Universiteit Leiden

Opleiding Informatica

A Dual-Technique Approach: Shapelet and TimeGAN for

Counterfactual Explanations of Univariate Time Series

Name: Wei Chen
Date: 08/25/2023

1st supervisor: Dr. Niki van Stein

2nd supervisor: Prof.dr. T.H.W. Back

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

ABSTRACT

As the fast development of artificial intelligence (AI) continues, the concept of
explainable artificial intelligence (XAI) has gained increasing attention lately.
While a majority of efforts have been directed toward providing explanations
in the image and tabular domains, considerably fewer methods have been in-
troduced for time series data. Similarly, counterfactual-based XAI methods for
explaining time series classification models have not received as much focus
from experts. In this work, we leverage the Shapelet Transform (ST) and
TimeGAN to propose a model-agnostic, instance-based (counterfactual-based)
approach that provides counterfactual explanations for any time series classifier.
We validate our method using a real-world time series classification dataset
from the UCR Time Series Archive. Our results indicate that the counterfac-
tual instances generated by Time-CF demonstrate superior performance in
terms of the four metrics: closeness, omission, plausibility, and sparsity, when
compared to other baseline methods.

Contents

1 Introduction 1
1.1 Research Questions 2
1.2 Outline e 2

2 Related Works 3

3 Preliminary Concept 5
3.1 Problem definition 5
3.2 Shapelets 5
3.3 Properties of meaningful counterfactual explanations 6

4 Methodology 7
4.1 Shapelets extraction L 8

4.1.1 Candidates Extraction Lo oo 8
4.1.2 Information gain computation 9
4.1.3 Shapelet Selection 9
4.2 Couterfactual generation L Lo Lo 10
4.3 Evaluation measures L L L 11

5 Experiment and Result 13
5.1 Experiment setup Lo 13
5.2 Classifiers 14
5.3 Dataset 15
5.4 Evaluation and Result, 17
5.5 Comparative Study 18

5.5.1 CloSeness e e 20
5.5.2 Omission 20
5.5.3 Plausibility 20
5.5.4 Sparsity 22
6 Conclusion 23
A Appendix 25

iii

Introduction

In recent years, the performance of Machine learning models became increasingly impressive.
Advances in capability of data computation, development of sophisticated algorithms, and
the proliferation of high-quality datasets have all contributed to this upward trend [31, 32].
Machine learning models and methods are being leveraged in almost every work of life,
such as automated driving, banking, healthcare, aerospace, and geo-science, where detailed
explanations for each decision are essential [30]. However, the recent rise in its black-box
nature is a matter of considerable public concern. A black box model, as the name suggests,
is inherently opaque. It is difficult for people to clearly explain why it predicts in a certain
manner, as the underlying reasoning behind its decision is not easily comprehensible. In
domains such as medicine and autonomous vehicles, where the occurrence of errors could
be fatal, there is an urgent need either to provide post-hoc explanations based on the
decisions made by the models or to build inherently explainable models before predictions
(ante-hoc).

In response to the opacity property of machine learning models, the field of X AI has emerged
to address this issue. Although XAI methods have been effectively applied to domains such
as images, text, and tabular data, there has been relatively less focus on time series data
[33]. The main reason for this is temporal dependency within a time series instance, where
each time point in a time series instance tends to rely on its predecessor. The temporal
dependency therefore adds complexity to the interpretability and explainability of time
series data particularly in developing XAI methods specifically for this type of data. In
general, XAl approaches for time series data can be categorized into three types. First,
time-points-based methods, which explore how important each time step and feature are to
the prediction. Second, subsequences-based (or shapelets-based) methods, which consider
the segments of the time series instance that will most significantly impact the outcome.
Lastly, instance-based methods, which take all time steps within a time series instance into
account[37].

For instance-based methods, in addition to generating feature-based and prototype-based
explanations for predictions, counterfactual-based methods have recently gained wider
popularity [37]. Counterfactual, as the name suggests, involves the generation of an instance,
that does not exist in the original dataset. Interpretability and explainability are typically

Research Questions Chapter 1. Introduction

achieved by generating at least one counterfactual instance based on the to-be-explained
instance. Then, a comparison between these instances is made. Specifically, the most
common approach taken by experts to transform the to-be-explained instance into a
counterfactual one is based on perturbation. This means altering as few elements as
possible from the to-be-explained instance, for it to be classified as a different class from
the original one. By comparing the differences in the modified parts, end users can easily
understand which factors influence the classifier.

In this work, the focus is on explaining the prediction by time series classifier using GAN
to generate counterfactual instances.

1.1 Research Questions

In this thesis, we will investigate the following research questions to shed light on the
challenges and solutions for providing convincing explanations for machine learning models,
especially those that focus on time series data.

e How might the black-box nature of machine learning models be addressed to reduce
opacity and enhance interpretability through the application of XAl principles?

e How can XAI methods be effectively applied to time series data and time series clas-
sification tasks, particularly considering the complexities introduced by the temporal
dependency inherent to time series data?

e Given that there have been a number of XAI methods designed specifically for time
series classification tasks, which among them can be considered particularly effective?

e The generation of counterfactual explanation is a useful approach within the instance-
based category of methods for explaining time series data. What manner of generation
can result in meaningful counterfactual explanations?

o How can we alter the given to-be-explained instance minimally yet effectively so that
it is classified as a different class by the classifier?

o Which type of Generative Adversarial Network (GAN) is most suitable for generating
counterfactual time series instances that adhere to the dataset distribution?

1.2 Outline

The remainder of this thesis is structured as follows: In the Related Works chapter (Chapter
2), we showcase the recent efforts on XAI methods for time series classification. In the
Preliminary Concepts chapter, (Chapter 3), a comprehensive description of the preliminary
concept of time classification series is described. Following this, we detail our local model-
agnostic approach, particularly focusing on the generation of counterfactual instances
in the Methodology chapter (Chapter 4). Subsequently, experiments and corresponding
evaluations are presented in Chapter 5. Finally, we summarize our findings and draw our
conclusion in the final chapter of the thesis 6.

Related Works

According to [37], time points-based explanation tend to be divide into Attributions and
Attentions, both of which take into account the feature-importance of time series. Lime
and SHAP are representative of attributions approaches. Lime operates by perturbing
the to-be-explained instance and generating random instances around it with the assistance
of a sparse linear model [29]. SHAP, on the other hand, borrows their ideas from the
classic Shapley values in game theory, and it achieves explanation by computing the contri-
bution of each feature to the prediction [20]. Nevertheless, they are not primarily tailored
to explain time series data, which means that the explanations they produce for time
series classifiers can be unconvincing, even though they can be adapted to accommodate
time series data. In [10], Guillem ‘e et al. propose LEFTIST to adapt Lime to support
time series classification. LimeSegment [35] extends Lime on the basis of LEFTIST, by
introducing improved segmentation and perturbation algorithm. TimeSHAP [3], which
is introduced by Jodo Bento et al., shares the same idea with SHAP. Its recurrent ex-
plainer is constructed based on KernelSHAP and is specifically adapted to handle time
series data. In the domain of computer vision, Class Activation Maps (CAM) is an
approach used for classification tasks by highlighting the most important regions of an
image [44]. Building upon CAM, Selvarajul et al. propose a gradient-weighted class acti-
vation mapping technique, named Grad-CAM [34] to exclusively interpret deep learning
models, such as CNNs. This technique does not mandate the presence of a Global Average
Pooling (GAP) layer like the original CAM technique does. However, it is not explicitly
designed for sequential data. An alternative approach to it, called Salience-CAM has
been proposed by Zhou et al., which is specifically designed to visually explain time series
data in a point-to-point manner [45].

