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Abstract

Alzheimer’s disease (AD) and Huntington’s disease (HD) are two neurodegenerative diseases,
with similar characteristics such as aggregation of proteins and an inflammatory response in
the brain. Protein-protein interaction networks (PPINs) can be used to find enriched biological
processes within a group of interconnected proteins. This research looked at how two PPINs
for AD and HD overlapped. The KEGG, Wikipathways and STRING database provided the
data for these PPINs. The AD and HD PPINs were intersected and about two-thirds of the
networks overlapped. Biological processes such as chemical synaptic transmission, autophagy,
apoptosis and nervous system development were found to be enriched in the intersected
network. In addition, a literature analysis revealed that these processes were also involved in
AD and HD. Thus, this research provides insight into how PPIN analyses can contribute to
finding overlapping processes of similar diseases. This information could also be valuable for
studying shared drug targets.
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1 Introduction

Alzheimer’s disease (AD) and Huntington’s disease (HD) are both neurodegenerative diseases.
What makes these diseases similar is that misfolded protein aggregates are formed which cause a
toxic reaction that leads to cell death of neurons. HD belongs to the category of Poly-Q diseases
with the huntingtin protein as the main causal factor. AD belongs to a class of neurodegenerative
diseases called tauopathies with the amyloid-β precursor protein (APP) as one of the main causal
factors [TMP03]. Even though the genetic basis of AD and HD is different, they share molecular
processes such as neuroinflammation, increased reactive oxygen species (ROS), and disrupted
protein metabolisms [DKKK18]. It has been proposed that getting rid of the misfolded proteins by
inducing autophagy in neurons might be a treatment option for both diseases [TMA+10].

1.1 Alzheimer’s disease

Alzheimer’s disease is a deadly neurodegenerative disease with dementia being the main clinical
symptom. It is seen a lot in people who are older than 70 years, but there have also been genes
identified that cause the disease at a younger age. The disease can nowadays be detected before
any signs of memory loss start to show because three important biomarkers have been identified.
These are amyloid-β (Aβ), phosphorylated tau, and neurodegeneration [SDSK+21].

Firstly, Aβ can form plaques in the brain when it is not broken down efficiently. These plaques
can be found in AD patients. The protein it is derived from is called amyloid-β precursor protein
(APP). This is a protein that is produced a lot by neurons, especially in the brain. When APP
is cut at two different sites, you get three smaller proteins, one of which is Aβ [HHB+21]. Tau
phosphorylation is probably also caused by Aβ plaques, but the pathway by which this happens is
still unknown [SDSK+21].

In terms of genetics, it has been found that autosomal dominant variants of the APP gene, but also
presenilin 1 (PSEN1) and presenilin 2 (PSEN2), can cause AD at a younger age [HHB+21]. One
important gene that accounts for Alzheimer’s in older people is the APOE e4 allele [SDSK+21].
Other risk genes have also been identified that become upregulated in the microglia cells as a
response to the Aβ plaques [SLM+20]. The microglia, astroglia, and neurons are already affected
before the disease is clinically visible [SDSK+21]. These cells, especially the microglia, also seem to
be involved in a neuroinflammatory response [SLM+20].

1.2 Huntington’s disease

Huntington’s disease (HD) is characterized by brief involuntary movements, psychiatric conditions
such as dementia, and usually also a family history of the disease. Patients commonly start having
symptoms around 40 years old and live for another 15 to 20 years. The causal mutant gene for this
autosomal dominant neurodegenerative disorder was discovered in 1993 and is called huntingtin
(HTT). Because of this mutation, there is an additional tail of CAG repeats, which code for the
protein glutamine, attached to the HTT protein. The length of this polyglutamine tail influences
the severity of the disease. Sometimes children already display symptoms, when they have an
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exceptionally long sequence of glutamine repeats [VD98][Roo10][TGL19].

Both excessive movements and a decrease in movement are observed in patients with HD. Usually,
people’s cognitive abilities decrease over time, and patients display forms of memory loss. Especially
memory of movements is affected [Roo10].

The exact function of the normal HTT protein is still unknown, but there is probably a relation
between the protein’s function and the disease symptoms [SH16][STW+98]. Current treatments for
the disease focus on trying to lower the amount of HTT. This can be done in the DNA itself, or
by targeting the transcription or translation products. For example, HTT mRNA can be targeted
or the DNA sequence can be modified with CRISPR/Cas9. It has also been found that a lower
amount of DNA repair genes such as MSH3 can decrease the rate of expansion of the CAG repeats
in brain cells [TGL19].

1.3 Inflammation in neurodegenerative diseases

Similar processes seem to play a role in both AD and HD. For example, the HTT protein has been
found to be overexpressed at aggregation sites in the brain of AD patients, although its specific
role is not clear [STW+98].

Next to the formation of aggregates, there has been a lot of evidence that inflammation is what
causes the eventual death of neurons in neurodegenerative diseases. These inflammation reactions
start with the assembly of protein complexes called inflammasomes, which are formed as part of
the innate immune response. They are assembled by pattern recognition receptors (PRRs), which
can detect foreign proteins in the body. These inflammasomes can then activate, among others,
the proteins caspase-1, IL-1beta, and IL-18 which promote inflammation in the Central Nervous
System [VSLvL19]. When glutamate receptors are then activated, a cascade of reactions ensues
which leads to excitotoxic cell death [Mat03].

Evidence for neuroinflammation was discovered for both diseases. Caspase-1, IL-1beta and IL-
18 proteins have all been found to be overexpressed in AD patients, and the same goes for
other proteins involved in the inflammation reaction caused by inflammasomes. Furthermore,
the inflammasome NLRP3, which has been studied a lot, is activated by Aβ aggregates. In HD
patients, the caspase-1 protein was found to be overexpressed, and inhibition of this protein delayed
the disease progression [VSLvL19]. Moreover, excitotoxic cell death occurs in both AD and HD
patients [Mat03].

1.4 Protein-protein interaction networks

Over the last few decades, it has become increasingly important to study not just individual proteins,
but the whole system of protein-protein interactions within organisms [Ram10][BO04][MV07].

Protein-protein interaction networks (PPINs) are graph representations of the interactions between
proteins in an organism. The nodes of the graph represent the proteins, and the edges represent
the interaction types. These graphs can either be directed or undirected, depending on the type of
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interactions displayed. For example, when protein A activates protein B, there could be a directed
edge from A to B. On the other hand, if A binds to B then B binds to A and there is an edge in
two directions [BO04].

New interactions can be discovered in a number of ways. Firstly, with high-throughput experiments
using for example micro-arrays or yeast two hybrid assays. Two disadvantages of this method are
the amount of false positive results and difficulties in reproducing such experiments. Secondly,
information from literature and databases that has accumulated over the years can be analyzed, with
text mining methods for example. The last way of discovering new interactions is by computational
methods, for example by using the structures of proteins to predict interactions [Ram10].

Several characteristics are used for analyzing PPINs such as node degree distribution, clustering
coefficient, and characteristic path length [Ram10]. These will be described in more detail in the
methodology section. Based on these characteristics, three different network topologies are in
general distinguished: random networks, small-world networks, and scale-free networks [Ram10]. It
has been discovered that most biological networks have a scale-free topology, which is characterized
by hub nodes and clusters. Hub nodes have a lot more edges than the average amount per node
and take a central position in the network [BO04].

