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Abstract

In order to capture and define the requirements of software systems properly, UML class
models are frequently utilised. However, these models quickly expand in size and complexity,
which inhibits the understandability of these models for non-experts. In addition, the process
of creating these models using existing modelling tools is a cumbersome manual process. In an
effort to overcome these issues, a transformer-based model has been implemented in this thesis
to automate this process, such that metadata for UML class models can be automatically
constructed from natural language requirements texts. A BERT model is used to perform
Named Entity Recognition (NER), in combination with a rule-based relationship extraction
model to perform Relation Extraction (RE). Using a dataset consisting of 9 documents,
the BERT model manages to reach a weighted average F1-score of 56.8%. Furthermore,
the rule-based RE model is capable of extracting nearly half of the relations. The latter is
primarily due to the influence of the NER model, since incorrect label predictions result in
missed relations or wrong predictions. However, even though the results do not outperform the
current state-of-the-art, they provide a solid basis for further research, as well as proving the
potential of a transformer-based approach to automate the generation of UML class models.
This research is part of the LIACS Prose to Prototype / ngUML research and development
tool project.
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1 Introduction

Capturing requirements in an accurate way is essential for software development. Often this is a
manual process where business analysts interview customers or end-users and subsequently create
UML models. These models can grow quickly for large software systems [1], causing an increase
in complexity that impacts the understandability time and efficiency [2]. As a result, interactions
with these models become harder for non-experts. This lowers the usefulness of the tool, as well
as limiting its usage to domain experts. Moreover, the process of creating a UML model can be a
time-consuming process, especially if you are not already an expert [3], which adds another barrier.

UML models can be very useful in the software development process, especially during the
transition from requirements listing to development, which is thought to be one of the most
complicated tasks in software development [4]. However, they can be time-consuming to produce
and can grow quickly in complexity [1, 2]. Therefore, a tool that can help design UML models
semi-automatically is desired. The model has to be able to convert natural language requirements
texts into metadata for UML class models. Specifically, the model needs to be able to do Named
Entity Recognition (NER), which is the recognizing of entities (Class, Attribute, Association...) in
the text, as well as Relation Extraction (RE), which consists of identifying relations between entities
and labelling them accordingly. A model with these capabilities should be capable of recognizing
UML elements from a text and place it in the UML class diagram through its relations to other
elements.

1.1 Research Objectives

In this thesis I will evaluate the capabilities of BERT models for NER in the domain of UML
modelling and create a relationship extraction heuristics model. The expectation is that the
implementation of a BERT model will be very useful for extracting important words and references
from the text, because it can take the context of surrounding words into consideration when
predicting a label [5].

It is very interesting to see how this approach performs on this task against existing methods,
which leads to the following research question:

RQ1 Which machine learning model performs the best at generating metadata for UML class
models from natural language requirements texts?

Since this thesis is concerned with two tasks, NER and RE, we will need to evaluate the
performance of our models on those two tasks, resulting in two additional research questions:

RQ2 How does a BERT model perform on a Named Entity Recognition task on natural language
requirements texts compared to other baselines?

RQ3 How well does a rule-based relationship extraction model perform on natural language
requirements texts of UML class models?

In order to train and test the model, an annotated dataset is needed. I need to set up an
annotation scheme with corresponding annotation guidelines, in order to guarantee consistent
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annotations. Subsequently, this leads to the following research objectives:

RO1 Annotate a dataset of natural language requirements texts to train and evaluate the model
on.

In addition, the model itself needs to be thoroughly researched and implemented, resulting in
the research objective:

RO2 Thoroughly study the BERT model architecture and relevant heads for NER, and synthesize
a pipeline through which the model is trained and evaluated.

1.2 Thesis Overview

Section 1 introduces the problem and explains the approach to solve this, as well as outlining the
research questions and objectives. Then, Section 2 is used to provide the necessary background
information on UML class models and the two tasks: NER and RE. Finally, this section discusses
some related works in Section 2.4. The next section, Section 3, is concerned with the dataset that is
used and how the annotation process was conducted. Section 4 goes more in-depth on the approach
for the two tasks and explains the design choices for both models. I discuss my experiments and
results in Section 5. This section also explain the process of optimizing the hyperparameters, as
well as the comparison against related works. Finally, I draw my conclusions and suggest possible
routes for further research in Section 6.
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2 Background and Related Work

In this chapter necessary context and background information will be discussed. Specifically, UML
class models will be explained and how requirements texts can be used to create them. Moreover, I
will also introduce the two tasks: Named Entity Recognition (NER) and Relations Extraction (RE).

2.1 UML Class Models

In order to transition from requirements listings into the design phase quickly, UML class models
are used. They provide a clear overview of processes and workflows withing a software system,
that allow the user to capture requirements of a systems in a quick and efficient manner. There
are other modeling languages, like Business Process Modeling (BPM) [6] or Systems Modeling
Language (SysML) [7], but according to Miles and Hamilton [8], UML offers six main advantages: it
is fast, concise, formal, comprehensive, scaleable, built on lessons learned and it is the standard. In
essence, this means that the language is a standardized set of best-practices, that is well-applicable
to different sizes of projects.

There are multiple different types of UML diagrams and in this thesis I will focus on the Class
Diagram. Classes can have a name, attributes, operations and different types of relations to other
classes. Figure 1 shows an example of a class, with multiple attributes: ‘name’, ‘publicURL’ and
‘authors’. The plus or minus determines the visibility of the attribute in this context and the type
is shows after the semicolon. This class also has an operation ‘addEntry’, which can be seen in the
bottom section of the class.

Figure 1: Example of a small UML Class Diagram. A class ‘BlogAccount’ is displayed, with three
attributes ‘name’, ‘publicURL’ and ‘authors’, as well as an operation ‘addEntry()’ [8].

There can be associations between classes, which can have different multiplicities on both ends
of the associations: ‘exactly one’, ‘one-or-more’ or ‘zero-or-more’. Figure 2 shows an example of an
association between classes with multiplicities. This association would be interpreted as ‘One blog
account has zero or more blog entries.’

Figure 2: Example of an association between two classes. This would be interpreted as ‘One blog
account has zero or more blog entries.’[8].
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Figure 3: The different types of relationships in UML class models [8].

There are five different types of relationships in UML class diagrams, which can be seen in
Figure 3. In this thesis, the focus will be on associations mostly, but also somewhat on aggregations
and compositions. Composition relationships can be interpreted as an ‘is-part-of’ relations, where
one parent class contains objects of another child class. In this case, the child class cannot exist
on its own. Aggregations share similarities with compositions, as it is also a parent-child relation.
However, with aggregations the child class can also exist on its own.

2.2 Named Entity Recognition

The first step in extracting relevant UML-related information from texts is recognizing and correctly
labelling entities in the text, which is the task of Named Entity Recognition (NER). Each word
gets assigned a label, which the model can learn through either unsupervised learning or supervised
learning approaches [9]. Figure 4 shows an illustration of how this works. A sentence gets split up
into words, on which the model will make its predictions. For supervised learning approaches this
task is treated as a multi-class classifications task, in which it will use the true labels of these words
to learn accurate predictions, since it can positively reinforce correct predictions and penalize false
predictions by adjusting the weights of the network. This way the model can extract entities from
a text.

