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Abstract

In this thesis, we present a study on the formal specification and formal verification of
combinational and sequential circuits utilizing the interactive theorem prover LEAN3. The
main focus of this research is to gain insight into specifying circuits, effectively implementing
these specifications, and verifying circuit implementations to ensure compliance with the given
specifications. Initially, we examine fundamental circuits such as logic gates, multiplexers,
adders, and memory. Subsequently, we explore a more complex circuit, namely a sequence
recognizer implemented as a finite state machine, capable of identifying the bit pattern ‘101’
in a data stream. The efforts in verifying circuits using LEAN3 have demonstrated that
the process, depending on the amount of experience, can be highly time-consuming. While
certain proof aspects such as rewriting and simplifying can be automated, the verification may
need human guidance, depending on the complexity of the specification and implementation
of the circuit. Taking all of this into consideration, we will reflect on the advantages and
disadvantages of formal verification.
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1 Introduction

Digital circuits are the foundation of all modern electronic devices. These circuits are made to
execute logical operations using transistors, which act as electrical switches to manipulate digital
signals. The basic idea stems from Claude Shannon and his thesis published in 1938, ‘A Symbolic
Analysis of Relay and Switching Circuits’ [Sha38]. Shannon introduced the concept of using electri-
cal switches to solve boolean algebra problems. Our interest in digital circuits comes from the fact
that the reliance on digital circuits in our current society grows and ensuring the correctness of
these circuits becomes increasingly vital.

This thesis serves as a guide for learning how to formally verify both combinational (combi-
natorial) and sequential circuits using the interactive theorem prover LEAN3. Written in a tutorial
style, it is designed to be accessible to fellow students, even those who may not have had any
experience with interactive theorem provers before. We will explore some basic combinational
and sequential circuits, followed by a more complex finite state machine. We will use the term
‘combinational’ instead of ‘combinatorial’ in this thesis, as this is the terminology used in many of
the sources we will be referencing.

In this section we will introduce our research motivation (Section 1.1). We will explain what
specifications and implementations are (Section 1.2) and give a brief introduction to the LEAN3
theorem prover (Section 1.3).

1.1 Research Motivation

Digital circuits are crucial for modern electronic devices and systems, and the correctness of
these circuits is of importance. There are different correctness criteria, such as ‘functionality and
reliability’, which ensure that the circuit behaves as intended. Other criteria include ‘safety and
security’, which aim to prevent adverse side-effects or the leakage of sensitive information. An
example illustrating the failure to meet the ‘functionality and reliability’ criteria is the Intel Pentium
FDIV bug, resulting from a design flaw in the lookup table of the floating-point unit (FPU). Five
entries of this lookup table contained the wrong data, which caused incorrect results for specific
division operations for floating point numbers. It resulted Intel a loss of 475 million dollars [Cor].
An example illustrating the failure to meet the ‘safety and security’ criteria is the AMD ‘Zenbleed’
bug. In specific microarchitectural conditions, when the ‘vzeroupper’ instruction was used and a
branch misprediction occured, the processor incorrectly rolled back the instruction. This caused
the upper part of the YMM register to be in an undefined state. This part of the register then
contained random data from the register file, which allowed the registers of other processes to be
read and caused a vulnerability where a potential attacker could access sensitive data [AMD, Orm].
In this thesis we restrict ourselves to correctness in the sense of functional correctness. The other
criteria are out of scope.

There are two common methods to ensure the correctness of a circuit. These are validation
and verification. With validation, we check whether a design conforms to minimal requirements.
We use a set of test cases to check whether the design has the correct behavior. This should also
give us the confidence that it behaves correctly in other cases that are not tested. However, in most
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cases this approach does not give any correctness guarantees. This is because validation might still
miss edge cases or unique conditions that lead to errors. The Intel Pentium FDIV and AMD’s
‘Zenbleed’ bugs are notable examples of these oversights. Verification on the other hand is used to
prove that for all possible cases, the design conforms to all requirements.

Simulation is the most common method used to date to validate circuit implementations. Given
a set of inputs and a reference output, the output of the design is compared with the reference
output [Lam05]. For specific input sizes and types of circuits, such as 32-bit counters and multipliers,
simulating the entire input space can be time-consuming. Specifically, we need to check 232 inputs
for the counter or 264 inputs in the case of a 32-bit multiplier, which can take days to complete [Any].
If we consider circuits of even larger bits, such as 512-bit, then it becomes impractical to simulate
all inputs. That is why in practice not all inputs are checked, but only a specific set is tested until
one has enough confidence that the circuit is behaving correctly.

