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Abstract

Currently research on self-driving vehicles is one of the most researched topics in artificial
intelligence. Being able to generalize driving behaviour has shown to be a very challenging task.
The need to define what “correct” driving behaviour is rests at the core of this challenge. With
the increasing number of examples of how correct driving behaviour looks like it seems fitting
to apply a technique that would utilize these examples. This is the core idea behind Inverse
Reinforcement Learning (IRL). In this thesis demonstrations of correct driving behaviour are
used to extract a reward structure that can be applied on every situation possible, even those
which have not been observed yet. In this thesis it is proposed that IRL might be able to solve
the challenges of creating a self-driving vehicle.
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1 Introduction

Currently many vehicle manufactures are researching the possibility to create a self-driving vehicle.
With the increasing number of onboard sensors in modern vehicles the use of artificial intelligence
(AI) to solve the problem of self-driving vehicles becomes most appealing. In this thesis a possible
solution to the self-driving vehicle problem is proposed using Inverse Reinforcement Learning (IRL).
IRL is a technique that uses demonstration data to generalize the “internal reward system” of the
expert observed. If it is possible to successfully extract the system the expert agent used during
the demonstration, then using that system would make it easy to produce another expert agent.
In comparison to other AI techniques this would be less cumbersome. The reason for this is that
defining “correct” driving behaviour is difficult, while many examples of correct driving behaviour
can be observed daily. It would seem most natural to utilize the demonstrations of correct driving
behaviour and extract the system that was presumably used to achieve this correct behaviour.
Once the system that was used by the expert agent is available, then it can easily be used to create
a vehicle that drives like the expert. Thus this would produce a self-driving vehicle.

1.1 Problem statement

The problem statement of this thesis is:

Can IRL be used to simulate (correct) driving behaviour by learning from examples?

To operationalize this problem statement the following two research questions are introduced:

1. Can IRL be used to create an agent which is able to cross an intersection correctly if the
correct behaviour is observed for that intersection?

2. Can IRL be used to create an agent which is able to cross an intersection correctly if the
correct behaviour for that intersection has not been observed?

These research questions help to answer whether or not the IRL technique applied would result
in extracting a system that is able to produce good results in new/unobserved scenarios. An
intersection is considered crossed correctly if the agent respects the traffic light. This means that
the agent only crosses the intersection if the traffic light is green.

1.2 Thesis overview

In Chapter 2 the foundation is provided for Inverse Reinforcement Learning (IRL). In that chapter
the algorithm that will be used for the experiments is also provided. In the chapter thereafter,
Chapter 3, related work will be discussed. That chapter will mainly look at IRL that was applied
on real-world scenarios and IRL used to extract or generate driving behaviour. After that the
environment and the setup for the experiment will be provided in Chapter 4, and the results of
the experiments in Chapter 5. Based on the results a conclusion will be drawn for the research
questions and problem statement in chapter 6. In that chapter limitations of the work will also
be mentioned alongside possibilities for further research. This thesis was conducted as a bachelor
project at LIACS, supervised by Prof. dr. A. Plaat and Dr. W.A. Kosters.

1



2 Inverse Reinforcement Learning

This chapter will look at the basis of the Inverse Reinforcement Learning (IRL) problem. First
the building blocks that are needed to solve an IRL problem will be discussed. Given next is the
IRL algorithm that is used in this thesis. This chapter concludes by briefly mentioning other IRL
algorithms that could have been used.

2.1 The foundation of IRL

The foundation of IRL is built on the basis of a concept called Markov Decision Process (MDP).
This concept is introduced first. Next the relation between Reinforcement Learning (RL) and IRL
is provided before the formal definition of IRL is presented.

2.1.1 Markov Decision Process

The Markov Decision Process (MDP) is named after the Russian mathematician Andrey Andreye-
vich Markov. The primary subject of his research is known as the Markov chain. The Markov
Decision Process is an extension of the Markov chain. The Markov chain concerns a sequence of
random events, which corresponds to the states of a certain system [CN06]. Within the Markov
chain each event has a probability of occurring as can been seen in Figure 1.
A Markov chain satisfies the Markov property. For a process to satisfy the Markov property it
demands that the future only depends on the present state and does not depend on the past history
[Gra15]. This property allows for predicting the future outcomes by only considering the present
state.

A

E

0.3

0.7

0.6

0.4

Figure 1: An example of a Markov chain containing two states. Note that every event in the chain
has a probability assigned which is the probability of the event occurring from a given state. Source:
https://en.wikipedia.org/

As mentioned earlier the MDP extends the Markov chain. By adding actions and rewards to a
Markov chain a MDP is created. Adding actions and rewards would allow for choice and motivation
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within the process.
There are many variants of the MDP (see [Put94, Gra15]), however in this thesis the introduction
of the finite MDP variant is sufficient. A finite MDP can be formally defined as tuple (S,A, T ,R, γ)
[Lit01]:

• State space (S): A finite set of states of the environment.

• Action space (A): A finite set of actions. When the possible actions depend on a state, then
the finite set of actions for state s is denoted as As, with As ⊆ A.

• State transition function (T ): A function T : S × A× S → [0, 1], giving for each state and
action, a probability distribution over states.

• Reward function (R): A function R : S × A × S → R that maps the reward that will be
obtained for executing a triplet (s, a, s′).

• Discount factor (γ): The discount factor determines the present value of future rewards, with
γ ∈ [0, 1].

An example of a finite MDP can be seen in Figure 2. Notice how the reward is paid out only for a
complete transition, meaning executing action a in a state s resulting in a transition to state s’.
State s and s’ may be the same state (i.e., performing action a did not result in a transition to
a different state). Since the MDP extends the Markov chain it also inherits the Markov property
making it an useful framework used for both RL and IRL.

