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“Drug research, as we know it today, began its career when chemistry had reached a degree
of maturity that allowed its principles and methods to be applied to problems outside of
chemistry itself and when pharmacology had become a well- defined scientific discipline in
its own right.”

Jürgen Drews
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Designing Diverse and Synthesizable Molecules using Multi-Objective
Generative Flow Networks guided by Retrosynthetic Accessibility

by Julius Cathalina

Drug discovery is an error-prone and resource-hungry process, exacerbated by the
complex nature of interactions between pharmaceuticals with biological targets and
the intractable amount of viable molecules that exist. It is therefore necessary to opti-
mize our search for molecules that possess the properties that we are interested in. In
recent times, we have adopted an in-silico approach to drug discovery, but despite
the technological advances, most available tools propose molecules that are either
infeasible to synthesize or that are trivially similar to known compounds. Therefore,
it is crucial to generate diverse batches of molecules while simultaneously ensuring
that the desired properties are respected. Generative Flow Networks (GFlowNets)
are novel models that, similarly to Reinforcement Learning (RL) algorithms, are able
to discover candidates that maximize desired properties, but in a manner where they
are sampled proportionally to the quality of the solution. This approach enables us
to satisfy the criteria that we laid out for in-silico drug discovery. We compare our
results to an RL-based molecule generator to assess the benefits gained from using
GFlowNets, while simultaneously incorporating constraints that increase the feasi-
bility of the molecules we generate. Our results show that GFlowNets do deliver the
desired diversity without sacrificing solution quality, and that we can successfully
incorporate complex constraints that help make the downstream library of gener-
ated molecules more accessible.
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Chapter 1

Introduction

1.1 A brief history of drug discovery

Drug discovery as a formal discipline is relatively new when it comes to the field of
chemistry, but the practice thereof can be traced back to many centuries ago, when
humans began to extract medicinal compounds from plants and other resources
found in nature [1]. The approaches used to discover new medicinal compounds has
continuously been refined and evolved over time, with significant breakthroughs
being made during the 19th and 20th century. The advancements in this field at
the time included the isolation of morphine from opium extract, and concepts such
as ligand-receptor interactions being established [2]. While these findings laid the
groundwork for modern chemical theory, the emergence of computational chemistry
in the latter half of the 1900s, enabled by improvements in computational power,
made a lot of said theory practical.

Approaches such as Quantitative Structure Activity Relationship (QSAR) studies
and (automated) High Throughput Screening (HTS) accelerated molecule design it-
erations. QSAR studies are used to analyse correlations between molecular struc-
tures and their respective biological behaviours, while the purpose of a technique
such as HTS is to discover biologically relevant molecules by testing a large amount
of compounds against biological targets of interest [3]. In the ideal case, this leads
to candidate compounds (also called "hits" or "lead compounds") that exhibit the
desired effects on the target, but are not necessarily viable as pharmaceuticals. In
this way, HTS can be thought of as a quick filter to guide the search for relevant
compounds.

Despite the innovation that computational chemistry initially brought, one well es-
tablished hurdle in drug discovery was that the amount of potentially viable drug-
like molecules that can exist represented a prohibitively large chemical space, esti-
mated to be of a size larger than 1060 [4]. If chemists wanted computer-assisted lead
compound generation, the aforementioned techniques, while powerful for filtering
or lead optimization, would not be sufficient. Searching this vast space with ap-
proaches such as HTS, or any other technique that would require enumerating all the
possible molecules, would not be tractable. To this end, approaches that concerned
themselves with effectively searching limited parts of this space were developed.

1.2 De novo drug design

From the time of writing, it has been roughly three decades since the introduc-
tion of automated de novo drug design [5], a technique that has proven itself to
be paramount in the advancement of drug discovery projects. The main purpose
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of this technique is the generation of novel drug-like molecular structures that ex-
hibit desired pharmacological properties [6]. The generated molecular structures
should ideally be mappable to sets of descriptor values that characterize the phar-
macological behaviour that we are looking for. A more detailed explanation of the
mechanisms driving de novo drug design is given in section 2.1.

This technique offered a new way for chemists to discover possible lead molecules
for their biological targets. However, the early days of de novo drug design were
plagued by the lack of promising results, and it was subsequently set aside in favour
of other approaches that were easier to implement in practice [7]. One possible ex-
planation for this lack of results was that the researchers at the time undervalued the
importance of drug-like properties and synthetic feasibility of the designed com-
pounds [6]. In the last decade, de novo drug design had a resurgence, partially
attributable to the emergence of compound libraries that were generated through
techniques such as combinatorial chemistry. Steering away from the approach of op-
timizing a lead compound on potency over its drug-like properties helped as well,
as that approach was susceptible to attrition in the later stages of the drug discovery
pipeline. This resulted in many research projects where the compounds that were
designed were also synthesized and evaluated in the wet-lab, bolstering the credi-
bility of the technique.

1.3 Artificial-intelligence approaches in drug design

Due to the recent improvements in the Artificial Intelligence (AI) landscape, many
new techniques have been proposed to generate chemical compounds exhibiting
the desired physicochemical or biological properties. Notably, approaches based on
a combination of Reinforcement Learning (RL) and Deep Neural Networks (DNNs),
also called Deep Reinforcement Learning (DRL), have gained traction in this field [8,
9]. Results from prominent papers based on DRL, among other AI subfields in drug
design, will be further elaborated on in chapter 2. RL has been used to effectively
address problems involving high degrees of dynamic decision-making under uncer-
tainty. In particular, games with high theoretical complexity such as chess and go
have seen success through DRL, with groundbreaking examples such as AlphaZero
from 2017 [10] achieving superhuman performance. While RL has been studied ex-
tensively within the realm of game mastery, it is not limited to this space. The same
company behind the aforementioned AlphaZero have also contributed greatly to the
domain of science with the creation of AlphaFold, a protein-structure prediction (a
notoriously difficult task) tool that performed far beyond the state-of-the-art at the
time, and even more recently they showed that RL can even push the boundaries
of foundational mathematics with AlphaTensor as it discovered novel algorithms
for matrix multiplication using fewer multiplications (and additions) than the best
known methods [11, 12]

In 2021, a paper by Bengio et al. introduced a novel framework by the name of Gen-
erative Flow Network (GFN), which borrows many ideas from RL, with a crucial
distinction being that instead of asymptotically moving towards sampling from the
single best mode (that could be found) with the highest rewards, it samples around
all the high modes proportionally to the rewards associated with them. Intuitively,
this means that high sample diversity is embedded in (well-trained) GFN, granted
that the high-rewards mode can actually be found efficiently (i.e., the reward land-
scape is not too sparse or complex). The theory behind GFN and the methods that
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are used to enable its theoretical properties will also be further elaborated on in
chapter 2.

1.4 The challenges of AI-based de novo drug design

Synthesizability

Breakthroughs in AI have advanced the field of drug discovery past the point of enu-
merating intractable quantities of molecules and screening them in hopes of finding
promising hits. The generative algorithms that have been developed following the
success of Deep Learning (DL) methods have been particularly impactful [8, 13].
These methods commonly consist of models that learn to map continuous numer-
ical representations to a discrete chemical space, enabling the efficient exploration
of said space. Given a model that can associate a compound with a quantifiable
value of interest, it can be used in conjunction with the previous idea to exploit the
learned mapping to find molecules that are optimal according to said value. This ap-
proach is also known as a goal-directed generation task, and is a popular approach
used in modern de novo drug design. Despite its favourable theoretical properties,
goal-directed generation frequently results in molecules that are unlikely, if not im-
possible, to be synthesized in a lab, effectively limiting the usefulness of such models
for practical applications [14].

To combat this issue, it has become increasingly popular to include heuristics at
some point during the molecule generation pipeline to prevent models from sug-
gesting wildly unreasonable candidates. Many heuristics exist to estimate the syn-
thesizability of molecules, ranging from simple ones such as SMILES length or molec-
ular weight, to more complex ones such as the SA (Synthetic Accessibility) score,
SC (Synthetic Complexity) score and SYBA (SYnthetic Bayesian Accessibility) [15,
16, 17]. Although these heuristics are a reasonable proxy for the synthesizability
of compounds, they are often built on a limited number of assumptions of what
makes a molecule complex to synthesize. Modern Computer-Aided Synthesis Plan-
ning (CASP) tools such as ASKCOS[18] and AiZynthFinder[19] capture more of the
complexity inherent to synthetic planning with respect to chemical structure. They
directly take into account possible reaction templates that can lead to the compound
of interest based on explicit constraints given by the chemist. Additionally, these
tools also have the advantage of returning the pathways found through retrosyn-
thetic planning, adding a layer of interpretability to the molecule generation process.
Furthermore, most of these CASP tools rely on a given stock of, e.g., commercially
available molecules and specific policies. This does mean that the tool may mis-
classify certain compounds as inaccessible if the stock and/or policy does not have
enough coverage. On the other hand, we can take advantage of this to limit the
scope of the model’s exploration to more accessible compounds, further improving
the efficiency of our search.

The benefits gained from incorporating CASP tools to guide generative models come
at a cost – synthesis planning is costly, and in the context of optimization tasks where
these tools would be called copious amounts of times, the problem quickly becomes
intractable [14]. This issue can partially be ameliorated by creating a proxy trained
on the results of the actual CASP tool, and optionally combining it with the less ex-
pensive heuristics to retrieve a quantifiable indicator of synthesizability. This is the
approach that is used throughout this paper. The above-mentioned heuristics and
their relation to modern CASP tools are expanded on in section 3.3 and section 4.2.
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Chemical Diversity

The ability to propose a diverse set of candidate molecular structures has many ben-
efits for generative models, yet it is not a property that is trivial to guarantee. Having
high chemical diversity means that a model is more likely to propose molecules with
desirable properties that are structurally dissimilar to known compounds. These
molecules could result in unexpected leads – and if chemically viable and syntheti-
cally accessible – have the edge of being favourable in terms of intellectual property.
Furthermore, being able to sample more diverse sets of molecules means that the
model explores the chemical space more broadly. In the context of goal-directed
tasks, this also means that the model is less likely to get trapped in local extremes of
the chemical search space. Intuitively, resilience to local extremes is essential given
the magnitude of the search space, combined with the assumption that a miniscule
fraction of it actually contains synthetically accessible compounds that also exhibit
the desired properties.

Modern approaches to de novo drug design have implemented various solutions
to enforce diversity within generative models. The most intuitive approach, is to
use a dataset covering a broad chemical space to train the models, but within goal-
directed task settings, this objective can be improved on. Olivecrona et al. have used
"diversity filters" to penalize their models if they become too fixated on a narrow set
of compounds [13, 20]. Liu et al. used a second, frozen version of their generative
model as an exploration network, in a way that is analogous to an intelligent ε-
greedy RL algorithm [21]. In a subsequent version, this idea was extended further
by incorporating multiple Recurrent Neural Networks (RNNs) acting as crossover
and mutation operators – essentially transforming it into an evolutionary algorithm
approach to enforce exploration during RL-based optimization. The ideas used in
these papers will be further detailed on in section 3.1. As mentioned above, GFN can
be trained to attain the convenient property of implicitly modelling diversity. It does
so (when trained properly) by sampling candidates proportionally to their expected
goodness, unlike RL where the goal is to sample from the best mode that is known
based on some reward function. GFN are discussed more extensively in section 2.2
and section 3.2.

1.5 Research questions

In this paper, we set out to answer the following (sub)questions regarding auto-
mated in-silico de novo drug design:

1. Can we exploit the reward signal to overcome the diversity "hurdle" present in
many RL-based state-of-the-art generative models?

2. How can we incorporate retrosynthetic planning into generative models dur-
ing training, and does it improve the feasibility of downstream molecular li-
braries?

1.6 Thesis structure

In an attempt to remain self-contained, this thesis will start out by giving a high-level
overview of the theoretical background (see chapter 2) needed to understand the ap-
proaches and interpret the results. The main topics of synthesizability and its incor-
poration within (de-novo) drug design will be discussed in an in-silico context, along
with their associated challenges. It then covers the broad topic of how molecules are
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represented in computers, and how we can manipulate said representations to be
compatible with deep learning techniques. The list of representations discussed in
this thesis is far from exhaustive, but covers the most popular approaches at the
time of writing. The motivation for using these representations will be given, and
a superficial comparison between them will be given as to aid the reader in under-
standing why certain representations are more advantageous in different contexts.
It then goes over the two approaches used for the sampling of molecules from the
large chemical search space: RL and GFN. The fundamental ideas behind these ap-
proaches will be discussed, while referring to other papers where necessary for ex-
planations on their more detailed technical aspects. QSAR will briefly be discussed
as an explanation of how (unknown) molecules can be mapped to some quantifi-
able pharmacologic property value for the purposes of evaluating the goodness of
our generated molecules, albeit with some uncertainty. Finally, it will discuss the
concept of retrosynthetic planning – common heuristics for synthesizability will be
briefly discussed to motivate why more advanced retrosynthetic planning is useful
and should be incorporated into our generative models. Then the theory behind
modern CASP tools for retrosynthetic planning themselves will be discussed.