Formal verification uses logical properties, expressed in a formal language, and logical techniques
such as deduction, to verify that a circuit is correct with respect to a specification. A collection of
these properties is called a ‘specification’ and verification amounts to showing a deduction that all
actual properties of a circuit comply to the intended properties as specified. In contrast to simulation,
which examines individual outputs for each input, formal verification uses properties to reason
about a set of outputs all at once, considering the entire input space. Because of this ‘complete-
ness’, formal verification can offer us a higher degree of confidence that the implementation is correct.

Unfortunately, there are also some limitations for formal verification. Some examples are: user errors,
errors in specification, and software bugs [Lam05]. User errors can for example be over-constraining
and incorrectly representing the specifications. Errors in specifications can happen when a low level
specification does not fully capture the requirements set by a higher-level specification. Finally,
bugs in formal verification software can cause false confirmation of the design.

We will make use of the LEAN3 theorem prover to formally verify combinational and sequential
circuits. We have chosen the LEAN3 theorem prover because it is relatively modern and it has an
extensive library of lemmas. LEAN3 also provides a very well documented user manual. Similar
work on verifying circuits has been done in the theorem provers HOL [SH17], PVS [ORSS92] and
Nuprl [Lee92]. In Section 1.4 we will briefly discuss the difference between this thesis and the
already existing work.

This brings us to the following research question:

”How can we verify the correctness of a combinational and sequential circuit implemen-
tation, with respect to a given formal specification, using the LEAN3 interactive theorem
prover?”.

The exact methodology we apply to answer this question is described in Section 2.
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1.2 Specifications and Implementations

In this thesis we make a distinction between specifications and implementations. Specifications
describe the high-level behavior of a system, in our case a circuit. The specifications contain the
relationship of the various values that can be observed at specific data lines in a circuit, with-
out prescribing how the implementation should achieve that behavior. These specifications are
propositions, type ‘Prop’ in the LEAN3 theorem prover. Because the specifications are defined
in ‘Prop’, they do not have a direction of input and output. On the other hand, implementations
are represented as computable functions in LEAN3, which do have an input and output direction.
An implementation is a computable function that provides the clear steps to achieve the behavior
described in the specification. In essence, this means that it is possible for two implementations,
with both different input and output direction, to satisfy the same specification.

We will illustrate that two implementations with different input and output directions can satisfy
the same specification with a small example. The specification is defined by having 3 wires A, B,
and C. These wires must satisfy the logical relation A XOR B = C. The first implementation has
inputs A and B, and output C. This implementation calculates the output C by applying the XOR
operation on inputs A and B. The second implementation has inputs B and C, and output A. The
output A is given by applying the XOR operation on inputs B and C. Both of these implementations
satisfy the specification given, because of the commutative property of XOR and the equivalence
of the relations A XOR B = C, B XOR C = A, and A XOR C = B. The equivalence of these relations
can be derived from the table in Table 1. By choosing a pair of input values and observing the
corresponding output value, it becomes clear that results of the XOR operation are consistent with
these relations.

A B C

0 0 0
0 1 1
1 0 1
1 1 0

Table 1: Table of wires A, B, C, and their values

An important difference between implementations and specifications is that the implementations
must be computable. On the other hand, specifications can require constraints which are not
necessarily computable.

There are two kinds of specifications, namely under-specifications and over-specifications. Under-
specifications are specifications that do not completely describe the expected behavior. Some
constraints in an under-specification are left out which gives the implementations the freedom
to define these unspecified cases as they see fit. Over-specifications are specifications which have
‘too strict’ constraints. This means that the specification has specific constraints, which cannot be
implemented in practice. An example can be a circuit that has to operate at an unattainable high
speed. We will not consider over-specifications in this thesis.
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1.3 LEAN3 Theorem Prover

LEAN3 is an interactive theorem prover that has been developed by Microsoft Research and com-
munity contributors. The main goal of LEAN3 is to help computer scientists and mathematicians to
create and verify mathematical proofs. LEAN3 provides an extensive library of lemmas which can
be used to construct proofs. We will give a short explanation on how to define functions, theorems
and how to prove those theorems, by the means of an example which illustrates that adding two
even numbers results in an even number.

We will start by defining a predicate that asserts a number n to be even.

def is_even (n : N) : Prop :=

∃ k, n = 2*k

def is_even' : N → Prop

| n := ∃ k, n = 2*k

Figure 1: Definition is even

In Figure 1 we see two methods by which we can define functions using the def keyword. The
function is even takes an explicit argument n, and returns a proposition that defines the property
of that number being even. The second function is even’ uses pattern matching to match the
argument n. This method is useful if we want to define a function by recursion or need multiple
separate cases.

theorem even_plus_even {a b : N} (h1 : is_even a) (h2 : is_even b) : is_even (a + b) :=

begin

cases h1 with k hk,

cases h2 with l hl,

existsi k + l,

rw hk,

rw hl,

rw mul_add,

end

Figure 2: Theorem even plus even

The theorem in Figure 2 is defined with the theorem keyword. It has two hypotheses h1 and h2 in
the declaration, which assumes that a and b are even. After the last : symbol, we have our goal,
which expresses that a + b is even. Within the begin and end keywords is the part where we can
interactively construct our proof through the use of tactics. The exact meaning and use of these
tactics can be found in the official documentation of LEAN3 [Pro], while the definitions of the
imported lemmas can be found in the documentation of the Mathlib library [Com].