2.1.2 Reinforcement Learning

Reinforcement Learning (RL) can be considered a third machine learning paradigm, alongside
supervised and unsupervised learning [SB18]. As mentioned in the previous Subsection 2.1.1 the
framework used in RL is that of a MDP. In RL a learner (often called the agent) interacts with
the environment. These interactions are used to estimate how rewarding it is to be in an arbitrary
state s. To quantify how rewarding it is to be in a state it is necessary to know the rules on which
the agent acts within the environment. This allows for the possibility to predict the future rewards
obtained by the agent. The rules on which the agent decides which action to take (in every state)
is called a policy function π. The policy function π provides the probability of picking action a in
state s for every s ∈ S and every a ∈ A.
As a result of the dynamics of the environment being unknown to the agent, the agent generates a
state-value function Vπ(s) that is used to calculate the expected return when starting in state s and
following a policy π thereafter. To formally define the state-value function Vπ additional notations
need to be introduced:

• Trajectory (τ): A sequence τ = ((s0, a0), (s1, a1), . . . , (sn, an)) of state-action pairs (with
n ∈ N).

• Expected return (Gt): A sequence Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∑∞

n=0 γ
nrt+n+1 of

(expected) rewards received starting from discrete time step t, with discount factor γ.
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Figure 2: An example of a Markov Decision Process containing three states. Notice how the MDP
extends the Markov chain by adding rewards and actions. Each state-action pair has a transition
probability and a reward assigned. State-action pairs that do not have an explicit reward mentioned
have a reward of 0. Source: https://en.wikipedia.org/.

With this additional information the definition of the state-value function Vπ can be introduced.

Definition 1 (State-value function Vπ [SB18]). Let s ∈ S and given a policy function π, then the
expected value of state s can be calculated using the state-value function Vπ:

Vπ(s) = Eπ[Gt|st = s] = Eπ

[
∞∑
k=0

γkrt+k+1|st = s

]
,

where Eπ[·] denotes the expected return Gt given that the agent follows policy π, and t is any
discrete time step.

Another function that is very similar to the state-value function is called the action-value function
Qπ. The only difference between state-value function and action-value function is that the action-
value function also requires an initial action that will be taken in the starting state. This provides
the ability to evaluate an individual action for a state. The definition of the action-value function
is the following:

Definition 2 (Action-value function Qπ [SB18]). Let s ∈ S, a ∈ As ⊆ A and given a policy function
π, then the expected value of taking action a in state s can be calculated using the action-value
function Qπ:

Qπ(s, a) = Eπ[Gt|st = s, at = a] = Eπ

[
∞∑
k=0

γkrt+k+1|st = s, at = a

]
,
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where Eπ[·] denotes the expected return Gt given that the agent follows policy π, and t is any
discrete time step.

Both the state-value function Vπ and the action-value function Qπ can be estimated from experience.
The typical way experience is gained is visualized in Figure 3.

Figure 3: A typical example of how the interaction process between the agent and the environment
looks like. Source: https://towardsdatascience.com/.

Note that the state-value function and action-value function can be written to show the relationship
between the current state s and its successor states:

Vπ(s) =
∑
a∈A

π(a|s)
[∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γ · Vπ(s

′)
]]

Qπ(s, a) =
∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γ ·

∑
a′∈A

π(a′|s)
[
Qπ(s

′, a′)
]]

These versions of equations are known as the Bellman equations for the state-value function and
action-value function.
The goal in RL is often to maximize the reward the agent can receive. The policy function that
satisfies the goal is called the optimal policy π∗. A policy π∗ is considered optimal when for every
other policy π it holds that π∗ ≥ π under the expected return. This means essentially that π∗ ≥ π
if and only if Vπ∗(s) ≥ Vπ(s) for all s ∈ S. Vπ∗ is called the optimal state-value function and is
defined as:

Definition 3 (Optimal state-value function Vπ∗ [SB18]). Let Vπ(s) be a state-value function under
policy function π in the state s, then the optimal state-value function is defined as:

Vπ∗(s) = max
π

Vπ(s)

for every s ∈ S.

Just like the optimal state-value function there also exists an optimal action-value function Qπ∗
and this is defined as:

Definition 4 (Optimal action-value function Qπ∗ [SB18]). Let Qπ(s, a) be a action-value function
under policy function π in the state s performing action a, then the optimal action-value function
is defined as:

Qπ∗(s, a) = max
π

Qπ(s, a)

for every s ∈ S and a ∈ As.

5

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292


While multiple optimal policy π∗ can exist, the optimal state-value function and optimal action-value
function are unique for a given MDP. It is also possible to write the optimal state-value function
and optimal action-value function as a Bellman equation:

Vπ∗(s) = max
a

∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γ · Vπ∗(s

′)
]

Qπ∗(s, a) =
∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γ ·max

a′

[
Qπ∗(s

′, a′)
]]

Solving the optimal state-value function or optimal action-value function is one way to find an
optimal policy, however this method is not often used in RL. This is due to the fact that solving
these equations requires an exhaustive search. In general to solve the equations there are at least
three assumptions applied [SB18]:

1. The dynamics of the environment are accurately known.

2. Computational resources are sufficient to complete the calculation.

3. The states have the Markov property.

Since these assumptions are often not completely met, it is typical in RL to settle for an approximate
solution.
Two methods used in RL to find an approximate solution are called model-based RL and model-
free RL. In model-based RL the optimal behavior can be found by learning the dynamics of the
environment and observing the outcome for interacting with the environment. This method is based
on planning. As one can assume this method is computationally expensive. The model-free RL
method is computationally more efficient. The model-free RL method does not try to learn the
dynamics of the environment. In this method sampling is used to compute the expected return
for the state-action pairs observed in the samples. It is possible to combine these methods which
can improve performance depending on the task at hand. An example of an algorithm that have
combined both methods is the Dyna-Q algorithm [SB18].