In chapter 3, this thesis will cover the most influential publications that our underly-
ing research builds on, and will briefly mention other papers that have implemented
similar ideas or were instrumental in building insight to carry out this research.
Chapter 4 will explain the methods used in this thesis, that being the types of neural
networks being used (e.g., RNNs, Message-Passing Neural Network (MPNN)), the
molecular representations and how they’re encoded, and the scoring methods be-
ing used. Chapter 5 goes over the results, being the generated molecules that result
from the different approaches. It will generally follow a pattern of showcasing sam-
pled molecules every so many steps during optimization, along with their predicted
properties, highlighting the shift between the distribution of said properties before
and after optimization. A two-dimensional view of the molecules using, e.g., Prin-
cipal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding
(t-SNE), will also be used to show approximately where the optimized molecules
end up in chemical space in relation to the original training dataset, based on their
molecular fingerprint. Chapter 6 will discuss the above-mentioned results, in an
attempt to explain the observations and limitations of the current approach, and
chapter 7 concludes the thesis by highlighting the main findings and summarizing
the lessons learned throughout the research process.
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Chapter 2

Theoretical background

2.1 Representing Chemistry in Computers

With the advent of powerful computers, the discipline of processing molecular in-
formation in-silico took shape in what is now known as cheminformatics. This pre-
sented an exciting way to advance research in chemistry. Researchers could now at-
tempt to (albeit imperfectly) predict the behaviour of chemical compounds through
simulation. Naturally, researchers needed a way to represent said compounds in a
computer before they could do anything useful. One of the earliest widely accepted
solutions to this representation problem was Simplified Molecular Input Line Entry
System (SMILES). SMILES is an intuitive string-based representation of a molecule,
invented in 1988 by David Weiniger[22]. While SMILES was and still is one of the
most useful ways of representing molecules in a computer, it has certain proper-
ties that make it less suitable for tasks in modern automated de novo drug de-
sign. The SMILES specification rules and its limitations will be briefly discussed
in the following section. Next to SMILES, many other representations have also
been created, such as Self-Referencing Embedded String (SELFIES), DeepSMILES
(SMILES catered towards deep learning tasks), and also intuitively – graph repre-
sentations[23, 24, 25, 26]. The scope of this research will only concern itself with
three of these representations: SMILES and SELFIES, and graphs, where SMILES
will be used as the general interface for all the components to work together, while
the generative models will be using SELFIES or graphs internally to leverage the
100% validity guarantee for the former case, and the additional features that can be
extracted from graphs in the latter. In the following sections, we will also elaborate
on how SELFIES achieves this validity guarantee, how it maps to molecular graphs
and why we chose to use it for our first generator. Then we will talk about how we
can make clever use of the intuitive graph representation of molecules to increase the
stability of molecular generators in settings where this can otherwise easily collapse.

Multi-Objective Optimization

More often than not, it is not sufficient to optimize drugs for a single biological target
– the interactions between chemically active compounds and the systems with which
they interact are complex, and can result in many side effects. For this reason, it is
paramount to consider multiple properties that a drug may have when considering
candidates for pharmaceuticals. We may, for example, want to maximize (or mini-
mize if the goal is for a compound to not be active for a certain biological target) all
the properties for a given candidate x as in maxx∈X (R1(x), R2(x), ..., Rn(x)), where
Ri(x) is the reward that is used as a candidate’s score for the ith property. However,
finding candidates that meet all the criteria for the properties that we consider is dif-
ficult because of potentially conflicting properties, where improving one may result
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in other properties deteriorating. This is known as the Multi-Objective Optimization
(MOO) problem, and is also the driving force behind the design of the reward signal
in this paper, which will be discussed in chapter 4. Because it may be infeasible to
optimize all properties simultaneously, we need to use an approach that can find all
the best candidates w.r.t. the trade-offs being made between each property – these
are known as pareto-optimal candidates. To achieve this, candidates must be com-
pared on each property to determine a so-called "dominant" candidate – that is, if a
candidate is just as good as the one it is being compared to for all n properties, and
is strictly better in at least one property, it is said to dominate (denoted by the symbol
�) the other. A more formal definition is given below:

Given two candidate solutions {x1, x2} ∈ X , (x1 � x2) iff:
∀i : Ri(x1) ≥ Ri(x2) ∧ ∃i : Ri(x1) > Ri(x2)

where i ∈ {1, ...n}, and n is the number of properties to optimize.

Most standard RL algorithms expect a scalar reward signal, and while other ap-
proaches exist such as distributional RL [27], the scope of our paper is limited to the
former setting. This counts for the GFN training objectives as well, which will be
further elaborated on in subsection 2.2.3. As we are in a MOO setting, the scores for
each objective has to be combined into a single scalar value before being passed as
feedback for our model to train on. There exist many weighting schemes – for the
scope of this paper, we will only consider an exponentiated weighted sum (WS) as
shown in section 3.2 and a custom Pareto front-based (PF) scheme, which is further
detailed in section 3.1.

2.1.1 SELFIES

SMILES is the standard string-based representation used as the work-horse of chem-
informatics, and has been instrumental in addressing the early challenges associated
with storing molecular information in computers [22]. However, with the advent of
generative models where the exploration of novel molecules is the main goal, it be-
came increasingly evident that SMILES were not the right tool for the job. These
models often need to be able to mutate and try unexplored structures to find inter-
esting candidates, but because of the ambiguity of SMILES (e.g., the same SMILES
can define multiple different structures), and the –for the computer– complicated
syntax, made it so that most of the SMILES proposed by these models resulted in
invalid molecules. A lot of training time is wasted simply training a model to learn
the correct syntax before the fine-tuning steps, and even then during the generation
phase it is still likely that a portion of the candidates will be invalid. This drawback
led to the development of other representations that are more fit for this task, such
as DeepSMILES[25]. Among those new representations, SELFIES was presented as
a fully robust string-representation (for small molecules), meaning that any SELFIES
string always corresponds to a valid molecule. It is also independent of the model
used and can be used as a stand-alone representation. This property of guaranteed
validity also makes it particularly intuitive to include in areas where exploration
through mutation is useful, such as in Evolutionary Algorithms (EA).

The validity guarantee of SELFIES is upheld by the following properties:

1. Branch length and ring size are stored together with their corresponding sizes
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2. Each SELFIES symbol is generated based on derivation rules that enforce valid
chemical valence-bonds

The first property eliminates syntactical errors in the string construction (e.g., un-
equal number of brackets), while the second makes sure that the strings always
represent chemically sane molecules. We refer the reader to the paper introducing
SELFIES for more in-depth explanations of how the derivation table works and for
worked out examples [24].

2.1.2 Graph Representations

Graphs are, arguably, the most intuitive way to represent molecules in-silico – it is
how molecules are most commonly visualized. In the deep learning field, techniques
that allow us to leverage the benefits gained from the mathematical properties of
graphs have become widespread. Graphs have always had said useful properties,
but deep learning was not as mature as it is at the time of writing, and hardware
limitations in the past meant that storing dense graphs efficiently represented a non-
trivial bottleneck. Due to current advances, there are a myriad of frameworks that
facilitate deep learning using graphs, and this is especially valuable in cheminfor-
matics, as representing chemical compounds as graphs allow researchers to mitigate
some of the limitations inherent to the usage of SMILES, and enables them to work
entirely within the domain of graphs. This also means that we are able to encode
more information into our in-silico molecules, such as adding molecular weights as
a feature directly embedded in a node, which can later be used to compute node
and/or graph-level predictions.

In the context of molecular representations, a graph G can be formulated as a set of
nodes and edges G = {V , E}, where each node v ∈ V can represent, e.g., an atom,
and each edge (u, v) ∈ E can represent a bond. In the case of such a graph, one
can set attributes on nodes or edges to enrich the information contained within it.
One clear example hereof is setting an edge attribute to specify the type of bond
(e.g., double or triple bonds) between two atoms. This straight-forward approach to
representing molecules as graphs can be extended further – one can also store molec-
ular substructures (henceforth "fragments") as nodes, and make the edges represent
bonds between two fragments.

Similarly to SELFIES, graphs can also be leveraged to design generative models that
are guaranteed to propose valid molecules [28]. In addition to this, graphs circum-
vent using string-based distance metrics for molecules, such as the edit distance
between two SMILES to determine the similarity of compounds. While there are
other solutions to this, such as first transforming the SMILES string into a molecular
fingerprint and comparing the fingerprints, using graph similarity metrics can save
us the cost of this additional translation step.

2.1.3 Molecular Fingerprints

Molecular fingerprints can be generalized as any data structure that encodes the
structure and properties of a molecule. There exist a variety of fingerprint types,
but the core idea is that a kernel is applied to a molecule to generate a bit/count-
vector. This vector can be thought of as an abstract representation of the features
of a molecule, with the resolution increasing with the vector-size (to a certain de-
gree). Different types of fingerprints are more relevant depending on the context.
The foremost application of these fingerprints is to efficiently compute the similarity
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between molecules. This allows us to, for example, infer how diverse our generated
molecular libraries are [29].

One caveat of this method is that molecular similarity is not well-defined, and that
fingerprint similarity is not a perfect proxy for it – it rests on the assumption that
similar molecules will share more bits in the same locations. In practice, we observe
that the data set being used for the similarity computation itself already has ma-
jor impact on the results. Despite this, we still leverage it as a visual indicator of
the chemical space that our generated molecules occupy, and as a heuristic for how
diverse they are.

2.2 GFlowNet Fundamentals

2.2.1 Generative Flow Networks (GFlowNets)

The aforementioned methods follow the pattern where a model is first trained to
learn how to generate a given representation of molecules in a general sense. One
can optionally fine tune the model by biasing it towards a certain molecular search
space (e.g., molecules that are known to be biologically active against the target of
interest), effectively focussing the model to search more within a narrower (possibly
more relevant) search space.

The optimization step is where a lot of the innovation in modern computational drug
design is found. One such approach is using DRL to find the areas in the molecular
search space that are likely to contain compounds that maximize the desired proper-
ties, represented by some reward metric (e.g., a QSAR model that gives a predicted
activity value of a molecule against some biological target of interest). However,
this approach is prone to a problem analogous to "tunnel vision" – the model can
excessively fixate on one (or a small number) of molecules that generate the highest
rewards, leading to a loss of diversity and limited exploration. There are several
ways to combat this, such as adding diversity filters where we punish the model for
generating overly similar molecules [20], and even EA can be employed (this method
is discussed in detail in section 3.1). Despite the effectiveness of the aforementioned
techniques employed to circumvent the exploratory limitations of RL, it is desirable
to learn a distribution from which we could sample molecules around the most im-
pactful modes of our reward function. In other words, we want to sample molecules
from different areas in our reward landscape where the reward is high, and not sim-
ply exploit the best mode found so far. This is one of the primary use cases that GFN
were designed for, making it particularly suited to drug discovery problems where
we want to find as many diverse candidates as we can that meet our pre-defined
criteria [30].

2.2.2 Definitions

Many of the definitions in this section will follow the notation used in the founda-
tional GFN paper[31] for consistency. One can think of GFN as a Directed Acyclic
Graph (DAG) representing a network of pipes, with particles flowing through each
of the pipes. The network is constructed sequentially by taking actions from a given
state s to get to a subsequent state s′ reachable from s taking any available action
(s −→ s′) ∈ A, or equivalently, s′ ∈ Child(s). Importantly, because we are using a
DAG for the network, we do not concern ourselves with cycles, and we maintain a
(strict) partial order, i.e., ∀s ∈ S\{s f } : st < st+1. The collection of all states in the
order they were reached is called a trajectory, and will be denoted as τ ∈ T . We will
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FIGURE 2.1: A simplified example of a pointed DAG as a flow net-
work, where the blue dots represent flow. S0 and S f are the source
and sink states, respectively, and the total flow theoretically goes
through both. More particles going through an edge corresponds
to paths likely to lead to high-reward terminal states, thus having a
higher probability of being taken during sampling (e.g., the trajectory

τ = (s2 −→ s5 −→ s8) is most likely to be sampled in this example).

use special notation to disambiguate the completion status of the trajectories. For
example, partial trajectories (i.e., not starting from the initial state or not ending in a
terminal state) will be explicitly be written out as τ = (sa, ..., sb) where either sa 6= s0
or sb 6= s f . A generic set of trajectories will be denoted as simply T . A DAG in this
context can be formally defined as a graph where, given a set of trajectories, T there
are no trajectories τ = (s1, ..., sn) where s1 = sn, except for a trajectory consisting
of exactly one state. Additionally, these DAGs have one specific requirement – all
the particles must originate from a single initial state (source), and all these particles
will also go from all terminal states into a single final sink, as shown in Figure 2.1.
We will henceforth denote the source as s0, and the sink as s f . This is known as a
pointed DAG.