In the context of this thesis, LEAN3 will be utilized to formalize circuit specifications, imple-
menting circuits and proving that the implementations comply with the specifications.
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1.4 Related Work

Quite some research has been done on the verification of combinational and sequential circuits
using theorem provers. One of the examples is the research by Shiraz and Hasan [SH17]. In their
research, they created a library in HOL that can be used for theorem proving. Specifications
and implementations were formulated for combinational circuits, but the implementations were
not computable functions. The implementations were propositions that described the structural
connections between components. There was no distinct difference between specifications and
implementations. In essence, they have shown that the specifications are equivalent to each other.
Constrastingly, in our research, we will clearly outline the differences between specifications and
implementations and we will have a proof obligation that the implementation is computable.

In a paper by Leeser they used Nuprl to verify hardware [Lee92]. One of the examples they have
shown was for a sequential circuit, namely a program counter. They defined behavioral specifications
for subcomponents of this counter, which they said could be proven to be implemented at a lower
level of detail such as a latch. Furthermore, they gave a proof of the correctness of this circuit. In con-
trast, our thesis implements a program counter and not just verifies the equivalence of specifications.
Our implementation of a program counter will consist of a memory module with a built in full adder.

In a thesis by Mario Carneiro called ‘The Type Theory of Lean’ [Car], he presents the dependent
type theory which Lean is built on. The axiom system is shown in complete detail, including
optional features such as let binders and definitions. Carneiro also provides a reduction of the
theory that uses a fixed set of inductive types, which can be helpful for people who are studying the
framework. Furthermore, Carneiro explores the metatheory of the Lean theorem prover and proves
the unique typing of the definitional equality. In our thesis we make use of the LEAN3 interactive
theorem prover which is built upon the dependent type theory detailed by Carneiro. His work is a
useful resource for those wanting to understand the foundation of LEAN3.
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2 Methodology

In this section we will describe the methodology that we have applied in this thesis. Let us recall
the research question:

”How can we verify the correctness of a combinational and sequential circuit implemen-
tation, with respect to a given formal specification, using the LEAN3 interactive theorem
prover?”.

The first step we take is creating a formal specification. We can accomplish this through multiple
methods. One possibility is directly translating truth tables in LEAN3, or trying to find a relation-
ship within these truth tables and making a specification out of this using symbolic logic. We can
also enumerate properties of the behavior until we feel confident enough that we have the correct
specification. In essence, we translate the informal description to a formal description.

Recall that specifications do not have an input and output direction. Therefore, in the next
step, we will analyse the properties of the formal specification and decide which input and output
direction could be suitable. For this chosen input and output direction, we will investigate if there
exists an output for all inputs (existence) and if this output is precisely defined (unique). We will
accomplish this by providing an existence and uniqueness proof in LEAN3.

In the following step we will investigate whether there exists a computable implementation designated
to comply to the formal specification. We will do this by providing a functional implementation
in LEAN3. If we succeed in giving an implementation, then we also know that the output is
computable given the inputs. If we are not able to give an implementation, then it might be
the case that there exists no computable implementation for our specification. This comes from
the fact that our specifications can have requirements, that do not necessarily have to be computable.

Finally, we will try to provide a proof in LEAN3 which shows that the implementation com-
plies with the specification. In some cases we are able to prove a stronger property which shows
that the specification precisely defines the implementation, there is only one.
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3 Combinational Circuits

Combinational circuits are circuits that only depend on their current inputs, and not on memory
or previous inputs and outputs. In real-world applications, these circuits may have delays due to
factors such as signal propagation and gate switching. We will abstract away from these details
and assume that the circuits have no delay.
We will take a look at logic gates (Section 3.1), a 2-to-1 multiplexer (Section 3.2), a full adder
(Section 3.3) and a 4-bit shifter (Section 3.4).