2.1.3 Formal definition of IRL

The goal of Reinforcement Learning (RL) is to find an optimal policy. Following the optimal policy
would result in the maximum reward obtainable by an agent. Often the reward function is manually
specified. The problem that can arise when manually specifying a reward function is that the
behaviour that is produced by the optimal policy does not match the expected behaviour of those
who have provided the reward function. The reason for this is that the reward function indicates
what the agent wants to accomplish, not how the agent needs to behave in order to accomplish
it. For complex tasks it can be hard to specify a reward function because it requires an accurate
balance between all the different variables [Rus98].
In some cases the complex task that needs to be solved is already being solved by animals or other
organisms. Whether the task is throwing a ball, balancing objects in the air or driving a vehicle,
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often it can be observed how to act in order to solve these tasks. If there is some way to extract
the reward function of the agents that are already solving these tasks, then this reward function
can be used. Extracting the reward function from agents that are already solving the task is the
goal of Inverse Reinforcement Learning (IRL).
IRL requires either observations of the task that is being solved or a policy from which it can
produce these observations. In IRL it is typically assumed that the observations are produced by
an expert agent E for which it is assumed that its behaviour is optimal (however there are IRL
methods proposed to extract the reward function for sub-optimal behaviour produced by an expert
agent [BTR09]). The other assumption is that the environment of the problem can be defined as a
Markov Decision Process (MDP). With the assumptions and requirements given for an IRL agent
it is possible to present the formal definition of IRL:

Definition 5 (Inverse Reinforcement Learning (IRL) [AD21]). Let an MDP without reward
function, M\RE

, model the interaction of the expert agent E with the environment. Let D =
{⟨(s0, a0), (s1, a1), . . . , (sj, aj)⟩1, . . . , ⟨(s0, a0), (s1, a1), . . . , (sj, aj)⟩Ni=2}, sj ∈ S, aj ∈ A, and i, j, N ∈
N be the set of demonstrated trajectories. A trajectory in D is denoted as τ . We may assume that
all τ ∈ D are perfectly observed. Then, determine R̂E that best explains either policy πE if given
or the observed behaviour in the form of demonstrated trajectories.

Basically in IRL the assumption is that the behaviour produced by the expert agent E reflects the
inner preference of the agent. Intuitively this makes sense. The behaviour an agent produces is in
accordance with some goal the agent tries to achieve. The relation between RL and IRL can be
seen in Figure 4.

Figure 4: A visual representation of the difference between RL and IRL. In (a) the typical process
of an RL can be seen (similar to Figure 3). The typical process of an IRL agent can be seen in (b).
From the observation of the behaviour of an expert agent E the IRL agent tries to estimate the
expert’s reward function R̂E Source: [AD21].

There are typically two use cases for IRL. The first use case is to use the estimated reward function
to create a new agent with the expert’s preferences. This would result in expert behaviour within the
environment observed, but would likely also produce (very) good behaviour in environments that
differ from the observed environment of the expert agent. The second use case uses the estimated
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reward function to predict the behaviour of other agent(s) in the environment. An example in
which this can be useful is that of merging onto a highway. If the agent that wants to merge has
knowledge of the preferences of the other agents, it would be easy to predict the behaviour of the
other agents and allows the merging agent to easily adapt its behaviour to match its goal (merging
onto the highway). In the next section the IRL algorithm used in this thesis will be introduced.
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2.2 Maximum Entropy Inverse Reinforcement Learning

In this thesis the Maximum Entropy Inverse Reinforcement Learning (Maxentirl) algorithm
is used for the experiments. This algorithm has been introduced by Ziebart et al. [ZMBD08] in
2008. In order to understand this algorithm it is necessary to understand the principle of maximum
entropy. This is introduced first. In order to generate an estimated reward function R̂E it is necessary
to assume a reward function structure. This is provided thereafter. At the end of this section a
summary of the Maxentirl algorithm is given.

2.2.1 The principle of maximum entropy

Entropy is a concept found in many fields of science, however in this thesis entropy refers to the
concept in information theory. In information theory, entropy, also known as Shannon Entropy, is a
concept first introduced by Claude Shannon in 1948 [Sha48]. Entropy can be described as a way of
measuring the uncertainty of a probability distribution. When the entropy is small, an outcome of
the probability distribution is quite easily determined. If the entropy for a probability distribution
is large, then an outcome is hard to predict. A different way of viewing entropy for discrete events
(as derived from information theory) is to consider the minimum number of YES/NO questions that
are required in order to determine which event occurred from a probability distribution. In order to
understand how this would look in practice it is useful to consider the formula for entropy H(X):

H(X) =
∑
x∈X

p(x) log2

( 1

p(x)

)
= −

∑
x∈X

p(x) log2(p(x))

with p : X → [0, 1], which provides the probability of an event x occurring from the set of events X.
With the formula just introduced, an intuition for entropy can be built by looking at the entropy
value for three different scenarios when tossing a coin twice:

• Scenario 1: Both sides of the coin contains head
This would produce the following probabilities for each possible outcome:

Event Probability of observing
HEAD, HEAD 1.0× 1.0 = 1.0
HEAD, TAIL 1.0× 0.0 = 0.0
TAIL, HEAD 0.0× 1.0 = 0.0
TAIL, TAIL 0.0× 0.0 = 0.0

The following entropy would be the result for this probability distribution1:

H(X) = −1 log2(1) = 0

The resulting entropy value of 0 makes sense. We do not need to ask any questions in order to
determine which event occurred, because we know that the outcome will always be [HEAD,
HEAD].

1A property of Shannon entropy is that adding or removing an event with probability zero does not contribute to
the entropy. Thus in this example the other three events can be ignored.
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• Scenario 2: The coin is fair (equal probability for landing head or tail)
This would produce the following probabilities for each possible outcome:

Event Probability of observing
HEAD, HEAD 0.50× 0.50 = 0.25
HEAD, TAIL 0.50× 0.50 = 0.25
TAIL, HEAD 0.50× 0.50 = 0.25
TAIL, TAIL 0.50× 0.50 = 0.25

The following entropy would be the result for this probability distribution

H(X) = −(0.25 log2(0.25) + 0.25 log2(0.25) + 0.25 log2(0.25) + 0.25 log2(0.25)) = 2

Again, this resulting entropy value of 2 makes sense. In order to determine which event
occurred it is necessary to “ask” at minimum two questions. The first question could be
“was the first toss head?”, then the second question could be “was the second toss head?”.
Based on the YES/NO answers for these two questions one can easily determine which event
occurred.