The justification for the "Flow Network" component in "Generative Flow Network"
comes from augmenting the aforementioned pointed DAG with a (trajectory) flow
measuring operator F, which is defined as any function that maps a set of complete
trajectories to a non-negative value (F : T 7→ R≥0), forming the pair (DAG, F),
known as a flow network. Given this definition, we can now define how to measure
flow through a state or edge as shown in Eq. (2.1) and Eq. (2.2), respectively.

F(s) := F(τ ∈ T : s ∈ τ) = ∑
τ∈T :s∈τ

F(τ) (2.1)

F(s, s′) := F(τ ∈ T : s −→ s′ ∈ τ) = ∑
τ∈T :s−→s′∈τ

F(τ) (2.2)

Following this analogy, the amount of particles flowing through each pipe represent
our current estimate of how promising each path through our network is, in terms of
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reward. Because there is a source and sink node that all particles must flow through,
and the particles represent units of reward, it follows that the total reward in the
network is equal to the flow going through S0 at the start (t = 0) and through S f
at the end (t = T). This can be rewritten as F(s0), the total flow going through the
initial state, and is known as the initial state flow (by extension this is also true for
F(s f )). As stated prior, this initial state flow equals the total flow, which is denoted
as Z in GFN literature. These statements can be summarized into the equality shown
in Eq. (2.3).

F(s0) = ∑
τ∈T

F(τ) = Z = F(s f ) (2.3)

Importantly, because Z is the total flow going through the network, it can be used
as a partition function. This allows us to associate trajectory flows with probability
measures, as in Eq. (2.4). In GFN literature, special notation is used for conditional
probabilities – PF and PB – used to define the probability of transitioning from one
state to another, in the forward and backward direction, respectively (see Eq. (2.5)
and Eq. (2.6)). These conditional probabilities are analogous to a stochastic policy
in the context of RL, e.g., PF(s −→ s′|s) can be interpreted similarly to π(a|s). This
association subsequently enables the definition of Markovian Flows, which is a flow
that adheres to Eq. (2.7) for (1) any state s, (2) edge (s −→ s′) and (3) trajectory τ
ending in s. As the name implies, each particle that comprises the flow in our GFN
have behaviours that are only dependent on their current state. This is important,
because it invokes a setting wherein we are dealing with conditional independence.
Additionally, it is important to remember that because of the pointed DAG property,
we know that the probability of visiting the source state Pr(s0) = 1. From this fol-
lows that the probability of sampling a completed trajectory τ ∈ T can be obtained
from the product of the probabilities of each step taken in that trajectory, as shown
in Eq. (2.8) and Eq. (2.9). Note that this only holds for complete trajectories, that is,
trajectories that satisfy τ = (s0, ..., s f ).

Pr(τ) :=
F(τ)

∑τ∈T F(τ)
=

F(τ)
Z

(2.4)

PF(s′|s) := Pr(s −→ s′|s) = F(s −→ s′)
F(s)

(2.5)

PB(s|s′) := Pr(s −→ s′|s′) = F(s −→ s′)
F(s′)

(2.6)

Pr(s −→ s′|τ) = Pr(s −→ s′|s) = PF(s′|s) (2.7)
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Pr(τ) =
n

∏
t=1

PF(st|st−1) (2.8)

Pr(τ) =
n

∏
t=1

PB(st−1|st) (2.9)

The theory states that well-trained GFN can be used to sample objects in proportion
to their associated goodness, given by π(x) ∝ R(x), where x is the sampled object,
and R is some reward function that associates x with a non-negative reward (R(x) ≥
0 or R : X −→ R≥0). In line with the existing literature, we also use the notation π(x)
here to signify the probability of sampling an object under the GFN’s policy and
reward conditions. The intuitive interpretation hereof is that the model becomes
increasingly likely to generate molecules that have the desired properties as it trains.
When thinking of reward in terms of the particles flowing through our network, we
can use the previous equations to derive that R(x) = F(τ) (x is sampled from a
completed trajectory). We can plug this into Eq. (2.4) to obtain Eq. (2.10), which can
be interpreted as: an object is sampled with probability approximately equal to its
reward divided by the total reward going through the network.

π(x) ≈ R(x)
Z

=
R(x)

∑x′∈X R(x′)
(2.10)

For completeness in terms of proofs and derivations of the above-mentioned equa-
tions, we refer the reader to the GFN foundations paper by Bengio et al.[31]

2.2.3 GFlowNet training objectives

In the original paper that first introduced GFN, the objective to learn a model that
could sample π(x) ∝ R(x) was intuitively a flow-matching approach[30]. The au-
thors posit that, given our DAG as a flow network, we need to find a flow where all
flows are conserved, and the flow going into each terminal state should be equal to
the reward for the respective terminal state. The former can be achieved through as-
signing a strictly positive estimated flow F(s, s′) to each edge (s, s′), and respecting
the following balance:

∀s′ : ∑
(s,s′)∈E

F(s, s′) = R(s′) + ∑
(s′,s′′)∈E

F(s′, s′′) (2.11)

where E is the set containing all edges (s, s′), and R(s′) > 0 if s′ is a terminal state,
and 0 otherwise. Assuming we achieve the balance defined in Eq. (2.11), we can
define and use the forward policy as in Eq. (2.12) to sample completed trajectories
from our flow network with a probability proportional to their reward.

PF(s′|s) =
F(s, s′)

∑s′′ F(s, s′′)
(2.12)

Since then, other objectives that have more favourable properties such as faster con-
vergence rates and increased stability have been proposed (e.g., Trajectory Balance
(TB) and Sub-Trajectory Balance (SubTB)), which are also the objectives used in our
experiments. The reader is therefore encouraged to read the original paper[30] for
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more detail on the flow matching implementation and the proofs that mathemat-
ically guarantee that it satisfies the properties necessary to train a model that can
sample x with π(x) ∝ R(x). Because most non-trivial problems are likely to have
copious amounts of states (and therefore result in large partition functions within the
flow networks), we use a logarithmic approach in practice to make it computation-
ally viable to compute the loss when training a GFN using the flow matching (and
any subsequently discussed) objective, as will be shown in the following sections.

Trajectory Balance

TB was introduced as a training objective in the 2022 paper by Malkin et al. [32] em-
pirically demonstrate that propagating reward signals through the network can be
done much more efficiently than the original approach by considering the entire tra-
jectory at once. More rigorously, using the equations defined above, for a complete
trajectory where x is an object sampled from a complete trajectory τ = (s0, ..., sn =

x), and Pr(x) = F(x)
Z , we get the balance shown in Eq. (2.13).

Z
n

∏
t=1

PF(st|st−1) = F(x)
n

∏
t=1

PB(st−1|st) (2.13)

As we use the reward signal in this network as our flow function, we can replace
F(x) with R(x) in our equation. Furthermore, to make this balance actionable to
train the GFN, it is turned into an objective that we can optimize as shown in Eq. (2.14).
Importantly, when training these models in practice we do not have complete infor-
mation on all possible states, and must therefore estimate the forward and backward
policies for these states using parameters θ. We denote such policy estimates under
model parameters as PF(−|s; θ) and PB(−|s; θ), respectively. Additionally, the parti-
tion function is also estimated (Zθ), and together with the estimated forward policy,
determines an (estimated) Markovian flow (Fθ).

LTB(τ; θ) =

(
log

ZθΠn
t=1PF(st|st−1; θ)

R(x)Πn
t=1PB(st−1|st; θ)

)2

(2.14)

When this objective is satisfied, i.e., the estimated Markovian flow results in Fθ(x) =
R(x) for all possible x, then it can be shown that LTB = 0 for all complete trajecto-
ries[32], and vice-versa. This then satisfies the GFN requirement of sampling with
π(x) ∝ R(x).

Sub-Trajectory Balance (λ)

Building on top of the previous GFN training objectives, [33], Madan et al. pro-
posed a version of trajectory balance that learned from partial (sub) trajectories and
thereby have more control over the training stability and convergence rate. The λ hy-
perparameter is used to determine how much weight the algorithm assigns to path
lengths. As λ approaches infinite, SubTB(λ) essentially only considers complete tra-
jectories, which is similar to TB. Conversely, when λ approaches 0, SubTB(λ) assigns
more weight to local states. Finally, setting λ to 1 equates to valuing all trajectory
lengths equally. Furthermore, SubTB as an objective is not dependent on estimating
Z, using only the estimated flow Fθ of a (partial) trajectory, as shown in Eq. (2.15).
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LSubTB(τ; θ) =

(
log

Fθ(sm)Πn−1
i=mPF(si+1|si; θ)

Fθ(sn)Πn−1
i=mPB(si|si+1; θ)

)2

(2.15)

where τ = (sm −→ ... −→ sn)

LSubTB(λ, τ; θ) =
Σ0≤i<j≤nλ(j−i)LSubTB(τi:j; θ)

Σ0≤i<j≤nλ(j−i)
(2.16)

The complete SubTB(λ) is defined in Eq. (2.16). It considers all (length(τ)+1
2 ) unique

possible sub-trajectories of a complete trajectory. Every iteration, the loss for a sub-
trajectory is computed and multiplied with the accumulated λ value raised to the
power of the length of the evaluated sub-trajectories, before being divided by the
same amount to ensure that we end up with a convex combination of LSubTB losses
to use for gradient updates. As mentioned prior, plugging λ = 1 into Eq. (2.16),
then, leads to a uniform weighting scheme.

The authors hypothesize, and empirically demonstrate, that SubTB leads to variance
reduction during training compared to previous objectives. They also posit that it
can learn faster in problems where the states near the end of the trajectories far out-
number states near the initial state. The explanation given is that the estimated state
flow function Fθ(s) can generalize quickly between states and thereby attenuates the
negative effects of sparse signals at the near-terminal states. For in-depth explana-
tions and experiments in various scenarios using SubTB, we refer the reader to the
paper by Madan et al.[33]
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Chapter 3

Related Work

3.1 DrugEx

The first version of DrugEx (DrugEx v1) was introduced as a SMILES-based RNN
that was trained using RL to generate molecules by repeatedly appending a new
token given a sequence (i.e., autoregressively)[34]. The novelty it proposed was a
unique exploration strategy to promote diversity in the generated molecules. In
addition to the generator itself (Gθ), it used a second model (Gφ), which is initially a
clone of the generator with frozen weights. In the paper, these models were termed
the "exploitation network" and "exploration network", respectively.

The exploitation network Gθ , is initially trained on a large (> 1M) set of SMILES,
sampled from a chemical space that is assumed to contain drug-like molecules. This
is done to learn the syntax to generate (mostly) valid SMILES in the relevant domain.
After this initial training phase, Gφ is created using these weights, while Gθ is further
trained on a set of SMILES representing molecules that, ideally, have properties that
we are interested in optimizing. Before passing them to the model, the SMILES are
pre-processed – they are all tokenized, appended by a stop token (here <EOS>) to
indicate the end of the sequence, and padded with dummy tokens to reach a fixed
length if necessary.

Importantly, during the RL training phase, a hyperparameter ε is considered that
determines the probability with which the exploration network Gφ decides which
token to add next given the current sequence of tokens. Gφ does not have its weights
updated during training, ensuring that it keeps sampling from a much broader
chemical space compared to the one Gθ is sampling from after fine-tuning and op-
timizing for the given objective. This was shown to increase the diversity of the
generated candidates compared to other RL-based molecular generators at the time.
In DrugEx v1, molecular diversity was defined as the average of the Tanimoto dis-
tance metric between every molecule pair in the set of molecules M, as follows:

Diversity(M) =
1
|M|2 ∑

(m1,m2)∈M×M
DistTanimoto(m1, m2)

For the creation of their dataset, 1.018.517 SMILES that met the following criteria
were sourced from the 15th version of the ZINC database[35]:

• −2 < ˆlogP < 6

• 200 < molecular weight < 600
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Additionally, they sourced ligands with known activity against the adenosine A2A
receptor (A2AR) from the 23rd version of ChEMBL to (1) fine-tune the generator by
biasing it towards the A2AR ligand chemical and (2) create biological activity pre-
diction QSAR models to score the generated candidates downstream[36]. For their
QSAR implementation, a Random Forest (RF) regression model was trained on the
extracted ligands to score the generated molecules.

In DrugEx v1, to train Gθ , the objective function J parameterized by θ for the RL
algorithm to maximize was formulated as follows:

J(θ) = E[R(y1:T|θ)] =
T

∑
t=1

logGθ(yt|y1:t−1)(Q(y1:T − β))

where Q is the above-mentioned RF-based QSAR model, R is the reward associated
with a complete (valid) sequence, t is the current time-step, with T being the terminal
step when the <EOS> token is sampled, and β is the minimum required reward, i.e.,
if the model generates a molecule that receives a reward below β, it is punished with
a negative reward. A policy gradient approach was used to update the weights of
Gθ given the expected reward.