3.1 Logic Gates

Logic gates are fundamental building blocks in the design of combinational and sequential circuits.
These logic gates operate on binary signals to produce another binary signal. There exist multiple
logic gates such as: OR, AND, XOR, NOT, NAND, NOR and XNOR gates. In this thesis we will only im-
plement OR, AND, XOR and NOT gates in LEAN3. While there are other gates such as the universal
gates NAND and NOR which are capable of implementing any boolean function [End01], we will limit
ourselves to the previously mentioned gates as they can be combined into any other gate.
In this section, we will transition from logic gates with a fixed number of inputs, to an arbitrary
amount of inputs. In the paper by Sumayya Shiraz and Osman Hasan [SH17] they used a recur-
sive approach to define logic gates in the theorem prover HOL. We will use a similar recursive
approach where we will implement the logic gates by applying logical operators on a list of boolean
values. Furthermore we will give specifications for the behavior of the gates and a proof that our
implementations comply with these specifications.

3.1.1 NOT

A OUT
0 1
1 0

Table 2: Truth table of a NOT-gate

Table 2 shows the truth table for a NOT-gate. We can see that if the input A is 0, then the output
must be 1, else if the input A is 1 then the output must be 0. The NOT-gate simply inverts the
signal and can be specified by the following specification shown in Figure 3.

def NOT_spec (A : bool) (OUT : bool) : Prop :=

out = ¬A

Figure 3: Specification of a NOT-gate

Next we will proof the uniqueness of the output of the NOT spec. The theorem in Figure 4 illustrates
that given all inputs A, there exists a unique output OUT. This proof is done by introducing the A
variable. Then using the exists unique of exists of unique lemma, we can prove the existence
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and uniqueness of the output OUT. The existence is trivially proven by applying the exists eq

lemma. The uniqueness of the output pair is proven by showing that, for all pairs of outputs y1 and
y2, if they both satisfy the specification NOT spec for the same inputs, then they must be equal
to each other. We do this by introducing the variables y1 and y2, unfolding our specification and
introducing the hypotheses that assume y1 and y2 satisfy the specification. We can show with a
simple rewrite that y1 and y2 must be the same, finishing our proof. This uniqueness proof is the
same for the other logic gates we will see later on, therefore we will not explain this proof again.

theorem NOT_unique : ∀ (A : bool), ∃! (OUT : bool),

NOT_spec A OUT :=

begin

intros A,

apply exists_unique_of_exists_of_unique,

{

exact exists_eq,

},

{

intros y1 y2,

unfold NOT_spec,

intros h1 h2,

rw ←h2 at h1,

exact h1,

}

end

Figure 4: Theorem exists unique of NOT spec

To implement the NOT-gate, we can define a function NOT : bool → bool. This function matches
the input argument with tt and ff, and returns the complement of the input. The implementation
is given in Figure 5.

def NOT : bool → bool

| tt := ff

| ff := tt

Figure 5: Implementation of a NOT-gate

To prove that the implementation of the NOT-gate (NOT) complies with the specification (NOT spec),
we need to show that the statement in Figure 6 holds.

∀ (A : bool), ∀ (OUT : bool), NOT A = OUT ⇐⇒ NOT_spec A OUT

Figure 6: Equivalence NOT and NOT spec

We can complete this proof by considering all possible values of the input A. With some unfolding
and simplifying of our goal, we can apply the eq comm lemma, which proofs that the left and right
side of the equivalence are equal to each other. The proof is shown in Figure 7.
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theorem NOT_correct : ∀ (A : bool), ∀ (OUT : bool),

NOT A = OUT ⇐⇒ NOT_spec A OUT :=

begin

intros A OUT,

cases A; unfold NOT NOT_spec; simp; rw eq_comm,

end

Figure 7: Theorem NOT complies with NOT spec

3.1.2 OR

a1 a2 . . . OUT
0 0 . . . 0
0 1 . . . 1
1 0 . . . 1
1 1 . . . 1

Table 3: Extended truth table of an OR-gate

The truth table of an OR-gate in Table 3 shows that if any of the inputs an is equal to 1, the output
of the OR-gate must also be 1. In other words, given a list A of boolean values an which correspond
with the inputs of the OR-gate, there must exist at least one element an that is equal to 1 for the
output to also be equal to 1. The gives us the following specification shown in Figure 8. The term
‘a ∈ A’ means that there exists an index within the bounds of the list A, such that a is equal to
the value at that specific index. We have chosen to specify our OR-gate this way because, directly
translating the truth table would become unfeasible if the size of the inputs grows larger.

def OR_spec (A : list bool) (OUT : bool) : Prop :=

OUT = (∃ (a ∈ A), a = tt)

Figure 8: Specification of an n-bit OR-gate
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theorem OR_unique : ∀ (A : list bool), ∃! (OUT : bool),

OR_spec A OUT :=

begin

intros A,

apply exists_unique_of_exists_of_unique,

{

exact exists_eq,

},

{

intros y1 y2,

unfold OR_spec,

intros h1 h2,

rw ←h2 at h1,

exact h1,

}

end

Figure 9: Theorem exists unique of OR spec

To recursively implement the OR-gate we can define a function OR : list bool → bool. The
function applies the ∨ operator to the head of the list and recursively calls itself with the tail of
the list until it reaches the base case, which is the empty list. In the base case, the function will
return the value ff. The implementation of this function is given in Figure 10.

def OR : list bool → bool

| [] := ff

| (h::t) := h ∨ OR t

Figure 10: Implementation of an n-bit OR-gate

The final step is to prove that our implementation complies with our specification. This can be
done by proving the following statement in Figure 11.

