces starting by taking that action from
the current state.

MCTS algorithms can be simply explained as an iterative process involving
the four steps described below and shown in Figure 1:

1. Selection: in this phase, the algorithm selects the next node to expand
by visiting the current tree. The selection criterion, also known as tree
policy is usually the Upper Confidence Bounds (UCB) strategy defined as:



In(n)

UCB=X;+C, -
j

(8)

where n is the total number of visits made to the parent node, and n; is
the number of visits made to the child node j. C), is a positive constant
value controlling the degree of exploration. The left term of this formula
represents exploitation and prioritizes choices that are known to lead to a
higher reward, whereas the right term, is responsible for the exploration
prioritizing the less visited nodes. The next node to expand is the one that
maximizes the equation 8.

2. Expansion: the tree is expanded by adding one or several child nodes of
the selected node.

3. Rollout: in this phase, we simulate an arbitrarily long trajectory (it can
be an entire episode or a fixed number of steps) from the expanded node.

4. Backpropagation: the outcome of the simulation is backpropagated from

the expanded to the root node.

—— Selection —— Expansion —» Rollout — Backpropagation —

v do 0o g v
d@)a d(}%d

tree policy

default polic

reward [

Figure 1: Visual progression of the MCTS iterative process. In the first phase,
the algorithm selects a node present in the current tree based on Equation 8
(tree policy). At this point, the tree is expanded by adding a child node to the
selected one and an n-step long simulation started from that node is performed.
Such simulation is performed by exploiting the default policy and the reward
estimated is then backpropagated up to the root.

C-SWM As in most cases the transition function of an environment is un-
known, learning a model that approximates this function is a key challenge and
a crucial step to take in order to build a model-based algorithm. Contrastive
Learning of Structured World Models (C-SWM) [13] introduces a method to learn



a relational model of the environment based on the interactions of individual
objects. The architecture presented is structured in three different sub-modules:
object extractor E..¢, object encoder E.,., and relational transition model. The
object extractor is a function Eepi(z) = my, ..., m; mapping an RGB image x
into a set of I feature maps meant to represent a mask binding to one of the
K objects. It is implemented as a fully-convolutional network whose last layer
produces at least K feature maps (at least one per object) and is activated by
sigmoid. The object encoder is a function Ee,.(m;) = z; embedding each of the
K masks to a latent vector z; € RP, implemented as an MLP. The relational
transition model is a function T'(zF, af) = AzF computing the update for each of
the abstract representation z; ; given an action a; j associated. It is implemented
as a Graph Neural Network (GNN) [22] using a single round of the following
message passing updates:

") = foage([2i, 2]]) (9)

where e("j ) is the edge (the relationship) between the nodes z! and z/, and
fedge([zt, zt]) is a simple MLP taking as input the concatenation of the vectors
zi and 2.

Azl = froae([2] al. > ef]) (10)
i#]

where Azg is the update of the object zf given the application of action af
and the sum of its incoming edges and f,,oq4¢ is an MLP.

The entire model is trained to minimize a loss function

L=H+mazx(0,y— H) (11)

K K
1 ~ 1
=% E d( zt + Azt ,sz H= g d( Zt vzt+1 (12)
k=1 k:1

with H being the average Euclidean distance between the predicted next
states (per object) 2 + Az} and the encoding of the real next states zf ;. This
part of the objective is used to optimize the performance of the transition model.
H instead, is the average Euclidean distance between the encoding of a state
$; randomly sampled from the experience replay. This part of the objective is
meant to prevent the encoder from representing different states in a similar way.

10



Slot Attention The Slot Attention module proposed in [16] takes as input a
set X € RNV *Pinput of A feature vectors augmented with positional embeddings,
and produces a set S € RXXP of K slots. The feature vectors are projected in a
D-dimensional space through learned linear transformations k and v (respectively
keys and values), while the slots (queries) are independently sampled from a
Normal distribution defined by learnable parameters p,oc € RP”. The slots
are then refined through an iterative mechanism involving multiple steps per
iteration.
The first step consists in computing the attention matrix

A= Softma:c(k ) (13)

where x are the input feature vectors and s the sampled slots. The dot
product between the input features and the slots relates each slot with parts of
the image, then the resultant coefficients are normalized by softmax over the
queries to ensure competition between the slots for explaining part of the image.
At this point, the updates are obtained by combining the input values with the
attention matrix normalized over the slots:

Aij

U=WT v(x), Wi;=—L—
Zl:l Alyj

(14)

The final updates of each iteration are obtained by a passage of Gated-
recurrent-Unit GRU followed by an MLP with a residual connection.

In order to perform object discovery, the slots are decoded into images and
masks that are then combined and summed up to obtain a single image. The
training objective is therefore to minimize the mean squared error between the
input image and the reconstructed one.

11



3 Related Work

Most existing deep learning-based approaches addressing sequential decision-
making problems rely on unstructured and global visual inputs. The idea
that disentangled representations of individual entities might enhance the way
artificial agents learn to solve tasks, however, aroused the interest of several
authors across time. A fascinating perspective on the role objects play in human
cognition has been presented in [27]. This work focuses on the requirements
object representations must fulfill to facilitate individual entities’ discovery and
the understanding of their dynamics, highlighting the limitations of current neural
network architectures in satisfying these points. Encouraging results regarding
the benefits structured representations may bring to reinforcement learning
have been produced by [35, 6, 12]. Specifically, in [6], every possible state of an
environment is represented in terms of objects and their interaction through First
Order Logic (FOL). These perfect representations of states brought significant
improvements, especially in sample efficiency, although they are suitable for
only fully-deterministic finite MDPs and low-dimensional environments. [12]
instead proposes Schema networks modeling causal-effect interactions between
entities through Boolean logic operations. Such an approach allowed for zero-
shot transfer learning on multiple altered versions of the environments the
authors experimented with, providing empirical confirmation of the importance
of modeling causal connections between individual entities. As the method
proposed in [6], this does not scale well on more complex and high-dimensional
environments. While these results suggest the usefulness of modeling features
and dynamics of single objects, none of the described works provided a method
to learn this ability. On the other hand, [35] proposes a reinforcement learning
agent augmented with a graph network-based relational module. This module
allows the agent to grasp meaningful insights about the relationships between
individual entities, enhancing its generalization capabilities across novel scenes.