Instance-based explanation methods, particularly the Counterfactual-based direction have
progressively emerged as alternative options to the time points-based strategies. In the
context of counterfactuals, interpretability and explainability are attained by creating
synthetic instances for visual comparison. Wachter et al. were pioneers in generating coun-
terfactual instances to elucidate anomalies [39]. This involves simultaneously minimizing
a prediction loss function that drives the prediction on counterfactuals towards a different

Chapter 2. Related Works

class, and a distance loss function that ensures the similarity between counterfactuals
and to-be-explained instance. Recent efforts about using counterfactual instances as ex-
planation are proposed essentially based on Wachter et al.’s theory. Ates et al. propose to
explain multivariate time series data, named CoMTE [1]. In this method, it selects an
instance from the training set as distractor, and then takes a specific interval from this
distractor to replace a corresponding interval in the instance of the time series that is to be
explained. This approach was among the first to generate explanation in the multivariate
time series context. Native-Guide [6] is another counterfactual-based method, introduced
by Delaney et al, following four desirable properties: Sparsity, Proximity, Plausibility, and
Diversity. In essence, they find the nearest-unlike neighbor of the to-be-explained instance
and generate counterfactual instance for explanation. TimeX in [8] utilizes the concept
of Dynamic Barycenter Averaging (DBA) to generate prototype of the opposite class of
the to-be-explained instance. Subsequently, the prototype is divided into equally sized
intervals (or segments) to continually optimized the to-be-explained instance until a valid
counterfactual instance is generated. MG-CF [17], SG-CF [16], and SETS [2] are also
extensions of [39], but incorporate Shapelets into consideration. Specifically, MG-CF gen-
erates counterfactual instances by using Shapelet Transform [11] to extract all potential
Shapelet candidates and then replaces the same part of the to-be-explained instance. More-
over, SG-CF adds an additional term to the previous formulation of [39], which enables
the similarity between counterfactual instance and most salient shapelet, for more robust
explanation. In SETS [2], Bahri et al. propose to generate counterfactuals for multivariate
setting by leveraging Shapelet Transform to sample Shapelets from the raw dataset for
each dimension. The Shapelets from the instance to be explained are contiguously replaced
one by one with the corresponding sampled Shapelets in the opposite instance until the
class of the generated instance is classified as the same as that of the opposite one. [14]
and [5] employ Generative Adversarial Network (GAN) for counterfactual explanation [9].
However, unlike standard GAN structure, they additionally introduce pre-trained classifier
to the optimization of loss function. In addition, the input of the generator is not random
noise but a time series instance as they also incorporate the concept of the Conditional
Generative Adversarial Network (cGAN) [23].

Preliminary Concept

In this section, we outline the preliminary concept of counterfactual generation for time
series data, focusing specifically on the problem statement of univariate time series data. We
also introduce four properties as benchmarks for the generation of meaningful counterfactual
explanations.

3.1 Problem definition

Univariate time series data refers to time series data where the number of features (or
attributes) is singular. Assume a univariate time series dataset

D ={T\,T»,Ts, ... Ty} (3.1.1)

where n is the number of instance within this dataset, and each time series instance
T; has a corresponding class label, i.e., C = {¢,¢'}. For a time series instance T; =
{t1,t1,t3, ..., tm} with length m, its structure is arranged chronologically, with each time-
step t; represents a real value. To generate a meaningful counterfactual instance 7, for a
to-be-explained instance T, it is essential to utilize the training set of the time series data
D to train a classifier f of interest beforehand. Once the pre-trained classifier is obtained,
a counterfactual generation model M is used to perturb the to-be-explained instance T,
associated with its class, say ¢, to be classified as the opposite class .

3.2 Shapelets

Shapelets are sub-series (or sub-sequences) of a time series instance (as depicted by the
green sub-sequences in figure 3.2.1). They can be extracted from time series data using the
Shapelet Transform algorithm for the purpose of time series classification. In the context
of XAI, Shapelets can be leveraged to provide more informative and intuitive explanations
for undesired results compared to feature-based methods.

Properties of meaningful counterfactual exjflimpittiem8. Preliminary Concept

WLl

Figure 3.2.1: An example of a time series instance, where the blue curve line represents a univariate
time series instance, while the green curve line is one of its Shapelets.

3.3 Properties of meaningful counterfactual explanations

Although there is no a consensus on the evaluation of counterfactual-based methods,
closeness (or proximity), sparsity, plausibility (or interpretability), and diversity have been
widely used in recent papers [1, 2, 6, 8, 16, 17, 24, 41]. In a similar vein, except for assessment
on diversity that is replaced by omission, we utilize the remaining three measures for our
evaluation. For more details on how we assess these four properties, refer to subsection 4.3.

o Closeness, as its name suggests, seeks to ensure that the to-be-explained instance
is as similar to the counterfactual instance as possible [7].

o Plausibility is used to assess whether the counterfactual instance is generated within
the distribution of raw data [22, 27].

e Sparsity serves as a gauge for the number of changes between the counterfactual
instance and the to-be-explained instance [12, 13].

e Omission acts as a measure to demonstrate that how many classifiers a specific
counterfactual-based method can explain, in other words, generate at least one coun-
terfactual instance.

Methodology

We propose Time-CF, a local model-agnostic method to explain a specific instance for
any classifier, whether they are traditional classifiers, e.g., k-nearest neighbor (KNN); or
they are deep learning classifiers, e.g. Convolutional neural network (CNN). The details
of the counterfactual generation model M are depicted in Figure 4.0.1. Specifically, to
implement a counterfactual generation model, the process begins with the random sampling
of a designated number of Shapelet candidates, the lengths of which are pre-specified
within a certain range, from the training set using the Random Shapelet Transform (RST).
Subsequently, these collected Shapelets are sorted by their respective information gain in
descending order and then filtered to the top N, which means how many Shapelets are
retained. Following this, each group of Shapelets corresponding to the same time interval,
for example, 8:00am to 4:30pm, is brought to a variant of the GAN called TimeGAN
[42], which is specifically designed for time series generation, in order to produce multiple
Shapelets for diverse explanation. Once the artificial Shapelets are obtained, they are used

| A-\J\IJL;’\[\ —2. train——» - —

AV Classifier

A T

o 4. localize *

Training Set Instances (Class B) from training set TimeGAN PredictioT (Class B)

1. train

1. split

-
ShapeletTransform v - 5. cropped N\ AN 8. predict
Shapelet) LU
(c|aap:s ?3)5 Fake time series instance ‘
Anomaly l 6. replace {) 7. synthesize—»
(Predicted as Class A) A Counterfactual

6. cropped

Figure 4.0.1: The structure of counterfactual generation model.