∀ (A : list bool), ∀ (OUT : bool), OR A = OUT ⇐⇒ OR_spec A OUT

Figure 11: Equivalence OR and OR spec

To complete the proof, we can use induction on the length of the list A. This will cover both the
base case where the list is empty and the inductive case where the list is non-empty. The base case
is straightforward to prove as it follows directly from the definitions of OR and OR spec. For the
inductive case, we can use a proof by cases to consider all possible values of the head and tail of the
list. We use the finish tactic to automatically find the appropriate lemmas to complete our proof.
The complete proof can be found in Figure 12.
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theorem OR_correct : ∀ (A : list bool), ∀ (OUT : bool),

OR A = out ⇐⇒ OR_spec A out:=

begin

intros A OUT,

induction A,

{ --base case

finish [OR, OR_spec],

},

{ --inductive case

cases A_hd; cases A_tl; finish [OR, OR_spec],

}

end

Figure 12: Theorem OR complies with OR spec

3.1.3 AND

a1 a2 . . . OUT
0 0 . . . 0
0 1 . . . 0
1 0 . . . 0
1 1 . . . 1

Table 4: Extended truth table of an AND-gate

The truth table of an AND-gate in Table 4 shows that if and only if all of the inputs an are equal
to 1, the output of the AND-gate must also be 1. In other words, given a list A of boolean values an
which correspond with the inputs of the AND-gate, all elements in that list must be equal to 1.
This results in the following specification illustrated in Figure 13.

def AND_spec (A : list bool) (OUT : bool) : Prop :=

OUT = (∀ (a ∈ A), a = tt)

Figure 13: Specification of an n-bit AND-gate
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def AND_unique : ∀ (A : list bool), ∃! (OUT : bool),

AND_spec A OUT :=

begin

intros A,

apply exists_unique_of_exists_of_unique,

{

exact exists_eq,

},

{

intros y1 y2,

unfold AND_spec,

intros h1 h2,

rw ←h2 at h1,

exact h1,

}

end

Figure 14: Theorem exists unique of AND spec

To recursively implement the AND-gate we can define a function AND : list bool → bool. The
function applies the ∧ operator to the head of the list and recursively calls itself with the tail of
the list until it reaches the base case, which is the empty list. In the base case, the function will
return the value tt. The implementation of this function is given in Figure 15.

def AND : list bool → bool

| [] := tt

| (h::t) := h ∧ AND t

Figure 15: Implementation of an n-bit AND-gate

To show that our implementation complies with our specification we need to prove the following
statement in Figure 16.

∀ (A : list bool), ∀ (out : bool), AND A = out ⇐⇒ AND_spec A out

Figure 16: Equivalence AND and AND spec

The steps to prove this statement are analogue to the one in Section 3.1.2 and are shown in
Figure 17.
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theorem AND_correct : ∀ (A : list bool), ∀ (OUT : bool),

AND A = OUT ⇐⇒ AND_spec A OUT:=

begin

intros A OUT,

induction A,

{ --base case

finish [AND, AND_spec],

},

{ --inductive case

cases A_hd; cases A_tl; finish [AND, AND_spec],

}

end

Figure 17: Theorem AND complies with AND spec

3.1.4 XOR

a1 a2 a3 ... OUT
0 0 0 ... 0
0 0 1 ... 1
0 1 0 ... 1
0 1 1 ... 0
1 0 0 ... 1
1 0 1 ... 0
1 1 0 ... 0
1 1 1 ... 1

Table 5: Extended truth table of an XOR-gate

If we take a look at the truth table of an XOR-gate in Figure 5, we notice that the output is 1 if
the inputs have an odd number of 1’s. This observation is confirmed in [HH07], where they state
that an n-bit XOR-gate, also known as a parity gate, produces an output of 1 if an odd number of
inputs are 1. Thus can we create our specification by counting the numbers of tt values in our input
list A, and having the output being equal to tt if this count is odd. The count function and the
specification are given in Figure 18. The exists unique proof of the XOR spec is shown in Figure 19.