Sometimes entities consist of multiple words, in which case it is called a span. For example:
the entity ‘earlier this week’ in Figure 4 is one entity of the ‘Date’ class. However, the knowledge
that these words belong together would be lost if we would only do predictions on each separate
word. To overcome this issue, the BIO tagging scheme is often implemented, which assigns a label
‘B’, ‘I’ or ‘O’ to a word, depending on whether the token is at the beginning of a span, inside a
span or outside of a span, respectively. These labels are combined with the regular class labels. For
example: the span ‘date of birth’, which is one entity of the ‘ATTRIBUTE’ class, would be labeled
as [’B-ATTRIBUTE’ (date), ‘I-ATTRIBUTE’ (of ), ‘I-ATTRIBUTE’ (birth)] for the purpose of
NER.

Recently, transformer models, like the BERT model, have been able to make good progress in
this task, due to its use of continuous real-valued vector representations of words, which can also
take surrounding context of a word into consideration [5, 9]. Originally this task was used to extract
relatively simple concepts from newspapers, such as locations and persons from the CoNLL-2003
benchmark, which is a common benchmark to compare NER models on [10]. However, this principle
can also be extended to extract more advanced and abstract concepts from UML class models from
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Figure 4: An example of how Named Entity Recognition works. The model makes predictions for
each word and manages to extract multiple entities from the text [11].

texts, by choosing the right labels and using a dataset that is annotated for this purpose.
The biggest challenge for this field of natural language processing is concerned with the data,

since deep learning models require a lot of data to properly learn [9]. That means that a large
dataset is necessary for good performance of the model. Moreover, this adds the challenge of
annotation, as this has to be done consistently. Finally, the quality of the data needs to be of a
proper standard as well, as it is used to train the model. All of this adds extra difficulty to the task
of NER.

2.3 Relation Extraction

When the NER task is done, relations need to be extracted and correctly labeled from the texts.
This is the task of Relation Extraction (RE), where pairs of entities get classified as a relation and
labeled with the right label. Figure 5 displays an example of how RE is performed. A sentence
containing two entities is put into a RE model, which can predict the relation within that sentence.
This can be accomplished in multiple ways. The pioneering methods utilized pattern-matching
models, where a large number of matching patterns are constructed, which are used to extract
relations. These patterns usually require some form of human involvement [12]. Later, statistical
methods were applied, as well as neural networks [12]. Both are favored over pattern-matching,
as they can obtain better performance, generalize better and require less human involvement [12].
Lately, transformers have become the new state-of-art for this task [13, 5].

Even though good scores can be reached on this task, it is a complicated one. Just like NER, a
large annotated dataset is required, which is difficult, as collecting and annotating can be time-
consuming. Furthermore, for many long and specific relations it is difficult to train a model, because
there are not enough examples for the model to learn. Additionally, relations are often not contained
within one sentence. This means that when searching for relations, the model has to search within
multiple sentences, which can add to the computation time [12].
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Figure 5: An example of how Named Relation Extraction works. Given a sentence containing two
entities, RE models can extract the relation [12].

For the purpose of this thesis, the output of the NER model will be used as input for the RE
model. However, the quality of the output of the NER model greatly influences the RE performance,
which creates additional complexity. Moreover, there can be more than one relation in a sentence,
which adds to the difficulty too, since there is no indication of when you have extracted all of the
relations from a sentence.

2.4 Related Work

In 2022, Rigou and Khriss built a model using deep learning techniques to automate the process of
generating UML class models from textual requirements [14]. Their model consisted of a BERT
encoding layer, with three feed-forward neural network layers to act as decoders on top. This
model performs three tasks: NER, RE and coreference resolution. They used a dataset of 20
documents, which was hand-annotated by one annotator. They tested a number of sub-models, but
their most-promising model included the BERT-model, in combination with a ‘weighted average’
technique, that produces an encoded vector representation from a weighted average of the encodings
of the tokens in a span [14]. This model managed to achieve promising results, with F1-scores
of 89.3%, 54.9% and 73.6%, for NER, coreference resolution and RE respectively. Most notably,
they mentioned that a bigger dataset is necessary to realize a full UML class model generation
application.

Alternatively, rule-based approaches are used to extract information from natural language
requirements to texts. Research was conducted in 2015 to generate UML class models using this
approach, resulting in a model called the Automatic Builder of Class Diagram (ABCD) [15]. They
focused their effort on synthesizing rules that can recognize patterns in the text in order to extract
information. Their approach included four steps. First is sentence splitting, where they split up a
full text into individual sentences. The sentences are then tokenized by the Stanford Parser, which
results in tokens that are words and punctuation marks [15, 16]. The next step is Part-of-Speech
tagging, in order to retrieve semantic information from the text. The final step is syntactic parsing,
where they apply their rule-matching. This method is quite capable, and is able to extract the names
of two entities, their multiplicities and the relation between them with just one matching pattern.
This model managed to achieve a recall and precision score of 89.0% and 92.3%, respectively.
However, they also reported an overgeneration rate of 26%, which is a metric they introduced; it
measures false predictions by the model. Specifically, this model has issues dealing with synonyms
and it can confuse methods and associations, as they can both be identified by verbs.

A combined span-based NER and RE model was also built by Ebert & Ulges in 2019, named
SpERT [17]. Their approach consisted of three steps: span classification, span filtering and relation
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classification. The first step includes creating token embeddings of the input texts, using a BERT
‘base-cased’ model. They fuse these token embeddings with width embeddings and a context
token and input this into the span classifier, which decides whether the input tokens form a span
together. This way they manage to combine local and global features, which enhances the semantic
representations [18]. The next step is to filter out the no-entity types, which leaves us with just the
classified entities. Then, in the final step, pairs of spans are formed and combined with context
embeddings, which is the input for the relation classifier. This way, the model can do span-based
joint NER and RE. They tested their model on three benchmarks, about news articles (CoNLL04
[19]), abstracts of AI papers (SciERC [20]) and medical reports (ADE [21]). The results show that
SpERT outperforms the state-of-the-art models of that time by up to 2.6%.

Generally, a transformer-based approach is most promising, as they are the state-of-the-art
and can reach very good scores, given a large dataset [17]. For that reason a transformer-based
approach has been adopted in this thesis for the NER task. For RE a transformer-based approach
was not realistic, due to time restrictions. Therefore, pattern-matching is chosen, because it is more
straightforward and still capable of obtaining a good performance, as can be seen in the ABCD
model [15].

7



3 Data

For this thesis, I am using a dataset of natural language requirements texts consisting of 9 documents,
collected from lectures, assignments and actual companies [22]. Since not all of these documents
were written for this exact application and because natural language can be quite ambiguous [23],
there is some fluctuation in quality, which can lower the usefulness of a document for the purpose
of this thesis.

The length (amount of words) of a document can also vary between documents, with some
documents having around 800 words, while others only contain 100 words. This is not a problem
for the model, except that it can take a bit longer to run. The quality of a document, however,
is usually a bit lower for longer documents, as certain elements of the document are likely to be
repeated.