Shapelets extraction Chapter 4. Methodology

to replace the corresponding time interval of the to-be-explained instance Shapelet-by-
Shapelet. This section delineates the detailed procedure for generating a counterfactual
instance for explanation, which entails the extraction of discriminative Shapelet candidates
and the ultilization of TimeGAN to generate meaningful counterfactual series.

4.1 Shapelets extraction

Algorithm 1: Shapelets Extraction
Data: Dataset: D, Random Shapelet Transform algorithm: RST'()
Result: Shapelet candidates: S

18« 0;

2 Xirain, Ytrain, Xtests Ytest < processDataSet(Dataset);

3 S« RST(lenmin, lenmaz, , max__shapelets, time_limit, Xirqin);

Shapelets, also referred to as subsequences, constitute part of a time series instance..
Shapelets tend to provide important patterns and trends about a series, while a scattering
of features (feature-based) might not. For this reason, perturbation should be applied on
contiguous intervals instead of fragmented time-points. However, not all the Shapelets
contained in a time series instance have crucial information that facilitates the correct
prediction of classification. As previously discussed, with the aid of the Shapelet Trans-
form (ST) algorithm, Shapelets with less discriminative information are filtered out, and
those with relatively high discriminative power are retained for subsequent perturbation
steps. In practice (See Algorithm 1), we utilize Random Shapelet Transform (RST'), which
accommodates time limitations, thus providing a time-saving advantage in comparison to
the Shapelet Transform (ST). It takes as input the training set and outputs extracted
Shapelets. The primary stages of the Shapelet Transform (ST) or Random Shapelet Trans-
form (RST) process include candidate extraction, computation of information gain, and
ultimately Shapelet selection.

4.1.1 Candidates Extraction

The Shapelet Transform (ST) is an algorithm designed for time-series classification tasks.
It extracts Shapelets from a dataset (usually the training set) and considers these extracted
Shapelets as transformation features. In this step, a subset of possible Shapelets (or sub-
sequences) is randomly extracted from each time series instance within the dataset, with
various lengths and starting positions. Suppose there is an univariate time series dataset
with binary class D = {11, T5,T3,...,T,,}, in which n is the number of instances within this
dataset. For a given time series instance T; with the length of m, a set that contains all
its potential Shapelets @); with the length of k can be denoted as:

Qi = {p1,p2s -, Pm—k+1} (4.1.1)

where (m — k 4+ 1) indicates how many distinct Shapelets can be extracted from T;, and
pj is a Shapelet of T; with length k. Further, the whole of the Shapelet candidates for the
dataset is defined as:

S ={Q1,Q2,Q3,....,Qn} (4.1.2)

With the Random Shapelet Transform (RST), which does not consider all Shapelets, the
size of the extracted Shapelets set (); for a given time series instance is likely to be less

Shapelets extraction Chapter 4. Methodology

than (m — k + 1). Lastly, all Shapelets in each set @); are sorted together based on their
information gain. The argument maxz_ shapelets is used to specify the maximum number
of Shapelets that should be retained in the end.

In practice, Random Shapelet Transform algorithm is introduced due to the long time
Shapelet Transform (ST) takes to find all the possibilities. Random Shapelet Transform
(RST) algorithm is essentially a variant of Shapelet Transform. The main difference is how
Shapelets are extracted. In the Shapelet Transform (ST) algorithm, every distinct Shapelet
is considered, which can be time-consuming, particularly when the length of the time series
instance is long. In contrast, Random Shapelets Transform borrows the idea from the
binary shapelet transform, significantly reducing the computation time. The mechanism of
Random Shapelet Transform (RST) can be roughly summarized as continuously extracting
Shapelet candidates and discarding those Shapelet candidates with low information gain
in batches.

4.1.2 Information gain computation

Information Gain is a term used in the context of either decision tree or machine learning to
select features, synonymous with Kullback—Leibler divergence. Hence, Shapelet Transform
(ST) algorithm adopts it as a necessary metric to estimate the discriminative power of a
Shapelet to further rank the extracted Shapelet candidates in the time series classification
setting. Once the set of Shapelet candidates is obtained in extraction step, the step of
information gain computation starts with calculating the distance between each Shapelet
candidate and each sub-sequence of each time series instance. Equation 4.1.3 demonstrates
how the distance between a particular Shapelet candidate s; with length k£ and a time
series instance T} (from dataset D) is calculated, where d; could be calculated using either
Euclidean distance formula (See 4.3.2) or Dynamic time warping distance.

Distance(i, j) = min{dy,da,...,dm—k+1} (4.1.3)

Then the resulting ordered set of distances W; for s; will be sorted in ascending order as
the following equation shown:

W; =< (Distance(i, j),c), (Distance(i,j + 3),c), ..., (Distance(i,j +1),c') > (4.1.4)

where (Distance(i, j), ') is a tuple and ¢’ represents the class of time series instance T is
¢’. Subsequently, a division point (or threshold) is introduced to split all elements in W;
into two parts. Lastly the information gain of s; can be computed with a certain strategy,
e.g., Entropy or Gini Impurity.

4.1.3 Shapelet Selection

After the information gain of every Shapelet candidate s; is organized into a list, Shapelet
candidates with class ¢, to which the to-be-explained instance belongs, are discarded, and
only Shapelet candidates with class ¢ are retained for the follow-up replacement step. As
the 3" line in Algorithm 1 shown, Random Shapelet Transform (RST) generally needs five
parameters, in which the range of the length of extracted Shapelet candiates is determined
by the combination of len,;, and leny,q,; time_limit demonstrates how long the operation
of extraction will last and max_shapelets means the number of Shapelets expected to be
extracted per class. Therefore, in addition to the Shapelet candidates whose class are c¢ are
discarded, the parameter max_shapelets also further restrict the size of the candidates.

Couterfactual generation Chapter 4. Methodology

cf
—— to-be-explained

Figure 4.2.1: Time series counterfactual instance, where the blue curve line represents the to-be-
explained (original) time series, while the green curve line stands for its corresponding generated
counterfactual instance.

4.2 Couterfactual generation

Algorithm 2: Generating counterfactual explanations

Data: Shapelet candidates: S, to-be-explained instance with class ¢: T,
Result: Counterfactual explanation with class ¢: Tey

1 Starget < 0 ; /* A set of target Shapelets (real) from class ¢ */

2 Stake — 0 ; /* A set of target Shapelets (fake) from class ¢ */

3 CF <« 0; /* A set of counterfactual instances with class ¢ */

4 [<« cassifier. fit(Xirain, Ytrain) ; /* Trained a certain classifier */

5 for s; in S do

6 start_pos, Sien < S;.info;

7 if s.class = T,.class then

8 Starget + crop(start_pos, Sien, Ty-class, Xirain) ; /* Get the Shapelets
starting from start_pos and end in start_pos + Sjen, from training
set */

9 Sfake — TimeGAN(Starget);

10 for Sfake mn Sfak:e do

11 Tfake = replace(Ty, s fake, start_pos, sien) ; /* Replace shapelets

with the same time range, of 7,, with spue */

12 if f(Tfake) == s.class then

13 ch = Tfake;