• Scenario 3: The coin has a 0.8 probability of landing head
This would produce the following probabilities for each possible outcome:

Event Probability of observing
HEAD, HEAD 0.80× 0.80 = 0.64
HEAD, TAIL 0.80× 0.20 = 0.16
TAIL, HEAD 0.20× 0.80 = 0.16
TAIL, TAIL 0.20× 0.20 = 0.04

The following entropy would be the result for this probability distribution

H(X) = −(0.64 log2(0.64) + 0.16 log2(0.16) + 0.16 log2(0.16) + 0.04 log2(0.04)) ≈ 1.44

This scenario requires more reasoning. Intuitively, when comparing this scenario with the
second scenario it is obvious that with knowledge of the fact that this coin is way more likely
to land head, that we can “ask” better questions. One obvious question one should always ask
is if the event contains two heads. With a probability of 0.64 more often than not this will be
true, resulting in only using one question to determine the occurred event. Entropy states
the minimum number of “questions” that are required (on average) in order to determine
which event occurred. Using the formula it can be proven that at least 1.44 “questions” are
required on average.

From these three scenarios it can be observed that the largest entropy will be produced when
the probability of each event occurring is equally likely. This is also the scenario that describes
the system for which no additional information is known. The only information on which we base
our probability distribution is of knowledge that the coin toss has two possible outcomes and the
coin will be tossed twice. No additional assumption or biases are used to generate that probability
distribution. This idea is at the core of the principle of maximum entropy. The principle of maximum
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entropy has been introduced first by Edwin Thompson Jaynes in 1957 [Jay57]. Edwin Thompson
Jaynes argued that apart from the initial assumptions no other assumptions should be made in
order to generate the probability distribution. Another way to phrase this is that apart from the
initial certainty the remaining uncertainty should be as large as possible. The principle of maximum
entropy can be used to generate the probability distribution for a system that complies with the
initial assumptions and none else. These assumptions are called the constraints (of the system).
Two constraints that apply to any system are inherited from the probability mass function:

1. The sum over all events sums up to 1:
∑

x∈X p(x) = 1.

2. The probability for every event is non-negative: p(x) ≥ 0.

To understand why this makes sense let us look at a six-sided die. A balanced die would have equal
probability of landing on each of its sides: (p(x) = 1

6
for x = 1, . . . , 6). It is possible to calculate the

average outcome for one die roll:

6∑
x=1

x · p(x) = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5

Now for a balanced die the average outcome is 3.5. Let us now say we received another six-sided die
for which it is known that the average outcome is 4. To find a probability distribution the following
equation must be solved:

6∑
x=1

x · p(x) = 1 · p(1) + 2 · p(2) + 3 · p(3) + 4 · p(4) + 5 · p(5) + 6 · p(6) = 4.0

Many probability distributions would satisfy this equation. Three probability distributions that
would satisfy the equation are given in Table 1. While these distributions would satisfy the
constraint, it is easy to observe that all three are a product of a probability distribution with
additional assumptions. All three distributions assume that the die would never land on certain
sides. With the initial assumption (the average outcome is 4.0) such additional assumptions could
not be derived, and thus none of the three distributions would be generated by the principle of
maximum entropy.

2.2.2 Reward function definition

In order to approximate the reward function R of the expert agent E the Maxentirl algorithm
makes two assumptions [ZMBD08]. The first assumption is that every state s can be mapped to
the features of that state. The function that would map this relation can be expressed as:

ϕ : S → Rk

This ensures that for every state s a value for each of the k state features will be produced.
The second assumption is that the reward function can be expressed as a linear sum of weighted
features. For a given feature weight vector w the reward function is defined as:

R(s) = w1ϕ(s)1 + w2ϕ(s)2 + . . .+ wkϕ(s)k = w⊤ϕ(s) (1)

where k is the number of features extracted from the states.
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Event (die side) P distribution 1 P distribution 2 P distribution 3
1 0.0 0.0 0.0
2 0.5 0.0 0.0
3 0.0 0.0 0.5
4 0.0 1.0 0.0
5 0.0 0.0 0.5
6 0.5 0.0 0.0

Average outcome 4.0 4.0 4.0

Table 1: In this table three probability distributions are provided for a six-sided die. All three of
these distributions would average an outcome of 4.0.

2.2.3 The algorithm

In this subsection the Maxentirl algorithm, as provided in [ZMBD08], is summarized. In Max-
entirl the number of features that will be extracted from each state is manually specified. The
goal in Maxentirl is to find the appropriate feature weight vector w that would produce the
observed demonstration D. Maxentirl employs the principle of maximum entropy to find the
feature weight vector w that does not exhibit any additional preferences beyond matching feature
expectations.
To accomplish this goal the Maxentirl algorithm makes use of the trajectory feature count ϕ(τ).
The trajectory feature count ϕ(τ) is generated by summing the features observed for each state
visited in the trajectory τ and can be expressed as:

ϕ(τ) =
∑
s∈τ

ϕ(s)

This concept can also be extended to any demonstration D performed by the expert agent E. Let
|D| be the number of trajectories for a given demonstration D, then the expected empirical feature
count is:

ϕ(D) =
1

|D|
∑
τ∈D

ϕ(τ)

Abbeel et al. [AN04] demonstrated that matching the expected empirical feature count ϕ(D) is
both necessary and sufficient for a learning agent to achieve the same performance as the expert
agent E if the expert agent were in fact solving an MDP with a reward function linear in those
features. With this fact the problem of ambiguity arises. Many reward functions and many policies
lead to the same feature counts. To resolve the problem of this ambiguity the principle of maximum
entropy is applied. For each reward function that would satisfy the matching of the expected
empirical feature count ϕ(D) its entropy can be calculated. The reward function with the largest
entropy would be the reward function with no other preference but the preference of matching the
expected empirical feature count ϕ(D).
In the principle of maximum entropy the goal is to find the probability distribution p that yields the
highest entropy. Within the context of Maxentirl the probability distribution is subject to two
constraints. The first constraint is that the feature expectation for both the expert agent and the
learner agent must match. The second constraint is that under the found probability distribution
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the demonstration D must be observed. This constrained optimization problem can also be formally
described as:

argmax
p

H(p)

subject to EπIRL
[ϕ(D)] = EπE

[ϕ(D)] (feature-expectation matching)∑
τ

p(τ) = 1,∀τ : p(τ) > 0 (probability constraints)