Object-centric representation learning As it appears logical, reasoning
about an environment in terms of objects and their relationships requires the
ability to disentangle a scene into its single components and represent them
individually. For this reason, it is relevant to provide the reader with an overview
of different computer vision approaches dealing with object-centric representation
learning.

Recently, this field of research has been enriched with numerous proposals
to approach the problem. Unsupervised methods such as the ones presented in
[17, 14, 4, 16] encode input images into a set of latent vectors, each binding to
a single entity in the represented scenes. Among the mentioned methods, the
architecture presented in [16] obtained better or aligned results with respect to
the others showing to be, at the same time, less expensive in terms of data and
training time. For these characteristics, [16] appears to be a good candidate for
the purpose of this work. Works such as [3, 24, 9] propose different extensions
for [16] obtaining state-of-the-art performances.

Object-centric representations in model-free Reinforcement learning
Over the last few years, unsupervised object-centric representations found appli-
cation in model-free reinforcement learning settings. An interesting investigation

12



on the effect these representations can have in learning multi-task policies is con-
ducted in [34]. This work proposes an architecture composed by the SCALOR[10]
encoder and a goal-conditioned attention policy. The encoder produces multiple
latent variables (binding to a single object in the input image) that are fed
together with the embedded goal to the policy network (which predicts actions
based on the state representations and the goal vector). The results showed that
encoding individual objects instead of the global scene improves the learning of
multi-task policies. More recent approaches such as [33, 8] investigated the im-
pact of unsupervised object representations in model-free reinforcement learning
using PPO[23] to optimize the policy. Specifically, [8] compared the performances
obtained(in terms of mean reward) by an agent when the visual input is encoded
by a CNN, Slot Attention[16], and a GNN (based on the architecture presented
in [2]). All of these models have not been pre-trained on visual tasks. The results
suggest that GNNs produce better encoding than CNNs and Slot Attention in
the environment tested, although more exhaustive experiments are needed to
grasp more meaningful insights. The investigation the authors of [33] carried
out instead focuses on the effect of pre-trained object-centric representations in
reinforcement learning. In particular, this study tries to answer several questions
about the utility of representing scenes as a composition of multiple objects.

Object-centric representations in model-based Reinforcement learning
Learning to predict future states based on the dynamics of single entities would
allow artificial agents to create accurate models of environments. An empirical
example is provided by [28], which proposes an architecture composed of a vision
module that infers a set of entity variables from the input and a dynamic module
that predicts their transitions based on a sequence of actions. This architecture
reaches state-of-the-art performances on tasks such as video prediction.

Works such as [26, 31] yield an example of how individual object represen-
tations are fundamental to learning environment physics. More specifically,
[26] aims to learn common-sense physical reasoning through relational neural
expectation maximization. [31] instead models the dynamics of physical systems
to predict future trajectories and is able to infer the mass of invisible objects by
their effect on the rest of the system.

Approaches closer to the scope of this work are COBRA[30] and C-SWM]13].
Both methods learn to discover objects in an unsupervised way and have a
transition model that predicts the transition of each detected object given the
actions associated. While in [30], MONet[4] (optimized through a pixel-based
loss) performs the object discovery, [13] adopts a visual model consisting in
a simple CNN whose optimization process does not involve pixel-based loss
functions. Regarding the transition model, in [30] is implemented as an MLP,
whereas in [13] as a graph neural network, meaning that the latter is able to
model interactions between objects while the former is not.

13



4 Environments and tasks

As the main objective of this work is to investigate whether object-centric repre-
sentations help understanding environment dynamics and learning behaviors, it
is crucial to experiment with an environment whose scenes can be represented
by Slot Attention. An ideal environment for this scope should present simple
scenes composed of objects that possibly do not occlude each other. Even
though Slot Attention can learn impressively accurate representations of scenes
containing complex and overlapping objects (as shown in [16] with datasets such
as Multi-dSprites and Clever [11]), simple scenes are still preferred as they are
likely to be easier to represent and require less training time (and therefore
computational effort).

The need for such type of environment has characterized other related re-
search such as those conducted by the authors of [30], who have developed
Spriteworld [29], which has been used in the more recent study proposed in[33].

Spriteworld is a simple 2-dimensional and squared world with a black-colored
background. Its scenes can present a variable number of objects named sprites
that can appear under a wide range of shapes, colors, sizes, and inclinations.
The environment does not include physics and presents three different classes of
tasks:

e Goal Finding where the agent has to carry a target sprite to a fixed goal
position;

e Clustering where the agent has to group the sprites by their color;

e Sorting where the agent has to group the sprites by their color in a specific
location of the map.

All of the mentioned tasks have a select-and-move action space, meaning
that the agent is external to the world and, at each timestep, selects and moves
a single sprite. Since the environment does not include physics a sprite moving
toward another causes an occlusion. This is an undesired property as occlusions
can challenge the visual model, whereas having interactions would make the
application of C-SWM more interesting since the results obtained in [30] show
that a simple MLP is enough to model the Spriteworld dynamics.

Interactive Spriteworld As explained in the above paragraph, Spriteworld is
a valid environment to experiment with object-centric reinforcement learning !,
and to the best of our knowledge, is the only environment built for this purpose.
Nevertheless, the absence of physical interactions between sprites does not allow
us to fully investigate the potential of the GNN-based transition model proposed
by [13]. For this reason, we extended the environment with rudimental physic
rules that allow sprites interactions and avoid object occlusions. The more
notable properties of our extension (which we refer to as Interactive Spriteworld)
are:

Lwith this term we refer to all of the reinforcement learning approaches using object-centric
encoders

14



Figure 2: The left side of the figure illustrates a state sampled from the original
environment, while on the right we can observe one sampled from our extended
version. The sprite characterized by a smaller size and white-colored identifies
the agent.

e the position of the sprites is clipped to keep them entirely in the frame (in
the original version part of an object could be out of frame as its position
is clipped to keep just its center of mass inside);

e when a moving sprite collides with one or more other objects, they move
accordingly (a moving sprite transfer its motion to the objects it hits);

e the motion of an object propagates transitively to other objects (meaning
that when an object moves a sprite towards another, the latter is moved
consequently);

e the sprites never overlap;

e different from the original Spriteworld, an embodied agent can move more
than one sprite per timestep.

Since these extensions required the implementation of an accurate collision
detection mechanism and the modeling of physical interaction for each couple of
shapes, we decided to limit the sprites to either circles, squares, or equilateral
triangles; the latter can appear only in orientations where one of their edges is
perfectly parallel with the x-axis.