Highly connected nodes are proteins that have a lot of interactions with each other [SSO+12].
When analyzing PPINs, the main goal is to find clusters of proteins that share characteristics. For
example, a group of proteins can be expressed simultaneously, or at the same location in the cell,
or they can have a similar function [KPA+12][SSO+12]. This means that they might be involved in
the same biological process. Functional enrichment analysis of a cluster can be performed to find
out which process this could be [SSO+12].

1.5 Research question

In previous research, a Huntington’s disease PPIN consensus network was created using different
databases, combining pathway and interaction information [Jia22][Hen23]. Using the workflow for
creating this network as a template, a similar PPIN can be created for Alzheimer’s disease. The
two networks can be compared with each other and also merged, to look at overlapping proteins
and processes. The research question of this thesis is therefore:

RQ: How do the Alzheimer’s disease consensus network and the Huntington’s disease
consensus network overlap?

1.6 Thesis overview

This section includes background information and the objective of this thesis. In Section 2, definitions
can be found. Section 3 discusses related work about HD and AD PPINs. Section 4 describes the
methodology of building and comparing the networks. Section 5 gives the results. The discussion can
be found in Section 6 and the conclusion in Section 7. Figures are shown in Appendix A. Cytoscape
files, code, collected data and additional figures are available at https://git.liacs.nl/s2955199/
alzheimerconsensus. This thesis was written under the supervision of Katy Wolstencroft at the
LIACS.
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2 Definitions

The following abbreviations were used for the different networks and clusters.

• ADCN means Alzheimer’s disease consensus network. It is a network consisting of protein
interaction data from the KEGG, Wikipathways, and STRING databases. There are four
versions, two where the STRING cutoff score was 0.4 and two where the STRING cutoff
score was 0.7. Furthermore, two of them are expanded with 2000 proteins from the STRING
database. The corresponding names are ADCN-KWS-0.4, ADCN-KWS-0.7, ADCN-KWS-0.4-EXP,
ADCN-KWS-0.7-EXP.

• HDCN means Huntington’s disease consensus network. HDCN-NH is the HDCN created by
Nina Henninger [Hen23]. HDCN-CJ refers to the HDCN created by Chen Jiang [Jia22]. The
STRING cutoff score for both of these was 0.4.

• The ADCN-KWS-0.4 was intersected with the HDCN-NH to allow viewing of the overlap. This
resulted in a merged network, called ADCN∩HDCN. These three networks were used for the final
clustering and enrichment, and their clusters are called C1-A, C1-H and C1-AH. This means
Cluster 1 from the ADCN-KWS-0.4, HDCN-NH and ADCN∩HDCN, respectively.

The databases and the software apps that were used are updated continuously, and the specific
versions implemented for this research can be found in Table 1.

Table 1: Version information for data and software tools used for creating the ADCN and its
analysis in Cytoscape.

Data/tools Version
STRING database 11.5
KEGG hsa05010 8/11/2021
Wikipathways WP5124 29/5/2021
Cytoscape 3.9.1
Wikipathways (CysApp) 3.3.10
stringApp (CysApp) 2.0.1
NetworkAnalyzer (CysApp) 4.4.8
MCODE (CysApp) 2.0.2
BiNGO (CysApp) 3.0.5
Gene Ontology 1/4/2023

3 Related Work

3.1 Huntington’s disease consensus networks

The Huntington’s disease consensus network (HDCN) that will be used to compare to the Alzheimer’s
disease consensus network (ADCN) was created by Nina Henninger (N.H.) [Hen23]. This is a new
version of the consensus network that was originally created by Chen Jiang (C.J.) [Jia22].
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Firstly, C.J. created the workflow for combining the available knowledge of HD in a single PPIN.
The KEGG, Reactome, Wikipathways, and STRING database were explored, but Reactome was
omitted from the consensus network because no relevant information could be found. The Python
package Bio.KEGG.REST was used to map KEGG identifiers to UniProt identifiers. Wikipathways
identifiers were converted using the mapping tool on the UniProt website and the STRING proteins
already contained a UniProt identifier. Next, with the Analyze function in Cytoscape, the network
could be analyzed. After the network was divided into clusters, these clusters were analyzed with a
functional enrichment analysis. From the results, it was concluded that regulation of cell commu-
nication, cellular response, oxidative phosphorylation, behavior, memory, and movement were all
processes that were enriched in the network [Jia22].

Secondly, N.H. updated the network created by C.J. and compared this with another network
created by Adam Labadorf et al. [LCM18]. For updating the C.J. network, only new STRING data
had to be added since the other two databases had not been updated. The rest of the workflow
stayed the same. It was discovered that the 5 proteins with the highest degree in the network were
ACTB, GAPDH, AKT1, TP53 and MYC. Proteins with a high degree are called hub nodes. From
these proteins, MYC was the only one that was also upregulated. Overexpression of this protein
could suppress neurogenesis and incite neurodegeneration [Hen23].

3.2 Alzheimer’s disease consensus networks

Three related research articles were found in which PPINs were created for AD. Firstly, Soler-López
et al. [SLZL+11] created a network by using the OMIM database to identify 12 genes that were
most likely causative for AD. Interaction networks have already provided the insight that genes that
are involved in the same disease have significantly more interactions with each other than average.
The researchers found that the shortest path in the interactome between these 12 genes was smaller
than the average shortest path. With a yeast two-hybrid (Y2H) screening, which is a method for
discovering protein-protein interactions, there were 66 new candidate proteins found that had a lot
of interactions with the known Alzheimer’s proteins. Combining this with information from the
human interactome, a PPIN was created with 1704 nodes and 5881 edges.

Secondly, Karbalaei et al. [KART+18] found a relationship between AD and non-alcoholic fatty
liver disease (NAFLD). They used the tool DisGeNET and found 189 overlapping genes that were
expected to play a role in both diseases. With STRING, these genes were combined in a network
and clusters were identified using Cytoscape. Several hub proteins, that had a lot of connections
within the network, were identified. Using the OMIM database, the researchers concluded that
these enriched proteins were related to diabetes and obesity. Thus, AD and NAFLD might be
descendants of these diseases.

Thirdly, Calabrese et al. [CMM22] did a large comparison of the protein interaction networks of AD,
HD, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS). The most well-known relation
between these four neurodegenerative diseases is the formation of protein aggregates. To find out
how the aggregation of proteins is related to these four diseases, the researchers created a PPIN,
using data obtained from BioGRID, with the interactions between the 6 most relevant proteins. For
AD, these were APP and Tau, and for HD this was HTT. Centrally located in this PPIN were the
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proteins Hsc70 and Hsp70 which also play a crucial role in preventing protein aggregation. Also, all
6 proteins that aggregate in the nervous tissue can cause subsequent cascades in the mitochondria
that might lead to cell death. An interesting issue that the researchers raise is that interaction data
between proteins is usually based on the interactions in healthy individuals, and to get a better idea
of how proteins interact, a database with protein-protein interactions for specific diseases would be
a solution.

4 Methods

This section includes the methods for building the ADCNs and merging the final ADCN with the
HDCN-NH. An overview of the methodology can be found in Figure 1. The ADCNs were created
in cooperation with Noria Yousufi (N.Y.). The basic framework used for the methodology was a
review article by Koh et al. [KPA+12] on how to do a protein-protein interaction network analysis.
The workflow for creating the ADCNs was inspired by the workflow for the HDCN-CJ [Jia22].