14 CF.add(T,y) ; /* Store counterfactual instance */

Inspired by the positive performance of Shapelet-based method for time series classi-
fication tasks and by [5, 14, 38] that all leverage their respective Generative adversarial
networks (GANs), We likewise apply a variant of the Generative adversarial networks,
named TimeGAN as a core component of our counterfactual generation model M. Al-
gorithm 2 depicts how the counterfactual instances is generated after the extraction of
Shapelets. It first iterates over the Shapelet candidates set S. For each candidate s;, it
is essential to identify its start and end positions within the corresponding instance (See
6" line in Algorithm 2). Next, crop() function is executed to extract the target Shapelets
Starget Dy cropping each interval with the same time range (start and end positions) in

10

Evaluation measures Chapter 4. Methodology

each target time series instance, that is, instance from class ¢’. Later on, TimeGAN begins
with taking as input a group of sub-sequences Sigrger from class ¢ with the same time
range and then outputs a number of fake (artificial) sub-sequences, i.e., Shapelets. The
final process includes iterating through the set of target Shapelets (fake) and using the
custom replace() method to replace the contiguous time-points (ranging from the start
position and end position stored previously) of the to-be-explained time series instance
T,, with one of the target Shapelets (fake) generated by TimeGAN. More importantly,
once a synthetic time series instance Trake is yielded, having the pre-trained classifier f
predict its class is indispensable. This step reserves the fake time series instances that are
identified as counterfactual, for diverse explanations.

Figure 4.2.1 shows the visual comparison between generated counterfactual instance (green
curve line) and the to-be-explained instance (blue curve line). The perturbation is acted
on a contiguous segment of the original one and it results in a new instance classified as
different class.

As mentioned in previous section, the most typical counterfactual-based method was pro-
posed by Wachter et al [39], in which they introduce an optimization problem to simulta-
neously minimize the distance loss and the prediction loss.

argminm}z\mx Mf(Tep) —)+ d(Tey, To) (4.2.1)
T.y

This equation (4.2.1) describes their attempt to find a counterfactual instance ¢ catego-
rized as class ¢ (different from that of the original one) while being closer to the original
instance, i.e., the to-be-explained instance. However, without the focus on contiguity, it
cannot guarantee intuitive explanation [8]. In our counterfactual generation model M, it is
also desirable that the generated counterfactual instance T,y is close to the to-be-explained
instance, and that the counterfactual instance is consistently predicted as another label
c’. To meet the requirements, Shapelet Transform (ST) and TimeGAN that receives the
Shapelets coming from the same intervals can jointly serve as an effective solution to greatly
ensure the generated counterfactuals are close to the original one and to be classified as ¢’

4.3 Evaluation measures

As mentioned in section 3.3, there are four properties leveraged to measure whether the
generated counterfactual explanations are meaningful. Although the generated instance
can be identified as counterfactual instance once it is classified as the target class, it is
still necessary to further consider whether the way of generating counterfactual instances
is not only effective but also efficient.

e Closeness. To measure the closeness between the counterfactual instance and the
to-be-explained instance, both the Manhattan distance (L;-norm) and the Euclidean
distance (Lg-norm) are utilized. It is safe to say that the fewer perturbations per-
formed, and the smaller the changes for each perturbation, the closer the distance
between the to-be-explained instance and its counterfactual instances. The formula
of Li-norm (equation 4.3.1) and Lo-norm (equation 4.3.2) are shown as below:

LI(x,y) = > |zi — uil (4.3.1)
=1

— vi)? (4.3.2)

Evaluation measures Chapter 4. Methodology

where n represents the length of an univariate time series instance, while x and y are
different series.

e Sparsity. Another important metric for a meaningful counterfactual instance is sim-
ilarity. It is similar to property closeness but the main difference is that closeness
is evaluated by the distance between two instances in a multi-dimensional space
R™, where n indicates the length of the univariate instances, while property sparsity
focus on how many values of an instance are perturbed. Applying a few modifica-
tions that change an instance’s class can easily provide intuition for analysis. For
this reason, the number of perturbations on the to-be-explained instance should be
minimized. Equation 4.3.3 is used to assess whether a counterfactual generation
model M can generate counterfactual instance by perturbing little time-points on
the to-be-explained one.

1 n
S ity =1—— I(a; # b; 4.3.3
parsity =15 #) (1.3.3)

In this equation, n represents the length of a time series instance, while Y"1 | I(a; # b;)
is a indicator function where it takes the value 1 when the value of the time-point
i in series a (a;) is not equal to the value of the time-point i in series b (b;), or 0
otherwise. By analogy, similarity would be equal to 0 if a counterfactual instance is
produced by changing all the time-points on the to-be-explained instance.

o Plausibility. Obtaining a generated instance that is also identified as a counterfactual
instance does not necessarily mean it is relevant. In contrast, the instances generated
can become out of touch with reality if some values are altered beyond the distribution
of the raw data. For instance, ECG200 is a binary-class univariate dataset that
collects electrocardiogram (ECG) signals with values typically ranging from -5 to
5. However, without incorporating intentional design into counterfactual generation
model, perturbed values are more likely to deviate significantly, such as -500 or 100,
which are implausible and fall outside the range of human indicators. To detect and
evaluate out-of-distribution instances, the isolation forest method (Liu et al.) [18] is
utilized.

¢ Omission. Many model-agnostic methods in XAI claim to explain any classifiers
but often fail to live up to this assertion. Therefore, we introduce the measure of
omission to evaluate the percentage of classifiers that a given time series XAI method
is unable to explain. For example, given an instance to be explained, the omission
for a classifier, such as CNN, for a certain dataset is calculated as follows:

Omission (CNN) = — Z

1 & {1 if at least one counterfactual instance is generated
K

=1 L0 otherwise
(4.3.4)

where K is the number of random seeds.

12

Experiment and Result

5.1 Experiment setup

As stated, Shapelet Transform (ST) and TimeGAN are both crucial components for counter-
factual generation. Therefore, it is important to consider the setting of (hyper)parameters.
See Table 5.1.1 and Table 5.1.2 for details. Additionally, in Appendix, we present repre-
sentative counterfactual instances generated by various counterfactual-based methods, as
shown in Figures A.0.1 and A.0.2.

To build the counterfactual generation model M, Random Shapelet Transform (RST)
and TimeGAN are implemented with the help of two existing open-source libraries, namely
sktime [19] and YData Synthetic [26], respectively. In addition, our approach is evaluated
on each of four classifiers. Further, each classifier is trained with four different univariate
datasets. In practice, there are several processes in our implementation involved in random-
ness. Specifically, they are classifiers (Convolutional Neural Networks (CNNs) Classifier,
Diverse Representation Canonical Interval Forest Classifier (DrCIF), and Catch22 with
Random Forest (RF) Classifier); Random Shapelet Transform; and TimeGAN. For this
reason, the average of results for three repetitive experiments with random seeds 111, 222,
and 333 are taken. On top of that, we consider two different instances from distinct classes,
specifically the positive class and negative classes, for comparison. The main goal for this
experiment is the focus on the evaluation of closeness, sparsity, and plausibility. Lastly,

Table 5.1.1: The selection of (hyper) parameters for Shapelet Transform (ST), where
min__shapelet_length and man__shapelet_length represents the range of the size of the Shapelets
extracted, both of which depends on seq len, i.e., the length of the time series instance. Furthermore,
maz__shapelets is the maximum number of Shapelets retained, and time_limit indicates the time
limit of the extraction process. Generally, the more time spent, the higher the information gain of
the returned Shapelets.