It is finally fair to mention that the original Spriteworld includes a mode
where an embodied agent can physically move the other objects, though no
mechanism to avoid occlusions is present, and a single function is responsible for
checking the occurrence of a collision for any possible couple of polygons (this
affects the accuracy of the collision detection).

4.1 Tasks

All the tasks involved in the experiments consist of an embodied agent doted with
four possible actions (move left, right, up, or down) having to reach a certain
objective. For each task, the shape of the agent is sampled from a uniform
distribution (containing all three possible shapes), its size is a fraction of that of
the other objects, it is always white-colored, and the maximum episode length is
set to 100. Figure 3 shows a frame of the environment for each of the four tasks
involved.

15



Goal finding The goal-finding task requires the agent to reach a target sprite
characterized by a red color while avoiding all the other sprites. The task is
considered solved when the distance between the agent and the target is less
than or equal to a threshold ¢. Defining d(agt, tgt) as the distance agent-target,
at each step, the reward is computed as r, = § — d(agt, tgt) and if an obstacle is
touched, a -1 is summed to the reward.

Goal finding interactive Similar to the task described above, this task
requires the agent to reach a red-colored target sprite and avoid the obstacles,
but in this case, there is an additional challenge: the agent has to move the
target sprite to touch another goal-sprite colored yellow. Again the task is
considered solved when the distance between the red target-sprite and the yellow
target-sprite is less than or equal to a threshold 6.

The goal-finding task requires the agent to reach a target sprite characterized by
a red color while avoiding all the other sprites. The task is considered solved
when the distance between the agent and the target is less than or equal to a
threshold ¢. Defining d(agt, tgtl) as the distance agent-targetl and d(tgtl, tgt2)
the distance between the red and the yellow sprite, at each step, the reward
is computed as r; = (6 — d(agt,tgt)) + (6—d(tgtl, tgt2)) and if an obstacle is
touched, a -1 is summed to the reward. The first term is meant to incentivize the
agent to move toward the first target to reduce the need for intensive exploration.

Clustering In this task, the agent’s objective is to group the sprites based
on a property between shape or color. In order to evaluate the goodness of the
clustering assignments, we make use of the Davies-Bouldin clustering metric
[5]. Denoting the Davies-Bouldin Index as DBI, the reward at each timestep is
calculated as ==+ — &, where § is a termination threshold. The task is considered

DBI
solved when the inverse Davies-Bouldin Index is higher than equal to a §.

goal finding g.f interactive clustering shape clustering color

Figure 3: Visualization of states sampled from the environment under different
tasks. In the task where the agent is required to cluster the other sprites by
shape (third image from left to right), it is expected to join the right cluster
based on its shape
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5 Methodology

The authors of [13] introduce Contrastively-trained Structured World Models
(C-SWMs), a class of structured world models whose goal is to learn to represent
scenes as a composition of individual objects and predict action-conditioned
transitions accounting for their relations. As the idea has the potential to bring
several benefits over classical world models, such as better generalization proper-
ties and a more interpretable latent space, it is affected by several limitations
mentioned by the authors. Prominent among the others is the inability of the
object extractor to disambiguate multiple instances of the same object. This
limitation comes from the fact that a feed-forward CNN (the architecture chosen
for the object extractor) needs either distinct visual features or labels to distin-
guish one entity from another. Such a limitation can affect the performance of
this class of models in environments such as the one described in the previous
section, hence as noticeable in Figure 3, it can present scenes containing identical
or very similar objects.

Contribution The main contribution of this work is to enhance the class of
models proposed in [13] by replacing the CNN-based object extractor and the
MLP-based object encoder with the encoder of a pretrained object-centric model
such as Slot Attention [16]. Such an extension should increase the quality of the
representations fed to the transition model making it more inclined to generalize
and easier to interpret. The original method has further been extended with an
iterative GNN module to predict the transitions of the objects given the updates
obtained at the previous iteration (necessary since interactive Spriteworld allows
sprites to move in chains).

5.1 Slot Attention and pretraining

Before building a world model based on Slot Attention’s representations, it was
necessary to ensure that Slot Attention could represent the Spriteworld scenes
consistently. By carrying out several experiments, Slot Attention emerged to
have the following undesired behaviors:

1. The random sampling of the slots leads to different outcomes with the
same inputs, no guarantee of ”good” encodings at the first draw, and
representations without a fixed order.

2. When having more slots than objects to represent, the model tends to
separate the information of one entity into two vectors to avoid empty
masks.

3. The per-object masks produced by the decoder tend to share information
about the background.

In order to correct the first two Slot Attention practices, it was primarily
important to fix the number of sprites that can appear in Spriteworld at once. In
this way, the number of slots is always equal to the number of discoverable objects,
and more importantly, we could replace the random slots’ initialization with
learned parameters. This solution solves both behaviors 1 and 2. Since the loss of
the transition model compares the predicted slot vectors with the ones resulting
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from the encoding of the next state in a pair-wise way, maintaining the order of
the representations constant avoids computationally expensive sortings based
on similarity measures. As the third behavior is given by the background being
constant across the scenes, Slot Attention has been pretrained by augmenting
the images with random noise. The noise is applied with a two-thirds probability
and is constant for all the pixels. In this way, the sprites remain distinguishable
from the background as it changes color across different samples.

The results are obtained by training Slot attention for roughly 250,000
gradient steps with the configuration used in [16] for the Multi-DSprites dataset
and can be observed in Figure 4. As it is noticeable the reconstruction and the
division in slots are pretty much perfect, while the order in which the slots are
represented is preserved from one state to the next. Unfortunately, some scenes
can still be misrepresented as in Figure 5 and it was not possible to detect the
causes of this phenomenon. We tried many different configurations and longer
training, but none of them brought any improvement.

State Recon. state Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6
Next State Recon. state Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

Figure 4: Visualization of the Slot Attention behavior on consecutive visual
scenes extracted from our version of Spriteworld. The images labeled as ” Slot
#” are obtained by multiplying the slots with the respective masks and the
reconstruction is their sum.

State Recon. state Slot1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

Figure 5: Visualization of a Slot Attention misrepresentation of a visual scene
extracted from our version of Spriteworld. The images labeled as ”Slot #” are
obtained by multiplying the slots with the respective masks and the reconstruction
is their sum.