4.1 Creating the Alzheimer’s consensus network

For creating the ADCN, the data from different databases first needed to be collected and prepro-
cessed before it could be merged. In this section, these steps will be explained in detail.

4.1.1 Data gathering

The first step for creating a consensus network is gathering the data. Four different databases were
explored, namely KEGG, STRING, Reactome, and Wikipathways. However, for Reactome, no
relevant AD pathways were identified. The three other databases are described in the following
paragraphs.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was originally developed to
map genes to biological pathways. Nowadays, it is not only used for genomics but also all other
kinds of omics. The database consists entirely of KEGG objects with unique identifiers ranging
from smaller biological molecules to disease pathways. The KEGG DISEASE database contains
pathways of only human diseases, among which AD [KFT+17].

Wikipathways is a pathway database that contains transcriptomics, proteomics, and metabolomics
information about various organisms. The pathways are updated through crowd-sourcing. So, many
different contributors keep the Wikipathways database up to date. Its information-sharing values
are based on the FAIR data principles, meaning the data is findable, accessible, interoperable, and
reusable [SKH+18].

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) mainly focuses on func-
tional associations between proteins in all kinds of organisms. Proteins that play a part in the same
biological process are said to be functionally associated. STRING uses several different methods to
give each interaction an evidence score. Firstly, text-mining methods where PubMed abstracts are
scanned to detect how often two proteins are mentioned in the same article. Secondly, interaction
data is obtained from high-throughput experiments. Thirdly, computational predictions are used
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and lastly interaction evidence for multiple organisms when they share similar proteins [SGN+21].

In Cytoscape, stringApp is a useful plugin that can be used for all kinds of operations on STRING
data. The information on diseases, tissues, and compartments is updated every week. With stringApp,
networks can be expanded [DMGJ18].

The identifiers for the interaction data that were obtained from each database can be found in
Table 2. The AD pathway obtained from KEGG was the only pathway found in the KEGG
DISEASE database for Alzheimer’s disease. There was also only one set of proteins for Alzheimer’s
disease in STRING. For Wikipathways, there were two pathways available, but one also contained
miRNA information and this did not seem useful since the focus here lies on protein-protein
interactions. For STRING, there was also just one identifier for AD, but here the number of proteins
and interactions retrieved from this identifier could be customized.

Table 2: Identifiers of the data sources used for constructing the ADCNs and links to where they
were retrieved.

Database
Identifier for
AD data

Link

KEGG hsa05010 https://www.kegg.jp/pathway/hsa05010

Wikipathways WP5124 https://www.wikipathways.org/pathways/WP5124.html

STRING DOID:10652 https://string-db.org/

4.1.2 Data preprocessing

The KEGG database has its own identifiers, so these first had to be converted to UniProt identifiers,
which are the more conventional identifiers for proteins. Also, in the KEGG Alzheimer pathway
data, some identifiers encoded multiple proteins. Therefore, a Python script was written called
kegg data converter.py which splits these protein groups into single proteins and retrieves all
protein identifiers. The final resulting network is saved as a .gml file, which can easily be im-
ported into Cytoscape as a network. The script can be found at kegg data converter.py on git.liacs.nl.

The Wikipathways Alzheimer data also needed UniProt identifiers to be added. This was also done
using a Python script written by N.Y. and can be found at Wikipathway UniprotIDs conversion.
The identifiers in the resulting table were merged into the table of the Alzheimer network imported
with the Wikipathways App in Cytoscape.

For STRING, the size of the Alzheimer’s network could be customized, so the number of proteins
chosen was set to the maximum in Cytoscape of 2000 proteins. Also, the confidence cutoff score
could be varied. Lower confidence will give more information but also possibly more noise in the
data. Higher confidence gives less false positive interactions but important information might be
missing. So for comparison, two versions were made, one with a lower confidence cutoff of 0.4 and
one with a higher confidence of 0.7, so that the differences could be compared.
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As a next step, the KEGG network and Wikipathways network were converted to STRING net-
works by using a function from the Cytoscape stringApp [DMGJ18] called Stringify. The UniProt
identifiers were used as keys for finding the corresponding protein in STRING. The exact settings
for this can be found in Table 3.

The use of Stringify had a few reasons. Firstly, because this way, expression data of whether proteins
were expressed in the nervous system became directly available which was useful for filtering later
on. Secondly, not all UniProt identifiers in the STRING network were up to date with the most
recent versions used for the KEGG and Wikipathways databases. Stringifying the KEGG and
Wikipathways networks ensured the same identifiers for the same proteins. Lastly, the expansion of
the network is done with the Cytoscape stringApp, which only expands proteins in the STRING
database. So if the KEGG data and Wikipathways data were not converted to STRING networks,
this data could also not be used for expansion.

Lastly, in each network, additional integer columns were added called kegg db, wiki db, and
string db with all values set to 1. This was done in order to be able to retrieve which columns came
from which databases after the merge. The columns used for merging were the stringdb::canonical
name columns, which are the UniProt identifier columns in a STRING network. To make sure there
were no key columns that had a None value, the rows that did not have a stringdb::canonical

name value were deleted. These were not proteins but compounds or processes present in the KEGG
and Wikipathways networks.

Table 3: Parameter settings for stringifying KEGG and Wikipathways networks.

Parameter Setting
Column for STRING query uniprot
Include unmappable nodes False
Map nodes to compounds False
Species for the query Homo Sapiens

4.1.3 Merging and expanding

The first merged network was created by merging the stringified KEGG, Wikipathways and STRING
network all with a confidence score of 0.4. Secondly, the confidence of the stringified KEGG and
Wikipathways networks was set to 0.7 with the StringApp Change Confidence tool. They were
then merged with the STRING network with a confidence of 0.7. So, in total, two different merged
networks were created, the ADCN-KWS-0.4 and the ADCN-KWS-0.7. The settings for merging the
networks can be found in Table 4.

Table 4: Parameter settings for merging the STRING, KEGG and Wikipathways networks.

Parameter Setting
Operation Union

Networks to merge (confidence 0.4/0.7)
STRING DOID:10652 (2000 proteins);
Wikipathways WP5124 (stringified);
KEGG hsa05010 (stringified)
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Table 4 continued from previous page
Matching columns stringdb::canonical name
How to merge columns Default
Enable merging nodes/edges in the same network True

Next, the ADCN-KWS-0.4 and ADCN-KWS-0.7, were expanded with 2000 proteins each, to get even
more information on the different key proteins involved in Alzheimer’s disease. This is something
that was not done for the two Huntington’s disease networks, because they were built around only
one protein, namely huntingtin. The settings for expansion can be found in Table 5. The resulting
networks were the ADCN-KWS-0.4-EXP and the ADCN-KWS-0.7-EXP.

Table 5: Parameter settings for expanding the ADCN-KWS-0.4 and ADCN-KWS-0.7.

Parameter Setting
Number of interactors to expand network by 2000
Type of interactors to expand network by Homo Sapiens
Selectivity of interactors 0.5

4.2 Automation of workflow

Cytoscape has a REST API called cyREST, via which workflows for creating networks can be
automated [OMK+15]. This was done for the workflow for creating the ADCNs. Multiple libraries
can connect to cyREST, and the one used here was py4cytoscape [OBND]. The automated workflow
can be found at alzheimer ppin automated workflow.ipynb, with an explanation of the different
steps. The setup for this notebook was inspired by the ones found on the Cytoscape Automation
GitHub page [Xin21].