def count_tt : list bool → N
| [] := 0

| (h::t) := (if h = tt then 1 else 0) + count_tt t

def XOR_spec (A : list bool) (OUT : bool) : Prop :=

OUT = ((count_tt A) % 2 = 1)

Figure 18: Specification of a n-bit XOR-Gate
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theorem XOR_unique : ∀ (A : list bool), ∃! (OUT : bool),

XOR_spec A OUT :=

begin

intros A,

apply exists_unique_of_exists_of_unique,

{

exact exists_eq,

},

{

intros y1 y2,

unfold XOR_spec,

intros h1 h2,

rw ←h2 at h1,

exact h1,

}

end

Figure 19: Theorem exists unique of XOR spec

In Figure 20 we have recursively defined an n-bit XOR-gate. In the case that the list is empty, we
return the value ff. If the list only contains a single element, then we will return the value of that
element. In the last case of our function, we have h1 representing the first bit in the list, h2 the
second bit and t the tail of the list. We apply the definition of a 2-bit XOR-gate on h1 and h2, and
replace both entries with the result of this operation. We then recursively call the XOR function on
the result and the tail of the list. This in essence chains the inputs with 2-bit XOR-gates.

def XOR : list bool → bool

| [] := ff

| [b] := b

| (h1::h2::t) := XOR((h1 ̸= h2) :: t)

Figure 20: Implementation of a n-bit XOR-Gate

To prove that the implementation of the XOR-gate (XOR) complies with the specification (XOR spec),
we need to show that the following statement in Figure 21 holds.

∀ (A : list bool), ∀ (OUT : bool), XOR A = OUT ⇐⇒ XOR_spec A OUT

Figure 21: Equivalence XOR and XOR spec

The theorem in Figure 22 proves that the above statement is true. We start by introducing the
variables A and OUT. Intuitively we would do a case analysis on the list A, but during the process of
constructing the proof, we had the issue that our hypothesis of the list was too strong. Therefore
we destruct the list A and prove two cases where one case is the empty list, and the other case
is the non-empty list. The case where the list is empty is trivial to prove and just requires us to
rewrite our hypothesis in our goal and unfolding the definitions. Then we can finish this goal by
applying the eq comm lemma. The second case, where the list is non-empty, we prove by induction
on the tail of the list tl. The base case has the tail of the list being empty. The list only contains
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the head hd, thus can we do a case analysis on this value, unfold the definitions and close the goal
with the eq comm lemma. For the inductive step, we generalized our induction hypothesis because
it was too restrictive. The inductive step is proven by considering the values of the head hd and the
tail of the head tl hd. With some simplification tactics and the finishing tactic tautology, we can
show that our goal is the same as our inductive hypothesis, completing the proof.

theorem XOR_correct : ∀ (A : list bool), ∀ (OUT : bool),

XOR A = OUT ⇐⇒ XOR_spec A OUT:=

begin

intros A OUT,

destruct A,

{

intros h,

unfold XOR XOR_spec,

rw h,

unfold count_tt XOR,

simp,

exact eq_comm,

},

{

intros,

induction tl generalizing A hd,

{

rw a,

cases hd;

{

unfold XOR XOR_spec count_tt,

simp,

rw eq_comm,

}

},

{

rw a,

unfold XOR count_tt,

cases hd; cases tl_hd;

{

simp at *,

unfold XOR_spec count_tt at *,

simp at *,

try {ring_nf, simp},

tautology,

}

}

}

end

Figure 22: Theorem XOR complies with XOR spec
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3.2 Multiplexer (2-to-1)

A multiplexer is an essential digital circuit used to switch between different inputs. In this section
we will specify, implement and verify a 2-to-1 multiplexer. A 2-to-1 multiplexer is a circuit that has
2 input lines, a select line and an output line. One possible logical implementation is presented in
Figure 23.

Figure 23: A logical implementation of a 2-to-1 multiplexer

3.2.1 Specification

The 2-to-1 multiplexer can be precisely defined by specifying the expected output for each value of
the select line. In this case, when the select line SEL is false, we expect the output to be equal to
the input signal IN0. Conversely, when the select line SEL is equal to true, we expect the output
to be equal to the input signal IN1. The specification is shown in Figure 24.

def mux_spec {α : Type} (IN0 IN1 : α) (SEL : bool) (OUT : α) : Prop :=

if SEL then (OUT = IN1) else (OUT = IN0)

Figure 24: Specification of a 2-to-1 multiplexer

The type of inputs IN0, IN1 and output OUT is generic, and is represented by the type variable α.
This allows for a flexible specification that can accommodate various data types. We will utilize
this specification to verify a 2-to-1 multiplexer with single bit inputs and n-bit inputs.