Random Shapelet Transform
max_ shapelets | min_ shapelet_ length | max_shapelet_length | time_limit=1
20 0.1 * seq_len 0.5 * seq_len 1 minute

13

Classifiers Chapter 5. Experiment and Result
Table 5.1.2: The selection of (hyper) parameters for TimeGAN.
TimeGAN
epochs | batch_size | Ir noise_dim | layers_ dim | hidden_dim | gamma
500 4 5e-4 | 1 64 24 1

Table 5.2.1: The selection of (hyper) parameters for K-nearest neighbours (KNN) classifier. We
can set the distance parameter to either Euclidean or DTW (Dynamic Time Warping). However,
considering the extended training time that DT'W may necessitate in comparison to the Euclidean
distance, we opt to perform our experiment using the KNN model with the Euclidean distance
metric.

Selection of (Hyper)parameters for K-nearest neighbors (KNN)

distance n_ neighbours
Euclidean 1

for each dataset, its corresponding experiment will be suspended if minimum changes that
make the to-be-explained instance classified as other class are found.

5.2 Classifiers

To examine the performance of the counterfactual generation model M more comprehen-
sively, four popular time series classifiers from sktime.classification module are utilized
in the experiments. The selection of the (hyper)parameters for each classifier is shown
in Tables 5.2.1, 5.2.2, 5.2.3, and 5.2.4. Not all parameter settings are listed and unless
otherwise stated, those parameters that are not presented in the Tables use the sktime
default setting. The sktime version used in the experiment is 0.19.1.

K-nearest neighbours (KNN) Classifier with Euclidean distance

The k-nearest neighbors (KNN) algorithm can serve as a distance-based classifier for
time series data. It operates by predicting labels for given time series instances based
on their similarity to the training data. As such, it is widely used as a baseline for the
experimental comparison between classifiers. Similarly, in our experiment, it is regarded
as the fundamental model.

Convolutional Neural Networks (CNNs) Classifier

Arguably, LeNet-5 [15] proposed by Y LeCun et al. is the pioneer of modern CNN models.
It has gone through rapid evolution and a majority of extension of CNN architecture
have been developed and applied successfully in a wide range of artificial intelligence
tasks. In 2017, Zhao et. al proposed the paper Convolutional neural networks for time

Table 5.2.2: The selection of (hyper) parameters for Convolutional Neural Networks (CNNs)
Classifier, where all (hyper)parameters are set to the default settings provided by the sktime
library.

Selection of (Hyper)parameters for Convolutional Neural Networks (CNNs)

n_epochs

batch size

kernel size

filter sizes

2000

16

7

[6, 12]

14

Dataset Chapter 5. Experiment and Result

Table 5.2.3: The selection of (hyper)parameters for Diverse Representation Canonical Interval
Forest Classifier (DrCIF). The n__estimators parameter specifies the number of estimators used to
ensemble the trees. The n_ intervals parameter is the number of intervals designated for feature
extraction per representation per tree. Lastly, the atf subsample size parameter sets the feature
sub-sample size for each tree. All (hyper)parameters are set according to the recommended settings
provided by the examples in the sktime library.

Selection of (Hyper)parameters for Diverse Representation Canonical Interval Forest (DrCIF)
n_estimators | n_ intervals att_ subsample_ size

3 2 2

Table 5.2.4: The selection of (hyper)parameters for Catch22 Classifier. The outlier _norm pa-
rameter, when set to True, means that normalization is performed when encountering outliers
or extreme values. Moreover, the n__estimators parameter determines the number of trees in the
Random Forest, and the criterion parameter defines the method used to measure the quality of
a split. All (hyper)parameters are set according to the recommended settings provided by the
examples in the sktime library.

Selection of (Hyper)parameters for Catch22 Classifier with Random Forest (RF)
outlier norm | n_estimators criterion
True) gini

series classification [43], where they adapted Convolutional Neural Networks (CNNs) to
time series problems, leveraging convolutional layers to extract local dependencies in the
sequences.

Diverse Representation Canonical Interval Forest Classifier (DrCIF)

Diverse Representation Canonical Interval Forest Classifier (DrCIF) [21] belongs to the
family of interval-based classifiers. It is developed atop the Canonical Interval Forest
(CIF) algorithm. The main idea behind DrCIF is that it takes advantage of a series of
representations for time series data, including catch22, and applies transformations to
randomly selected intervals within the time-series data.

Catch22 Classifier with Random Forest (RF) Classifier

Catch22, a feature-based method, stands for Canonical Time-series Characteristics, with
the number 22 indicating the number of features included in the feature set, known for
its highly discriminatory power for classification. This classifier works by transforming
the original time-series data with 22 features, providing highly efficient operations. The
transformed data is then utilized to build an estimator, with the Random Forest (RF)
Classifier being chosen.

5.3 Dataset

In terms of the experiment, four datasets are selected from the UCR archive [4]. All the
datasets are binary class and have only one feature. See Table 5.3.1 for more details of the
dataset structure. Figures 5.3.1a, 5.3.1b, 5.3.1c, and 5.3.1d show the distribution of the
datasets, with two different classes distinguished by colour.

15

Dataset Chapter 5. Experiment and Result

(c) Wafer. (d) MoteStrain.

Figure 5.3.1: Data distribution for training set.

Table 5.3.1: Dataset for experiment. Length represents the number of time-points (or time-steps)
of a timer series instance, while Classes Ratio aims to show the number of instances for each class
in training set. For example, 903:97 for dataset Wafer means there are 903 positive instances and
97 negative instances in it.

Dataset Train Test size | Classes Ratio | Length | Number | Number of
size (Train set) of classes | dimension

ECG200 100 100 69:31 96 2 1

FordA 3601 1320 1755:1846 500 2 1

Wafer 1000 6164 903:97 152 2 1

MoteStrain | 20 1252 10:10 84 2 1

16

Evaluation and Result Chapter 5. Experiment and Result

ECG200

This dataset, introduced by R. Olszewski’s in his thesis Generalized feature extraction for
structural pattern recognition in time-series data [25] focuses on the electrical activity of
the heartbeat. In this context, the positive class is normal heartbeats and the negative
class myocardial infarction.

Wafer

The Wafer dataset, also created by R. Olszewski in [25] records changes in sensor values
during silicon wafer processing for semiconductor fabrication. It distinguishes between two
labels: normal (positive) and abnormal (negative).Notably, this dataset is imbalanced, with
the negative class constituting only 9.7% of the data. Therefore, it was selected for the
experiment to evaluate its potential negative impact.

Ford A

This dataset, designed for the IEEE World Congress on Computational Intelligence in
2008, consists of time series instances with 500 contiguous recordings, each corresponds to
a reading of engine noise. The objectives of the classification problem is to detect outliers
in automobile engine.

MoteStrain

This dataset, derived from C. Guestrin et al.’s paper Online Latent Variable Detection
in Sensor Networks [36] is known as MoteStrain. It comprises data collected from two
separate sensors: q8calibHumid and g8calibHumTemp. Each time series instance stands
for a measurement of either humidity or temperature. The goal of the classification task is
to determine the origin sensor of a particular data reading.