The technique to solve this is a well-known technique which makes use of the method of Lagrange
multipliers. For MDPs with deterministic transition dynamics the parameterized probability
distribution can be expressed as:

pd(τ |w) =
1

Z(w)
exp(w⊤ϕ(τ)), Z(w) =

∑
τ

exp(w⊤ϕ(τ))

while for MDPs with stochastic transitions the parameterized probability distribution is approxi-
mated by multiplying the deterministic solution by the transition probability of the trajectory:

ps(τ |w) ≈ 1

Z(w)
exp(w⊤ϕ(τ))

∏
(st+1,at,s)∈τ

p(st+1|st, at)

Optimizing the parameterized probability distribution can be achieved by maximizing the log-
likelihood of observing the demonstration D under the probability distribution using gradient-based
optimization methods:

w∗ = argmax
w

L(w) = argmax
w

∑
τ∈D

log p(τ |w)

The gradient can then be expressed as the difference between the expected empirical feature counts
and the learner’s expected feature counts under the feature weight vector w:

∇L(w) = EπE [ϕ(D)]−
∑
τ∈D

p(τ |w)ϕ(τ)

The learner’s expected feature counts under the feature weight vector w can also be defined in
terms of expected state visitation frequencies Dsi :∑

τ∈D

p(τ |w)ϕ(τ) =
∑
si∈S

Dsiϕ(si)

Calculating the expected state visitation frequency requires the policy function that is used by the
learner agent. In order to obtain this policy function a so-called backward pass is performed. The
backward pass recursively “backup” from terminal states and computes the state and state-action
partition functions Zsi and Zsi,aj which are defined as:

Zsi,aj =
∑
k

p(sk|si, aj) exp(R(si))Zsk =
∑
k

p(sk|si, aj) exp(w⊤ϕ(si))Zsk
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Zsi =
∑
aj

Zsi,aj

The state partition function for the terminal state sterminal is set to 1 (Zsterminal
= 1) and recursively

compute Zsi and Zsi,aj for N iterations. Afterwards the local action probability (i.e., the policy
function) can be computed for any state:

π(aj|si,w) =
Zsi,aj

Zsi

With these local action probabilities a so-called forward pass can be performed. The forward pass
starts by setting the probability for the initial starting state(s), and then iterative (starting from
t = 1 to N) computing the state visited next:

Dsk,t+1 =
∑
si∈S

∑
aj∈A

Dsi,tπ(aj|si,w)p(sk|si, aj)

Afterwards the state-visitation frequency for an individual state si can be obtained by taking the
sum of its occurrence during the forward pass:

Dsi =
∑
t

Dsi,t

By use of the backward pass and forward pass the expected state visitation frequency under the
learner’s policy can be obtained which in turn can be used to calculate the gradient.

2.3 Other Inverse Reinforcement Learning algorithms

In Section 2.2 a summary of the Maxentirl algorithm has been provided. This algorithm solves
the IRL problem by assuming that the reward function can be expressed as a linear sum of weighted
features and optimizes the feature weights by using entropy optimization. In general there are
four approaches to solve the IRL problem, and entropy optimization is one of them. The other
three are margin optimization, Bayesian update, and classification and regression [AD21]. Margin
optimization assumes, just like entropy optimization, that the reward function can be expressed as
a linear sum of weighted features. The IRL problem is solved by finding the solution that maximizes
some margin. The two most known margin optimization algorithms applied to the IRL problem are
MAX-MARGIN and PROJECTION [AN04].
While a structure of the reward function for both the margin optimization and entropy optimization
is assumed, the Bayesian update approach does not impose a structure. This approach uses all
observed state-action pairs to update a prior distribution over the possible reward functions. From
this the likelihood of observing each of the trajectories in the demonstration under the estimated
reward function R̂E can be calculated.
The last approach that can be used to solve the IRL problem is that which uses classification and
regression. However, this approach has not be as popular as the approaches mentioned above. To
use this approach each state-action pair is seen as a data label pair, with the action being the label.
From here a regression model or classification model can be trained. When the state space and/or
action space is large a regression tree may be preferred in which each path of the tree captures a
region of the state and action space, while the whole tree itself captures all regions. An example of
this approach is that of FIRL [LPK10].
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3 Related Work

In this chapter related work of IRL applied on real-world problems is provided. Afterwards related
work which used IRL to create a self-driving agent will be looked at.

3.1 Real world application of IRL

While IRL is a relatively young concept compared to RL, many interesting results have been
obtained by deploying IRL on complex real-world problems. An example of a complex problem is
predicting goal-directed human attention when searching visually. Obtaining the strategy employed
by a human when using vision to search for something can significantly improve computer vision.
In the paper by Yang et al. [YHC+20] they compared the results of their IRL algorithm to five
other predicting search scanpaths algorithms. For training the IRL model they used the COCO-
Search18 dataset for which the search fixations for searching 18 target-object categories (produced
by 10 humans) are available. In their paper they showed that their IRL algorithm was able to
outperform all other algorithms. In addition to this improvement their solution also produced state
representations that are more explainable than their counterparts. For self-driving vehicles applying
such an algorithm could improve the driving behaviour to more closely match that of a human
driver. Applying a model that matches the visual search of a human could improve the current
self-driving capabilities of those vehicles.
One of the domains in which IRL can show the most progress is that of robotics. Robotics is often
used to automate tasks that are currently done by manual labor. By observing the behaviour of
those workers IRL can adapt to perform those tasks relatively quickly. In the paper by Kumar et al.
[KZH+23] they showed that by using third-person videos of a task being solved a IRL model can be
created that outperforms four other techniques. The main difference between their IRL approach
and the other approaches is that they trained their model on a diverse set of videos, instead of a
relatively restricted domain of videos. This approach can be very useful for implementing self-driving
behaviour in vehicles, since they need to act in many different driving situations. Also the large
amount of recorded videos of third-person driving behaviour can be utilized by this technique.