3.1 Data Annotation

The requirements texts are raw natural language, without labels. However, our model needs labeled
training data to be able to learn. Therefore, we need to annotate the texts, which includes providing
a label for each word in the text, as well as extracting the relations. This is a subjective process,
due to the ambiguous nature of natural language [23]. In order to guarantee consistent annotations,
I set up annotation guidelines in collaboration with a UML expert. I carried out the annotation
process, which guarantees consistency in the annotations. For ambiguous and uncertain cases, in
which it is unsure what the right annotations are, the UML expert was consulted.

The annotation guidelines for NER are described in Table 1. They are not very complicated,
as we usually annotate words quite literally. If a class appears in the text, we annotate it as a
class. We annotate the following entity types: Class, Attribute, Association, System, Operation. It
is important to note that enumerations and notes/constraints are not annotated, as these rarely
appear in the texts. Furthermore, during data preprocessing the ‘O’ label, from the BIO-tagging
scheme that was mentioned in Section 2.2, is added to all words that have not been annotated, as
they are not part of a span.

Table 1: The annotation guidelines for named entity recognition. These are combined with the
BIO-tagging scheme at a later stage, where all entities have 2 forms: one with a ‘B’ tag and one
with a ‘I’ tag. Everything that is not annotated gets the label ‘O’.

Entity For Notes
Class For UML classes -

Attribute For attributes of classes -
Association For the labels of associations To retain label information

and for multiplicity purposes
System For higher-level overarching systems These entities would otherwise

likely be wrongly classified as classes
Operation For operations of classes -

For RE we have set up the annotation guidelines as can be seen Table 2. A more in depth
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Table 2: The annotation guidelines for relation extraction. Stick to the text!

Relation Direction of annotation Notes
Association1..* From class to association and association to class For multiplicity ‘one-or-more’
Association1 From class to association and association to class For multiplicity ‘exactly one’
Association* From class to association and association to class For multiplicity ‘zero-or-more’
Composition From parent class to child class -
Aggregation From parent class to child class -

Subtype From subtype to parent class -
Attribute From attribute to corresponding class -
Operation From corresponding class to operation -

Span From begin of span to end of span For split up spans
Coref From coreference word to original word For coreference resolution

explanation of why labels were chosen for RE and NER can be found in Sections 4.1 and 4.2.
Most of these rules are self-explanatory. Important to note is that the quality of the text heavily
influences the quality of the annotations. When a sentence is ambiguous, the annotation will be
unclear too. To maintain consistency, we have decided to stick to what the text says and tried to
not interpret and reason too much what the text might mean in uncertain cases, as this is often
also the most intuitive way to label the sentence for the model.

One of the difficulties of annotating natural language texts for UML class model purposes is
saving relevant context. In particular, the labels of an association relation. In UML models, an
association will exist between two classes with a label, such as ‘is part of’. In natural language, this
label will be a verb near the classes, which can be different for each relation. As a result, problems
arise with the prediction made by our model, as a model performing RE can predict a relation
between two entities and its relation type (subtype/association etc), but it will not predict the label
of the relation. In order to overcome this, we have decided to split up the annotation of associations
into two parts: the starting entity will have a relation of type ‘association’ to the corresponding
verb in the sentence. This verb will get the NER-label ‘association’, and have an outgoing relation
to the other entity, also with the relation label ‘association’. This way, the label of of associations
between entities can be saved. An example of how an association relation gets annotated can be
seen in Figure 6.

In addition to labels of associations, multiplicity of associations adds another complication:
when annotating a relation, it will take as information the entities that partake in the relation
and the label of the relation (‘subtype’, for example). However, the relation ‘association’ has
multiple different variations, because both sides of the relation can have a multiplicity label: ‘exactly
one’, ‘zero-or-more’ and ‘one-or-more’. The easiest approach for this, is to combine a multiplicity
label with the relation label. This results in three labels for an association: ‘ASSOCIATION1’,
‘ASSOCIATION*’ and ‘ASSOCIATION1..*, which represent the multiplicities ‘exactly one’, ‘zero-
or-more’ and ‘one-or-more’ respectively.

In collaboration with the with the UML expert we decided to add another relation ‘Span’, in
order to deal with spans that are split up. It would sometimes occur that a span was split up by
other words in the sentence. Using this relation, we could annotate this span properly, by forming
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Figure 6: Example of an annotated association relation with the annotation tool Prodigy by SpaCy
[24]. The UML association goes from ‘Document’ to ‘editor’ with label ‘uses’ in the class diagram,
but it is split up into two relations for annotation purposes.

a relation ‘Span’ from the beginning entity of the span to the ending entity.
For the annotation process, I used the annotation tool Prodigy, by SpaCy [24]. This tool allows

for joint entity and relation annotation, which is very useful. Furthermore, it produces a JSON
output with all the data. This does require some extra data preprocessing, but this works pretty
well once it is set up. An example of an annotation in the Prodigy tool can be seen in Figure 6.

There are 11 labels for the NER task, which will be explained more in depth in Section 4.1.
Table 3 shows the distribution of NER labels, which is heavily skewed. Section 4.1 discusses my
approach to solve this issue.

Table 3: The distribution of NER labels in the dataset.

Label Count
B-CLASS 383
I-CLASS 92

B-ATTRIBUTE 119
I-ATTRIBUTE 91

B-ASSOCIATION 166
I-ASSOCIATION 58

B-SYSTEM 43
I-SYSTEM 35

B-OPERATION 10
I-OPERATION 1

O 1505

Table 4 shows the counts per relation-type in the dataset. Again, these are heavily skewed,
with some relations barely appearing in the texts at all. Section 4.2 discusses my approach to tackle
this problem.
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Table 4: The distribution of relation labels in the dataset.

Relation Count
ASSOCIATION1 199

ASSOCIATION1..* 101
ASSOCIATION* 9

ATTRIBUTE 114
SUBTYPE 45

OPERATION 11
COMPOSITION 2
AGGREGATION 4

SPAN 3
COREF 24

4 Method

In this section the general approach for tackling the problems of Named Entity Recognition (NER)
and Relation Extraction (RE) is discussed, as well as the reasoning behind certain design choices.

4.1 Named Entity Recognition

NER, in essence, is the task of token classification, in which the input text is reduced to tokens
by the tokenizer and each token has a label. It is the task of the model to be able to accurately
predict the UML labels of each token. In this thesis I used the BERT ‘base-uncased’ model with
the BertFastTokenizer to perform this task, both directly loaded from the transformer package of
HuggingFace [25].

The to-be-predicted NER label consists of two parts: a UML label and a chunking label, which
refers to the role of a token in an entity. Since the NER model will make predictions on single
words, it is likely that the knowledge of what word belongs to what span will get lost. To overcome
this issue, I have implemented the aforementioned BIO-tagging scheme (Section 2.2). This chunking
label is combined with the UML label, resulting in a total of 11 possible token labels, which can be
seen in Table 3. Most of these labels are self-explanatory, as they belong in a UML class model.
The exceptions here are the system label (label 7 and 8) and the O label (label 11). The reason for
adding a system label to these labels, is to make a distinction between classes and higher-level,
overarching systems, which would be classified as a class otherwise, as they appear similar to classes.
The addition of this label allows our model to more precisely label classes. The O label is used
to label everything that is not relevant for a UML class model. Since natural language can be
both ambiguous and redundant there is a lot of irrelevant text [23]. As a result, the O class is the
majority class.