3.2.2 Specification Functionality

The proof in Figure 25 demonstrates that for all inputs IN0, IN1 and SEL, the specification produces
a unique output OUT. We start by introducing the variables IN0, IN1 and SEL. Then we apply the
exists unique of exists of unique lemma which results in the proof obligations of the existence
and uniqueness of an output. For the existence part, we show that there exists an output by
considering each possible value of SEL and closing the goals using the exists eq lemma. Finally
for the uniqueness part, we show that if y1 and y2 satisfy the specification, then they must be equal
to each other. We do this by rewriting and simplifying our hypotheses, and showing that this holds
for each possible value of SEL.
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theorem mux_spec_unique : ∀ (IN0 IN1 SEL: bool),

∃! (OUT : bool), mux_spec IN0 IN1 SEL OUT :=

begin

intros IN0 IN1 SEL,

apply exists_unique_of_exists_of_unique,

{ --existence of output

cases SEL; exact exists_eq,

},

{ --uniqueness of output

intros y1 y2,

cases SEL;

{

unfold mux_spec,

simp,

intros h1 h2,

subst h2,

exact h1,

}

}

end

Figure 25: Theorem exists unique of MUX spec

3.2.3 Implementation (1-bit inputs)

Similar to the approach used in the [SH17] paper, we assign variable names to each output of the
logic gates, as illustrated in Figure 23. Subsequently, we define a function in LEAN3 that takes
three inputs, namely IN0, IN1 and SEL each of type bool, and produces an output of type bool.
The reason for choosing type bool is that we only have 1-bit inputs.
Inside of this function we define the variables p, q and r and return the value of (OR [q, r])

which is the gate that represents the output. The implementation is shown in Figure 26.

def mux_imp (IN0 IN1 SEL : bool) : bool :=

let p := NOT sel,

q := AND [IN1, p],

r := AND [IN2, SEL] in

(OR [q, r])

Figure 26: Implementation of a 2-to-1 Multiplexer

3.2.4 Implementation (n-bit inputs)

To create a 2-to-1 multiplexer using n-bit wide inputs, we can make use of our implementation of
a 2-to-1 multiplexer for 1-bit inputs, assuming that it has been correctly implemented. Consider
two input arrays IN0 and IN1 with elements [1:N]. We connect each pair (IN0[k], IN1[k]) with
0 < k ≤ N , to a 2-to-1 multiplexer and then share a single select line with these multiplexers.
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Figure 27: A description of a 2-to-1 n-bit multiplexer

First we need to define a zip function which merges two arrays, A of type α and B of type β, into a
single array of type (α× β) where the elements are pairs (a × b) with a ∈ A and b ∈ B.

def zip_array {n : N} {α β : Type} (a : array n α) (b : array n β) : array n (α × β) :=

〈λ i, (a.read i, b.read i)〉

Figure 28: Zip function

Next we apply the zip function on our input arrays IN0 and IN1. This will create a new array where
each element is a pair of elements from IN0 and IN1. Finally we can use the map function to apply
the mux imp which we have previously defined, on each element of this new array. The final result
is a n-bit 2-to-1 multiplexer, shown in Figure 29.

def mux_n_imp {n : N} (IN0 IN1 : array n bool) (SEL : bool) : array n bool :=

(zip_array IN0 IN1).map (λ x, mux_imp x.fst x.snd sel)

Figure 29: Implementation of a n-bit 2-to-1 Multiplexer

3.2.5 Verification

The theorem mux complies to spec in Figure 30 shows the functional correctness of the 2-to-1
multiplexer implementation. This theorem states that for all given input values IN0, IN1 and SEL,
and all values out the output OUT, the mux spec holds if and only if the implementation mux imp

produces the same output.
We start the proof by introducing the variables the variables IN0, IN1 and SEL. Then we do a case
analysis on the input value SEL, to see if we get the expected output. For each case, we unfold
the definitions, simplify them and then solve both the goals using the commutativity property of
equality.
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theorem mux_complies_to_spec : ∀ (IN0 IN1 SEL: bool),

∀ (OUT : bool), mux_spec IN0 IN1 SEL OUT ⇐⇒ (mux_imp IN0 IN1 SEL) = OUT :=

begin

intros IN0 IN1 SEL out,

cases SEL;