5.4 Evaluation and Result

As stated, experiments were conducted on different datasets for each classifier, with the
exception of KNN. The random seeds used for these experiments were 111, 222, and 333.
Tables 5.4.1, 5.4.2, 5.4.4, and 5.4.3 present the results. From these tables, it is evident
that the quality of a dataset plays a crucial role in determining the performance of the
counterfactual instance generation model. In the case of ECG200, its imbalanced class
distribution of approximately 7:3 leads to outliers constituting the majority of generated
counterfactual instances. For Wafer, which is even more extremely imbalanced, information
gain (IG) struggles to extract Shapelets with discriminatory power, making it challenging
for our model to generate meaningful counterfactual instances. In [40], they found that
Information Gain (IG) tend not to extract Shapelets with discriminatory power in terms
of imbalanced data sets. Hence, it is difficult for our generation model to produce counter-
factual instances based on imbalanced dataset (ECG200 and Wafer). Moreover, the results
for MoteStrain shows that the sparsity is guaranteed with over 90% while ensuring the
average distance between the generated counterfactual instance and the original one is
close. However, its small size of training data also causes problems such as overfitting
and insufficient representational power. In these scenarios, Shapelet Transform is not only
incapable of effectively capturing the relevant features, resulting in counterfactuals out of
distribution although discovered Shapelets may fit these limited data plausibly well, but

17

Comparative Study Chapter 5. Experiment and Result

Table 5.4.1: The results for ECG200. Attribute Outliers is the measure taken to see the percentage
of out-of-distribution instances in the generated counterfactual instances (The lower, the better).
However, the percentage for Sparsity represents the extent to which the original instance has been
modified (The higher, the better).

ECG200 (Positive)
Classifier | Accuracy | Closeness (L1) | Closeness (L2) | Sparsity | Outliers | Num CF
KNN 0.88 19.8 4.9 60% 81% 72
CNN 0.85 8.5 2.2 7% 100% 22
DrCIF 0.82 10.6 2.7 66% 44% 26
Catch22 | 0.80 26.8 5.4 57% 53% 12
ECG200 (Negative)
KNN 0.88 32.3 4.4 76% 30% 72
CNN 0.85 14.1 4.5 63% 34% 134
DrCIF 0.82 10.8 2.7 73% 0% 71
Catch22 | 0.80 18.5 4.1 65% 40% 142

Table 5.4.2: The results for FordA. Attribute Outliers is the measure taken to see the percentage
of out-of-distribution instances in the generated counterfactual instances (The lower, the better).
However, the percentage for Sparsity represents the extent to which the original instance has been
modified (The higher, the better).

FordA (Positive)
Classifier | Accuracy | Closeness (L1) | Closeness (L2) | Sparsity | Outliers | Num CF
KNN 0.67 51.1 9.7 93% 0 155
CNN 0.88 141.1 15.0 74% 0 2
DrCIF 0.79 44.4 8.6 93% 0 890
Catch22 | 0.88 43.7 8.3 92% 0 148
FordA (Negative)
KNN 0.67 13.2 6.1 99% 0 254
CNN 0.88 145.1 15.8 83% 0 175
DrCIF 0.79 127.7 15.2 79% 0 93
Catch22 | 0.88 83.6 13.8 90% 0 60

also outputting few number of counterfactual instances. On the other hand, generation
model M demonstrates the best performance on the dataset Ford A. Intuitively, the distri-
bution of the two classes shown in Figure 5.3.1b is apparently distinct. The range of value
for the negative instances is from -2 to 2, whereas that for the positive instances is some-
where between -4 and 4. As expected, our generation approach can provide interpretable
explanations with low modifications and no outliers.

5.5 Comparative Study

In this section, we conduct a comparative analysis between our approach, Time-CF, and
two other models: mlxtend (baseline model) [28] and Native-Guide [6]. This comparison
is based on the four metrics detailed in sections 3.3 and 4.3, and we employ the same
datasets, classifiers, and random seeds. Specifically, mlxtend [28] is an open source library
in Python tailored for various data science tasks. It provides a counterfactual-based method
that implements the original counterfactual generation model proposed by Wachter [39] to

18

Comparative Study

Chapter 5. Experiment and Result

Table 5.4.3: The results for Wafer. Attribute Outliers is the measure taken to see the percentage
of out-of-distribution instances in the generated counterfactual instances (The lower, the better),
while the percentage for Sparsity represents the extent to which the original instance has been
modified (The higher, the better). On the other hand, attribute Num CF is the number of coun-
terfactual instances generated. If it is 0, which means there is no counterfactual instance generated
by generation model M then the record is set to None.

Wafer (Positive instance)
Classifier | Accuracy | Closeness (L1) | Closeness (L2) | Sparsity | Outliers | Num CF
KNN 1 None None None None 0
CNN 1 None None None None 0
DrCIF 0.99 6.2 3.6 98% 0 33
Catch22 | 0.99 None None None None 0
Wafer (Negative instance)
KNN 1 None None None None 0
CNN 0.99 None None None None 0
DrCIF 0.99 12.7 4.5 95% 100% 24
Catch22 | 0.99 10.3 4.4 95% 100% 3

Table 5.4.4: The results for MoteStrain. Attribute Outliers is the measure taken to see the
percentage of out-of-distribution instances in the generated counterfactual instances (The lower, the
better). However, the percentage for Sparsity represents the extent to which the original instance

has been modified (The higher, the better).

MoteStrain (Positive)
Classifier | Accuracy | Closeness (L1) | Closeness (L2) | Sparsity | Outliers | Num CF
KNN 0.88 20.5 5.2 84% 48% 12
CNN 0.90 2.7 1.4 95% 0 7
DrCIF 0.74 18.5 4.7 80% 23% 3
Catch22 | 0.80 3.0 1.6 95% 32% 3
MoteStrain (Negative)
KNN 0.88 1.6 0.8 94% 0 1
CNN 0.90 8.1 2.7 89% 0 4
DrCIF 0.74 9.2 4.6 87% 0 6
Catch22 | 0.80 6.8 2.9 88% 0 2

19

Comparative Study Chapter 5. Experiment and Result

Closeness Closeness

o
=3
=)

Method
mm mixtend
B Time-CF
B Native-Guide

Method
mmm mixtend
s Time-CF
mmm Native-Guide

o
=3
=3
w
a

w
=3

N
o
=3

N

o

N
o

N

o

=3
-
o

Manhattan distance (L1-norm)
w
S
3

Euclidean distance (L2-norm)

—
=)

=
o
)

«

ol
ECG200 FordA Wafer MoteStrain ECG200 FordA Wafer MoteStrain
Dataset Dataset

Figure 5.5.1: Closeness measures, where the results for L1-norm and L2-norm are shown in the
left and right sub-figures, respectively.

explain a given instance. For mlxtend, We vary the parameter A (0.4, 0.5, 1.0, 5.0, and 100)
to probe into different aspects of the counterfactual instances. Additionally, Native-Guide,
as referred to in chapter 2, deploys class activation weights (CAM) and weighted dynamic
barycentre averaging (DBA) as two distinct methods to explain classifiers. However, since
CAM can only be utilized with deep learning models that necessitate the addition of a
global average pooling layer, we resort to their alternate method that employs DBA in our
experiment, using its default parameter settings.