Furthermore, I have chosen not to includes notes/constraints in my labels, as they do not occur
often in texts. Consequently, they would be very hard for my model to identify. Moreover, they
would make the prediction of the other labels harder, since there would be a greater number of
labels.
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The approach for applying a transformer model for a NER task involves a lot of data prepro-
cessing, as we are dealing with unstructured natural language as input. For training purposes, the
labeled input data needs to be tokenized, such that the NER labels correspond the tokens. This
includes the necessary step of making sure that when a word get split up into subwords, that all of
the subwords have the NER label of the original word. This is easier for inference, as we do not
have to worry about the corresponding NER labels of subtokens for this case.

As discussed before, the class distribution is very imbalanced, because the O class is a very
large majority and classes like ‘I-SYSTEM’ or ‘I-OPERATION’ do not appear very often. As a
result, the model would often predict (almost) everything as the majority class. To overcome this,
we would have to penalize these types of wrong predictions harder, in order for the model to learn
to predict other labels. To do this, I have constructed a custom loss function, which overwrites the
standard loss function of the Huggingface Trainer. This custom function performs cross-entropy
loss with weights per class, relative to the number of appearances of that class. This way, wrong
predictions of the majority class get penalized harder than wrong predictions of the minority class.

4.2 Relation Extraction

I decided to develop a rule-based RE method because the amount of labelled data is too small to
train a supervised transformer-based classifier that can recognize all relation classes. The extraction
method uses the predicted NER labels by my NER model. Using a rule-based approach to extract
relations is a familiar approach and usually achieves good results, like in the the ABCD model,
mentioned in Section 2.4 [15]. The heuristic rules were formed and optimized on two documents
from the dataset and later tested on the entire dataset. The python code for the implementation of
the RE rules can be found in Appendix A.1.

These are the heuristics rules used for extracting relations from the text, with examples:

• Association (exactly one and one-or-more): When an entity x with the NER-label ‘Association’
is encountered, make a relation (y, x, ‘ASSOCIATION1’) from the first ‘Class’ entity y to
the left of entity x. Also, form a relation (x, z, ‘ASSOCIATION1’) from x to the first ‘Class’
entity on the right of x. In both cases, if the class entity ends in an ‘s’, it is likely plural.
Therefore, make it an ‘ASSOCIATION1..*’ relation instead. Skip the first class found on the
left if the association has ‘and’, ‘or’ or ‘,’ in front of it. A typical association relation is in this
format:

‘Each document uses an editor.’ (words with the NER label ‘class’ are denoted in red and
‘association’ in blue)
Contains relations:
- (document, uses, ‘ASSOCIATION1’)
- (uses, editor, ‘ASSOCIATION1’)

• Association (zero-or-more): When an entity x with the NER-label ‘Association’ is found
and the entities x− 1 and x− 2 together form the words ‘can be’, search for the first class
entity y on the left of x and form relation (y, x, ‘ASSOCIATION*’). Also form a relation (x,
z, ‘ASSOCIATION*’) to first class entity z on the right, if x is one of the following words:
‘score’, ‘scores’, ‘sends’, ‘controls’, ‘list’. This is an example of an association relation with the
multiplicity of zero-or-more:
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‘A football player can be sold to another football team.
Contains relations:
- (football player, sold to, ‘ASSOCIATION*’)

• Subtype: If a listing of three or more classes xi, xi+1, ..., xn is found, only separated by ‘,’ or
‘and’, search for the first class y on the left of the listing within the same sentence. Form
relations (xj, y, ‘SUBTYPE’), where i ≤ j ≤ n. If the entity y − 2 contains the word ‘in’,
skip this entity. A typical sentence containing subtype relations would look like this:

‘... basically just four controls (jump, move forward, move backward, duck).’
Contains relations:
- (jump, controls, ‘SUBTYPE’)
- (move forward, controls, ‘SUBTYPE’)
- (move backward, controls, ‘SUBTYPE’)
- (duck, controls, ‘SUBTYPE’)

• Attribute: If an entity x with the NER label ‘Attribute’ is found, make a relation (x, y,
‘ATTRIBUTE’) to the closest ‘Class’ entity y on the left of x within the sentence. If the
entity y − 2 contains the word ‘in’, skip this entity. An example sentence looks like this:

‘The instructor has a name, surname, title, and specialty.’ (words with the NER label
‘attribute’ are denoted in orange)
Contains relations:
- (name, instructor, ‘ATTRIBUTE’)
- (surname, instructor, ‘ATTRIBUTE’)
- (title, instructor, ‘ATTRIBUTE’)
- (specialty, instructor, ‘ATTRIBUTE’)

• Operation: If an entity x with the NER label ‘Operation’ is found, make a relation (y, x,
‘OPERATION’) with the closest ‘Class’ entity y to the left of x within the same sentence. If
the entity y − 2 contains the word ‘in’, skip this entity. An example of a typical operation
relation looks like this:

‘ After running for a certain distance or given time, the level will be cleared.’ (words with the
NER label ‘operation’ are denoted in green)
Contains relation:
- (level, cleared, ‘OPERATION’ )

• Composition: When two entities x and y, both with the NER-label ‘Class’ are found, with
only the word ‘of’ in between, form relation (x, y, ‘COMPOSITION’). An example:

‘When earth receives a threat that a nearby colony of aliens is about to launch an attack, ...’
Contains relation:
- (colony, aliens, ‘COMPOSITION’ )

• Aggregation: When a listing of at least three class entities xi, xi+1, ..., xn is found with the
words ‘of’ in front of it, search for the first class y on the left of the listing within the same
sentence. Form relations (xj, y, ‘SUBTYPE’), where i ≤ j ≤ n. If the entity y − 2 contains
the word ‘in’, skip this entity. An example:
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‘The application will allow updating the list of loan items, user registration, lending transactions,
and reservations.’
Contains relations:
- (list, loan items, ‘AGGREGATION’)
- (list, user registration, ‘AGGREGATION’)
- (list, lending transaction, ‘AGGREGATION’)
- (list, reservations, ‘AGGREGATION’)

• Coreference: Manage a list of regular coreference words (e.g. ‘his’, ‘they’, etc.). If an entity x
in the text matches one of the known coreference words, seek the second-closest ‘Class’ entity
y to the left of x, as the closest ‘Class’ entity is likely the end of an association. If the entity
y − 2 contains the word ‘in’, then do not use this class entity and seek the next class entity
on the left. Form the relation (x, y, COREF). This an example of a coreference relation:

‘There is a goalkeeper in the defense, and he plays to clear the ball.’
Contains relation:
- (he, goalkeeper, ‘COREF’)

• Additional note: do not form relationships with entities that are padding. This can occur due
to false predictions by the NER model.

Associations in UML class models go from class to class. However, we would lose information
by annotating it this way, such as the name of relation. Therefore, we split up associations into
two, separated by the association entity, with one relation from the first class to the association
and a second relation from the association to the second class. As a result, when we encounter an
association we have to find two relations, which are usually to and from the closest class to the
left and right of the association. There are exceptions in the case of multiple verbs for the same
subject, for example:

‘The customer pays the bill and orders the meal.’