The same steps are executed as described in the method above, and when it was tested the
automated workflow gave the same networks as the ones created manually. However, STRING is
updated a lot, so later runs will probably give slightly different results. Still, this kind of workflow
is a practical tool and can also be adjusted to build other consensus networks. The workflow works
only for a single STRING confidence score. So, in this case, it would have to be executed twice to
get all four networks with confidence 0.4 and confidence 0.7.

4.3 Comparing and merging the two consensus networks

In total, four different Alzheimer’s disease consensus networks were created; ADCN-KWS-0.4,
ADCN-KWS-0.7, ADCN-KWS-0.4-EXP, and ADCN-KWS-0.7-EXP. In the second part of this research,
these networks were analyzed and overlapped with the previously created HDCN-NH. Firstly, it had
to be determined which networks would be used for the final clustering and enrichment analysis.
Then, significantly enriched processes could be identified in the discovered clusters.

4.3.1 Network analysis

Networks can be analyzed with many parameters, which are described in Table 6. Retrieving the
values of these parameters was done in Cytoscape by using the Analyze Network tool, with the
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setting ‘Analyze as Directed Graph?’ set to False.

Table 6: Parameters for analyzing PPINs. The definitions assume an undirected graph since the
networks that are being analyzed are undirected. The definitions were adjusted from the review
articles [Ram10][BO04][MV07][DH07].

Parameter Definition
Node A node is an element in the graph representing a single protein.

Edge
An edge is a connection between two nodes in the graph,
representing a binding or association between two proteins.

Node degree
The node degree k is the number of edges that connect a node
to other nodes.

Node degree distribution
The degree distribution P(k) is a probability distribution of the
number of edges that a node has. It can help with distinguishing
different network architectures.

Characteristic path length

The characteristic path length L is the average of the shortest
paths between every pair of nodes in the network. The shortest
path is the smallest amount of edges it takes to get from one
node to another.

Average clustering coefficient

The clustering coefficient C of a node is a measure that indicates
how well connected the neighbors of that node are to each other.
So, a node that has highly connected neighbors will have a higher
clustering coefficient. Taking the mean C for all nodes in the
networks gives the average clustering coefficient.

Network diameter
The diameter of a network is the length of the longest shortest
path between two nodes in the network.

Network density
The network density is a measure of how densely connected the
network is.

Network heterogeneity

Network heterogeneity is a measure that indicates the
differences in node degree. Large heterogeneity indicates the
presence of hub nodes, which are nodes with a relatively large
degree. Biological networks are usually heterogeneous.

Network centralization
The network centralization indicates the extent to which nodes
differ in how central they lie in the network.

Betweenness
Betweenness indicates how central a node lies in the network.
If many shortest paths pass through an edge, then its
betweenness is relatively high.

Connected components

The number of connected components indicates how many
isolated parts the network has. A graph in which all nodes are
connected via edges has one single connected component. A graph
with many isolated nodes has many connected components.
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4.3.2 Clustering analysis

Different algorithms have been developed to find clusters within networks [KPA+12][SSO+12]. The
most popular tool for clustering in Cytoscape is Molecular Complex Detection (MCODE) [BH03],
which can detect clusters based on the topology of the network. It looks at how densely connected the
neighbors of a node are and based on that identifies clusters within the network [KPA+12][SSO+12].
Some nodes however might not get allocated to any of the clusters. Also, something to be aware
of is that MCODE can be sensitive to false positives in the protein-protein interactions [SSO+12].
Lastly, MCODE was specifically developed for finding molecular complexes, so there is a bias there
in that these complexes will probably also share molecular functions [BH03].

Detecting similar clusters in the Alzheimer’s and Huntington’s disease networks might give insight
into the processes that occur for both these neurodegenerative diseases. The parameter settings for
the clustering in MCODE can be found in Table 7. Clustering was done for the ADCN-KWS-0.4, the
ADCN-KWS-0.4-EXP, the ADCN-KWS-0.7 and the ADCN-KWS-0.7-EXP.

Table 7: Parameter settings for clustering with MCODE.

Parameter Setting
Find Clusters In Whole Network
Include Loops False
Degree Cutoff 2
Haircut True
Fluff False
Node Score Cutoff 0.2
K-Core 2
Max. Depth 100

4.3.3 Intersecting the ADCN and HDCN

After the network analysis and clustering analysis, only the ADCN-KWS-0.4 was merged with the
HDCN-NH. The reason for this was based on the results from the network and clustering analysis,
which will be described in more detail in Section 5. Since the goal of this research was to observe the
overlap between the networks, instead of the union, the intersection of the ADCN-KWS-0.4 with the
HDCN-NH was taken. Only first, the HDCN-NH was stringified, just like the KEGG and Wikipathways
networks. This was done so that the proteins from KEGG and Wikipathways that were in the
HDCN-NH also had a STRING identifier just like all the proteins in the two ADCNs. The settings
for stringifying and merging can be found in Table 8 and Table 9, respectively.

The resulting network was the ADCN∩HDCN, which was also clustered with MCODE, using the same
settings as in Table 7. Lastly, the ADCN-KWS-0.4, HDCN-NH and ADCN∩HDCN were used as networks
for the final enrichment analysis.
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Table 8: Parameter settings for stringifying the HDCN-NH. The name column was used for the query
because it had no empty rows.

Parameter Setting
Column for STRING query name
Include unmappable nodes True
Column for unmappable node labels uniprot
Map nodes to compounds False
Species for the query Homo Sapiens

Table 9: Parameter settings for merging the ADCN-KWS-0.4 with the stringified HDCN-NH. This
resulted in the ADCN∩HDCN

Parameter Setting
Operation Intersection
Networks to merge ADCN-KWS-0.4; HDCN-NH
Matching columns stringdb::canonical name
How to merge columns Default
Enable merging nodes/edges in the same network True

4.3.4 Enrichment analysis

The most common way to get enrichment information on a set of proteins is by using the Gene
Ontology (GO) database [Con04]. This database is subdivided into three separate classes, the
Cellular Component ontology, the Biological Process ontology, and the Molecular Function ontology.
The Biological Process annotation of proteins can be used to find whether certain processes are
enriched in a cluster of proteins [SSO+12][MHK05][DMGJ18].

For functional enrichment, the most used Cytoscape tool is BiNGO [MHK05]. It finds the GO
terms that are most significantly enriched in a cluster and highlights them in a directed graph of
the GO hierarchy. It looks at the chances of a certain term being found for a certain number of
proteins in a set. In addition, statistical methods such as the Bonferroni correction or the Benjamini
and Hochberg correction can be used to correct for false positives found in the enriched GO
terms. Another tool that can be used is the stringApp feature for functional enrichment analysis of
STRING data. Enrichment data of STRING proteins can be retrieved from the STRING database
as a table in Cytoscape [DMGJ18].

The following enrichment was done for both the ADCN-KWS-0.4 and the HDCN-NH separately, and
for the intersected ADCN∩HDCN. This way, the enriched processes in the separate networks could be
compared to one another and the enriched processes in the ADCN∩HDCN. Both BiNGO and stringApp
were used for the analysis.