3.1.1 Self-driving using IRL

With the increase of sensory data produced by cars applying IRL to create a self-driving vehicle has
become very appealing to researchers. In the research paper by Zou et al. [ZLZ18] an experiment was
performed in the simulation software package called Udacity. The approach used in their experiment
is similar to the approach used in the experiments for this thesis, however their self-driving behaviour
was more complex. They used a convolution neural network to extract features from the driving
state and added the steering angle, throttle value, brake value and current speed as additional
features observable for each state. From there they applied the IRL algorithm called maximum
margin planning. The actions the agents can perform were also more complex. At any state one
of following five actions could be performed: drive straight, turn slightly left, turn slightly right,
turn hard right or turn hard left. In their experiment they tested the performance of their IRL
agent on a curved road. They showed that their IRL approach outperforms the end-to-end learning
approach (for autonomous driving) proposed by Bojarski et al. [BTD+16].
While the previous experiment was performed in simulation software, real-world experiments have
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also been conducted. One very promising paper by Phan-Minh et al. [PMHC+23] used IRL to
train an agent and validated the model in heavy traffic in Las Vegas. It uses their planner (called
DriveIRL) which proposes a diverse set of trajectories for which, after applying a safety filter, the
Maxentirl algorithm was used to score the remaining trajectories. They trained their IRL agent
on approximately 556 hours of real-world expert data. Their extensive approach of applying IRL to
create a real-world self-driving vehicle was able to drive autonomously for 6.9 miles (of a 8.5 miles
route) when applying safety filtering and 8.8 miles (of a 11 miles route) when they did not apply
the safety filtering. When they applied the safety filtering the only reason for intervening was due
to mandatory takeover regions. This paper shows the true potential for applying IRL for creating
autonomous vehicles.
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4 Experiments

In this chapter the environment in which the experiments will be performed will be described.
After that the specific configuration used to run the experiments will be provided. The code and
additional instructions on how to acquire the results can be found on Github2. Links to video
demonstrations will also be available in that repository.

4.1 The environment: CARLA

The environment in which the experiment will be performed is called Carla3 [DRC+17]. Carla
is an open-source simulator for autonomous driving research. Carla is implemented in the game
engine Unreal Engine 4. The version of Carla used during the experiment is version 0.9.14. In
Carla the behaviour of all the actors (e.g., cars, pedestrians or traffic signals) can be manually
specified. This allows for simulating specific traffic scenarios. It is also possible to equip a vehicle
with multiple sensors like LIDAR, RGB camera or depth sensors. The physical properties of a
vehicle can also be specified. The friction of each individual tire, the brake torque and maximum
steering angle are examples of configurable properties of a vehicle in Carla. While many maps are
available in the simulation, the map used during the experiments can be seen in Figure 5.

Figure 5: The Carla map (Town10HD Opt) which is the map on which the experiments are run.
During the experiments only the necessary layers are rendered.

4.2 The experiments

The experiments that will be looked at consist of two different scenarios. In the first scenario an
expert agent perform a demonstration of passing an intersection. The behaviour that is of interest
is that of the interaction between the traffic light and the expert agent. Using the Maxentirl
algorithm on the demonstration data a reward function R can be created (see Equation 1). This
reward function is then used to create another agent. The performance of the newly created agent

2https://github.com/enricobonsu/BachelorThesis
3https://carla.org/
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is then observed on the same interaction. The trajectory is shown in Figure 6.
The second scenario is largely the same as the first scenario, however now the performance of the
agent is observed on an unobserved intersection (see Figure 8). This scenario is used to observe if
the behaviour generated by the estimated reward function R̂E can be applied to new situations.

Figure 6: The trajectory that will be followed
by the expert agent, starting from the left
and following the blue line (scenario 1).

Figure 7: A frame in which the expert agent
stops in front of the traffic light, because the
light is red.

4.3 The Setup for the Experiments

In order to run the experiments the following steps need to be performed. First an expert agent
needs to be created. Once the expert agent is created its behaviour with the environment needs
to be observed. This would generate the demonstration data which will be filtered to extract
the features from each state. The next part is to obtain the state transition function T . This is
obtained by running a custom script. From here it is possible to run the Maxentirl algorithm.
This will generate the feature weight vector w. To observe how an agent would perform using a
reward function R based on this feature weight vector w (see Equation 1) a new agent is created
with such a reward function R which would act to maximize its reward when interacting with the
environment.

4.3.1 Generating optimal behaviour

In Carla scripts are available that would generate correct driving behaviour. For this Carla
uses two PID-controllers to determine the steering angle and the (de)acceleration needed for the
vehicle advance towards its goal. The default script is modified to generate simpler behaviour. The
following configuration is set for the expert agent and the agent which uses the estimated reward
function R̂E:

• In the environment only one agent exists.

• An action is taken every 0.12 seconds (in the simulated time).

• Only one type of vehicle is used.
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Figure 8: The unobserved trajectory (red line) on which the IRL agent will drive. The agent starts
from the left and follows the red line (scenario 2).

• The friction of each tire is set to 0.0 on the vehicle. This allows for consistent state transitions.

• The expert agent moves at a constant velocity of 30.0 km/h.

• The two available actions are either to brake or not.

• Braking would result in an instant stop (velocity 0.0 km/h).

• Performing an action would instantly set the appropriate velocity.

• The start location and destination are fixed for the trajectory performed by expert agent.

4.3.2 Gathering demonstration data

In this thesis the main research application of Maxentirl is that of a self-driving vehicle. Because
of that the observed data is gathered from the ego of the expert agent’s vehicle. The two features
that are observed at each step are:

1. Whether or not the vehicle observes a traffic light which is red. This observed value is either
0 or 1.

2. The remaining distance from its destination. This value is generated by dividing the remaining
distance towards the agent’s destination to the distance between the starting location and
the destination location. The value is then rounded to its third decimal place. This would
result in a value between 0 and 1 (with 0 and 1 included).