DrugEx v2 updated the concept of the first version by adopting a MOO approach
during the RL training phase – the adenosine A1 receptor (A1AR) and the human
Ether-à-go-go-Related Gene (hERG) were added as extra objectives for optimization.
In addition to MOO, it also extended the idea of using multiple networks to improve
diversity – There was now a third clone of Gθ , which we shall denote by Gψ. Both Gθ

and Gψ started with the weights resulting from fine-tuning, while Gφ retained the
frozen weights before fine-tuning, and like before, was not updated throughout the
RL training phase. Here again, the exploration hyperparameter ε was used as the
probability for Gφ to provide the next token. With probability 1− ε, the next token
would be decided by the combined output from Gθ and Gψ. Gθ was updated on
every step, while Gψ was updated periodically based on a user-determined sched-
ule. In this way, the authors reproduced a system analogous to an evolutionary
algorithm, where Gθ is the agent, Gψ would be the crossover operator and Gφ the
mutation operator.

The definition of the molecular diversity was also updated to the following modified
Solow-Polasky diversity measure[37]:

DiversitySolowPolasky(M) =
1
n

1T
n A−11n

where n = |M| is the size of the set of molecules M, and 1n is used in this context
to denote an all-ones vector of size n. A is a non-singular n × n matrix contain-
ing the output resulting from calculating and transforming the Tanimoto distance
between each molecule pair (dij) in M. The transformed Tanimoto distance dij∗ for
each molecule pair is obtained by scaling said distance and raising Euler’s number
by it as follows: dij∗ = e−ξdij , where ξ is a strictly positive, non-zero integer. A bigger
ξ value leads to less strict distance computation. We will also be using the Solow-
Polasky diversity measure in this paper to determine the diversity of the molecules
proposed by our models. Similarly to the original DrugEx implementation, we will
adhere to a ξ value of 10.

The combination of the multiple objectives in this paper was achieved through sev-
eral weighting schemes. Here we only consider the scheme termed "Pareto Front
scheme" that we also used in our implementation of DrugEx. This scheme operates
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on a so-called desirability score that is calculated for all i objectives. If the reward
for that objective is bigger than some threshold t between 0 and 1 (here 0.5 for all
objectives), then desirability is set to 1 (molecule is labelled desirable), otherwise the
molecule is labelled undesirable and its desirability is set to the reward (which is also
between 0 and 1) divided by said threshold. The molecules are divided into sets,
sorted by the layer of Pareto-dominance that they belong to (highest to lowest) and
subsequently ranked by Tanimoto distance, where a larger distance resulted in a
higher ranking, denoted by an index k. Finally, the flat reward used as the reward
signal for a molecule x is computed as follows:

R(x) =


k− Nundesirable

2Ndesirable
, if ∀i : Ri(x) ≥ ti

k
2Nundesirable

, otherwise

3.2 Multi-Objective GFlowNet paper

In the original GFN paper [30], the framework was proposed using a simple reward
single source. Thereafter, the original authors released a paper in which the the-
oretical foundations for GFNs were laid out formally [31], where they included a
segment on conditional GFNs, and extended this to Pareto GFNs for multi-objective
settings. The authors suggested that given d objectives, one could sample trajecto-
ries from the Pareto front by, e.g., assigning convex weights to the reward Ri for
each objective, where the weights would sum to 1, as formalized in Eq. (3.1). This
approach was termed "The Pareto additive terminal reward function", and is also
the approach used in this paper for the multi-objective setting. What makes this par-
ticularly interesting for molecule generation purposes, is that a GFN trained in this
manner, will be able to generate samples that are more focused towards a certain
objective depending on how much weight is assigned to it. This makes it exciting in
terms of exploring how properties of a given molecule can be optimized with respect
to all the others, and gives researchers more control in their search through the vast
chemical space.

∀i : Rω(s) =
d

∑
i

ωiRi(s) (3.1)

where ω ∈ {ω ∈ W ⊂ Rd : ωi ≥ 0,
d

∑
i

ωi = 1}

Among other things such as DNA-sequence design, the authors also experimented
with fragment-based small molecule generation, albeit with different objectives (Sol-
uble epoxide hydrolase (sEH), SA Score, QED and molecular weight) than ours.
Their findings suggest that the Multi-Objective GFlowNet (MOGFN) model respects
the conditioning, i.e., the reward for a specific property tends to increase proportion-
ally to the fraction of the weight assigned to it. Conversely, the closer the weight is
to 0 for a property, the more "random" its associated reward is. Note that it is still
entirely possible to generate molecules that give high reward for that property, but it
becomes decreasingly likely. Furthermore, the model retains the property of diverse
candidate generation and does not fixate on singular modes, remaining in line with
the GFN theory.
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For the above-mentioned reasons, we built on top of this research to conduct our
own experiments. Our approach is mainly differentiated through the inclusion of
retrosynthetic accessibility information and multiple QSAR-computed objectives in-
stead of one. We also uniquely compare these results to the output of an autore-
gressive LSTM model using SELFIES, while in the original paper the focus was on
algorithm comparison. We further elaborate on the methods used for sampling and
incorporating conditioning information into the MOGFN in chapter 4.

3.3 AiZynthFinder & RA Score

Our primary source of retrosynthetic accessibility information comes from the open-
source CASP-tool AiZynthFinder, developed by MolecularAI[19]. The tool com-
putes retrosynthetic routes recursively until certain criteria are met, e.g., all pre-
dicted precursors were found in a database of purchasable compounds. At the time
of writing, the core is based on the Monte Carlo tree search (MCTS) approach pre-
sented in the 2018 paper by Segler et al.[38], where a DNNs is used to guide the
tree search. When a node is selected in the tree search, it is expanded by the afore-
mentioned DNNs to add new positions.During expansion, the compound of interest
is first converted to a molecular fingerprint and then fed to the network. The out-
put of the network is a probability distribution over all available transformations.
Subsequently, the most promising positions are subject to the k most likely transfor-
mations from the probability distribution supplied by the DNNs, which continues
until a stopping criterion is met, e.g., all the precursors suggested by the network are
available in a list of user-defined options (stock). The reactions resulting from ap-
plying said transformations are then filtered based on another neural network that
determines how likely these reactions are. Importantly, where the AiZynthFinder
implementation differs from the one described in Segler et al., is that this final filter-
ing step is omitted. The tree then updates the position values based on the rollout
and moves to the selection phase once more until completion. Finally, the potentially
solved path found by AiZynthFinder is returned to the user.

In addition to presenting a nuanced path to solve retrosynthetic routes for molecules,
the output of AiZynthFinder also includes information such as:

• number of (solved) routes that were found

• number of precursors (in stock)

• a state score ∈ [0.0, 0.1]

• number of transformations applied

For researchers interested in training models to generate novel molecules that can be
reasonably synthesized in a lab, such information is invaluable. Retrosynthetic anal-
ysis is a more robust way to verify a molecule’s synthesizability than other simple
heuristics, such as a molecule’s similarity to known synthesized examples, SMILES
length, and so forth. However, as mentioned prior, the analysis is expensive, and for
the training of models where many calls to AiZynthFinder directly would have to
be made for numerous molecules per iteration, this quickly becomes intractable. For
this reason, Thakkar et al. developed and published RA Score, a score based on the
state score given by AiZynthFinder[39]. The score can be seen as a confidence score:
how accessible AiZynthFinder "believes" this molecule is, under its current policy,
and the available stock. Conveniently, it also paves the way to inexpensively incor-
porate complex retrosynthetic analysis information into a training loop. By training
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a (pseudo)classifier on roughly 400,000 AiZynthFinder results, RA Score was shown
to be adept at approximating AiZynthFinder’s results without explicitly performing
the full analysis. Simply learning through mapping comes with its caveats, namely:

1. Examples that are vastly different from the training set may deviate too much
from AiZynthFinder’s actual results

2. It may ignore intricacies such as chirality when determining if a molecule is
accessible

3. It inherits all the underlying limitations of the AiZynthFinder instance that
was used to generate the training data, such as a false positive resulting from
using a limited stock.

Interestingly, some of these do have their advantages. For point 2, it is entirely possi-
ble that a slight deviation in the molecule conformation is not relevant for the actual
accessibility, even if a path could not be found directly by the underlying CASP tool.
As mentioned in the introduction, point 3 can be used to purposefully limit the scope
of the model’s exploration to the researcher’s specific circumstance. We encourage
the reader to explore the AiZynthFinder documentation and read the RA Score pa-
per by Thakkar et al. to appreciate their full applicability to de-novo drug design.
For our experiments, we use AiZynthFinder as it is supplied by default at the time
of writing: a pretrained policy with the default ZINC stock and USPTO reaction
templates1.

1https://github.com/MolecularAI/aizynthfinder
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Chapter 4

Methods

GFNs can be described as a technique where the generative process is viewed as a
DAG that represents a flow network. Within the context where we want to generate
discrete objects such as a molecule, the generation process could be seen as a DAG
where each node is a state of the molecule being built, and every child node is a
molecule with, e.g., some arbitrary atom added to it, with every child node being
unique w.r.t. the other child nodes. In the case of modern drug development, we
must take multiple targets into account, as a drug with a strong biological activ-
ity on a desired target is rendered useless if it has unintended adverse side effects.
Factors such as synthetic accessibility, as mentioned prior, are also important consid-
erations, as a drug is only useful if we can actually produce it. Therefore, for GFNs
to be truly practical within this field, it is necessary to be able to train them in a man-
ner that attempts to optimize several objectives concurrently, as was highlighted in
section 3.2.
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FIGURE 4.1: Example of simplex where preferences ω are sampled
from in the case of 3 objectives.

4.1 Conditioning GFlowNet training objectives

To condition our GFNs, we continuously sample d preferences, denoted as ω, from
a simplex (see Figure 4.1) to ensure that they sum up to 1. The manner in which the
preferences are sampled are based on a Dirichlet distribution with a parameter α, a
vector of real numbers that determine where the focal points of the simplex are. In
our experiments, we adhered to uniform sampling (i.e., setting α to a vector of ones)
to ensure all objectives get equal amounts of coverage in terms of preference. These
preferences are used as the weight assigned to each objective that the GFN is to op-
timize. An objective that is associated with a higher preference value contributes
more to the flow moving through the DAG as shown in Figure 2.1, and can be visu-
alized as an extension of that as shown in Figure 4.2. In this case, if the preference
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value of B (red particles) were to be greater than that of A (blue particles), the GFN
would be more likely to sample the paths with the red particles.

The manner in which the final reward is calculated was shown in Eq. (3.1), and
is also shown in Figure 4.3 as (R(x) = (ω1 × R1(x), ..., ωd × Rd(x))β. The β here
is a parameter that makes the reward landscape "peakier". In practice, this means
that the lower-values modes are flattened more than the higher-valued modes as the
exponent grows, and our GFN is forced to find higher modes. This of course also
means that the reward signals become more sparse, but if found, we expect to see an
increase in the overall rewards associated with the GFN’s generated molecules.

To actually implement these preferences into our training routine for the GFNs, we
need to update the training objectives to make all flow-related estimates depend
on said preferences. We then end up with Preference-Conditioned (PC)-GFN, as it is
called in the original MOGFN paper by Jain et al.[40], where the TB balance equation
is transformed from Eq. (2.13) to Eq. (4.1). Note that the loss function is now depen-
dent on the preferences, as is the case for the total flow estimate Zθ , reward function
and the forward/backward policies. We similarly update the SubTB algorithm to
achieve the same effect (see Eq. (4.2) and Eq. (4.3), albeit with a slight difference, as
here we condition the state flow estimate Fθ on the preferences.

We will compare the performance of the PC version of both training objectives to as-
sess (1) if SubTB(λ) can be trivially extended to the multi-objective setting, and (2) if
its empirically demonstrated properties (i.e., faster convergence and stable learning)
are maintained in this setting.

4.1.1 Encoding conditioning information

To be able to use the conditioning information to condition the rewards signal given
to the GFN, we must encode it before adding it to the rest of the graph data. There ex-
ist several simple approaches to encode this information, such as one-hot encoding.
In the paper by Jain et al. [40], that investigated MOGFN, they used thermometer
encoding, initially introduced by Buckman et al.[41], which has the benefit of pre-
serving positional information. As such, we used the same encoding algorithm in
this study as well.

LTB(τ, ω; θ) =

(
log

Zθ(ω)Πn
t=1PF(st|st−1, ω; θ)

R(x|ω)Πn
t=1PB(st−1|st, ω; θ)

)2

(4.1)

LSubTB(τ, ω; θ) =

(
log

Fθ(sm|ω)Πn−1
i=mPF(si+1|si, ω; θ)

Fθ(sn|ω)Πn−1
i=mPB(si|si+1, ω; θ)

)2

(4.2)~�(
log Fθ(sm|ω) +

n−1

∑
i=m

log PF(si+1|si, ω; θ)− log Fθ(sn|ω) +
n−1

∑
i=m

log PB(si|si+1, ω; θ)

)2

where τ = (sm −→ ... −→ sn)
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FIGURE 4.2: An example of an extended pointed DAG as a multi-
objective flow network, where the red and blue dots represent the
flow of their respective objective. The preferences prefixed by ω de-

note the weights assigned to their respective objective.