5.5.1 Closeness

As illustrated in figure 5.5.1, the results highlights closeness metrics. As anticipated, mlx-
tend as the baseline model showcases the least impressive performance. Conversely, coun-
terfactual instances produced by our approach boast the smallest distance to the instances
being explained across all datasets. This reveals our approach’s proficiency in perturbing
only the minimal, contiguous portion of the original instances.

5.5.2 Omission

Omission serves as a metric to determine the extent to which counterfactual-based method-
ologies are model-agnostic or can explain any classifier. Evaluating four time series classifiers
across four datasets, we documented the proportion of classifiers that remained unexplained,
signifying that the counterfactual-based approaches could not yield any counterfactual in-
stances for a given to-be-explained instance. The data in figure 5.5.2 demonstrates that
both mlxtend and Native-Guide fail to effectively handle a variety of classifiers across
these datasets. In contrast, with the exception of the imbalanced dataset Wafer, our method
can aptly discerns the informative features in time series data, thereby positioning itself
as a model-agnostic tool that can, in theory, clarify any classifier.

5.5.3 Plausibility

In this experiment, we delve deeply into the percentage of generated instances identified as
out of distribution. Given our emphasis on the importance of plausibility when generating
counterfactual instances, we exclusively retain those counterfactuals with the lowest outlier
rates to ensure heightened plausibility. As depicted in figure 5.5.3, our method outperforms

20

Comparative Study Chapter 5. Experiment and Result

Omission

1.0

ECG200
|
o
o

FordA
)
o
o
o
S
o
o

Wafer

0.2

0 0 0

MoteStrain

0 ' ' ' -0.0
CNN DrCIF Catch22 DrCIF Catch22 CNN DrCIF Catch22

mixtend TimeCF Native-Guide

Figure 5.5.2: Assessment of plausibility (A lower value is preferable). Y-axis quantifies the
percentage of generated counterfactual instances considered as out-of-distribution for datasets,
where a value of 0 indicates complete adherence of all generated instances to the characteristics of
their corresponding dataset.

Plausibility

Method
mixtend
Time-CF
Native-Guide

Outliers (%)

0% 0%
ECG200 FordA Wafer MoteStrain
Dataset

Figure 5.5.3: Assessment of plausibility (A lower value is preferable). Y-axis quantifies the
percentage of generated counterfactual instances considered as out-of-distribution for datasets,
where a value of 0 indicates complete adherence of all generated instances to the characteristics of
their corresponding dataset.

21

Comparative Study Chapter 5. Experiment and Result

Sparsity of different CF methods on different datasets

1.0 A

CF Method
— mixtend
Time-CF
—— Native-Guide
0.8 A
0.6
2z
o
©
o
"
0.4 A
0.2 A
-\
0.0 A S

ECG200 FordA Wafer MoteStrain
Dataset

Figure 5.5.4: Measurement for sparsity (The higher, the better). This metric indicates the extent
to which the number of time-steps is altered. A value of 0 means that the counterfactual instances
are derived from the original instances that have alterations at every time-points.

others in terms of plausibility in dataset FordA. However, it shows worse performance
than the others when using an imbalanced dataset.

5.5.4 Sparsity

Lastly, curve graph in figure 5.5.4 contrasts the sparsity level of each CF methods. When
compared to the sparsity levels of mlxtend (blue) and Native-Guide (green), that of our
approach consistently showcases superior performance. It is evident that both mlxtend
and Native-Guide require modifications to nearly all the time-steps to alter the class
of the to-be-explained instance from one to another, with values approaching a sparsity
of 0%. In contrast, our approach only perturb a minor segment, thereby offering not only
clearer visualization for analytical objectives but also a more intuitive comprehension of
which portions primarily influence the classifier.

22

Conclusion

In this work, a model-agnostic, counterfactual-based XAl method, Time-CF was intro-
duced to explain any anomaly for any classifiers concerning time series classification tasks.
Time-CF chiefly utilizes Shapelets and TimeGAN to deliver meaningful counterfactual
explanations, exhibiting exceptional performance in terms of closeness, omission, plausi-
bility, and sparsity measures. The incorporation of Shapelets indicates that a contiguous
segment of the time series instance is perturbed, thus offering intuitive insights for the
analysis of anomalies for end-users. In addition, TimeGAN ensures that at least one coun-
terfactual explanation is generated for explanation, provided the training set is both ample
and balanced. TimeGAN also guarantees that the produced series adheres to the data
distribution.

In future work, we aim to refine our methodology to cater to multi-class and multivariate
time series classification tasks. Moreover, a more profound exploration of the synergies
between TimeGAN and Shapelet Transform (ST) will be undertaken to address the sub-
optimal performance observed with imbalanced datasets.

23

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. N. van Stein, as well as her
PhD candidate, Qi Huang, for their relentless support and guidance during my research
endeavors. Lastly, a special thanks to my girlfriend, Sichong, who has always been there
for me. I love you.

24

Appendix

(a) ECG200 - mlxtend (b) ECG200 - Time-CF (c¢) ECG200 - NativeGuide

(d) FordA - mlxtend (e) FordA - Time-CF (f) FordA - Native-Guide
(g) Wafer - mlxtend (h) Wafer - Time-CF (i) Wafer - Native-Guide
(J) MoteStrain - mlxtend (k) MoteStrain - Time-CF (1) MoteStrain - Native-Guide

Figure A.0.1: Counterfactual instances generated using different methods, where the to-be-
explained instance is labeled as positive.

25

Chapter A. Appendix

(a) ECG200 - mlxtend

(b) ECG200 - Time-CF

(c) ECG200 - NativeGuide

[
|

(e) FordA - Time-CF

(h) Wafer - Time-CF

(j) MoteStrain - mlxtend

(k) MoteStrain - Time-CF

(1) MoteStrain - Native-Guide

Figure A.0.2: Counterfactual instances generated using different methods, where the to-be-
explained instance is labeled as negative.

26

1]

[10]

Bibliography

Emre Ates, Burak Aksar, Vitus J Leung, and Ayse K Coskun. Counterfactual ex-
planations for multivariate time series. In 2021 International Conference on Applied
Artificial Intelligence (ICAPAI), pages 1-8. IEEE, 2021.

Omar Bahri, Soukaina Filali Boubrahimi, and Shah Muhammad Hamdi. Shapelet-
based counterfactual explanations for multivariate time series. arXiv preprint
arXiw:2208.10462, 2022.

Joao Bento, Pedro Saleiro, André F Cruz, Mario AT Figueiredo, and Pedro Bizarro.
Timeshap: Explaining recurrent models through sequence perturbations. In Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pages 2565-2573, 2021.

Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdul-
lah Mueen, and Gustavo Batista. The ucr time series classification archive, July 2015.
Wwww.cs.ucr.edu/~eamonn/time_series_data/.

Cassio F Dantas, Diego Marcos, and Dino Ienco. Counterfactual explanations for land
cover mapping in a multi-class setting. arXiv preprint arXiv:2301.01520, 2023.

Eoin Delaney, Derek Greene, and Mark T Keane. Instance-based counterfactual
explanations for time series classification. In Case-Based Reasoning Research and De-
velopment: 29th International Conference, ICCBR 2021, Salamanca, Spain, September
13-16, 2021, Proceedings 29, pages 32-47. Springer, 2021.