5.2 Slot Attention-based Structured World Model (SA-
SWM)

Once the object-centric visual model is able to adequately process scenes’ in-
formation to produce per-object representations as the ones shown in Figure
4, the C-SWM object-extractor and object-encoder can be replaced in-block
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Figure 6: Given an input image, the Slot Attention encoder produces 6 vectors
encoding information related to each of the 6 objects present in the scene (5
+ the background). These vectors are then fed together with an action to the
transition model (defined in Algorithm 1) to predict the next state. The latter is
obtained by summing the nodes derived from the updates of the second-to-last
iteration to the ones predicted at the end.

by the pretrained Slot Attention encoder. In this way, we have a single encod-
ing function E(x) = {21, ..., 2k} projecting the input image z into a set of K
vectors z; € RP explaining entities individually. As the model is trained in a
self-supervised manner using targets produced by the same encoder, freezing
its parameters ensures targets remain constant throughout the entire training
process. Therefore, having a pretrained visual model brings a double advantage.
In the first instance, the optimization focuses just on the transition model result-
ing in faster gradient updates (with equal transition models) and a simplified
version of the objective in Equation 11. Hence, as there is no need to optimize
the encoder, the contrastive term can be removed from the objective obtaining:

K
1
L=+ Z d(zf + Azf, 2F ) (15)
k=1

The second benefit is the fact that for every couple of consecutive visual
scenes (24, x4+1) the corresponding representations ({27, ..., 25 }, {2} 1, 251 })
are fixed, resulting in a more stable and efficient training.

We further adapted the original transition model to be suitable for a more
complex environment such as Interactive Spriteworld. As previously mentioned
in the dedicated section, when a sprite A collides with a sprite B, B is moved
accordingly, and if its transition results in a collision with a sprite C this is
moved in turn with the chain ending when the last object does not collide with
any other. For this reason, a single round of message passing is not sufficient to
model the dynamics of the environment, therefore we need to iterate this process
multiple times. In order to allow the GNN to take into account the previous node
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updates, the edge function in Equation 9 is turned into feqge ([2,1, ZnglV AZ)).
The intuition is that the update Az} contains information about the direction
of the transition of z{ into z{ ,, thus in case of collision between z{,; and 2/,
the edge function can predict a relation vector e(t7) that can be interpreted as
the force applied by zéﬂ on z{,, given Azl

The node function predicts node updates based on the associated action and
the sum of all its incoming edges as in the original version.

As can be observed in Algorithm 1, the Iterative GNN Module takes as

input a set of K vectors 2! € R” produced by Slot Attention and an action
a; (one-hot vector). Before starting the loop, the algorithm builds a K x K
adjacency matrix with the diagonal set to zero (to avoid relations between
an object and itself) representing a fully-connected graph, and initializes the
per-object updates Az} to zero. At this point, the edge function is fed with a
set of K x (K — 1) vectors obtained as the concatenation of z{, zJ, and Az}
with the auxiliary of the adjacency matrix. Then the node updates Az{ are
obtained as in Equation 10 and the nodes 2z} are obtained by summing all the
nodes z§ with the corresponding updates Azi. This first phase before the loop
is meant to predict the position of the agent after it takes the action a;, while
the iterative part is meant to predict the transition of every other object based
on the forces they apply on each other. For this reason, the actions to be fed to
the node function are set to zero. -
At every iteration n the edges are obtained as e\ = fogge([2i, 20, Azi_]), the
node transitions as Azl = frode([22, 0, Dt egl’])]), and the nodes as z,_; =
2t +Az%. Finally, since in the worst case, the agent motion causes the movement
of all the other objects, the number of iterations is set to K — 1 where K is the
number of discoverable objects. The overall SA-SWM architecture is shown in
Figure 6

Algorithm 1 Iterative GNN Module
Require: S = {z!,..., 2K} € REXD Slots vectors, a; action
2b + {0}P
i,7 < get_inds_from_adj_matriz(K)
€5 feage([2h, 28, %))
AZ{ H'fnode([lzg)a Gy, Zz’;ﬁj 6((]17])])
2y 25+ Az
forn=1— K do
el o fedge([24, 2, AZL])

ni“n?
J j (4,9)
Azn-i—l — fnode([zgw 0, Zz’;ﬁj €n ])
Zpy1 & Zpgr T Az
end for

5.3 Reward Predictor, Policy, and Value Networks

In order to plan over an object-centric world model such as the one described
above, it is indispensable that all the other useful components involved in
planning exploit the structured information in a clever way. In a model-based
reinforcement learning setting that uses PPO to learn a policy for an arbitrary
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task, we need to learn a value function V™ (s) (Equation 3) to estimate the
advantages A; = R(77°) — V™(sy) (R(7Y) is defined in Equation 2), a policy
function m(a¢|s¢) returning a probability distribution over the action space given
the state s;, and (eventually) a reward function R(s,at, si+1) = r € R. Since
in all the tasks involved in our experiments the reward is determined uniquely
by the state, the reward function has been modeled for simplicity as r = R(s;).
As the objective is to exploit the model (and the reward predictor) to learn a
policy, all the states s; collected from real interactions with the environment
(when predicting s;11 using the model we obtain a factorized representation)
need to be encoded as s; = {z},...,2F'} by the SA-SWM object-encoder.

Because the reward predictor has to infer the quality of a state given a set
of object vectors, we need to compute their relations in a similar manner as
the transition model. To provide a practical example, in clustering tasks, a
good reward predictor should compare objects’ properties and return high scores
when objects sharing the same property (e.g. color or shape) have positions
close in space and vice versa, whereas in goal-finding tasks it has to relate the
position of the agent with those of the target sprite and obstacles. In order to
allow the reward predictor to develop the desired behavior, we implemented
it as a Relational Network (RN) [21] (as in [30]). An RN is usually composed
of a function fyaiy : R?2Pin — RPrel producing pair-wise relations given a set
of vectors (it can be seen as the edge function of a GNN) and a function
fqloval : RPret — RPout that, given the aggregation of these relations, provides a
single output. In our implementation both functions are MLPs and the predicted
reward is computed as r; = f, global(zi<j fpair([zz ,21])). The value network has
the same exact architecture as the reward predictor and is of course trained with
a different objective.