L(λ, ω) =
Σ0≤i<j≤nλ(j−i)LSubTB(τi:j, ω; θ)

Σ0≤i<j≤nλ(j−i)
(4.3)

4.2 Reward functions

4.2.1 AiZynthFinder proxy (RAScore port)

To create the reward function for retrosynthetic accessibility, we ported the best re-
ported RAScore model architecture [42] from TensorFlow to PyTorch to align it with
the rest of the models, and trained with the exact same parameters used in their
DNNs predictor model. The results demonstrate that RAScore is a suitable proxy to
AiZynthFinder, which is much more computationally expensive and thus infeasible
for usage within learning loops where it would be called numerous times. RAS-
core’s objective is to predict which molecules AiZynthFinder would find a solution
for, and in practice it acts as a pseudo-classification model (the output layer is a
softmax layer and therefore not guaranteed to be exactly 0 or 1) that outputs values
that can be interpreted as binary indicators for retrosynthetic accessibility. The exact
(hyper)parameters used for the RA Score model can be found in the appendix in
Table B.

4.2.2 Synthetic Accessibility Score

The SAScore implementation that was used in this study is the standard distributed
implementation (last modified in September 2013) by Ertl et al., based on the paper
that introduced the score [15]. The pre-calculated fingerprint score file distributed
alongside the code (used to instantiate the SAScore module) was used.
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FIGURE 4.3: A high-level overview of the generative loop using GFN
(denoted as π in the figure) in this study. The algorithms available
were Trajectory Balance (TB) and SubTB. The conditioning informa-
tion (CI) was used to weigh the rewards for different objectives and
exponentiate the rewards. The GFN produces categoricals containing
actions and their logits, and also the flow predictions. The categori-
cals are sampled at each step to produce an action to perform in the
graph environment, until the termination action is sampled. The fi-
nal (complete) graph (x ∈ X ) is then turned into a molecule before

calculating its reward, which is then used for the learning step.

4.2.3 Biological activity prediction

For the prediction of biological activity of the generated molecules, which was used
as the reward signal, we used the same approach as presented in DrugEx V2[9].
Specifically, we used Scikit-learn’s Random Forest Regressor model with default set-
tings except for n_estimators, which was set to 1000. We also included the negative
examples, which were artificially scored at just below the lowest value in the dataset
(here, 4) as this was shown to aid the regressor in properly detecting false positives.
One notable difference is that we used ChEMBL version 26 instead of 23 for the
training data, consisting of known ligands for our objectives.

4.2.4 Score normalization

It should be noted that all scores used in our experiments were normalized to be
on a scale of 0 to 1, inclusive, where higher is better. The following transformations
were performed:
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FIGURE 4.4: Best performing RAScore architecture from publication.
Each box represents a layer in the model, with the input embedding
size denoted below. The input is a 2048-bit feature-count fingerprint
calculated with radius 3. The activation functions are denoted by
the color of the right side of each box (if present). Orange=ReLU,
Green=SeLU, Red=ELU. At the final layer, the embeddings are pro-
jected into a single scalar that is passed through a softmax layer to
predict if a synthetic route could have been found by AiZynthFinder.

• A2A AR: Divided by the 95th percentile of the scores in its training set

• A2A AR: Divided by the 95th percentile of the scores in its training set

• A2A AR: Divided by the 95th percentile of the scores in its training set

• RAScore: Already is a number between 0 and 1

• SAScore: Subtracted from 10 and then divided by 9, i.e., (10− SA Score)/9

• Molecular Weight: Any value past 300 decays from 1 to 0, reaching 0 at 1000

4.3 Fragment-based environment

For the molecule fragments, we reused the 105 fragments (of which 33 are duplicates
to include symmetry groups from the perspective of the model) used in the original
GFN paper by Bengio et al. [30]. The SMILES for all 105 fragments along with the
indices of their atoms where other fragments can be attached to (henceforth called
stems) can be found in Figure B.1. Using a fragment-based approach intuitively re-
sults in a more stable searching environment – there are fewer steps necessary to
end up with a drug-like small molecule. Additionally, given fragments that were
extracted using chemical reasoning, one can ensure that any intermediate step dur-
ing the assembly is a valid molecule [28]. Further benefits include straight-forward
seeding of start molecules to bias the search space of generative models. These prop-
erties alone make fragment-wise generation of molecules an attractive option, and
is the main approach used in our experiments as well.
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Action space

The action space for this environment consisted of 3 discrete actions: (1) Adding a
node to the graph, (2) Setting the attribute of an edge to indicate which stems should
be involved in the bond between the fragments that the edge is connecting, and (3)
a stop action to signal that the graph building process is done, thus completing the
trajectory. These 3 actions are sampled from a categorical distribution containing
separate logits for each action. A simplified visual aid is shown in Figure 4.5. Ad-
ditionally, the logits are masked to prevent illegal actions from being taken. An
example hereof is setting the logit of the stop action to a minuscule log value (-1e3 in
our experiments) on the first t steps to ensure that graphs consist of at least t nodes.
There is also the option of restricting the model to deciding which nodes to add and
when to stop, while respecting the stem count of each node, making sure that a satu-
rated node can never be sampled (i.e., disabling setting edge attributes). Removing
saturated nodes as an option in the action space is also achieved through the hyper-
minimization of logits by setting them to a small log-value, as was mentioned above.
The approaches used for masking illegal actions is expanded on in section 4.3.

FIGURE 4.5: A high-level depiction of fragment-based graph con-
struction through sampled actions. At the first step (t=1), a node
(’node 0’) is added (action ADD_NODE is sampled), which repre-
sents a molecule fragment with two stems where other fragments can
eventually be added. At t=3, the action for setting edge attributes
is sampled, and the model specifies that it wants the second stem of
’node 0’ to be used in the edge with ’node 1’. The graph is then ter-

minated at t=4 as the model sampled the stop action.

Adding a node is done by selecting a source node to attach the new node to, along
with the index of the fragment that the new node represents. The nodes added
using this action are initially agnostic of the stems involved in the new edge. The
atom indices of the specific stems are optionally added afterwards as attributes on the
relevant edge through the action that sets edge attributes, as it is possible that the
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stop action is sampled before all edges have attributes set. The stems used between
edges are specified once graphs are converted to their molecule representations.

Finally, we also have an exploration factor ε which allows for a random action to be
applied on with probability equal to ε. This "coin-flip" happens for all trajectories
separately at each time-step. Varying this intuitively results in our model exploring
more, but with slower convergence as a trade-off.

Conversion from low-level graph to molecule

Once a graph is considered complete (i.e., the stop action was sampled and applied
to its trajectory), it is converted to an RDKit molecule and sanitized before being
passed into the scoring pipeline. For each edge, if the stem was not specified previ-
ously by the model through an edge attribute, then the first available stem is auto-
matically picked to create the bond between the molecule fragments. Molecules that
are considered invalid by RDKit render the trajectory that generated them illegal,
which subsequently incurs a penalty (in this context, a negative reward value) for
the generative model. This intuitively discourages the model from taking actions
that result in illegal trajectories, but increasing the magnitude of the penalty too far
may also negatively impact exploration. Illegal actions can come about in various
ways, such as the model selecting stems to attach new fragments to that are already
used. This is mostly handled by logit-masking as will be explained in the next sec-
tion, however, we assume that there is still a small chance of the model producing
molecules that do not comply with the sanitization method used.

Validity pseudo-guarantee through masking

As mentioned above, the generative models used in this study produce categoricals
containing logits for each action type available in the environment. For the fragment
environment, logits are computed for all fragments in the graph, regardless of the
"legality" of the fragment in the context it’s in. These logits correspond to a frag-
ment’s probability of being used as a source node for the next fragment. The same is
true for the logits denoting probabilities of adding edge attributes, and the logits for
terminating the graph building process. However, it would be quite inefficient for
the model to learn both when actions are illegal and find candidates that maximize
multiple objectives. To aid the model, the underlying graph contains information
about the current action space in the form of masks. These masks are boolean ten-
sors that are of the same shape as their corresponding logit tensors in the action
space.

At each graph update step, the graph is evaluated and actions that should no longer
be possible are marked. For example, to make sure we never violate valences, we
first create a mask, i.e., a tensor the same size as the current number of nodes in
the graph. The index of nodes that have a degree equal to the stem count of the
molecule fragment that they represent are set to 0 – this corresponds to all stems of
the current molecule fragment being occupied. An example hereof can be seen in
Figure 4.6. During the creation of the categorical, we multiply this mask with the
logits that were computed by the generative model. This sets all the logits where
the mask equals 0, to a miniscule number, resulting in those options becoming vir-
tually impossible to sample. If all nodes are masked, this simply means there are no
stems left in the molecule – intuitively, this also means the add node action won’t be
sampled at all, which is what we desire.
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FIGURE 4.6: A simplified demonstration of the (source) node mask-
ing procedure during graph construction. At each step, all nodes in
the graph are evaluated to assert that their total number of stems is
less than their current degree. If the degree equals the number of
stems for a given source node, the mask is set to 0 at its index. This
prevents the model from attaching nodes to said node in subsequent

steps.

As we also allow the model to specify which stems to use in the formation of a
bond between two fragments, this can also result in illegal actions if left unchecked
through selecting the same stem twice, or selecting any stem on a node that is already
fully saturated. For this case, we create a zero-filled mask (all actions are initially
illegal) of size (|E | × 2*max possible stems), where the number of max possible stems
equates to the number of stems of the fragment with the most stems. We multiply
this by 2, as we have to take into account the stems for both nodes involved in this
edge. For every edge, the edge attribute is checked to see if it’s already been set – if
not, we set (for each half of the tensor, as it accounts for both nodes) a slice equal to
the length of the number of stems a node has left to 1 in the mask. This handles two
cases simultaneously: (1) The model can only add an edge attribute if it hasn’t been
set yet, which prevents cycles, and (2) the model will never be able to choose stems
that are taken, preventing indexing errors.

Additionally, when allowing for random actions to be taken by setting the explo-
ration factor ε > 0, we also rely on these masks to ensure that the random actions
are only sampled from the set of legal actions: arandom ∼ A∗. To enforce random
actions when the condition is met, we invert the masking logic we have been using
so far – we set the logits for all legal actions to an arbitrarily large value, so that the
model will sample uniformly from these options.

With the above-mentioned masking approaches, we essentially guarantee that the
model can not produce actions that are explicitly illegal, skipping the need for a
"burn-in" phase where it needs to learn which actions should not be taken. Masking
the stop action is trivial, and used for setting the minimum node count, but care
should be taken here – in the edge case where the nodes sampled used up all stems
before the minimum node count has been reached, this should be handled explicitly.
Of course, this can also be leveraged to make the model biased towards producing
longer graphs by, e.g., avoiding fragments with few stems early on.
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Hyperparameter Value(s) Description

# Embeddings 128 The size of the embeddings.
# Transformer Layers 6 Dictates number of graph convolutions.
ε 0.05 The exploration factor: p(arandom ∈ A∗).
β 96 Reward exponentiation factor: R(x|ω)β.
# CI dim. 32 + |ω| The dimensionality of the conditioning info.
Batch size 128 The batch size during training.
τsampling 0.95 The lagging model sampling factor.
Min-Max Nodes 2− 9 The min. and max. required nodes/graph.
Learning rate 5× 10−4 The learning rate used to train all GFlowNets.
λ 1 The trajectory length weighting factor (SubTB only).
α 1|ω| The Dirichlet parameters used to sample preferences.

TABLE 4.1: Fragment GFN initialization hyperparameters

4.3.1 GFlowNet architecture

The reward-conditioned GFN used in our fragment-based experiments consists of
several components:

• A graph transformer for the construction of node and graph-level embeddings
based on the CI.

• A linear layer that predicts the reward given CI embeddings, i.e., the condi-
tional flow predictor (log Fθ(s|ω)).

• An optional MLP representing logZθ(ω) that predicts the initial state flow F(s0|ω).
Only used in algorithms relying on the initial state flow estimate (e.g., Trajec-
tory Balance)

• An embedding layer that takes in a combination of node embeddings indexed
by both "sides" of the edges to generate the edge embeddings. This approach
is expanded on below.

• A linear layer (or MLP with ReLU activations between each layer) that outputs
logits for each available action type given their embeddings.

A visual overview of the architecture of this GFN can be seen in Figure 4.7. The rea-
son for the intricate approach to generating edge embeddings is two-fold: (1) The
edges are sided in the sense that the nodes involved have their own unique set of
stems to choose from. The edge embeddings therefore take into account both nodes
by indexing the node embeddings by both edge directions, and summing them to-
gether to get the final features used to create the embedding. These embeddings
are then concatenated with their respective indexed node embeddings before be-
ing passed to the output layer, producing 2 sets of logits – one corresponding to the
source node stems, and the other to the destination node stems. These two sets are fi-
nally concatenated to produce the final logits for the action of setting edge attributes.

The hyperparameters used for the fragment-based molecule generation experiments
closely follow the setup used in Jain et al. [40], and can be found in Table 4.1.