Additionally the action taken in each state is also observed.
In total 200 trajectories were observed, but the first observed trajectory is dropped from the
demonstration data due to inconsistencies. This would result in the demonstration consisting of
199 trajectories. In 98 of these 199 trajectories the traffic light was observed red when the expert
agent was within distance of the traffic light.
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4.3.3 Generation the state transition function

While some state transitions are observed from the demonstration, many transitions likely will
never be performed by the expert agent. To obtain the state transition function T a custom script
is created to observe the execution of each possible state-action pair 250 times from which then
the possible transitions are extracted. The reason why it is needed to observe each state-action
pair many times is because the traffic light changes its color arbitrarily (i.e., the environment
is non-deterministic), meaning that it can be possible that with fewer observed executions the
changing traffic light (and thus changing state) is not observed. This would make the state transition
function T incomplete, and thus a large number of repetitions for each state-action pairs is chosen.
Due to the property of the traffic light the transition dynamics is non-deterministic. Because of this
the transition probability for the traffic light going from red to green is set to 0.01. The transition
probability of the traffic light staying the same color is set to 0.99. The transition going from green
to red is also set with the same transition probability of 0.01 and staying green with the probability
0.99. The one remaining stochastic transition is that of reaching the traffic light. For this transition
the probability of observing the traffic as red or observing it as green is equally likely (0.5 for both).

20



5 Results

In this chapter first the feature weights generated by the Maxentirl algorithm is provided. After
this the behaviour produced by the IRL agent is compared to the behaviour of the expert agent.

5.1 Results of the Maxentirl algorithm

By initializing the feature weight vector to 0.2 for both features and initializing the stochastic
gradient ascent with an exponential decay learning rate. This is initialized with a learning rate of
0.2 and a decay rate of 0.5. The resulting feature weights are:

• Feature [an observed traffic light is red] weight: 6.25.

• Feature [distance from the destination] weight: −138.11.

How the feature weights change during optimization is visualized in Figure 9 and Figure 10.

Figure 9: The feature weight for the feature
“an observed traffic light is red” during opti-
mization.

Figure 10: The feature weight for the feature
‘distance from the destination” during opti-
mization.

5.2 IRL Agent vs Expert Agent

With the feature vector now available it can easily be concluded how the IRL agent would act in
different states. Inserting the feature weight vector w for the correct feature values into Equation 1
allows for calculating the reward value for any state s. From here the IRL agent only has to look
at the state transition function T to determine which action is preferred. When the transition is
non-deterministic a weighted sum is taken over the possible states it can transition to.
For the two scenarios is can easily be concluded that if in state s and the next state s’ the observed
traffic light state does not change after transition and the distance towards the goal gets smaller,
then the agent prefers to advance to the next state. This is because for both s and s′ the value
for the feature “traffic light is red” would be the same. Thus only the distance feature would be
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considered when deciding the action to perform. When s′ is closer to the goal, then transitioning to
that state is preferred. This is consistent with the behaviour of the expert agent in the observed
scenario.
Transiting to the state that could observe a red traffic light (i.e., the edge of observing the traffic
light) is also consistent with the behaviour of the expert agent. Both agents want to transition to
that state. The interesting situation happens when the light is red. The expert agent will directly
brake and continue only if the light is green. This is not the behaviour the IRL agent produces.
Instead of instantly braking the IRL agent continues (while the light is red) until it is at the “edge”
of observing the red traffic light and passing the traffic light. Here it will wait until the light turns
green which causes the agent to continue. While the behaviour respects the traffic light to not pass
until it is green this behaviour is obviously differs from that of the observed expert agent. Here the
effect of the principle of maximum entropy is observed. From analysing the demonstration data it
is found that the trajectories that had a red light observed would always observe them from the
very first state in which observing a red light is possible. This would result in the Maxentirl
algorithm to find a feature weight vector that always tries to observe a red light and thereafter tries
to close the distance between the agent and the destination. With a very high probability (0.99)
that transitioning from observing a red light would still result in observing a red light it makes
sense that the IRL agent would continue all the way up until the next “no brake” action would
result in observing no traffic light (i.e., passing the traffic light).
If the demonstration data would have demonstrated the importance of braking as a result of a red
light from different distances from the traffic light, then it can be assumed that the Maxentirl
algorithm would find the appropriate feature weight vector that would always keep the maximum
distance between the agent and the traffic light. This behaviour of moving to the very edge of the
traffic light when it is observed red is also observed during the second scenario, where the traffic
light is green both agents continue for every state.
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6 Conclusions

In this chapter the two research questions will be answered. An answer for the problem statement
will also be given. Afterwards the limitations of this work are analysed. To conclude this chapter
further research is discussed.

6.1 Research questions revisited

In this section the two research questions of this thesis will be answered. To end this section a
conclusion is given for the problem statement of this thesis.

6.1.1 Research questions 1

The first research question was formulated as: can IRL be used to create an agent which is able to
cross an intersection correctly if the correct behaviour is observed for that intersection?
With the result of the scenario 1 experiment it can be concluded that the IRL agent is able to
correctly cross the same intersection on which the demonstration was observed. This is quite as
expected since Maxentirl makes sure that the feature weight vector applied on the demonstration
trajectories will produce behaviour that respects the feature properties.

6.1.2 Research questions 2

The second research question was formulated as: can IRL be used to create an agent which is able to
cross in intersection correctly if the correct behaviour for that intersection has not been observed?
Here a powerful example is provided for the application for IRL. By using the same agent that
was applied in scenario 1 for scenario 2 generalizability of driving behaviour was observed. The
foundation of IRL assumes that there is an underlying (reward) structure based on the features of
a state. This makes it easy to generalize, since new states can be evaluated by the features of that
state. This meant that the only task that was needed to be performed was to extract the features
for these new states and generate a state transition function T for this new state space. When
the extraction of the features is done consistently, then the agent will act in this new state space
exactly as in the previous state space. This makes it possible to answer this research question by
concluding that the IRL agent is able to also cross an unobserved intersection correctly.