The first step was to determine which clusters contained the proteins APP, APOE, MAPT, PSEN1,
PSEN2 and HTT. These will be referred to as ‘disease proteins’. The reasons for choosing these
proteins are as follows. APP and MAPT are the amyloid-β and tau proteins, from which the
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aggregates seem to play a key role in Alzheimer’s disease progression. The APOE e4 allele is a causal
factor for late-onset AD, while APP, PSEN1, and PSEN2 play a role in early-onset Alzheimer’s
disease [SDSK+21]. It was also interesting to see whether these proteins were present in the HDCN-NH.
For HTT the question was whether it could be found in the ADCN-KWS-0.4.

As a second step, an enrichment analysis could be done for all clusters containing these disease
proteins. Firstly, a STRING enrichment was retrieved for each cluster. The enrichment was filtered
to display only biological processes and leave out redundant terms. Secondly, a BiNGO graph was
created for each of the clusters. The parameter settings for this can be found in Table 10.

For the BiNGO analysis, the most recent version of the GO was downloaded, since the default in
BiNGO is a much outdated version [KPA+12]. It can be downloaded at http://geneontology.org/
docs/download-ontology/#go_basic. The version used for this research (data-version: releases/2023-
04-01) can be found on git.liacs.nl at go-basic.obo. Also, the default STRING identifiers from the
clusters could not be used in BiNGO, so the stringdb::canonical names of the cluster proteins had
to be pasted manually in the parameter settings.

Table 10: Parameter settings for clustering with BiNGO.

Parameter Setting
Retrieve data Paste proteins from table (stringdb::canonical names)
Assess Overrepresentation
Visualization True
Statistical test Hypergeometric test
Multiple testing correction Benjamini & Hochberg False Discovery Rate (FDR) correction
Significance level 0.05
Categories to be visualized Overrepresented categories after correction
Reference set Use whole annotation as reference set
Ontology file go-basic.obo
Namespace biological process
Organism/annotation Homo sapiens
Discard evidence codes -

5 Results

This section discusses the results of the network analysis, clustering, and enrichment of the networks.
The Cytoscape session files with the full results can be found at cytoscape files. The images of the
networks that were created can also be found in Appendix A.2 and at network images. The clusters
of the ADCN∩HDCN can be found in Appendix A.3 and a full overview of the clusters is available
at cluster images and cluster data.

5.1 Network analysis

The network images of the ADCNs can be found in Figures 2, 3, 4, 5. In these networks, the database
distributions and the confidence that a protein is active in the nervous system are graphically
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visualized. Also, the six important disease proteins (APP, MAPT, APOE, PSEN1, PSEN2, HTT)
that were the focus of the clustering analysis are enlarged. When looking at the four networks
globally, they appear quite similar. An interesting result is that the huntingtin protein is also
present in all these networks, but it was only obtained from the STRING database, and not the
pathway databases. The other five proteins were, as expected, present in all three databases.

In the KEGG and Wikipathways networks, there was a smaller amount of nodes than in the STRING
network, but more certainty that these proteins were involved in Alzheimer’s disease pathways.
Therefore, it was interesting to see how the information from the three databases overlapped in the
ADCNs. The ADCN-KWS-0.4 and ADCN-KWS-0.7 both had the same amount of nodes and therefore
the same database distribution, since the STRING confidence only changes the number of edges in
a network. The database distribution of these two networks can be found in Table 11. Most nodes
in the networks are from STRING, but there was a total of 136 proteins that overlapped between
all three databases.

Table 11: Distribution of nodes over the KEGG, Wikipathways, and STRING database in the
merged ADCNs. These amounts are the same for ADCN-KWS-0.4 and ADCN-KWS-0.7.

Databases Node count
KEGG 84
Wikipathways 1
STRING 1726
KEGG;Wikipathways 115
KEGG;STRING 41
Wikipathways;STRING 1
KEGG;Wikipathways;STRING 136

After the expansion of the two consensus networks, all four were analyzed using the Network
analysis tool from stringApp. The analysis results can be found in Table 12. The analysis from the
HDCN-NH was reused from [Hen23]. It can be seen that the number of nodes for the networks with
confidence 0.4 and 0.7 is the same, but the number of edges in the ADCN-KWS-0.4 is about three
times as large as in the ADCN-KWS-0.7. Something that stands out is that the network parameter
values for the ADCN-KWS-0.4 and the HDCN-NH lie relatively close to each other compared to the
values from the other networks. This is the first indication that the ADCN-KWS-0.4 might be the
best option for overlapping with the HDCN-NH.

Interestingly, the clustering coefficient of the ADCN-KWS-0.4-EXP is smaller than for the ADCN-KWS-0.4,
while the clustering coefficient of the ADCN-KWS-0.7-EXP is larger than for the ADCN-KWS-0.7. Fur-
thermore, the amount of connected components for the networks with a confidence of 0.7 is a
lot higher than for the networks with a confidence of 0.4. This can also be seen in the network
images because the ADCN-KWS-0.7 and ADCN-KWS-0.7-EXP have a lot of isolated nodes that are
not connected through any edges with the rest of the network. This indicates that these are all
single components.
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Table 12: Analysis results from the different ADCNs and the previously created HDCN-NH

Network
ADCN-
KWS-
0.4

ADCN-
KWS-
0.4-
EXP

ADCN-
KWS-
0.7

ADCN-
KWS-
0.7-
EXP

HDCN
-NH

Node count 2104 4104 2104 4104 2023
Edge count 95608 256457 31810 96788 82753
Avg. neighbors 89.980 124.495 29.961 47.072 81.587
Diameter 6 5 8 8 5
Radius 3 3 4 4 3
Characteristic path length 2.282 2.286 3.014 2.903 2.334
Clustering coefficient 0.419 0.356 0.400 0.416 0.417
Network density 0.043 0.030 0.015 0.012 0.040
Network heterogeneity 0.975 0.885 1.059 0.962 0.958
Network centralization 0.371 0.313 0.119 0.112 0.336
Connected components 2 1 45 33 3

5.2 Clustering

Initially, five MCODE clustering analyses were performed for the five consensus networks. The
number of clusters for each network was between about 30 and 60, which can be seen in Table 13.
So, it was necessary to filter, and therefore only the clusters that contained either APP, MAPT,
APOE, PSEN1, PSEN2, or HTT were looked at in more detail.

An overview of the clusters that contained the disease-related proteins, the number of nodes and
edges, and the clustering score, can be seen in Table 13. The names of the clusters are ordered
from the highest to lowest clustering score of the corresponding network. A higher clustering score
means higher confidence that a group of proteins forms a complex.

A first important observation from these clustering results was that the expanded networks did
not seem to give a lot of new information compared to the non-expanded networks. The goal of
the expansion was to see if more relevant information could be gained, but from these results, it
appears that this is not the case. Firstly, the ADCN networks with a confidence score of 0.7 both
have as a first cluster one that contains MAPT, then one that contains APP and APOE, and one
that contains PSEN1 and PSEN2. The only difference is that the clusters of the ADCN-KWS-0.7-EXP
are larger, and none of them contained HTT. In the ADCN networks with confidence 0.4, the
same kind of similarity can be seen between the expanded and non-expanded networks. Also, the
ADCN-KWS-0.4-EXP had fewer clusters than the smaller ADCN-KWS-0.4. This corresponds to the
lower clustering coefficient.