Graph Transformer

The current implementation of the GFN depends on an inner Graph Transformer
(GT) for the creation of node and graph-level embeddings. These embeddings are
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FIGURE 4.7: The general architecture of the GFN used in the
fragment-based setting. The GFN contains an inner graph trans-
former model, and an (optional) logZ predictor and a flow/reward
predictor (logF). The GFN accepts a graph along with CI passed as
graph-level features, which the transformer generates embeddings
for. The edge embeddings are created from the nodes at both sides of
the edge and then summed (denoted by the star symbol). All embed-
dings are then passed through MLPs/linear layers to obtain the pre-
dicted logits for each corresponding action. These are then wrapped

into a categorical object, where the actions can be sampled from.
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FIGURE 4.8: Schematic of how conditioning data is incorporated into
the learning loop of GFNs. For each graph in a batch that is sam-
pled, a virtual node is created that includes information such as the
weights for each score used to generate a scalar reward for a gener-
ated molecule. This information is encoded into a single virtual node
("CI" in the figure) per batch, and is fully connected to all other nodes.
The nodes (A-E) in this schematic represent placeholders for molecule

fragments.

subsequently used to compute the logits to create the categorical that actions will
be sampled from down-stream. A visual overview of the GT architecture is shown
in Figure 4.9. The GT accepts three inputs, (1) edge features, (2) node features and
(3) a feature-vector containing conditioning information (CI) such as the reward ex-
ponentiation factor β, and the preferences for each objective. All of these features
are first passed into Multi-Layer Perceptron (MLP)s that return their intermediate
embeddings. The intermediate node and CI embeddings are concatenated to form a
new embedding, which we refer to as the augmented node embedding. Similarly, the in-
termediate edge embedding is also concatenated with a manually created (artificial)
embedding, to create the augmented edge embedding. This artificial embedding essen-
tially represents the virtual edges necessary to fully connect the CI node to the rest
of the graph. The two augmented embeddings are then passed through the trans-
former layers (as seen in Figure 4.9) to output the node embedding containing CI
as a result of the convolution. This output is then concatenated with the original CI
embedding to form the final per-node embedding. It is also passed through a global
mean pool layer, which is then concatenated with the final per-node embedding and
CI embeddings to form the final graph-level embedding.

4.3.2 Sampling process

A high-level overview of the core generative loop used in this paper can be seen
in Figure 4.3. The GFN contains an inner model that can perform graph convo-
lutions. The inner models used in this paper were either Graph Transformers or
Message-Passing Neural Networks. In addition to graph data, the GFN also accept
a tensor containing conditioning information encapsulating data such as the reward
exponentiation, and the weights associated with each objective. The reward expo-
nentiation is useful for tuning the GFN to focus more on sampling candidates with
higher Pareto-performance, but this comes at the cost of diversity, and vice versa
[40]. The GFN used here can output (1) a categorical distribution containing all pos-
sible actions with their respective logits, (2) the (log) flow predictions log Fθ between
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FIGURE 4.9: High-level overview of the GT architecture. The GT ac-
cepts node/edge features along with the CI, and creates intermediate
embeddings for each of them. Then the edge embeddings and node
embeddings are augmented by fully connecting a virtual node con-
taining the CI to the rest of the graph. These embeddings are then
processed by the transformer layer and then (1) the node embeddings
are concatenated with the CI embeddings to obtain the final node em-
beddings, and (2) the final node embeddings are combined with the
result of a global mean pool of the post-convolution node embed-

dings to obtain the final graph embeddings.

all states, and if using the Trajectory Balance algorithm, also (3) the (log) initial state
flow prediction log Zθ ≈ F(s0).

At each step, the GFN receives the current state in graph data format, along with
its conditioning information. These inputs are combined in the graph convolution
process, producing the node and graph-level embeddings. The inclusion of con-
ditioning information within the graph data is realized through the creation of an
additional node (one per graph) containing this information, which is then fully
connected to every other node in the graph. The graph-level embeddings are used
to generate logits for all graph-level predictions, such as if the action for terminating
a graph should be taken, or the flow (reward) predictions associated with the current
graph. The node-level embeddings are used in e.g., predicting which node to add
next, which node to add it to, and in the case where each node is a fragment, which
atom of another fragment to add said node to. Logits for each action are stored as an
order-preserving categorical distribution. From these categoricals, an action can be
sampled that can be used to step through the environment, until the ’stop’ action is
sampled, at which point the graph is turned into a molecule (if valid) and given final
scores for all d objectives. These rewards are turned into a final scalar reward and
assigned to the terminal states, before being passed to the algorithm (e.g. Trajectory
Balance), which calculates the loss to update the generative model’s parameters.

4.4 Autoregressive (DrugEx) SELFIES environment

The DrugEx implementation used in our experiments only differs from DrugEx V2
in regard to the string representation of the molecules. After initial preprocessing
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(e.g., removal of metals, chirality, etc.), the ChEMBL dataset is converted to SELF-
IES and tokenized using the SELFIES library built-in split functionality. The longest
SELFIES string (after preprocessing) consisted of 109 tokens. The usage of SELF-
IES resulted in 100% of the generated molecules being valid, as expected. This also
meant that certain checks that were in the original DrugEx V2 were unecessary, such
as the validity of a molecule having an effect on the desirability, which would further
affect downstream computation of the reward signal. Throughout the remainder of
this paper, our DrugEx implementation will at times be referred to as DrugEx+R or
Drugex@SELFIES in figures.

For two of our experiments (DrugEx V2 base task and extended with RA Score),
we will use our implementation of DrugEx as a soft baseline to compare the per-
formance and output of the GFNs. We use the term soft baseline for DrugEx, as
a proper comparison between the two molecular generators can not be made. For
example, DrugEx is not preference-conditioned, and is an autoregressive SELFIES
generator. On the other hand, our GFN implementation can reach the same state
from multiple paths, and the weighting scheme to transform the multiple objectives
into scalars differs. Therefore, any comparisons using the soft baseline are purely to
give insight into the differences between the two approaches, and can be seen as an
assessment of GFNs for the generation of promising drug candidates in the future.

4.5 Technologies used

We listed the dependencies necessary to reproduce our experiments in Table 4.2.
RDKit was used for the processing of chemistry data, such as molecule construction
from graphs and sanitization. PyTorch was used for the implementation of the gen-
erative models, and PyTorch Geometric for the handling of graph data within the
PyTorch framework. NetworkX was used for the underlying graph structures and
environment on which sampled actions were executed. Scikit-learn was used for
the implementation of the pChEMBL value-based QSAR random-forest regression
models, as described in the DrugEx V2 paper [9]. This work extends and modifies
code from DrugEx 1 and recursionpharma’s GFlowNet implemenation repositories
2. All experiments were performed on Linux machines using Python 3.9.

Dependency Version

Python 3.9
PyTorch 1.1.2 (CUDA 11.3)
PyTorch Geometric 2.1.0
SciPy 1.9.2
NumPy 1.23.4
Pandas 1.5.0
RDKit 2022.03.5
NetworkX 2.8.7
scikit-learn 1.1.2
SELFIES 2.1.0
AiZynthFinder 3.6.0

TABLE 4.2: The dependencies necessary for our experiments.

1https://github.com/XuhanLiu/DrugEx
2https://github.com/recursionpharma/gflownet
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Chapter 5

Results

The code used to run these experiments can be found on GitHub1. For our exper-
iments, we first compared the performance of the GFN using two different MOO
algorithms (all conditioned on preference):

• MOO-PC TB

• MOO-PC SubTB (λ)

Thereafter, we compared the performance of the autoregressive RNN-based SELF-
IES generator (DrugEx) to the fragment-based molecular graph building GFN using
the PC version of TB at two different reward exponentiation values. The SELFIES
generator will initially simply be used as a soft baseline to demonstrate the boost to
diversity gained from leveraging the GFN’s ability to be trained using algorithms to
make the probability of sampling an object proportional to its associated reward.

The tasks that we will be investigating are as follows:

• The original DrugEx V2 Task (against SELFIES generator)

• Extending the DrugEx V2 Task with synthesizability (against SELFIES genera-
tor)

• Finding active (retro)synthesizable A2A AR agonists

• The performance of MOGFNs with 5 objectives

5.1 Trajectory Balance vs. Sub-Trajectory Balance

We trained our GFN using our MOO-PC SubTB algorithm(4.2) to assess if a differ-
ent training objective results in a noticeably different distribution of molecules. Im-
portantly, we empirically assessed two of the claims reported in the original SubTB
paper[33]:

1. Improved convergence compared to other GFN training objectives at the time
of writing, i.e., the target distribution is reached earlier.

2. Performs better in environments with sparse reward landscapes compared to
the other training objectives at the time of writing, i.e. we can more reliably
find the modes of the reward function.

Based on the results found by running the multi-target DrugEx V2 experiments un-
der the same exact conditions as the experiment using TB, we did not observe a

1https://github.com/jcathalina/Rxitect/tree/msc-thesis
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FIGURE 5.1: Score density of molecules at the start of training (or-
ange) vs. the end of training (blue) for GFN using SubTB with λ = 1

as training objective.

FIGURE 5.2: Score density of molecules at the start of training (or-
ange) vs. the end of training (blue) for GFN using TB as training

objective.

noticeable change in the means of the distributions of the scores for any of the ob-
jectives at the beginning of training or after convergence (Figure 5.1, Figure 5.2).
However, we observe that the distribution of scores early on during training are
much peakier for the GFN trained with TB, particularly in the lower ranges of the
scores. This can be explained by the faster convergence attributed to the SubTB algo-
rithm, which we also observed during training, as shown in Figure 5.3. While both
training objectives resulted in similar distributions after convergence, the peakiness
persisted when using TB, which can be interpreted as it being a less stable algorithm.
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FIGURE 5.3: Learning curves depicting loss over time of SubTB (or-
ange and red lines) vs TB (blue and green lines).

Despite this, given the same budget, we did not see a drastic difference in the pre-
dicted goodness of the molecules being generated. This observation led to us choose
TB as the main GFN training objective throughout further experiments, as it was
more efficient for rapid iteration during experimentation. It is entirely possible that
SubTB could have discovered new modes given a higher budget. Based on the the-
ory, we would also expect an improvement over TB if we increased the maximum
trajectory length, as SubTB empirically performs better in these scenarios [33].

5.2 Recreating the DrugEx V2 task

As detailed in 3.1, DrugEx V2 concerned itself with the optimization of molecules
for both a single-target and multi-target case. For both tasks, the biological targets
to optimize for were the A2A AR, A1AR, and hERG. In the single target case, the
objective was to only maximize A2A AR and minimize the other two, while in the
multi-target case only hERG should be minimized. We conduct the same experiment
using the exact same regression models for the scoring of our samples to allow for
comparison between the molecules generated by the GFNs and RNN generative
models. We reiterate here that we used SELFIES instead of SMILES for the RNN
models to guarantee validity of generated molecules.

5.2.1 Generated molecule diversity

To get insight into the sampling behaviour of our models, we computed the internal
Tanimoto similarity and Solow-Polasky diversity measure for all batches. We had
each model generate 100,000 unique candidates before converting them to 2048-bit
Morgan fingerprints with a radius of 3. The internal Tanimoto similarity for both
models in the base DrugEx V2 task setting can be seen in Figure 5.4. In this setting,
DrugEx produced molecules with an overall lower mean and median internal Tan-
imoto similarity score. However, the GFN-produced candidates appear to contain
outliers that are vastly different from the rest of the set, indicated by the long tail
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approaching 0. When inspecting the Solow-Polasky diversity measure in the same
setting, we again confirm the prior observation (Figure 5.5 – both the internal mean
and median Solow-Polasky diversity of the DrugEx set lie higher than the GFN set,
but the GFN set has a long tail approaching 1.

FIGURE 5.4: The internal mean (left) and median (right) Tanimoto
similarity measures for DrugEx shown in blue and GFN shown in

orange. Based on 100,000 unique samples for all cases.

FIGURE 5.5: The internal mean (left) and median (right) Solow-
Polasky diversity measures for DrugEx shown in blue and GFN

shown in orange. Based on 100,000 unique samples for all cases.

When considering the extended case with RA Score as an additional objective, we
notice a similar pattern. Here as well, the internal diversity of the DrugEx set is
higher than that of the GFN set, with GFN displaying the same long tail indicating
a few outliers that are very dissimilar to the rest of the set. Interestingly, in the
extended case we do observe that the mean and median diversity of the molecule set
generated by DrugEx is more concentrated around the middle, while the opposite
was true in the base case, and vice versa for the GFN molecule set.
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FIGURE 5.6: The internal mean (left) and median (right) Tanimoto
similarity measures for DrugEx shown in blue and GFN shown in

orange. Based on 100,000 unique samples for all cases.

FIGURE 5.7: The internal mean (left) and median (right) Solow-
Polasky diversity measures for DrugEx shown in blue and GFN

shown in orange. Based on 100,000 unique samples for all cases.

In addition to the above-mentioned observations, it should be noted that while the
DrugEx molecules had higher internal diversity, it took many more attempts for
DrugEx to achieve 100,000 unique samples compared to the GFN, as shown in Ta-
ble 5.1. The GFNs were able to almost always sample molecules that have not been
visited before. Before adding the additional RA Score objective, DrugEx only sam-
pled 72,534 unique molecules out of the 500,000 attempts (14.51%). After adding
the additional objective, this increased to 46.22% of the 500,000 attempts producing
unique molecules.