The policy network architecture differs from the one described above as
the RN outputs a vector that is further processed by a feed-forward network
producing the final distribution over the action space. It is important to mention
that the policy and value networks do not share parameters.

5.4 Model-based RL Algorithm

This section describes the model-based algorithm used to learn a policy that
solves the tasks described in the dedicated section. In each of the following
paragraphs, we provide a textual description of the main components of the
algorithm illustrated in Algorithm 2 and explicit details ignored in Algorithm 2
for readability purposes.

MCTS The implementation of MCTS is mostly standard with some small
customizations. Firstly, the rollout has a fixed number of steps and is executed
using the policy mg(als), the action is sampled from the distribution at training
time and is the greediest at inference. When in training mode, the algorithm
returns the best action (according to the tree policy), and in addition, the
log probability associated as it will be used by PPO to compute the ratio in
Equation 6 in the form exp(log mg(at|st) — logmg,,, (at|s:)). Furthermore, when
the planning budget is set to zero, the algorithm simply returns a ~ mg(a|s) at
training time and a = argmaz,my(als) at inference. Even when the budget is
higher than zero, during training there is a preliminary phase without planning
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to allow the policy to freely explore the environment, and the reward predictor
to learn an approximation of the reward function ”adequate” for planning.

PPO The chosen PPO implementation for our experiments strictly follows the
structure of the one proposed in the GitHub repository [1]. Different from the
cited one, we have separate networks, optimizers, and objectives for actor and
critic.

Input The algorithm takes as input a pretrained structured world model,
the maximum number of timesteps, the budget to allocate for planning with
MCTS, the allowed number of extra steps collectible (after every real episode)
by interrogating the model, and the number of steps to take before any PPO
update. There are of course other arguments such as learning rates and PPO
hyperparameters that are not included for conciseness.

Observation buffer For the sake of clarity, it is relevant to mention that there
are two different observation buffers: one storing states, actions, log probabilities,
state values, rewards, and done(s) used for PPO updates and cleared right after;
and one storing states and rewards only used to train the reward predictor with
a way higher capacity that is implemented as a FIFO queue. The latter choice
was made to optimize the reward predictor on larger windows of samples to
make the training more stable and less biased.

Real vs. Imagined Episodes At every real episode (first nested loop in
Algorithm 2) the state returned by the environment at the previous timestep
is turned into multiple latent vectors through the encoder of the world model.
These vectors are fed to the value network to estimate the state value and passed
to MCTS which predicts a locally-optimal action by exploiting the model, the
policy, and the reward predictor. The agent then takes the chosen action and
the environment provides the next state with the associated reward; the count
of timesteps is incremented and after U steps a PPO update is performed. An
imagined episode (second nested loop in Algorithm 2) proceeds mostly as the
same, with the exception that only the first state is sampled from the environment
while the states obtained after taking an action are estimated by the model as
the rewards are inferred by the reward predictor. These additional steps are not
taken into consideration in the global count as the timesteps budget is meant
for real interactions with the environment.
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Algorithm 2 Model-based RL Algorithm

Require: M: model, env: environment, T: max number of timesteps, B: planning
budget, I: imagination steps, U: steps before update

O« 0 > initialize observation buffer
mg < PolicyNet(M.slots_dim, env.action_space.dim)

Vg < Relational Net(M.slots_dim, 1)

Ry, < RelationalNet(M.slots_dim, 1)

t+0

while ¢t < T do
s < env.reset()
done < false

while not done do
z + M.encoder(s)
v Vy(2)
a+ MCTS(M,Ry,z,B) >if B=0a~ mg(alz)
s,r,done + env.step(a)
t—t+1
O+ OU{(z,v,1r)}

if U mod ¢t = 0 then
PPO(W@, V¢, O)
end if
end while

L) & LI (Ro(z) —7:)?
1 —aVL(Y) > update reward predictor

z + M.encoder(env.reset())

fori=0—1do > update the policy with imagination steps
v Vy(2)
a+ MCTS(M,Ry,z,B) >if B=0a ~ m(alz)
r = Ry(z)

O+~ 0OU{(z,v,1)}
z « M.transition_model(z, a)

if U mod (t+ i) = 0 then
PPO(mg, Vy, O)
end if

if r >= 0 then
break
end if

end for
end while
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6 Experiments

The objective of the following experiments is to observe:

e whether better object representations allow to overcome the limitations of
C-SWM and improve its generalization capabilities in environments with
complex dynamics;

e the behavior of the best world model from the previous experiment when
applied in a model-based reinforcement learning algorithm.

6.1 Metrics

World Models The metrics chosen to evaluate the performances of the tran-
sition model are those adopted in [13], namely: Hits at rank k (HQk) and Mean
Reciprocal Rank (MMR), as they allow performing the evaluation directly in
latent space

Hits at rank k Let a predicted object vector be ranked based on its distance
with the corresponding target vector. The HQk score is 1 when the rank of the
inferred vector does not exceed k, 0 otherwise. As in [13], we report the HQk
averaged over the entire dataset.

Mean Reciprocal Rank MRR is defined as the average of the inverse rank
of all the n samples present in the evaluation dataset, in formula

AR
MRR = —
N;rankn

where rank, is the rank of the n-th sample.
We refer the reader to [7] for more details on these and other ranking-based
evaluation metrics.

RL agents’ performances The performances of the RL agents are evaluated
through the cumulative reward obtained averaged over multiple repetitions and
their success rate. The success rate is defined as the number of times the agent
completes a fixed task divided by the number of trials.

6.2 World models

As the following experiments aim to validate the hypothesis that pre-learned
object-centric representations should overcome C-SWMs limitations and improve
their generalization, we consider the baseline a C-SWM adopting the iterative
GNN module described in the methods section. We further augment the number
of feature maps from one to four per object to model the positional information
(as in the original paper) as other relevant information such as the shape and
size of the object. The results are obtained using the configurations in Table
2 and are averaged over four independent repetitions. The training dataset
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consists of 6 - 10* samples, one-third of which were collected with a random
policy acting in the environment, and the remaining part by physically playing
with the environment to ensure collecting enough complex interactions (that
would be unlikely to collect by acting randomly). The test set is divided into
three disjointed subsets sorted in ascending order of difficulty, each containing
103 unseen samples structured in 10 episodes of 100 timesteps. The first set
contains 10 ”collision-free” trajectories where the agent is the only sprite moving,
the second set includes several sequences of steps (per episode) where the agent
carries one sprite at once, and the last contains complex trajectories where the
agent can carry multiple sprites at once or in a chain. This division is meant to
highlight the strengths and limits of both classes of models and help individuate
and interpret their behaviors under different settings.