In this case ‘orders’ would be labeled as an association. If we would follow the heuristic
rule, we would find ‘bill’ as the first class entity to the left and form the relation (bill, order,
‘ASSOCIATION1’). This is incorrect, as it should have skipped this class and found ‘customer’
instead. For this reason I edited the rule to skip the first class found if the association entity
has ‘and’, ‘or’ or ‘,’ in front of it. Furthermore, in most cases where there was a multiplicity of
‘one-or-more’, the class entity would end in an ‘s’, which is why I used this to extract multiplicities.
The ‘zero-or-more’ multiplicity did not occur frequently, which is why the rules are quite specific for
the cases I did encounter. Most of the associations had a multiplicity of ‘exactly one’. Consequently,
this is the default multiplicity when an association is formed.

Making a generalizable rule for subtypes is difficult, as subtypes occur in many different ways
in a text. Most often, they occurred in short sentences, that list multiple subtypes of a class entity.
For example:

‘Positions are forward, midfield and defense.’
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This is a listing and it would therefore be recognized by the extraction rule. The classes ‘forward’,
‘midfield’ and ‘defense’ would all form a relation ‘SUBTYPE’ to ‘Positions’. Subtypes are also found
in alternative structures, but most often it was in this form. For that reason, I have chosen this
structure to base my extraction rule on.

The rule to extract attribute relations is quite simple. The NER model should have appropriately
labeled attributes, so when we encounter an entity with the NER label ‘Attribute’, we only have to
search for the closest ‘Class’ entity on the left to form a relation. There is an exception:

‘Cars in the gallery have a license plate’.

In this sentence, ‘license plate’ is an attribute of the class ‘Cars’. However, the closest ‘Class’
entity on the left of ‘license plate’ is ‘gallery’. To avoid this, I have added this edge case to the rule.
This makes sure that sentences in this format are appropriately analyzed.

The operation relation works in exactly the same manner as the attribute relation, and is
triggered by encountering an entity with the NER label ‘Operation’ instead of ‘Attribute’.

In order to extract coreference relations, I keep a list of known ‘coreference words’, like ‘his’ or
‘they’. When an entity matches one of the words we look for the ‘Class’ entity on the left of this
word. Just like with attributes and operations, we skip a class if it has the word ‘in’ in front of
it. Additionally, we also skip the first class found, as this is usually the end of an association. For
example:

‘When the goalkeeper saves the goal, the system announces his number and name.’

In this sentence, ‘his’ would be recognized as a coreference word and we would search for the
‘Class’ entity on the left of this word. The first class we would encounter is ‘goal’, which is not
the correct class here as it is the end of the association relation between ‘goalkeeper’ and ‘goal’.
For this reason, we skip the first found ‘Class’ entity. Previous research on rule-based coreference
resolution has also shown this is a typical structure for coreference relations [26]. This extraction
rule can extract these types of relations without doing actual syntactic parsing.

For the aggregation, composition and association* relation there were very few appearances,
so the extraction rules often included specific words on which the rule is triggered. That means
that these rules work on the examples in this dataset, but should be extended to be more complete
if there was more data available. The approach for these rules is also in line with the work of
TianTian [27].

I have decided to leave out the span relation, since this relation did not appear in the data
often enough to form a robust relation extraction rule.
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5 Experiments and Results

This chapter will discuss the results of the model after hyperparameter optimization, as well as the
experiments conducted with the models.

5.1 Hyperparameter Optimization

Transformers have a lot of different hyperparameters : settings that can be adjusted, that alter the
performance of the model, such as learning rate, weight decay or the number of training epochs.
All of these hyperparameters together form a high-dimensional grid of configurations, where each
hyperparameter is a dimension. Finding the best-performing configuration of hyperparameters
in this high-dimensional grid is an optimization problem, for which I used the hyperparameter
sweep function of Weights and Biases, which is a developer tool for machine learning [28]. To
traverse this hyperparameter grid, I used a Naive Bayes algorithm, which is integrated into Weights
and Biases. The result of this hyperparameter sweep can be seen in Figure 7, where each column
depicts a hyperparameter and the most-right column the F1 score. Each line represent a single
run with a certain configuration of hyperparameters. Each run was conducted on one fold from
a 4-fold cross-validation split, consisting of a train set of six documents and a evaluation set of
three documents. A total of 39 runs were conducted. The configuration of hyperparameters of the
best-performing run can be found in Table 5.

Table 5: The best-performing configuration of hyperparameters, found after the hyperparameter
sweep by the Naive Bayes algorithm of Weights and Biases [28].

Hyperparameter Value
Learning rate 8 × 10−5

Epochs 50
Weight decay 0
Warmup steps 5

Train batch size 4
Eval batch size 32

5.2 Named Entity Recognition Results

Using the hyperparameter configuration found during the sweep, I conducted a 4-fold cross-validation
run of the NER model, using the hyperparameters found in Table 5. I split the dataset into a train
set, consisting of six documents and a evaluation set, consisting of three documents. The results
of this run can be seen in Table 6. In this table, the averages ± the standard deviations of the
four different runs are shown. The support column shows the number of samples of that specific
label in the true labels. I calculated the weighted average, as well as the macro averages to gain a
balanced insight into the results, because the weighted averages show the global performance of the
model, while the macro averages show the influence of each individual class. The ‘O’ label has not
been included for the evaluation, which is common when the BIO-tagging scheme is used. This is
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Figure 7: The results of the hyperparameter optimization of the NER model. Columns in this graph
represent features with different values. Each line represents a run with a certain configuration of
hyperparameters. The most right column is the F1-score on the evaluation set. The best configuration
reached a F1-score of 62.0%.

because the ‘O’ class is always a majority and including this in the evaluation would give an unfair
impression of the results.

We can see that there is a clear difference between classes with higher support and classes with
lower support, which is a perfect example of why a large dataset is necessary when working with
deep learning models, because the labels with a lot of support are predicted much more accurately
by the model than the labels with lower support. This makes sense, because the model has more
examples to learn how to identify the entity from.

Often, the labels that contain a ‘B’ have more support, because these labels can exist on their
own, in the form of single-word entities, while ‘I’-labels can only exist following a ‘B’-label. It
is therefore logical that ‘B’-labels are identified better than their corresponding ‘I’-label by the
model. Furthermore, it is noticeable that the majority class scores much higher, which is also due
to its higher support. The labels ‘B-OPERATION’ and ‘I-OPERATION’ on the other hand have
not been correctly identified by the model, because they have extremely low support. For most
labels between the majority and minority class, the performance is decent. The variance for these
mid-range classes is also a bit higher.

The weighted averages are between 56.8% and 60.7%, which is decent, but this is also due to
the influence of the ‘B-CLASS’ label. Therefore, I calculated the macro-average as well. This is
important, because the macro-average gives equal importance to each class. That means that the
influence of the majority class is neutralized. Now, the averages lie between 34.3% and 42.8%, which
is a lot lower. One reason that this is much lower, is because the model fails to predict operation
entities. However, it is important to keep in mind that this experiment was conducted with a small
dataset of only 9 hand-annotated documents. We can see that the classes that are well-represented
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Table 6: Results for the Named Entity Recognition task, run with 4-fold cross-validation. The
results show the mean score ± the standard deviation. The final column shows the number of
samples in the true labels. The O label is not included for the calculation of the weighted and
macro average, because this class is not relevant for the UML model itself.