Chapter 5. Results 38

Base Task With RA Score
GFlowNet(TB) > 99% > 99%
DrugEx(SELFIES) 14.51% 46.22%

TABLE 5.1: The percentage of unique molecules generated for each
case after sampling 500K molecules.

5.3 The effects of maximizing retrosynthetic accessibility

After generating 100,000 unique molecules for all 4 possible combinations of models
and tasks, we visualized their score distribution in Figure 5.8 and Figure 5.11 for the
base task and RA Score task, respectively.

5.3.1 Base task performance of both models

We observed that both models performed relatively similar for each objective that
was maximized for (Figure 5.8). Note that the RA Score was also evaluated in
this case, but not directly maximized. We immediately notice that for the A2A AR,
DrugEx was able to produce higher scoring molecules overall, but had much more
variance when compared to the GFN molecules, which were mostly concentrated
around a predicted normalized score of 0.7. We see the opposite of this for the A1AR
case, where the GFN molecules are mostly associated with scores higher than 0.8,
whereas the distribution of the DrugEx sampled molecules is wider, with its mean
lying closer to 0.7. For the (1− hERG) case, the GFN produced more high scoring
molecules, yet a few of the DrugEx molecules were found with the highest scores. Fi-
nally, we found that without optimizing directly for the RA Score, DrugEx molecules
are predicted to be more accessible than the GFN sampled molecules.

FIGURE 5.8: Score distribution comparison between molecules gen-
erated by DrugEx (blue) and GFN using TB (orange) for the base
DrugEx V2 task (no direct RA Score maximization). Based on 100,000

unique samples for all cases.

When looking at Figure 5.9, we observe that the SA Score (not directly optimized) for
the DrugEx molecules is distributed close to 1. Note that we transformed SA score
so that it is on a scale of 0 to 1 where higher is better. This is the case despite the RA
Score being confident about the retrosynthetic accessibility for approximately half of
the samples.
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FIGURE 5.9: Score distribution pair plot from 100,000 samples gener-
ated by DrugEx in the context of the original DrugEx V2 task. The
Pareto-optimal candidates per objective-pair are highlighted in red
(bottom-diagonal). The diagonal contains the score distributions for
the main objectives. The top-diagonal contains indirect objectives
that are commonly associated with drug-likeness (QED, molecular
weight), and also the RA Score and SA Score as accessibility heuris-
tics. The top-right panel visualizes the 3D Pareto-frontier for the main

objectives.

When comparing these results to Figure 5.10, we noticed a higher score for the
molecular weight (lighter molecules) but a lower Quantitative Estimation of Drug-
likeness (QED) score. A similar observation to the DrugEx results for the SA Score
was made here – the SA score lies fairly close to 1, despite the RA Score distribution
indicating that almost all sampled molecules are not retrosynthetically accessible.
We also observed that the GFN more produced more Pareto optimal molecules over-
all, and displayed a different correlation pattern between all the possible objective
pairs, as seen in the bottom-diagonal. Interestingly, the A2A AR and A1AR objectives
are optimized simultaneously in both models denoted by the positive trend in the
pairplots. However, for DrugEx, the (1− hERG) objective does not show any partic-
ular trend and for GFN it even appears to perform worse for (1− hERG) if either of
the other objectives are maximized.
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FIGURE 5.10: Score distribution pair plot from 100,000 samples gen-
erated by GFN using TB as the objective function in the context of
the original DrugEx V2 task. The Pareto-optimal candidates per
objective-pair are highlighted in red (bottom-diagonal). The diago-
nal contains the score distributions for the main objectives. The top-
diagonal contains indirect objectives that are commonly associated
with drug-likeness (QED, molecular weight), and also the RA Score
and SA Score as accessibility heuristics. The top-right panel visual-

izes the 3D Pareto-frontier for the main objectives.

5.3.2 RA Score task performance of both models

After adding RA Score as an additional fourth objective, we observed a noticeable
shift in the comparative performances of the models (Figure 5.11). Most notably, in
the case of DrugEx, the A2A AR and A1AR score distribution shifted to the left, i.e.,
the overall scores decreased. For the same objectives, the GFN was able to maintain
equal performance. For the (1− hERG) objective, the opposite was true. The most
striking observation was that the GFN was able to maximize the RA Score for almost
all the molecules it sampled, whereas in the case of DrugEx, its RA Score remained
similar to before optimization.
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FIGURE 5.11: Score distribution comparison between molecules gen-
erated by DrugEx (blue) and GFN using TB (orange) for the extended
DrugEx V2 task, including RA Score maximization. Based on 100,000

unique samples for all cases.

When looking at the pairplot for DrugEx in this setting (Figure 5.12), we observe a
slight increase in RA Score, while the SA Score remains the same. We also see a slight
improvement in the QED score. Despite the overall decreases in objective scores, the
positive trend between A2A AR and A1AR is still visible, albeit more spread out than
before. Interestingly, we also noted weak visual evidence of a positive trend between
those objectives and (1− hERG) as well here.
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FIGURE 5.12: Score distribution pair plot from 100,000 samples gen-
erated by DrugEx in the context of the DrugEx V2 task extended with
RA Score. The Pareto-optimal candidates per objective-pair are high-
lighted in red (bottom-diagonal). The diagonal contains the score dis-
tributions for the main objectives. The top-diagonal contains indirect
objectives that are commonly associated with drug-likeness (QED,
molecular weight), and also the RA Score and SA Score as accessi-
bility heuristics. The top-right panel visualizes the 3D Pareto-frontier

for the main objectives.

We subsequently compared the DrugEx results to the GFN results in Figure 5.13. As
mentioned above, the RA Score has been maximized for almost all the molecules
produced by the GFN – however, this did not have any effect on the SA Score.
The trends between the objectives remained similar to those seen in the base task
setting, although it seems more samples were concentrated in the lower ranges of
(1− hERG) compared to before. We also observed marginal improvements in the
overall QED score. Finally, the markedly higher scores for A1AR achieved by the
GFN compared to DrugEx in this setting are reflected in the Pareto fronts, and most
samples are concentrated around high scores for A1AR.
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FIGURE 5.13: Score distribution pair plot from 100,000 samples gener-
ated by GFN using TB in the context of the DrugEx V2 task extended
with RA Score. The Pareto-optimal candidates per objective-pair are
highlighted in red (bottom-diagonal). The diagonal contains the score
distributions for the main objectives. The top-diagonal contains in-
direct objectives that are commonly associated with drug-likeness
(QED, molecular weight), and also the RA Score and SA Score as ac-
cessibility heuristics. The top-right panel visualizes the 3D Pareto-

frontier for the main objectives.

Finally, we investigated the Pareto optimal candidates generated by the models in
each setting by feeding them directly to AiZynthFinder for evaluation. We observed
that in all cases, including RA Score as an objective resulted in better state scores (see
Figure 5.14).
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FIGURE 5.14: The top state score distribution given by AiZyn-
thFinder for the Pareto-optimal candidates sampled by the GFN (left)
and DrugEx (right), compared before and after introducing RA Score

as an additional objective tot maximize.

5.4 Chemical space exploration

To visualize the chemical space being sampled by our models, we projected the gen-
erated molecules onto a two-dimensional plane against the known ligands used to
train the QSAR scorers. For the base task, the result of this can be seen for both
the GFN and DrugEx molecules in figures 5.15, 5.16 and 5.17. We observed that
the molecules produced by the GFN consistently formed a cluster that was mostly
disjoint from the space covered by the known ligands. DrugEx on the other hand,
having been exposed to the known ligands during pre-training, produces molecules
that have a lot of overlap with said ligands. The only instance wherein this is not the
case for DrugEx is in the case of (1− hERG), where the objective is to not generate
active ligands for the target.

A small sample taken from the GFN trained using objectives from the base task can
be seen in Figure 5.19. We observed that it typically produced larger, more com-
plex molecules with a high representation of nitrogen and sulphur atoms. When we
include RA Score, the GFN produces noticeably simpler molecules, as seen in Fig-
ure 5.20. Nitrogen and sulphur atoms are still frequent, but we observed an increase
in the occurrence of fluorine and chlorine atoms. When comparing these molecules
to the ones generated by DrugEx, we observed that in the setting where RA Score
was an additional objective, both models produced much more similar molecules
compared to the base task. This was visualized in Figure 5.18 – the similarity of the
molecules is higher in the second setting, indicated by the increase in overlap in the
2-dimensional projection from the base task to the task extended with RA Score. For
reference, samples from the Pareto-optimal molecules generated by DrugEx for both
settings can be found in Appendix A in Figure A.4 and Figure A.5.

Finally, we also observed that including RA Score results in increased coverage of the
known-ligand chemical space in both cases, especially in the case of DrugEx. This
observation is less pronounced for the GFN, but there we did observe that some
molecules it sampled were similar to known active ligands, as can be seen for exam-
ple for the A2A AR in Figure 5.21.
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FIGURE 5.15: Visualization of the chemical space of GFN-sampled
molecules (left) and DrugEx-sampled molecules (right) against
known ChEMBL A2A AR ligands in the base task setting. The
molecules generated by the models are shown in green. The known

ligands are shown in blue (inactive) or red (active).

FIGURE 5.16: Visualization of the chemical space of GFN-sampled
molecules (left) and DrugEx-sampled molecules (right) against

known ChEMBL A1 AR ligands in the base task setting.



Chapter 5. Results 46

FIGURE 5.17: Visualization of the chemical space of GFN-sampled
molecules (left) and DrugEx-sampled molecules (right) against

known ChEMBL (1− hERG) ligands in the base task setting.

FIGURE 5.18: The chemical space visualized for molecules generated
by DrugEx (yellow) and GFN (cyan) for the base DrugEx V2 task (left)

and the task extended with RA Score (right).
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FIGURE 5.19: Sample from the Pareto-optimal molecules generated
by GFN using TB with reward exponentiation factor β=96 for the base

DrugEx V2 task.
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FIGURE 5.20: Sample from the Pareto-optimal molecules generated
by GFN using TB with reward exponentiation factor β=96 for the ex-

tended (+RA Score) DrugEx V2 task.
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FIGURE 5.21: Visualization of the chemical space of GFN-sampled
molecules (left) and DrugEx-sampled molecules (right) against
known ChEMBL A2A AR ligands for the DrugEx V2 task extended

with RA Score.

5.5 Exploring (retro)synthetically feasible Adenosine A2A Re-
ceptor agonists

To further explore the capabilities of the GFN, we explored what would happen if
we focused on a single biological target along with accessibility by maximizing both
RA Score and SA Score simultaneously. We observed again that the maximization
of RA Score was successful for almost the entire batch of molecules produced by the
GFN after convergence, as shown in Figure 5.22. The SA Score also shifts to the right
after convergence from having the highest density around 0.7 to 0.8. The A2A AR
score peaked at approximately the same score as it was for the previous experiments
with multiple different biological targets. The bottom (or top) diagonals visualize
the relationships between the objectives, where we see that none of the objectives
compete with each other for maximization.
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FIGURE 5.22: Comparisons between the properties of the first and
last 80 thousand molecules sampled by the fragment-based GFN us-
ing TB for this task. The diagonals show the distribution shift be-
tween the early sampling (blue) and the sampling after the GFN has
converged during training (orange). The off-diagonal plots show the

relation between the different objectives.

We subsequently visualized the chemical space taken up by molecules sampled from
this GFN against the known A2A AR ligands in Figure 5.23. We observed slightly
increased overlap in comparison to the multiple target case with RA Score (see Fig-
ure 5.21), especially with active ligands. However, the same clustering can be seen
here as well. Examples of molecules generated by this GFN can be seen in Figure 5.24



Chapter 5. Results 51

FIGURE 5.23: The chemical space covered by known A2A AR ligands
compared to GFN generated molecules optimized solely for A2A AR,

SA Score and RA Score.
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FIGURE 5.24: Sample from the molecules generated by GFN using TB
with reward exponentiation factor β=96 for the synthesizable A2A AR

task.

5.6 Training GFlowNets with 5 objectives

To further challenge the capabilities of GFNs, we experimented with the additional
objective of maximizing the SA Score (taking into account that in the GFN setting,
maximizing is interpreted as increasing the probability of sampling higher rewards
proportionally, for some objective). This additional objectives was added to capture
as much of the complexity of synthesizability as possible without overcomplicating
the reward landscape, as we expected that maximizing the SA Score would, at the
very least, not hinder RA Score maximization.