Quantitative results As in [13], our findings include the ranking scores
(represented as a percentage) obtained traversing the latent space from the
source to the (encoded) target state using the learned model. The reported
results encompass the mean and standard error of scores obtained from four
independent runs.

Table 1: As in [13], we present the ranking outcomes for multi-step prediction in
the latent space, highlighting the best mean scores in bold.

1 Step 5 Steps 10 Steps
Model Ha1 MRR HQ1 MRR Ha1 MRR
: SA-SWM 98.2::5 98.8:0s 93.5:1:1 95.3:0s 88.0:21 92,4114
E) C-SWM 72.04155  82.2+110  36.0x2s4  53.5+105  23.7x1s6 42,7170
ij SA—SWM 97.5,1 1 97.9,0 9 86.8LU 8 90.2L1 0 73.8L1 6 81.2An 5
E C-SWM 89.7+7a  94.2:40 50.0:140  69.6+100 20.3:152  48.0+100
2 SA-SWM 97.2.0: 98.0:0: 89.0t06 93.5:07 68.3:55 79.6:20
§ C-SWM 86.3+9.0 92.3+5.2 59.3+105 75.5+75 19.3+126 48.2+1105
% SA-SWM 100 0.0 100 0.0 99.0\11: 991 k0.2 95.7\(»7 964 0.5
E C—SWM 100 0.0 100 £0.0 100 +0.0 100 +0.0 100 +0.0 100 +0.0

The quantitative measures reported in Table 1 illustrate a significant distance
in terms of performance and generalization between the proposed class of models
and the baseline. We can hence observe that the baseline performance drastically
deteriorates as the number of steps to take in the latent space increases, and
in all three splits, the HQ1 registered after a 10-step prediction is around 20%,
while SA-SWM in the worst case reached a score close to 70%. Even though
SA-SWM (similarly to C-SWM) becomes less accurate as the number of future
steps grows up to ten, it showed to be more robust than the baseline as the HQ1
obtained with a ten-step prediction varies from around 88% (for the easiest split)
to 68% (for the hardest).

The fact that SA-SWM consistently achieves scores close to 100% in 1-step
prediction suggests that the model successfully learns to predict how actions
affect the agent position; the small margin of error can be given either from
Slot Attention errors (as in fig 5) or small imprecisions in predicting the agent
transition. Although both options are reasonable, the latter appears more likely
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as the fact that the first set HQ1 scores decrease (almost constantly) by roughly
5% (between an n-steps and an (n+5)-steps prediction) suggests a linearly
accumulating error. Moreover, as the training set contains samples that Slot
Attention misrepresents, we expect this phenomenon to be almost irrelevant for
the metric involved as the source and the target states are (wrongly) encoded
with a pattern that the transition model can (probably) learn. We further notice
that while the standard deviation from the mean is reasonable for SA-SWM,
with 3.1 being the highest value, C-SWM showed a very high variance in the
results concerning the three test splits. From this observation, we can conclude
that C-SWMs are much more sensitive to weight initialization and other random
factors in the training process than SA-SWMs are. Furthermore, we show the
results obtained by both classes of models on the training set to highlight that
the baseline always converges on the training dataset and achieves an average
score of 100% independently from the number of steps. This behavior strongly
supports the initial hypothesis that the lack of information about the object
properties (different from position) makes C-SWMs prone to overfitting. Even
though the baseline has four feature maps per object (differently from the C-
SWM used in [13] experiments) to model different object characteristics, the
contrastive objective is probably too ”vague” to learn complex features as it only
pushes the model to represent divergent states differently. There (might) exist
numerous approaches to attain this objective, which can explain the substantial
variance observed in the baseline test outcomes. On the other hand, SA-SWM
exhibited much better generalization capabilities and significantly outperformed
the baseline on every test set and independently from the number of steps involved
in the prediction. The proposed class of models reached a score close to 90% in
most cases, making exceptions for 10-step predictions in the dataset involving
object interactions. These results can be explained (again) by the error in
one-step predictions accumulating along the steps and through Slot Attention’s
embeddings (mostly). Hence, the per-object representations Slot Attention
produces contain mixed information, and there is no specific component in the
latent vector to explain a single property (such as position, scale, shape, and
color), meaning that the transition model has no information about individual
features. This entangled latent space represents a hard limit to SA-SWMs
generalization and complicates how it predicts object transitions as it cannot
ignore useless (in this specific case) properties such as color.

Qualitative results This paragraph shows the effect of the transitions in
pixel space. The visual images are obtained by predicting the target state after
n actions with the best model out of the four repetitions and decoding those
predictions using the Slot Attention decoder.

As can easily be observed in Figure 7, the proposed world model predicts
the agent motion coherently with the concrete transitions in the environment.
Accordingly, with the quantitative results in the previous paragraph, Figure 7
shows less accurate predictions as the number of steps rises. We can observe in the
last column that the portion of the agent that differs from the actual target state
gets more visible in proportion to the number of steps. This visualization also
supports the hypothesis that minimal errors in single-step predictions accumulate
and become more evident as the model takes multiple steps in the latent space.
Nevertheless, the predictions are impressively accurate and allow the model to
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Figure 7: Visualization of the behavior of the transition model when the agent
is the only sprite moving in the environment. The first column shows the source
states, the second exhibits the prediction after the number of steps indicated
in the row, and the third shows the real target state after the same number of
steps. The last column illustrates how the predictions differ from the targets (a
full black image means no error).

be involved in planning (at least in tasks that do not demand object collisions,
such as the Goal-finding task).

In Figure 8, we provide a visualization of different behaviors exhibited by
the transition model when dealing with situations where the agent carries one
sprite. By focusing on the 1-step row, it is possible to observe that the model
learned to predict a transition involving two objects quite accurately. It is also
noticeable that the error in the prediction is comparable with the one produced
after ten steps on the first test set. A possible explanation for this phenomenon
is that while the agent always appears with the same color, other sprites have
colors sampled from a uniform continuous distribution, which makes it likely to
draw pigments unseen at training time. As the encoding fed to the transition
model contains entangled information about objects’ features, learning a local
movement pattern for a fixed-color entity is much easier than a general and
color-invariant one. Having disentangled representations would instead allow
encoding objects’ movements consistently and regardless of the color component.