Eoin Delaney, Derek Greene, and Mark T Keane. Uncertainty estimation and out-of-
distribution detection for counterfactual explanations: Pitfalls and solutions. arXiv
preprint arXiw:2107.09734, 2021.

Soukaina Filali Boubrahimi and Shah Muhammad Hamdi. On the mining of time series
data counterfactual explanations using barycenters. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, pages 3943-3947,
2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139-144, 2020.

Maél Guillemé, Véronique Masson, Laurence Rozé, and Alexandre Termier. Agnostic
local explanation for time series classification. In 2019 IEEE 81st International
Conference on Tools with Artificial Intelligence (ICTAI), pages 432-439. IEEE, 2019.

27

www.cs.ucr.edu/~eamonn/time_series_data/

BIBLIOGRAPHY BIBLIOGRAPHY

[11]

[12]

[13]

[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and Anthony Bagnall.
Classification of time series by shapelet transformation. Data mining and knowledge
discovery, 28:851-881, 2014.

Amir-Hossein Karimi, Gilles Barthe, Borja Balle, and Isabel Valera. Model-agnostic
counterfactual explanations for consequential decisions. In International Conference
on Artificial Intelligence and Statistics, pages 895-905. PMLR, 2020.

Mark T Keane and Barry Smyth. Good counterfactuals and where to find them: A
case-based technique for generating counterfactuals for explainable ai (xai). In Case-
Based Reasoning Research and Development: 28th International Conference, ICCBR
2020, Salamanca, Spain, June 8-12, 2020, Proceedings 28, pages 163-178. Springer,
2020.

Jana Lang, Martin Giese, Winfried Ilg, and Sebastian Otte. Generating sparse coun-
terfactual explanations for multivariate time series. arXiv preprint arXiv:2206.00951,
2022.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324,
1998.

Peiyu Li, Omar Bahri, Soukaina Filali Boubrahimi, and Shah Muhammad Hamdi.
Sg-cf: Shapelet-guided counterfactual explanation for time series classification. In
2022 IEEFE International Conference on Big Data (Big Data), pages 1564-1569. IEEE,
2022.

Peiyu Li, Soukaina Filali Boubrahimi, and Shah Muhammad Hamd. Motif-guided
time series counterfactual explanations. arXiv preprint arXiv:2211.04411, 2022.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee
international conference on data mining, pages 413-422. IEEE, 2008.

Markus Loning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines,
and Franz J Kirdly. sktime: A Unified Interface for Machine Learning with Time
Series. In Workshop on Systems for ML at NeurIPS 2019.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

Matthew Middlehurst, James Large, Michael Flynn, Jason Lines, Aaron Bostrom, and
Anthony Bagnall. Hive-cote 2.0: a new meta ensemble for time series classification.
Machine Learning, 110(11-12):3211-3243, 2021.

Tim Miller. Explanation in artificial intelligence: Insights from the social sciences.
Artificial intelligence, 267:1-38, 2019.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learn-
ing classifiers through diverse counterfactual explanations. In Proceedings of the 2020
conference on fairness, accountability, and transparency, pages 607-617, 2020.

28

BIBLIOGRAPHY BIBLIOGRAPHY

[25]

[26]

[29]

[32]

[33]

[34]

Robert Thomas Olszewski. Generalized feature extraction for structural pattern recog-
nition in time-series data. Carnegie Mellon University, 2001.

Ricardo Pereira. YData Synthetic: A package to generate synthetic tabular and time-
series data, 2023. URL https://github.com/ydataai/ydata-synthetic. GitHub
repository.

Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach.
Feasible and actionable counterfactual explanations. 2020.

Sebastian Raschka. Mlxtend: Providing machine learning and data science utilities
and extensions to python’s scientific computing stack. The Journal of Open Source
Software, 3(24), April 2018. doi: 10.21105/joss.00638. URL https://joss.theoj.
org/papers/10.21105/joss.00638.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?"
explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1135-1144,
2016.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature machine intelligence, 1(5):
206-215, 2019.

Igbal H Sarker. Deep learning: a comprehensive overview on techniques, taxonomy,
applications and research directions. SN Computer Science, 2(6):420, 2021.

Igbal H Sarker. Machine learning: Algorithms, real-world applications and research
directions. SN computer science, 2(3):160, 2021.

Udo Schlegel, Hiba Arnout, Mennatallah El-Assady, Daniela Oelke, and Daniel A Keim.
Towards a rigorous evaluation of xai methods on time series. In 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), pages 4197-4201.
IEEE, 2019.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEFE international conference
on computer vision, pages 618-626, 2017.

Torty Sivill and Peter Flach. Limesegment: Meaningful, realistic time series expla-
nations. In International Conference on Artificial Intelligence and Statistics, pages
3418-3433. PMLR, 2022.

Jimeng Sun, Spiros Papadimitriou, and Christos Faloutsos. Online latent variable
detection in sensor networks. In 21st International Conference on Data Engineering
(ICDE’05), pages 1126-1127. IEEE, 2005.

Andreas Theissler, Francesco Spinnato, Udo Schlegel, and Riccardo Guidotti. Ex-
plainable ai for time series classification: A review, taxonomy and research directions.
IEEE Access, 2022.

Arnaud Van Looveren, Janis Klaise, Giovanni Vacanti, and Oliver Cobb. Conditional
generative models for counterfactual explanations. arXiv preprint arXiv:2101.10123,
2021.

29

https://github.com/ydataai/ydata-synthetic
https://joss.theoj.org/papers/10.21105/joss.00638
https://joss.theoj.org/papers/10.21105/joss.00638

BIBLIOGRAPHY BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations
without opening the black box: Automated decisions and the gdpr. Harv. JL & Tech.,
31:841, 2017.

Qiuyan Yan and Yang Cao. Optimizing shapelets quality measure for imbalanced
time series classification. Applied Intelligence, 50:519-536, 2020.

Wenzhuo Yang, Jia Li, Caiming Xiong, and Steven CH Hoi. Mace: An efficient model-
agnostic framework for counterfactual explanation. arXiv preprint arXiv:2205.15540,
2022.

Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative
adversarial networks. Advances in neural information processing systems, 32, 2019.

Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. Convo-
lutional neural networks for time series classification. Journal of Systems Engineering
and Electronics, 28(1):162-169, 2017.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learn-
ing deep features for discriminative localization. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 29212929, 2016.

Linjiang Zhou, Chao Ma, Xiaochuan Shi, Dian Zhang, Wei Li, and Libing Wu. Salience-
cam: Visual explanations from convolutional neural networks via salience score. In
2021 International Joint Conference on Neural Networks (IJCNN), pages 1-8. IEEE,
2021.

30

	Introduction
	Research Questions
	Outline

	Related Works
	Preliminary Concept
	Problem definition
	Shapelets
	Properties of meaningful counterfactual explanations

	Methodology
	Shapelets extraction
	Candidates Extraction
	Information gain computation
	Shapelet Selection

	Couterfactual generation
	Evaluation measures

	Experiment and Result
	Experiment setup
	Classifiers
	Dataset
	Evaluation and Result
	Comparative Study
	Closeness
	Omission
	Plausibility
	Sparsity

	Conclusion
	Appendix