Label Precision Recall F1 Support
(%) (%) (%)

B-CLASS 71.3 ±11.0 81.5 ±11.8 75.0 ±3.9 540
I-CLASS 52.8 ±23.8 49.5 ±7.0 49.0 ±12.9 124

B-ATTRIBUTE 59.5 ±6.1 51.3 ±18.9 54.0 ±11.9 171
I-ATTRIBUTE 70.0 ±10.3 47.0 ±22.7 52.3 ±12.0 134

B-ASSOCIATION 53.0 ±4.7 57.0 ±12.3 54.8 ±7.8 223
I-ASSOCIATION 37.2 ±44.8 14.8 ±12.1 17.0 ±13.5 77

B-SYSTEM 70.5 ±22.3 25.3 ±21.0 31.3 ±16.4 62
I-SYSTEM 13.3 ±23.1 7.3 ±12.7 9.7 ±16.7 44

B-OPERATION 0 0 0 11
I-OPERATION 0 0 0 1

Weighted average 60.7 58.4 56.8
Macro average 42.8 33.4 34.3

are classified quite accurately, which suggest that if more data was available the problematic classes
would be identified better too.

5.3 Relation Extraction Results

In order to develop a rule-based model that is generalizable for out-of-sample texts, I developed the
rules on two documents from my dataset, that were selected based on quality of the documents. This
is in order to not overfit the rules on specific elements of a text, but rather keep them general so that
they work for other texts too. I tested my rule-based extraction method in a 4-fold cross-validation
run, where I used the predictions of the NER model as labels for the texts. The split was the
same as with NER: each fold contained a train set of six documents and an evaluation set of three
documents. The results of this run are presented in Table 7. It is worth noting that I excluded the
‘SPAN’ relation, since I was unable to construct an extraction rule, because it barely appeared in
the data.

The relation extraction model manages to extract nearly half of the relations, but in the
process also makes a lot of false predictions, which explains the low scores. This is not completely
unexpected, as there are multiple factors that influence the performance of this model: (1) the
quality of the data, (2) the quality of the annotations and (3) the quality of the predictions of the
NER model. First off, (1) the quality of data is important, because this allows us to form practical
extraction rules. When data is ambiguous, or some relations are underrepresented in the dataset, it
is significantly harder to form proper extraction rules. For some relations, it was significantly harder
to form an extraction rule, due to a relation only occurring in very specific cases or there not being
an apparent pattern to match. This was the case for the ‘ASSOCIATION*’, ‘COMPOSITION’,
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Table 7: Results of the relation extraction rules for 4-fold cross-validation, using the predicted labels
of the NER model.

Relation Recall Precision F1 Support
(%) (%) (%)

ASSOCIATION1 32.6 ±14.2 30.0 ±8.3 30.3 ±10.3 265
ASSOCIATION1..* 27.3 ±7.4 35.2 ±9.7 30.7 ±8.2 133
ASSOCIATION* 34.4 ±47.2 29.2 ±34.4 30.7 ±38.6 14

ATTRIBUTE 20.2 ±5.7 25.8 ±7.4 22.3 ±5.8 162
SUBTYPE 3.2 ±6.5 6.7 ±13.4 4.4 ±8.7 63

OPERATION 0 0 0 15
COMPOSITION 16.7 ±28.9 33.3 ±57.7 22.2 ±38.5 2
AGGREGATION 0 0 0 4

COREF 38.5 ±45.6 33.3 ±23.6 31.9 ± 30.7 30
Weighted Average 25.3 27.2 25.3
Macro Average 19.2 21.5 19.2

‘AGGREGATION’ and ‘SPAN’ relations. For the first three cases, we did find an extraction rule.
However, for the last relation, the ‘SPAN’ relation, it was not possible to form an extraction rule on
so few occurrences. Secondly, (2) the quality of the annotations is also important, as inconsistencies
can occur. In an ideal world, there would be three independent domain experts to carry out the
annotations, but because of time restrictions, this was not possible. Finally, (3) the quality of the
NER output influences the performance of the rule extraction model. It happens often that the
NER model wrongly predicts an association entity and as a result, the association extraction rule
is triggered, leading to two falsely predicted association relations. Moreover, all of the words in a
span need to be correctly predicted, in order to combine it into the correct span, because a single
word missing from a span that is part of a relation will result in the entire relation being incorrect.
This adds additional complexity to the task. For the ‘OPERATION’ relation, there was the issue
that the NER-label ‘B-OPERATION’ and ‘I-OPERATION’ were very underrepresented in the
dataset. As a result, the NER model cannot accurately predict operation entities, which leads to
no correctly predicted operation relations. The ‘AGGREGATION’ relation was also not extracted,
due to wrong predictions of the NER model. However, despite all of these challenges, the model
was still capable of predicting nearly half of the relations correctly, which does prove its potential.

5.4 Comparison to Related Work

This section will compare the model proposed in this thesis with other, comparable models. It is
worth noting that these are not direct comparisons, as they were not trained and evaluated on the
same datasets.
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Rigou and Khriss

Rigou and Khriss proposed a model, consisting of a BERT encoding layer with three feed-forward
neural networks on top as decoders, to automate the process of generating UML class models [14].
They reported F1-scores of 89.3%, 54.9% and 73.6% on the tasks NER, coreference resolution and
RE, respectively. This outperforms the model proposed by this thesis on both NER and RE. This
is likely due in part to the data; they used a dataset of 20 documents, which were of significant
length. This means that their model had more examples to learn from, which can explain their
increased performance. Furthermore, the use of feed-forward neural networks can also influence the
performance and therefore may also be a possible explanation for the difference in performance.

Notably, they only classified two types of relations: associations and attributes. They ignored
the multiplicity and label information of associations as well, which our model does not. It is likely
that their performance would have been lower, had they chosen to include this information, because
this would make the task more complex.

Eberts and Ulges

In their paper, Eberts and Ulges introduced SpERT: a transformer-based joint entity and relation
extraction model, which features strong negative-sampling [17]. They trained and evaluated their
model on three different benchmarks: CoNLL04 [19], SciERC [20] and ADE [21], which gives them
the advantage of having a large dataset to train on. As for results, they managed to score between
70.3% and 89.3% F1 for NER and between 50.8% and 79.2% F1 for RE on the different datasets.
This is quite a good performance on these tasks and it outperformed the state-of-the-art models of
that time, as well as the model proposed by this thesis. This is presumably because of the large
amounts of data used, as well as the negative sampling technique. Furthermore, they employed
localized context, instead of entire sentences as context, which allowed their model to focus solely
on relevant parts of the sentence, which lowers the amount of noise. This strategy, combined with
negative sampling and the large amount of data, is likely the reason for their high performance.

Bozyigit et al.

Bozyigit et al. proposed a rule-based approach to tackle the problem for both NER and RE [22].
The dataset used in this thesis is a subset of the dataset used in their study, however, with different
annotations, meaning that this is also not a direct comparison. Their approach can extract the
classes, attributes and operations, as well as identify and label relations between classes. They
managed to extract these concepts correctly and only sometimes miss or wrongly extract an entity,
which is a very good performance.