6.1.3 Problem statement

The problem statement was formulated as: can IRL be used to simulate driving behaviour?
With both research question concluding that the IRL agent is able to behave correctly when it
needs to cross an intersection for observed and unobserved intersections we conclude that IRL
can indeed be used to simulate correct driving behaviour. For humans it is assumed that once the
skill of driving a vehicle has been obtained, this can be applied in many (previously unobserved)
situations. This generalizability has also been observed in the IRL agent in this thesis. While this
generalizability has been observed it must be noted that this is due to similar changes in the feature
“distance to destination” for the transitions. In both scenarios this distance decreases by 0.09 –
0.011 every time the agent decides to not perform a brake. This value is multiplied by its feature
weight and thus plays an essential part in considering which action to take. If the amount of change
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decreases enough (e.g., to 0.00001 for every time the agent decides not to perform a brake), then
the IRL agent would prefer to never cross a traffic light. To prevent this change in behaviour it
is essential to either use different features, or keep the (possible) changes caused by a transition
consistent.

6.2 Limitations

While the results provided in this thesis are promising, the concept of a self-driving vehicle has
severely be simplified due to time and resource constraints. For the environment the transition
probability of the traffic lights were set manually, which might not be accurate for the environment.
The friction on the tires of the vehicle were set to 0, meaning there does not exist friction between
the vehicle and the road. This is done to obtain consistent state transitions. Also performing a
brake would set the velocity of the vehicle to 0 instantly and moving forward will be done with a
constant velocity. The environment in which the agent acts is one in which that agent is the only
existing vehicle agent. A significant limitation that is set on the behaviour of the agent is that of
the steering. The agents are not able to steer the vehicle. They can only decide to perform a brake
or not. Observing the state and performing an action is done every 0.12 seconds, which may not
match the reaction-time of a typical driver. The experiments are also performed on one specific
map.

6.3 Further Research

In order to expand the results to make them viable for real-world applications the most important
step to take is to include the steering as part of the possible actions to perform. This will enlarge
the action space, but if sufficiently many trajectories are observed and the correct features are
selected, then the IRL agent should be able perform both throttling/braking and steering at each
time step. Another important aspect that needs to be improved is to consider multiple agents in
the environment. Every aspect of driving, whether parking or merging on a highway, is greatly
influenced by other drivers. This is also the case when crossing an intersection. The current setup
acquires the status of the traffic light from the simulation. An important improvement would be
to obtain the status of the traffic light from a sensor like a RGB camera. For further research
experimenting with other features would also be very important in order to enhance the capabilities
of the IRL agent.
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Action An action that is legal to be
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a 3–6, 13,
14, 28–30

Action space A finite set of actions. When the
possible actions depend on a state,
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s is denoted as As, with As ⊆ A.
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Action-value function A function (under policy π)
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Demonstration A demonstration performed by an
agent.

D 7, 12–14,
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Discount factor The discount factor determines the
present value of future rewards, with
γ ∈ [0, 1].

γ 3–6, 28

Estimated reward function The estimated reward function R̂E is
an estimate of the reward function R
of the expert agent E.

R̂E 7, 9, 14,
18, 28

Expected return A sequence
Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =∑∞

n=0 γ
nrt+n+1 of (expected) rewards

received starting from discrete time
step t, with discount factor γ.

Gt 3–6, 28

Expert agent The expert agent for which it is
assumed that its interaction with the
environment is optimal.

E 7, 9, 11,
12, 14,
17–22, 28,
29

Policy function of the expert agent E The policy function of the expert
agent E.

πE 7

28



Notation Description Symbol Page
List

Feature vector The feature vector is the result of the
mapping from a state to the k features
of a state: ϕ : S → Rk.

ϕ 11–13, 21,
29, 30

Feature weight vector The feature weight vector that defines
the importance of each state feature in
Maxentirl.

w 11–14, 18,
21–23

MDP without reward function A Markov Decision Process (MDP)
without the reward function R known
for the expert agent E.

M\RE
7

Optimal action-value function An action-value function Qπ∗ is
considered optimal when for every
other action-value function Qπ it
holds that Qπ∗ ≥ Qπ.

Qπ∗ 5, 6, 29

Optimal policy A policy π∗ is considered optimal
when for every other policy π it holds
that π∗ ≥ π under the expected
return. This means essentially that
π∗ ≥ π if and only if Vπ∗(s) ≥ Vπ(s)
for all s ∈ S.

π∗ 5, 6, 29

Optimal state-value function A state-value function Vπ∗ is
considered optimal when for every
other state-value function Vπ it holds
that Vπ∗ ≥ Vπ.

Vπ∗ 5, 6, 29

Policy function A function π : S × A → [0, 1] from
states to probabilities of selecting each
possible action.

π 3–5, 7, 13,
14, 28–30

Reward A reward obtained at time step t. rt 3, 4, 28
Reward function A function R : S × A× S → R that

maps the reward that will be obtained
for executing a triplet (s, a, s′).

R 3, 5–7, 9,
11, 13, 14,
17, 18, 28,
29

State A state which is within the state space
S.

s 3–6,
11–14, 21,
22, 28–30

State-action pair The state-action pair which provides
the action a taken in state s.

(s, a) 14, 20

29



Notation Description Symbol Page
List

State space A finite set of states of the
environment.

S 3–6, 11,
13, 14, 23,
28–30

State Transition function A function T : S × A× S → [0, 1],
giving for each state and action, a
probability distribution over states.

T 3, 5, 6,
18, 20, 21,
23, 30

State-value function A function (under policy π)
Vπ : S → R gives the expected return
when starting in state s and following
policy π thereafter. A policy is always
required in order to determine the
value of a state. The value of a
terminal state is always zero.

Vπ 3–6, 29,
30

Time step A discrete time step. t 3–5, 28,
29

Trajectory feature count The trajectory feature count ϕ(τ) is
the sum of every state feature
observed during the trajectory τ ..

ϕ(τ) 12, 13, 30

Trajectory A sequence
τ = ((s0, a0), (s1, a1), . . . , (sn, an)) of
state-action pairs (with n ∈ N).

τ 3, 7, 12,
13, 30
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