Moving the attention to the 5-step row, we realize that the transition model
predictions remain consistent even when the agent carries another object for
five steps in the latent space. The slight error visible in the visualization of the
difference between prediction and target is comparable with the previous and
finds its explanation in error accumulation and entangled latent space.

The 10-step row offers a view of a particular behavior that may ulteriorly

27



State Pred. Next State Next state Next state - Pred

1 STEP

5 STEPS

10 STEPS

10 STEPS
(negative)

Figure 8: Visualization of the behavior of the transition model when the agent
can move one sprite at a time. The first column shows the source states, the
second exhibits the prediction after the number of steps indicated in the row,
and the third shows the real target state after the same number of steps. The
last column illustrates how the predictions differ from the targets (a full black
image means no error).

sustain that the limits in generalization shown by the model are due to nonopti-
mal embeddings forming an intricate latent space. Hence, we can observe the
model predicting all the steps toward the right quite accurately, as prediction
and target mostly disagree for the lower part of the triangle. Moreover, the
inferred agent position matches the target with an error aligned with those that
emerged in previous tests. Given these preliminaries, it would make sense that
the model mispredicted the shape of the carried object with either a circle or a
square, making the agent movement toward the bottom inconsequential for the
other sprite involved in the collision.

The last row of Figure 8 illustrates a situation where Slot Attention fails to
represent the scene objects. It is evident that in such a situation, the model
predictions are meaningless, and involving it in planning tasks (in episodes
affected by these representations) would be counter-productive.

The visual outcomes deriving from the experiments on the third test split
were significantly affected by the problematics measured in the previous analysis.
In this regard, it was not achievable to investigate whether the proposed class
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Figure 9: Visualization of the behavior of the transition model when the agent
can move more than one sprite at a time. The first column shows the source
states, the second exhibits the prediction after the number of steps indicated
in the row, and the third shows the real target state after the same number of
steps. The last column illustrates how the predictions differ from the targets (a
full black image means no error).

of world models can manage complex situations involving the interaction of
multiple objects. Fortunately, it was possible to find the example shown in Figure
9 that exhibits curious conduct. Even though the figure illustrates a wrong
prediction because the teal square was supposed to be more on the right when
the agent took its step toward the bottom, assuming the teal square position was
correct, the predicted transition would be close to reality for all the three objects
interacting. This finding arouse ulterior curiosity regarding the performance of
the world model in the presence of optimal disentangled representations.

Model-based RL Agents Unfortunately, the encodings produced by Slot
Attention (and consequently by SA-SWM) did not allow finding any configu-
ration enabling to solve any of the tasks proposed. After various experiments,
we found that neither the critic network nor the reward predictor could learn
to approximate the value and the reward functions, respectively. The fact that
both networks could not minimize a squared error, not even fixing the sprites
appearing in an episode (to at least overfit this situation), led to conclude that
the embeddings do not allow us to find any relational pattern. As the objective
is to enable object-oriented relational reasoning, the architectures used (Rela-
tional Networks) necessitate exploiting relationships intra-objects to estimate
the quality of a state or determine which action would lead to the best outcome.
For example, even in a simple task where the agent has to reach (the only) red
sprite, a reward predictor should relate the agent’s position with that of the red
object to guess the reward of a state. But if there is no way to infer whether
a sprite is red, the network cannot associate an observed reward based on the
distance agent-red object. This concept extends to all the other tasks as all their
reward functions rely on distances or similarities between sprites sharing one or
more properties.

To validate these hypotheses, we extrapolated some data points from the test
split, encoded them in latent space, and labeled them (based on their features)
to perform Principal Component Analysis (PCA). We reduced the embeddings
into 2-dimensional vectors to investigate whether clusters of points sharing
certain features exist and which information we cannot grasp. An ideal object-
centric model should encode the information dividing vectors into subparts, each
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explaining always the same individual object property. Performing PCA on
those individual parts would bring perfect clusters based on the label. In this
case, we can only observe if there are discriminants that allow the world model
to reach the results shown in this section but not to learn either a reward, value,
or policy function.
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Figure 10: A 2-dimensional visualization of the latent space obtained encoding
samples from a single episode in the first test split (the agent is the only sprite
moving).
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Figure 11: A 2-dimensional visualization of the latent space obtained encoding
samples from a single episode in the second test split (all sprites can move one
at a time).

As visible in Figures 10, 11, and 12, there is no way to find a correlation
between shapes or colors belonging to ordinary sprites. On the other hand,
observing the plots concerning the size, we can see three distinct clusters:
standard sprites size, agent size, and background, and in the color plots, we
can individuate a separate group for black, one for white, and one for all the
other colors. We can therefore agree that, given these representations, we can
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Figure 12: A 2-dimensional visualization of the latent space obtained encoding
samples from five different episodes (different objects) in the second test split
(all sprites can move one at a time).

only discriminate the agent or the background from the rest of the sprites. This
information is (as expected) insufficient to make relational reasoning, but the
reader may wonder why it was enough for learning a robust world model.
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Figure 13: Observation of the effect of actions on the agent in 2-dimensional
space. The four actions seem to create a rectangle independently from the
original position occupied by the agent

The transition model only needs to detect if two objects are colliding, which
can be imprecise if the shape is mispredicted, but we can generally assume that
with a heterogenous and vast dataset, it can learn to determine if two objects
are touching. Moreover, the agent can be easily discriminated from the context,
making it easy for the model to understand which sprite is affected by the action,
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and as evident in Figure 13, the way actions alter the agent position follows a
strict pattern. The transition model can therefore model the agent transitions in
space and detect sprites collisions easily; from these observations and the results
obtained, we can assume that every moving object follows some pattern that the
model successfully learned. Nevertheless, as previously discussed, having ideal
representations would improve generalization and facilitate learning.
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7 Discussion & Conclusion

In light of the result observed in the previous section, it is evident that the quality
of the object-centric representations determines the robustness of structured
world models. Dealing with vectors describing entities without disentangling
the information related to their fundamental properties does not allow us to
infer most of their features. Consequently, when feeding a transition model
with embedding obtained encoding test images, there is no guarantee that its
prediction will agree with reality. To provide an example supported by visual
results, in Figure 8, we see our model that significantly mispredicts the target
state in the 10-step row. As inferring the shape of the teal triangle from its
embedding is hard (or maybe impossible), the model erroneously guessed either
a circle or a square. Both embodiments would indeed not be affected by the
agent moving to the bottom, remaining in the position predicted by the model.