A further observation to make is that the disease proteins in the HDCN-NH were all spread over
different clusters, while in the Alzheimer’s disease networks, the clusters also contained combinations
of these proteins. Also, no cluster was found that had a combination of huntingtin and one of the
AD proteins.
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Finally, because there were a lot of similarities between the clusters of the ADCNs, it was decided
to only continue with the ADCN-KWS-0.4 and overlap this with the HDCN-NH. This one had more
clusters than the ADCN-KWS-0.4-EXP, but more edges than the two networks with confidence 0.7.
Therefore, this choice was made, because it would be preferred to have a bit more noise in the data
compared to potentially missing information.

Table 13: Cluster information on the clusters that contained the proteins APP, APOE, MAPT,
PSEN1, PSEN2, or HTT.

Network
Total
#Clusters

Cluster Disease proteins
Node
count

Edge
count

Clustering
score

ADCN-
KWS-0.4

35

Cluster 1 APP, APOE, MAPT 209 8963 85.923
Cluster 4 HTT 153 1149 15.039
Cluster 8 PSEN1 108 488 9.121
Cluster 19 PSEN2 15 27 3.857

ADCN-
KWS-0.4-
EXP

32

Cluster 2 MAPT, APOE 363 11538 63.182
Cluster 3 APP 515 12766 49.14
Cluster 5 PSEN1 449 3882 17.254
Cluster 12 HTT 118 316 5.402

ADCN-
KWS-0.7

42

Cluster 1 MAPT 64 2041 62.317
Cluster 3 APP, APOE 71 599 17.086
Cluster 9 PSEN1, PSEN2 201 890 8.65
Cluster 27 HTT 22 33 3.143

ADCN-
KWS-0.7-
EXP

56
Cluster 1 MAPT 210 7565 69.005
Cluster 4 APP, APOE 330 4274 25.915
Cluster 14 PSEN1, PSEN2 214 632 5.897

HDCN-NH 30

Cluster 2 APOE 128 2482 38.882
Cluster 3 APP 178 2309 25.605
Cluster 5 PSEN1 169 1268 15.071
Cluster 8 MAPT 83 324 7.902
Cluster 9 HTT 138 561 7.723
Cluster 19 PSEN2 60 124 4,203

5.3 ADCN-HDCN intersection

Before merging, the HDCN-NH was stringified, which can be seen in Figure 6. The original network
can be found in [Hen23], but the only difference is that all nodes now have STRING proper-
ties. The number of nodes for the stringified network was still 2023 and the number of edges
82753. The STRING confidence score was 0.4. In the Figure, it can be seen that now the HTT pro-
tein was obtained from all three databases, while the AD proteins were only obtained from STRING.

After intersecting with the HDCN-NH, the ADCN-KWS-0.4 was clustered with MCODE. The results
can be seen in Table 14. Interestingly, the HTT and PSEN1 protein were found together in one
cluster.
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Table 14: Cluster information on the clusters in the ADCN∩HDCN that contained the proteins APP,
APOE, MAPT, PSEN1, PSEN2 or HTT.

Network
Total
#Clusters

Cluster
Disease
proteins

Node
count

Edge
count

Clustering
score

ADCN∩HDCN 32

Cluster 2 APOE 110 2372 43.541
Cluster 4 APP 103 800 15.686
Cluster 6 HTT, PSEN1 70 313 9,043
Cluster 8 MAPT 47 140 6.087
Cluster 29 PSEN2 13 17 2.833

The ADCN∩HDCN can be seen in Figure 7. In total, 1426 nodes and 58896 edges overlapped, so about
two-thirds of the consensus networks. Included is part of a STRING enrichment analysis, displaying
the eight processes with the lowest FDR. These were response to chemical, regulation of localization,
regulation of cell death, nervous system development, positive regulation of signaling, localization,
regulation of developmental process, and regulation of cellular component organization. In the
overlapped network, it can be seen that the 6 disease proteins were all present in the intersect of
the networks and partake in most of these processes. Only, the PSEN2 protein does not seem to
play as central a role as the others.

5.4 Enrichment analysis

In total, 15 clusters were analyzed in more detail with a STRING enrichment and BiNGO enrich-
ment analysis. These were the ones from the ADCN-KWS-0.4, HDCN-NH, and the ADCN∩HDCN that
contained the proteins APP, MAPT, APOE, PSEN1, PSEN2, and HTT.

The STRING enrichment analysis ranks processes in order of their False Discovery Rate (FDR)
value. A lower FDR means a lower chance that a protein classified as part of the biological process
is not part of it. In the images of the clusters found in Appendix A.3 and at cluster images, the
eight processes with the lowest FDR value are visualized in the cluster.

For the BiNGO analysis, the graphs that can be seen in the figures are displayed as hierarchical
trees. They represent part of the Gene Ontology, with the nodes depicting in this case biological
processes [MHK05]. The general processes are positioned at the top, and the more specific processes
at the bottom. The white nodes are not enriched, but just connecting parts within the GO of
Biological Processes. The node colors are ordered from light yellow to dark orange indicating a
small to large significance that these nodes are enriched. The size of the nodes corresponds to how
many proteins from the analyzed cluster have an annotation in the GO for that process. The graph
is hierarchically ordered, so, if a node of certain color and size points to a node further down the
hierarchy of the same color and size, then the node lowest in the hierarchy is the reason for that
color and size. From these things, it can be interpreted that the large, dark orange nodes at the
bottom of the BiNGO graphs are the most interesting to look at. This is what was done for all the
clusters. Overall, the BiNGO graphs showed many of the same branches of the GO.
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Cluster 2 ADCN∩HDCN (C2-AH)
The enrichment results of the C2-AH were very similar to Cluster 1 in the ADCN-KWS-0.4 (C1-A)
and Cluster 2 in the HDCN-NH (C2-H). They all contained the protein APOE but in the C1-A the
APP and MAPT proteins were also present. The STRING enrichment of C2-AH can be found in
Figure 8, and the other two at C1-A-STRING and C2-H-STRING. What is seen between all three
in general is the involvement of the cluster proteins in apoptosis, cell development, phosphorylation,
cell signalling, and stress response.

The BiNGO hierarchical network of the C2-AH can be seen in Figure 9. The ones for C1-A and
C2-H can be found at C1-A-BiNGO and at C2-H-BiNGO. For all these clusters, the BiNGO graph
was very large and widely spread out, meaning that a lot of branches from the GO were enriched.
When inspecting the graphs more closely, one part at the bottom had some nodes involved in the
regulation of transcription of RNA polymerase II that were a lot larger and darker colored than the
other nodes at the same level of the GO hierarchy.

Cluster 4 ADCN∩HDCN (C4-AH)
The C4-AH contained the protein APP, just like Cluster 3 from the HDCN-NH (C3-H) and again
the C1-A. For these clusters, the enriched processes from STRING appeared to be involved in
autophagy, but also just like the C1-A in response to stress, apoptosis, and phosphorylation. The
C4-AH can be seen in Figure 10 and the C3-H at C3-H-STRING.

The BiNGO graphs for the C3-H and C4-AH were both a bit less dense than the C1-A. This can
also be seen when comparing Figure 11 and C3-H-BiNGO with C1-A-BiNGO. The C4-AH and
C3-H both had a darker orange branch with nodes involved in autophagy and protein deacetylation.
The largest difference was that the C3-H also had a very distinct branch involved in the ubiquitin
system, which is another form of protein degradation next to autophagy.