To assess if there was any improvement, we visualized the score distribution at the
beginning and end of the training of the GFN by evaluating the first and last 80,000
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molecules it generated as seen in Figure 5.25. The addition of SA Score as the fifth
objective was not observed to have a significant impact on the maximization of the
other objectives, as similar score distributions were achieved after convergence here
as well. The SA Score itself was also improved after convergence, as the peak shifted
right. It was also noteworthy that the first 80,000 molecules already showed score
distributions close to the ones that would be achieved after convergence. A sample
of the molecules produced by this GFN can be seen in Figure 5.26

FIGURE 5.25: Score distribution shift of molecules at the start of train-
ing (orange) vs. the end of training (blue) for GFN using TB as train-

ing objective in the context of the 5-objective task.
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FIGURE 5.26: Sample from the molecules generated by GFN using TB
with reward exponentiation factor β=96 for the 5-objective task.
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5.7 Preference conditioning can be used to change sampling
weights post-training

An important property of the PC-MOGFN that we wanted to test was the ability to
change the focus (weight) of the target that our model samples for after it had already
been trained. We had a GFN trained on the base task produce 10,000 molecules
with uniformly varying preferences to assess if we would see the scores increase
proportionally to their associated preference value, as displayed in Figure 5.27 We
see that generally, as the preferences (y-axis) increased towards 1, the majority of
scores shifted to the right accordingly. This effect was especially pronounced for the
(1− hERG) objective.

FIGURE 5.27: The relation between an increased preference (ω) value
and the score distribution.
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Chapter 6

Discussion

6.1 GFlowNets discover modes that are entirely outside known
chemical space

Based on the results shown in section 5.4, we can observe that the molecules gen-
erated by the GFNs consistently form clusters that seldom overlap with the known
ligands. This was expected to some degree, as the GFNs were trained purely on
online data – that is, other than the reward signal coming from a model trained on
the known ligands, there was no direct exposure to these known examples. Further-
more, the fragments that we used may not lead to structures similar to the known
ligands as easily. It would be of interest to retry these experiments using fragments
extracted from the same dataset as the target molecules to assess the impact of frag-
ment choice. However, we do note that adding RA Score as an additional objective
resulted in a slight increase in overlap with known ligands in the chemical space,
as can be seen in, e.g., Figure 5.21. Interestingly, this shift is especially visible with
the active ligands for A2A AR, suggesting that the constraint of maintaining high
retrosynthetic accessibility indeed results in more "realistic" molecules being sug-
gested. This effect is further highlighted by comparing the samples from the two
GFNs that were trained, both without (Figure 5.19) and with (Figure 5.20) maximiz-
ing RA Score as an objective. There is a noticeable decrease in size and complexity,
when RA Score is considered, which is in line with expectations given that the score
is based on known reaction templates.

Furthermore, we noticed that the GFN models were particularly adept to maximiz-
ing the A1AR score. This is consistent across all tasks and settings, which could
be a result of this objective being trivial. However, as DrugEx is not able to repro-
duce these scores, it is more likely that the GFN actually has an edge for producing
predicted active A1AR ligands. One could explain this through, e.g., the fragments
that were used conveniently leading to similar structures to known ligands. This is
not likely, as we saw in Figure 5.16 that the overlap in chemical space between the
molecules produced by the GFN is negligible. It could also be that the QSAR model
for the A1AR can be exploited by the GFN, but that remains to be investigated and
is currently outside the scope of this research.

6.2 GFlowNets are unlikely to sample duplicate molecules

While the GFNs were shown to sample from a chemical space that is dissimilar to
that of the known ligands, we still found that overall, the set of molecules generated
by Drugex were more internally diverse – that is to say, given the opportunity to
produce the exact same amount of unique molecules, DrugEx has a slightly broader
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sampling range than our current GFNs. However, when taking into account exactly
how many molecules either of these models have to generate before reaching the
same number of unique molecules, the difference is vastly in favour of GFNs, as
shown in Table 5.1. We believe this is explainable by two factors:

1. The GFNs used in the experiment were trained entirely offline, while DrugEx
was pre-trained on a dataset including known ligands. This results in the GFN
naturally having to explore more, thereby finding more modes

2. The intrinsic modelling of diversity through GFN sampling proportionally to
the reward as opposed to maximizing a single mode is especially pronounced
here. DrugEx uses the latter, as it is RL-based.

Especially the second point is particularly important to explain this result. Sampling
proportionally to the reward intuitively results in sampling different molecules each
time, as it is not fixated on a particular mode, but rather samples around the node.

6.2.1 DrugEx samples more unique molecules, but has difficulty maxi-
mizing objectives, with RA Score as additional constraint

A related noteworthy observation here was that including RA Score as an additional
objective drastically improved the rate of unique molecule sampling for DrugEx.
This effect was not as pronounced for GFN, and they still retained a > 99% unique
molecule sampling rate in this case as well. This could indicate that the additional
objective forced the model to find more varied modes, as it had to account for an
additional constraint. This could also be the result of increased randomness due to
degradation of the modes (too many objectives). This is further backed up when
we compare the score distributions of DrugEx with and without the additional RA
Score objective, shown in Figure 5.11 and Figure 5.8, respectively. All objectives
barring (1− hERG) shift to the left (decrease in score) when including RA Score as
an objective, suggesting that it is more challenging for the underlying RL algorithm
to handle.

6.3 RA Score significantly impacts molecules generated by
GFlowNets

As mentioned in section 6.1, the candidates generated by GFNs trained with RA
Score have more overlap with the chemical space of the known ligands. We also
observed the molecules becoming less complex as the RA Score is maximized. Fur-
thermore, it is of note that before including RA Score as an objective, DrugEx gener-
ally produces molecules that are predicted to be solvable, while GFN seems to have
underperformed in that regard (see Figure 5.8). In contrast, we see that in the case
where RA Score is directly optimized for, the GFN is able to maximize this effectively
as shown in Figure 5.11. On the other hand, the RA Score distribution for DrugEx
does not seem to have changed much compared to the base case, which is likely the
result of not being able to readily find modes maximizing all four objectives as dis-
cussed above in subsection 6.2.1. While the score distribution in DrugEx generally
shifted to the left in the extended setting, GFN was able to consistently find similar
modes while maximizing RA Score, with the notable exception of the (1− hERG)
objective. This suggests that the approach used by GFN is more resilient to com-
plex multi-objective settings with many parameters. This is further bolstered by the
results seen in the case of maximizing five objectives simultaneously, as shown in
Figure 5.25, where the GFN did not have any of its scores shifted left despite the
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addition of the additional objective. It can be argued, however, that SA Score was
not a difficult objective to maximize. Especially in the case where we are already
maximizing RA Score, which would intuitively be in agreement with a higher SA
Score. However, we were not able to observe any explicit "synergistic" relationship
between the RA Score and SA Score, as the molecules generated in settings where
RA Score was not a direct objective would have high SA Score values even when
the RA Score indicated that most of the molecules would not be retrosynthetically
accessible.

6.4 Synthesizability constraints increase overlap in chemical
space with known compounds

We observed in Figure 5.18 and Figure 5.21 that the molecules sampled by both GFN
and DrugEx models increased in similarity to each other and the known ChEMBL
ligands after including RA Score as an additional objective to optimize. Additionally,
when we trained the GFN for the synthesizable A2A AR task, we also noted that
there was even more overlap with the known ligand space than the first example
(Figure 5.23), while retaining a similar score distribution for the target. This was
interesting for us, as the GFN is never exposed to any of the known ligands, and
is purely reliant on data it generates by exploring "blindly", unlike DrugEx, which
is expected to cover much of said known ligand chemical space due to its exposure
to it during pre-training – although we see an increase in overlap for DrugEx as
well, further strengthening the argument that these constraints bring us closer to
the known chemical space. This may also simply be explained by RA Score being
trained on results of a tool that was itself trained using known reaction templates.

6.5 RA Score as an objective improves the synthetic acces-
sibility of downstream GFlowNet-generated chemical li-
braries

Finally, we also observed that regardless of the model, using RA Score as an objec-
tive led to molecules with improved state scores when evaluated in AiZynthFinder
(see Figure 5.14). This is an expected but important observation, as it supports the
arguments for why we should use approaches such as RA Score as part of the vir-
tual pre-screening pipeline in de-novo drug design moving forward – especially if
we need to train models that are dependent on large amounts of data. As CASP tools
become better and more prominent in filtering out unfeasible candidates in the drug
discovery process, this approach becomes increasingly valuable in practice.
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Chapter 7

Conclusion

Based on our results, we observed that a GFN using the TB training objective can
be adapted to the multi-objective setting and produce predicted active ligands even
without being exposed to any offline data. We also showed that it was capable of
managing many objectives at the same time, and although we only demonstrated
this with a maximum of 5 objectives, it was more resilient towards degradation of
its scores compared to the alternative DrugEx model that was using an RL-based
approach. While optimistic, being able to propose potential ligands that are entirely
dissimilar to known ligands can also lead to the discovery of interesting novel com-
pounds with entirely different binding mechanisms. Another observation in favour
of GFNs was that unique molecules could consistently be sampled, which means
that it would generally take much less time to generate a large library of relatively
diverse candidates compared to other approaches.

Furthermore, we also showed that incorporating RA Score into our model training
indeed led to higher state scores when evaluated directly using AiZynthFinder. This
makes tools such as RA Score a valuable asset – given that running large amounts of
molecules through an actual CASP tool is expensive, pre-filtering which molecules
should be even be taken into consideration further streamlines the in-silico drug
discovery pipeline.

Future Research

Our current GFN implementation has several straight-forward areas where it can
be improved. Firstly, we reuse the same set of fragments introduced in the original
GFN paper. This set was created from a subset of the ZINC database, and reduced
to a small set of blocks. Despite 105 (72 unique) blocks being enough to sample a
rather large number of unique molecules given enough graph building steps, it still
introduces some level of rigidity in the space the model can explore. It would be
interesting to expand the set of available blocks, or to experiment with more stable
atom-by-atom generation approaches. Secondly, we trained our GFNs exclusively
using offline data. We could observe that exposing models to some known examples
of desirable compounds can aid in the discovery of modes in the DrugEx model,
and other papers have shown the benefit of a balanced proportion of online training
GFNs as well[43]. The challenge here for fragment-based models would of course
be to efficiently generate trajectories for the online molecules using the available
fragments. On the theoretical side, there are more training objectives to be explored
to achieve flow balance.

Many GFN papers that have been published rely purely on empirical evidence, and
more experimentation is necessary to solidify the framework. We’ve shown here
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that SubTB(λ) also works for the Multi-Objective setting with the property of faster
convergence – however the trade-off for this convergence speed is that once con-
vergence is achieved, the sampling (during training) is much slower than with TB,
which can be detrimental in the case where you want to continue sampling in this
setting. Improving SubTB(λ) to compute sub-trajectory losses batch-wise would also
be a solid contribution. Additionally, in settings where longer trajectories are desired
(i.e., larger molecules or atom-wise generation), SubTB is likely to perform better.
This is also worth investigating in-depth.

Finally, as mentioned before, RA Score partially inherits limitations of the CASP tool
that it’s trained on, and the fact that it learns a more flexible mapping can be con-
sidered a double-edged sword. Experimenting with other CASP tools, or ensuring
the training examples come from a CASP tool that has more coverage (i.e., trained
using larger – possibly proprietary– databases than USPTO) could result in more
accurate mappings and, by extension, have an even stronger positive effect on the
down-stream (retro)synthetic accessibility of our generated molecular library.
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Appendix A

Additional Results

FIGURE A.1: The trend of number of AiZynthFinder solved routes for
Pareto-optimal molecules generated by the GFlowNet trained with
RA Score (blue) and only the base task (orange). The lines do not
match in length, as the RA Score trained GFlowNet produced more

Pareto-optimal candidates.
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FIGURE A.2: The shift in score distribution and relationship be-
tween objectives, before (blue) and after convergence (orange) of the

molecules generated by the GFlowNet using Trajectory Balance.

FIGURE A.3: The Pareto fronts found for the DrugEx V2 task of si-
multaneously optimizing pChEMBL values for A2A AR, A1 AR and
1− hERG using the fragment-based GFN with (left) the reward ex-

ponentiation factor β set to 32 and (right) β set to 96.
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FIGURE A.4: Sample from the molecules produced by
DrugEx(SELFIES) in the context of the base DrugEx V2 task.
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FIGURE A.5: Sample from the Pareto-optimal molecules produced by
DrugEx(SELFIES) in the context of the DrugEx V2 task extended with

RA Score.
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FIGURE A.6
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FIGURE A.7
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FIGURE A.8
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FIGURE A.9
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Appendix B

Additional information

Linear Layer Dims Activation Fn. Dropout Pr.

(2048, 512) - -

(512, 512) ReLU 0.45834579304621176

(512, 128) - 0.20214636121010582

(128, 512) ELU 0.13847113009081813

(512, 256) - 0.21312873496871235

(256, 128) ReLU 0.33530504087548707

(128, 128) - 0.11559123444807062

(128, 128) ReLU 0.2618908919792556

(128, 512) ReLU 0.3587291059530903

(512, 512) SELU 0.43377277017943133

(512, 1) Sigmoid -

TABLE B.1: Exact structure and hyperparameters used for RA Score.
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FIGURE B.1: All 105 fragments available as used in the original
GFlowNet paper, along with the atoms that can be used as attach-
ment points (stems) highlighted. Some fragments appear more than
once as they can have different stems, or their stems are ordered dif-

ferently.
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