Our model appears to score a bit lower, however, this difference in performance can be explained.
First off, the difference in annotations matter, as their extraction rules are based on their annotations,
they might work differently on alternative annotations. Besides that, our model tries to extract
more information from the text, like labels of associations and multiplicity, which their model does
not do. As a result, the task is a bit more complicated for our model. Finally, they have a larger
dataset, which gives them more examples to base their extraction rules on. For this thesis, more
data would have improved the NER model, as transformers require a lot of data to learn properly
[29]. Moreover, this would have allowed me to make more extensive extraction rules for my RE
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model. These differences are likely the reason for the difference in performance between the model
proposed by Bozyigit et al. and our model [22].
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6 Conclusion

In this thesis I have attempted to automate the process of generating metadata for UML class
models from natural language requirements texts. I investigated this matter through three research
questions. The first question was:

RQ1 Which machine learning model performs the best at generating metadata for UML class
models from natural language requirements texts?

To answer this question, we have to consider the studies by Eberts and Ulges [17] and Rigou and
Khriss [14], discussed in Sections 2.4 and 5.4. The model proposed in this thesis did not outperform
the related work, likely due to less and lower-quality data. The model proposed by Rigou and Khriss
seems to be the most promising, achieving the highest scores on both NER and RE. Therefore, I
conclude that, as of this moment, their model, consisting of a BERT encoding layer, with three
feed-forward neural networks, performs the best at generating metadata for UML class models
from natural language requirements texts.

The model proposed by Eberts and Ulges is also promising, but scores slightly lower. Moreover,
that model has not been tested on this specific context, but rather has been tested on the tasks
NER and RE in general.

The second research question I investigated during this thesis was:

RQ2 How does a BERT model perform on a Named Entity Recognition task on natural language
requirements texts compared to other baselines?

The BERT model that was implemented for this thesis managed to achieve a weighted average
F1 score of 56.8% and a macro-F1 score of 34.3%. For certain classes, like the ‘O’ class, the F1
score was much higher, meaning that the model could accurately extract this information. However,
the model still struggled extracting entities that had the ‘I’ label from the BIO-tagging scheme,
since these appeared less often in the data. Still, the model managed to accurately extract labels
with high support, which proves that this is a viable approach. These findings are also in line with
the results of both Eberts and Ulges [17] and Rigou and Khriss [14], as they also manage to achieve
a good performance with the use of a BERT model.

The final research question was:

RQ3 How well does a rule-based relationship extraction model perform on natural language
requirements texts of UML class models?

The rule-based relationship extraction model proposed in this thesis managed to extract nearly
half of the relationships, reaching a weighted average F1-score of 25.3%, which is lower than
expected. However, it must be considered that the output of the NER model played a large role.
Had the performance of the NER model been higher, this model would have likely performed better
as well. Furthermore, Bozyigit et al. has proven that rule-based approaches are a viable option in
the process of automating UML class models from natural language [22].

This thesis has showed that a BERT model, in combination with a rule-based relationship
extraction model, has a lot of potential for the tasks NER and RE and that given a large dataset,
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it has good potential for further development.
The data used in this thesis was of sufficient size to showcase the potential of the approach,

however, in order to reach better results, more data is necessary, since deep learning models require
a lot of data to perform well [29]. This will likely improve the performance of the NER model and
subsequently improve the performance of the RE model, because there will be less misclassified
NER labels. In addition, more annotators can help guarantee more consistent annotations, which in
turn make it easier for the BERT model to learn patterns. Moreover, this would make it easier to set
up extraction rules, as there would be no inconsistencies between annotations. Another interesting
consideration for further research would be utilizing syntactic sentence structures in the relation
extraction rules to increase the performance. Furthermore, it would be interesting to see how this
study can be extended to properly include more relations, like composition and aggregations, or
entities, like constraints. Finally, it would be an interesting experiment to see what the performance
would be if the rule-based RE model was replaced by a BERT model.
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A Appendix

A.1 Relation Extraction Code

Listing 1 contains the python code of the implementation of the rule-based RE method.

1 # Relation Extraction Rules

2 # In this file , raw tokens are combined into full entities

3 # based on the predicted NER labels.

4 # Then , the RE rules are applied

5

6 from data_generator import load_tokenizer

7 from constants import ID2LABEL , COREFERENCES

8

9

10 class rel_extractor:

11 """

12 Wrapper class for the rule -based RE method.

13 Contains methods:

14 - extract_relatiosn(input_ids , ner_predictions)

15 - combine_entities(input_ids , predictions)

16 - find_full_entity(label , index , tokenizer , prediction , tok , token)

17 """

18

19 def __init__(self):

20 # Contains extracted relations

21 self.relations = []

22

23 def extract_relations(self , input_ids , ner_predictions ):

24 """

25 Applies the RE rules on the combined entities.

26 Returns the extracted relations.

27 """

28

29 # Combine broken up entities based on NER predictions

30 all_entities , all_labels = self.combine_entities(input_ids , ner_predictions)

31

32 for entities , labels in zip(all_entities , all_labels ):

33 relations_in_batch = []

34 index = 0

35 for entity , label in zip(entities , labels ):

36 # Apply heuristics

37

38 # Do not use entities that are padding

39 if entity == "[PAD]":

40 continue

41

42 # Rule for extracting association relations

43 if label == "ASSOCIATION":
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44 skip_first = False

45

46 if index > 1:

47 i = index

48 if (

49 entities[i - 1] == "and"

50 or entities[i - 1] == "or"

51 or entities[i - 1] == ","

52 ) and labels[i - 2] != "ASSOCIATION":

53 skip_first = True

54

55 # Search for correct class on the left side

56 while i > 0 and entities[i - 1] != ".":

57 if labels[i - 1] == "CLASS":

58 if skip_first:

59 i -= 1

60 skip_first = False

61 continue

62

63 # If "can be" is in front of association entity ,

64 # classify as zero -or-more multiplicity

65 if (

66 entities[index - 2] == "can"

67 and entities[index - 1] == "be"

68 ):

69 relations_in_batch.append(

70 [entities[i - 1], entity , "ASSOCIATION*"]

71 )

72 break

73

74 # Check if last char is s for mulitplicity

75 elif entities[i - 1][ -1] == "s":

76 relations_in_batch.append(

77 [entities[i - 1], entity , "ASSOCIATION1 ..*"]

78 )

79 break

80 else:

81 relations_in_batch.append(

82 [entities[i - 1], entity , "ASSOCIATION1"]

83 )

84 break

85 i -= 1

86

87 # Search for correct class on the right side

88 i = index

89 while i < len(labels) - 1 and entities[i + 1] != ".":

90 if labels[i + 1] == "CLASS":

91 # If the association entity is one of these

92 # words , it is likely zero -or-more

93 if (

94 entity == "controls"

95 or entity == "list"

96 or entity == "score"

97 or entity == "scores"
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98 or entity == "sends"

99 ):

100 relations_in_batch.append(

101 [entity , entities[i + 1], "ASSOCIATION*"]

102 )

103 break

104

105 # Check if last char is s for multiplicity

106 if entities[i + 1][ -1] == "s":

107 relations_in_batch.append(

108 [entity , entities[i + 1], "ASSOCIATION1 ..*"]

109 )

110 break

111 else:

112 relations_in_batch.append(

113 [entity , entities[i + 1], "ASSOCIATION1"]

114 )

115 break

116 i += 1

117

118 # Rule for extracting subtype and aggregation relations

119 if label == "CLASS":