Cluster 6 ADCN∩HDCN (C6-AH)
The C6-AH contained the proteins HTT and PSEN1. The STRING enrichment in Figure 12
showed that the proteins in this cluster were involved in trans-synaptic transmission, specifically
glutamatergic synaptic transmission. The BiNGO graph in Figure 13 also highlights a branch of
dark orange nodes involved in chemical synaptic transmission.

C4-A was the cluster from the ADCN-KWS-0.4 that contained HTT and can be found at C4-A-
STRING. For the STRING enrichment, three out of the four processes with the lowest FDR value
are the same ones as those in Figure 12. These were trans-synaptic signaling, regulation of biological
quality, and behavior. In the BiNGO graph of C4-A, which can be found at C4-A-BiNGO, the same
noticeable branch of chemical synaptic transmission was seen as in Figure 13.

Cluster 8 of the ADCN-KWS-0.4 (C8-A) contained PSEN1, and here, regulation of cell death, lo-
calization and synaptic transmission were observed among the STRING-enriched processes, see
also C8-A-STRING. The BiNGO graph did not have one branch that stood out, but the chemical
synaptic transmission branch and the one that ends at regulation of transcription by RNA poly-
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merase II were again observed. The full graph can be observed at C8-A-BiNGO.

Cluster 5 from the HDCN-NH (C5-H) was the one that contained PSEN1. Here, the STRING enrich-
ment showed again similar processes as before such as response to stress and regulation of biological
quality, but also DNA repair, which was not seen in the other clusters. The BiNGO analysis con-
firmed this also with a DNA repair node at the bottom of the graph that was quite large and dark
orange. The STRING and BiNGO analysis results can be found at C5-H-STRING and C5-H-BiNGO.

Cluster 9 from the HDCN-NH (C9-H) contained the HTT protein, and the STRING and BiNGO
enrichment can be found at C9-H-STRING and C9-H-BiNGO. The cluster proteins were involved in
trans-synaptic signaling, but also microtubule-based movement according to the STRING analysis.
One larger branch in the BiNGO graph showed involvement in nervous system development, which
was one of the STRING-enriched processes as well. Especially the microtubule-based movement
was something that was not observed for the other clusters.

Cluster 8 ADCN∩HDCN (C8-AH)
The C8-AH was a smaller cluster that contained MAPT, of which the STRING analysis can be
seen in Figure 14. The cluster proteins appear to be engaged in chemical synaptic transmission,
response to oxidative stress, and regulation of protein ubiquitination, all processes that were seen
for the other clusters as well.

The path that stood out the most in the BiNGO graph is seen in Figure 15. These are again the
nodes involved in chemical synaptic transmission, confirming what is seen for the STRING analysis.

Cluster 8 from the HDCN-NH (C8-H) also included MAPT. The STRING enrichment and BiNGO
analysis of this cluster, which can be viewed at C8-H-STRING and C8-H-BiNGO, also implied
involvement of the cluster proteins in chemical synaptic transmission and nervous system develop-
ment.

Cluster 29 ADCN∩HDCN (C29-AH)
The clusters containing PSEN2, which were C29-AH, C19-H and C19-A were very small, had a low
clustering score and only resulted in enrichments of much lower significance than the other clusters.
The results can all be found at cluster images. The only GO term that was enriched in the C29-AH
was intracellular signal transduction, and this cluster gave a BiNGO graph of 0 nodes and edges,
because no process was enriched above the threshold of 0.05.

6 Discussion

Four different versions of the ADCN were created but in the end, only the ADCN-KWS-0.4 was used
for the overlap analysis. The reason was because the network analysis and clustering did not display
any advantages of using a higher confidence of 0.7. Also, the expansions resulted in almost the
same clusters as were found in the non-expanded networks.
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In a review article by Ernhoefer et al. [EWH11], several shared pathways between Alzheimer’s
and Huntington’s disease are listed and the implications for common drug targets are discussed.
Interestingly, the five main overlapping processes between AD and HD were also found in the
STRING and BiNGO enrichment results above as some of the most significantly enriched processes.
The first main overlapping process was neurotrophic factor-related abnormalities, which means a
dysfunction of proteins involved in neural development. Secondly, post-translational modifications,
and phosphorylation is one of the most common post-translational modifications. The other three,
protein aggregation clearance mechanisms such as autophagy and ubiquitin-dependent processes,
synaptic dysfunctioning, and apoptotic pathways will also be discussed in more detail below.

Autophagy
Autophagy is a very important process for the breakdown of aggregated proteins. For both AD and
HD, protein aggregation is a primary symptom. Research has shown that defects in the autophagic
processes might play a causal role in multiple neurodegenerative diseases, including AD and HD. All
forms of autophagy include the fusion of two vesicles, an autophagosome containing the aggregated
or misfolded proteins, and a lysosome containing enzymes for the degradation of proteins [GLCL18].

In Alzheimer’s disease, mutant PSEN1 is associated with impaired autophagy. PSEN1 aids in
the merging of the autophagosome and lysosome. What appears to happen is that this process is
disturbed, leading to an accumulation of autophagosomes. In Huntington’s disease, aggregation of
autophagosomes was also discovered, since HTT is involved in autophagosome formation [GLCL18].

Another protein linked to autophagy is beclin-1. It is very important for the initial formation of
autophagosomes. The transcription of this protein was downregulated in AD patients. In mice,
the overexpression of beclin-1 reduced the formation of Aβ aggregates [GLCL18][ABR+17]. The
protein caspase-6 is important for cleaving both beclin-1 and HTT. In both AD and HD, this
protein was upregulated. This might negatively influence the autophagic process that gets rid of
protein aggregates in these neurodegenerative diseases [MLEH15].

Chemical synaptic transmission
Synapses are located at the ends of neurons and contain vesicles with neurotransmitters that can
be released in the synaptic gap and transmit information from one neuron to another. Therefore,
these synapses are crucial in communication between neurons [BK17].

Studies on both AD and HD showed a link between the release of the neurotransmitters dopamine
and glutamate and disease progression. In HD, deficits in the release of these two neurotransmitters
were found in transgenic mice [RDW+15]. In mouse models of AD, it was also discovered that there
was a defect in the synaptic transmission of glutamatergic neurotransmitters [ZK23]. Another large
review study found increased disease symptoms of AD because of a lower amount of dopaminergic
neurotransmitters [PKW+19].

Under healthy conditions, the Aβ protein increases the chances at neurotransmitter release. In

20



AD patients, the probability of signal transduction from one neuron to another is decreased. Not
only Aβ but also APP and presenilins are involved in synaptic transmission [BK17]. For the tau
protein, it is less clear how it is involved in synaptic transmission, but one study by Moreno et
al. [MCY+11] examined the effect of human tau on the squid giant synapse. A direct link was found
between tau injection into the synapse and a decrease in the vesicle release of neurotransmitters.

Apoptosis and stress response
Excitotoxic cell death is observed for both AD and HD, as was also discussed in the introduction.
The same goes for increased reactive oxygen species, which is part of the stress response in the
body. So, finding these processes among the enriched ones in the clusters was consistent with the
existing literature.