Moreover, having this chaotically mixed information does not allow the model
to ignore properties that are useless in predicting the transition of an object in
space (such as color in this specific environment). In other words, the transition
model has to update the object vectors in a way that preserves all the features
(except positions when objects move). On the other hand, having specific
components explaining individual features would allow a model to consider only
the useful information and update just the sub-vector bound to the position.
This would favor generalization to unseen objects and enhance the robustness
of the world model in multi-step prediction. On the contrary, updating the
entire vector could bring updates disrupting the object representation altering
its texture and contours, making predictions less accurate as the number of steps
to take in latent space increases.

SA-SWMs vs. C-SWMs Even though the representations are far from
optimal, we observed that SA-SWMs worked impressively better than C-SWMs
in the given environment. Exploiting pre-learned representations (that even if
not disentangled, still succeed in explaining objects individually) allows a loss
function entirely dedicated to optimizing the transition model and prevents the
encoder from learning embeddings minimizing the loss without encoding the
desired information.

Furthermore, as previously mentioned, the contrastive term in the loss
function is (probably) not sufficient to model complex features, as it is reasonable
to think that exists countless ways to move embeddings of dissimilar states away
into latent space. As a consequence, the solutions optimizing the loss and
modeling the desired features are strongly outnumbered by poor local minima.

Despite the high variance registered in C-SWM performances endorses this
hypothesis, we believe a C-SWM can learn good representations with rigorous and
extensive hyperparameter tuning. Regardless, such a tuning procedure is likely
to be far more computationally expensive than pre-training an object-centric
model as training-efficient as Slot Attention.

Lastly, Slot Attention is not affected by instance disambiguation issues,
allowing it to overcome one of the limitations named by T.Kipf et. al in [13].
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Reinforcement learning The analysis of the latent space in 2-dimensions
favors the explanation that sustains features such as color and shape cannot be
inferred from the Slot Attention encodings (or at least not easily). Consequently,
architectures such as Relational Networks that rely on affinities between couples
of vectors, struggle to approximate functions depending on those properties such
as reward, value, and policy functions. In order to simplify the problem and
verify that it did not rise instead from implementation errors or non-optimal
parameter settings, we tried to approach the easiest task (goal finding) with a
simple 1-step search as in [30]. In this way, we only train the reward predictor
through mean squared error, and in case it does not even manage to overfit, we
can conclude that the representations do not allow us to learn a simple linear
function, based on object relations. In this task, the reward function is inversely
proportional to the distance between the agent and the target sprite which is
identified by the red color. It came out that after about 10° timesteps, the
trained reward predictor accuracy was aligned with that achievable with random
guesses. The experiments conducted in [30] showed instead that a number of
environment steps between 102 and 103 is sufficient to reach a success rate of 90%
on a task with a pretty similar reward function. Though these results should
not surprise as the MONet [4] encoder (the visual model used in COBRA[30])
provide the reward predictor (a Relational Network) with latent vectors shar-
ing the same representational semantic. These vectors are hence composed of
subparts explaining object properties in a disentangled way and the order in
which these features are encoded is constant. Watters et. al [30](appendix G)
recognized that these representational properties could be a determining factor
in the development of a robust agent. In light of these results, the hypothesis
that disentangled representations are indispensable to enable relational reasoning
and allow learning property-comparison tasks with a few interactions with the
environment (less than 10%), becomes even more solid. It should not be excluded
that with more complex models and different architectures, it might be possible
to exploit the actual representations to learn some of the proposed tasks (given an
extensive tuning of the hyperparameters). Nevertheless, this is not the direction
that this work is meant to follow. Contrarily, this work aims to provide ulterior
evidence that interpretable object-based encodings enable current reinforcement
learning approaches to be more sample efficient and prone to generalization.
Complex models fed with non-optimal representations would be instead more
data-hungry and inclined to overfitting.

The latent space analysis further explained why the representations were
instead enough to learn a satisfying world model. In particular, it showed that it
is particularly easy to discriminate the agent from the other sprites and map its
moves based on the actions, justifying the valuable results it obtains (especially)
when the agent does not interact much with the other objects.

Conclusion & Future Work In conclusion, this study has shed light on the
importance of disentanglement in object-centric representation to allow agents to
reason about objects and their specific properties. We further introduced a class
of object-based world models that overcomes some of the limitations affecting C-
SWMs while enhancing their performances and generalization properties on the
environment used in our experiments. In this regard, we extended Spriteworld
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[29] to include physics in order to require structured world models able to learn
complex interactions between objects. We hope the introduction of a more
challenging environment stimulates interest in the field to realize solutions to
solving its tasks, or even to build different environments to challenge future
object-based reinforcement learning agents. In future projects, it would be
interesting to ulteriorly enhance C-SWMs to overcome their other limitations
listed in [13]. In particular, it would be interesting to enhance the GNN-based
transition model to approximate an object-wise probability distribution over the
possible transitions. In this way, it would be possible to take into account the
stochasticity that can characterize the transition function of more complex and
non-deterministic environments. Another possible improvement suggested by
T.Kipf et. al [13] is to extend the transition model with some sort of memory
mechanism (such as for example RNNs or Neural Turning Machines) to unbound
the transition model from the assumption that the current state and action
contain all the information needed to predict the next one. As a first step to
take in the immediate future, our intention is to replicate our investigation
replacing Slot Attention with MONet to definitively prove our conclusion on
disentanglement, and finally provide empirical results for the application of
structured world models in a model-based reinforcement learning algorithm.
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A Hyperparameters

Configurations SA-SWM C-SWM
Ir 0.0005 0.0005
batch size 512 512
Learning epochs 600 600
num objects (w/bg) 6 6
hinge margin - 1
layer]l activation - leaky relu
layer1 filter size - 9 x 9 (zero padding)
ONN Encoder layerl featu.res maps - . 16 .
layer2 activations - sigmoid
layer2 filter sizes - 1x1
layer2 features maps - 6 x4
hidden dim - 512
MLP Encoder embedding dim : 64
Slot slots 6 -
Attention iterations 3 -
Encoder embedding 64 -

Table 2: Hyperparameters for SA-SWM and C-SWM
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