120 subtype = True

121 count = 0

122 i = index

123 potential_rels = []

124

125 # Check if this is a listing of 3 or more classes

126 while subtype and i < len(labels ):

127 if labels[i + 1] == "CLASS":

128 potential_rels.append(entities[i + 1])

129 count += 1

130 i += 1

131 elif entities[i + 1] == "," or entities[i + 1] == "and":

132 i += 1

133 continue

134 elif count >= 3:

135 potential_rels.append(entity)

136 break

137 else:

138 subtype = False

139 potential_rels = []

140 count = 0

141

142 # If listing , add relations subtype or aggregation

143 # if the word in front of listing is "of"

144 if subtype and potential_rels:

145 aggregation = False

146 if index > 0:

147 i = index

148

149 # If the word before the listing is "of"

150 # classify as aggregation

151 if entities[index - 1] == "of":
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152 aggregation = True

153

154 while i > 0 and entities[i - 1] != ".":

155 if labels[i - 1] == "CLASS":

156 if i > 2 and entities[i - 3] == "in":

157 i -= 1

158 continue

159 for ent in potential_rels:

160 if aggregation:

161 relations_in_batch.append(

162 [entities[i - 1], ent , "AGGREGATION"]

163 )

164 else:

165 relations_in_batch.append(

166 [ent , entities[i - 1], "SUBTYPE"]

167 )

168 potential_rels = []

169 break

170 i -= 1

171

172 # RE rule for attribute relations

173 if label == "ATTRIBUTE":

174 if index > 0:

175 i = index

176

177 # Search for correct class on the left side

178 while (

179 i > 0

180 and entities[i - 1] != "."

181 and entities[i - 1] != "!"

182 and entities[i - 1] != "?"

183 ):

184 if labels[i - 1] == "CLASS":

185 if i > 2 and entities[i - 3] == "in":

186 i -= 1

187 continue

188 relations_in_batch.append(

189 [entity , entities[i - 1], "ATTRIBUTE"]

190 )

191 break

192 i -= 1

193

194 # RE rule for operation relations

195 if label == "OPERATION":

196 if index > 0:

197 i = index

198

199 # Search for correct class on the left side

200 while (

201 i > 0

202 and entities[i - 1] != "."

203 and entities[i - 1] != "!"

204 and entities[i - 1] != "?"

205 ):
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206 if labels[i - 1] == "CLASS":

207 if i > 2 and entities[i - 3] == "in":

208 i -= 1

209 continue

210 relations_in_batch.append(

211 [entities[i - 1], entity , "OPERATION"]

212 )

213 break

214 i -= 1

215

216 # RE rule for coreference resolution

217 if entity in COREFERENCES:

218 if index > 0:

219 i = index

220 first_class_found = False

221 while i > 0 and entities[i - 1] != ".":

222 if labels[i - 1] == "CLASS":

223 if not first_class_found:

224 first_class_found = True

225 i -= 1

226 continue

227 if i > 2 and entities[i - 3] == "in":

228 i -= 1

229 continue

230 relations_in_batch.append(

231 [entity , entities[i - 1], "COREF"]

232 )

233 break

234 i -= 1

235

236 if (

237 entity == "of"

238 and labels[index - 1] == "CLASS"

239 and labels[index + 1] == "CLASS"

240 ):

241 relations_in_batch.append(

242 [entities[index - 1], entities[index + 1], "COMPOSITION"]

243 )

244

245 index += 1

246 self.relations.append(relations_in_batch)

247 return self.relations

248

249 def combine_entities(self , input_ids , predictions ):

250 """

251 Turns list of raw subtokens with their predictions

252 into full entities , using the BIO tagging scheme.

253 Returns lists of entities and list of corresponding

254 labels.

255 """

256

257 tokenizer = load_tokenizer ()

258 all_entities = []

259 all_labels = []
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260

261 for token , prediction in zip(input_ids , predictions ):

262 entities_in_batch = []

263 labels_in_batch = []

264 index = 0

265

266 # For each token , if it has a B tag ,

267 # search for the full entity and combine.

268 for tok , pred in zip(token , prediction ):

269 if pred != -100 and tokenizer.convert_ids_to_tokens(tok )[0] != "#":

270 if ID2LABEL[pred] == "O":

271 entities_in_batch.append(

272 tokenizer.convert_ids_to_tokens(tok)

273 )

274 labels_in_batch.append(ID2LABEL[pred])

275

276 if ID2LABEL[pred] == "B-CLASS":

277 entity = self.find_full_entity(

278 "CLASS", index , tokenizer , prediction , tok , token

279 )

280 entities_in_batch.append(entity)

281 labels_in_batch.append("CLASS")

282

283 if ID2LABEL[pred] == "B-ATTRIBUTE":

284 entity = self.find_full_entity(

285 "ATTRIBUTE", index , tokenizer , prediction , tok , token

286 )

287 entities_in_batch.append(entity)

288 labels_in_batch.append("ATTRIBUTE")

289

290 if ID2LABEL[pred] == "B-ASSOCIATION":

291 entity = self.find_full_entity(

292 "ASSOCIATION", index , tokenizer , prediction , tok , token

293 )

294 entities_in_batch.append(entity)

295 labels_in_batch.append("ASSOCIATION")

296

297 if ID2LABEL[pred] == "B-SYSTEM":

298 entity = self.find_full_entity(

299 "SYSTEM", index , tokenizer , prediction , tok , token

300 )

301 entities_in_batch.append(entity)

302 labels_in_batch.append("SYSTEM")

303

304 if ID2LABEL[pred] == "B-OPERATION":

305 entity = self.find_full_entity(

306 "OPERATION", index , tokenizer , prediction , tok , token

307 )

308 entities_in_batch.append(entity)

309 labels_in_batch.append("OPERATION")

310

311 index += 1

312 all_entities.append(entities_in_batch)

313 all_labels.append(labels_in_batch)
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314

315 return all_entities , all_labels

316

317 def find_full_entity(self , label , index , tokenizer , prediction , tok , token):

318 """

319 Look ahead in the NER predictions to combine

320 tokens into entities , using the BIO tagging scheme.

321

322 """

323 entity = tokenizer.convert_ids_to_tokens(tok)

324

325 # Edge case for 's associations

326 if entity == "'":
327 entity += tokenizer.convert_ids_to_tokens(token[index + 1])

328 return entity

329

330 # Check if next token is also part of the same entity

331 i = index

332 while (

333 i < len(prediction) - 1

334 and prediction[i + 1] != -100

335 and (

336 ID2LABEL[prediction[i + 1]] == f"I-{label}"

337 or ID2LABEL[prediction[i + 1]] == f"B-{ label}"

338 )

339 ):

340 # Sometimes a word is split into subtokens

341 # In this case , the subtokens also start with a B tag

342 # even though it is part of the same entity

343 # Subtokens can be recognized , because they start with "#"

344 if (

345 ID2LABEL[prediction[i + 1]] == f"B-{label}"

346 and tokenizer.convert_ids_to_tokens(token[i + 1])[0] != "#"

347 ):

348 break

349 # Add token to entity

350 entity += " " + tokenizer.convert_ids_to_tokens(token[i + 1])

351 i += 1

352

353 return entity

Listing 1: Implementation of the relation extraction rules.
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