Further discussion
One last process that was not necessarily mentioned in the article by Ernhoefer et al., but which
stood out especially in the BiNGO analysis results, was regulation of transcription by RNA poly-
merase II. It has been found that proteins involved in polyglutamine diseases, the category under
which HD falls, are often associated with transcriptional processes [RO06].

The huntingtin protein might be a transcription factor itself. For one, many polyglutamine proteins
are transcription factors. Also, changes in the mRNA were observed in people and mice with mutant
HTT. In mouse models, there was an increased amount of RNA polymerase II subunit (RPB1) and
it was found in aggregates of HTT [LCC03].

In Alzheimer’s mouse models, RPB1 was in some cases mislocalized from the cell nucleus to the
cytoplasm. Also, there was a correlation between this mislocalization and the amount of tau. Since
RNA polymerase is such a vitally important protein, mislocalization of its subunit could have very
damaging results [DYFH21]. This mislocalization might also relate to the localization process that
was enriched in the clusters.

The results highlight only a few of the many processes that appear to be enriched in the overlapping
networks. Most BiNGO graphs of the network clusters were quite large in width, such as in Figure
9. Also, only the clusters that contained the proteins APP, PSEN1, PSEN2, APOE, MAPT, or
HTT were used for enrichment analysis. This is probably why the clusters and processes for the
different networks were quite similar. Still, relating the processes found in the results back to the
literature gives a nice overlap, and implies that enrichment of the clusters could give quite accurate
indications of the important overlapping pathways between AD and HD.

7 Conclusion and Further Research

In this research, an Alzheimer’s disease protein-protein consensus network was created using the
Cytoscape software. The goal was to compare this network with a Huntington’s disease consensus
network and observe how they overlap.
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One of the main results was, that about two-thirds of the proteins in these networks overlapped.
Further analysis into the clusters and enrichment of these networks gave an abundance of results.
Filtering and looking at significantly enriched nodes in the BiNGO graph showed that the processes
of autophagy, synaptic transmission, regulation of transcription, and apoptosis were significantly
enriched in multiple clusters. It was also confirmed by a literature analysis that these processes
played a role in both diseases.

What can be seen from this research is that network analyses such as these generate a lot of data and
that the hardest part is finding the right information within that data. Still, identifying overlapping
processes is interesting because it could give new insights into shared drug targets. Also, there
might be even more overlap than is currently known, which suggests further research would be useful.

This research also gives rise to a lot of new questions and reasons for further exploration. Firstly,
since these bigger overlapping processes were correctly identified by the network, there might be
much smaller processes that also overlap for which more research is needed. The MCODE analysis
is biased toward finding biological complexes. So, this might explain why there was a lot of evidence
found for the processes that overlap in the networks. Secondly, the results focused mostly on the
overlap of networks, but it would be also interesting to see how the ADCN and HDCN differ from
each other. This could give insights into disease-specific characteristics.

Also, AD is a tauopathy while HD is a polyQ disease. So, they belong to different categories of
neurodegenerative diseases but still, there was quite some overlap between the networks. What
could also be done is comparing AD with another tauopathy such as Pick’s disease, and HD with
another polyQ disease such as SBMA (Spinal and bulbar muscular atrophy). Another disease that
was often discussed in the literature in combination with AD and HD was Parkinson’s disease. So,
a comparison between these three diseases could lead to more comprehension of the disease patterns.

To summarize, this research gave more insight into what kind of information can be gained
from PPINs and future research should be focused on discovering new overlapping processes and
developing methods for identifying shared drug targets.
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A Figures

A.1 Workflow

Figure 1: Overview of the full workflow for creating the Alzheimer’s disease consensus networks and
merging with the Huntington’s disease consensus network. Orange nodes are networks in Cytoscape
and green nodes indicate Cytoscape network operations.
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A.2 Networks

Figure 2: ADCN-KWS-0.4, the dark orange nodes indicate a higher certainty that the proteins
are active in the nervous system. The database distributions are indicated in the shapes and the
APP, MAPT, PSEN1, PSEN2, APOE and HTT proteins are enlarged. The important proteins for
AD were obtained from KEGG, Wikipathways and STRING. The HTT protein is also present, but
came from only the STRING interactions database.
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Figure 3: ADCN-KWS-0.4-EXP, the dark orange nodes indicate a higher certainty that the
proteins are active in the nervous system. The database distributions are indicated in the shapes
and the APP, MAPT, PSEN1, PSEN2, APOE and HTT proteins are enlarged. This network was
expanded with an additional 2000 proteins from STRING.
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Figure 4: ADCN-KWS-0.7, the dark orange nodes indicate a higher certainty that the proteins
are active in the nervous system. The database distributions are indicated in the shapes and the
APP, MAPT, PSEN1, PSEN2, APOE and HTT proteins are enlarged. The STRING confidence for
this network was higher, which causes it to have fewer edges than the networks with a confidence
of 0.4. Therefore, there are more isolated nodes.
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Figure 5: ADCN-KWS-0.7-EXP, the dark orange nodes indicate a higher certainty that the
proteins are active in the nervous system. The database distributions are indicated in the shapes
and the APP, MAPT, PSEN1, PSEN2, APOE and HTT proteins are enlarged. This network was
expanded with an additional 2000 nodes from STRING, but there are still isolated nodes that do
not connect to any of the others.
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Figure 6: HDCN-NH, the dark orange nodes indicate a higher certainty that the proteins are
active in the nervous system. The database distributions are indicated in the shapes and the APP,
MAPT, PSEN1, PSEN2, APOE and HTT proteins are enlarged. This network was created by Nina
Henninger.
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Figure 7: ADCN∩HDCN, the eight processes with the lowest FDR value from the STRING
enrichment analysis can be seen. The APP, APOE, PSEN1, PSEN2, MAPT and HTT proteins are
enlarged.
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A.3 Clusters

Figure 8: Cluster 2 ADCN∩HDCN, this cluster contained the protein APOE. The eight processes
with the lowest FDR value from the STRING enrichment analysis can be seen.
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Figure 9: BiNGO graph Cluster 2 ADCN∩HDCN, part of the BiNGO graph is enlarged,
where it can be seen that the GO Biological Process positive regulation of transcription by RNA
polymerase II is significantly enriched.
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Figure 10: Cluster 4 ADCN∩HDCN, this cluster contained the protein APP. The eight processes
with the lowest FDR value from the STRING enrichment analysis can be seen
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Figure 11: BiNGO graph Cluster 4 ADCN∩HDCN, part of the BiNGO graph is enlarged,
where it can be seen that the GO Biological Process autophagosome assembly is significantly
enriched

37



Figure 12: Cluster 6 ADCN∩HDCN, this cluster contained the proteins PSEN1 and HTT. The
eight processes with the lowest FDR value from the STRING enrichment analysis can be seen
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Figure 13: BiNGO graph Cluster 6 ADCN∩HDCN, part of the BiNGO graph is enlarged,
where it can be seen that the GO Biological Process chemical synaptic transmission is significantly
enriched.
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Figure 14: Cluster 8 ADCN∩HDCN, this cluster contained the protein MAPT. The eight
processes with the lowest FDR value from the STRING enrichment analysis can be seen.
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Figure 15: BiNGO graph Cluster 8 ADCN∩HDCN, part of the BiNGO graph is enlarged,
where it can be seen that the GO Biological Process chemical synaptic transmission is significantly
enriched
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