{

unfold mux_spec mux_imp,

simp,

unfold AND OR NOT,

simp,

rw eq_comm,

},

end

Figure 30: Theorem mux imp complies with mux spec

The theorem n mux complies to spec in Figure 31 shows the functional correctness of the n-bit
2-to-1 multiplexer implementation. This theorem states that for all given input values IN0, IN1
and SEL, and all values out the output OUT, the mux spec holds if and only if the implementation
n mux imp produces the same output.
We start the proof by introducing the variables IN0, IN1 and SEL into the context. Then we do
a case analysis on the input value SEL, to see if we get the expected output. We then split the
goal into a left and right implication. For both directions we simplify and unfold the definitions.
Next we introduce a hypothesis h1 which assumes the correct value of the output value OUT. Then
by applying the array.ext theorem, we can introduce a new variable which represents the index
of the array. Finally we can rewrite our hypothesis h1 into our main goal and solve all goals by
applying the array.read map theorem.

theorem n_mux_complies_to_spec {n : N} : ∀ (IN0 IN1 : array n bool) (SEL : bool),

∀ (OUT : array n bool), mux_spec IN0 IN1 SEL OUT ⇐⇒ (mux_n_imp IN0 IN1 SEL) = OUT :=

begin

intros IN0 IN1 SEL OUT,

cases SEL;

{

split;

{

unfold mux_n_imp mux_spec mux_imp zip_array,

simp,

unfold OR AND NOT,

simp,

intros h1,

apply array.ext,

intros i,

rw ←h1,
apply array.read_map,

},

},

end

Figure 31: Theorem n mux imp complies with mux spec
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3.3 Full Adder

A full adder is a digital circuit that performs addition on three binary inputs: A, B and a carry
input CIN. It produces a sum SUM and a carry output COUT. The logical implementation of a full
binary adder (single bit inputs and outputs) is shown in Figure 32. In this section we will specify
a full adder and a full binary adder, implement them and verify the implementation of the full
binary adder with the specification.

Figure 32: A logical implementation of a full binary adder

3.3.1 Specification

To specify a full binary adder, we can mathematically express the values of SUM and COUT. The
sum is calculated by adding the boolean values together and using modulo 2 operation to ensure
the value stays within the range of a boolean value. The COUT is assigned the value true if the sum
of the boolean values is equal or greater than 2, otherwise it is assigned to false. The specification
is shown in Figure 33.

def full_adder_spec (A B CIN SUM COUT : bool) : Prop :=

SUM = nat_to_bool ((bool_to_nat A + bool_to_nat B + bool_to_nat CIN) % 2) ∧
COUT = ((bool_to_nat A + bool_to_nat B + bool_to_nat CIN) ≥ 2)

Figure 33: Specification of a full binary adder

To specify a full adder, we can also mathematically express the values SUM and COUT as shown
previously. However, the types of our inputs A and B are now array n bool. This means that the
sum, when converted from the base-2 representation to a natural number must equal the sum of all
inputs modulo 2n, with n the size of the array. Conversely, the COUT is calculated by adding all
inputs together and assigning the value of true if the sum of the inputs is equal or greater than 2n,
otherwise it is assigned to false. The specification is shown in Figure 34.
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def full_n_adder_spec {n : N} (A B : array n bool) (Cin : bool)

(Sum : array n bool) (Cout : bool) : Prop :=

bool_arr_to_nat Sum = (bool_arr_to_nat A + bool_arr_to_nat B + bool_to_nat Cin) % 2^n ∧
Cout = ((bool_arr_to_nat A + bool_arr_to_nat B + bool_to_nat Cin) ≥ 2^n)

Figure 34: Specification of a full adder

3.3.2 Specification Functionality

The proof in Figure 35 demonstrates that for all inputs A, B and CIN, the specification produces
a unique output pair (SUM, COUT). For this, we proved both the existence and uniqueness of the
output pair.

theorem full_adder_unique : ∀ (A B CIN : bool), ∃!(SUM COUT : bool),

full_adder_spec A B CIN SUM COUT :=

begin

intros A B CIN,

apply exists_unique_of_exists_of_unique,

{

unfold full_adder_spec,

cases A; cases B; cases CIN;

{

unfold bool_to_nat nat_to_bool,

simp,

unfold nat_to_bool,

simp,

}

},

{

intros y1 y2,

unfold full_adder_spec,

intros h1 h2,

destruct h1,

destruct h2,

simp,

finish,

}

end

Figure 35: Theorem exists unique of full adder spec

The existence of the output pair is proven by showing that for every possible combination of inputs
(A, B, CIN), there exists at least one output pair (SUM, COUT), that satisfies the full adder spec.
This is done by unfolding the full adder spec definition and evaluating all possible cases for the
inputs. The uniqueness of the output pair is proven by showing that, for all output pairs (y1, COUT),
and (y2, COUT), if both satisfy the full adder spec for the same inputs, and for each of these
pairs there exists exactly one COUT, then y1 must equal y2. We do this by introducing the variables
y1 and y2, unfolding our specification and introducing the hypotheses that y1 and y2 satisfy the
specification. Then by destructing these hypotheses and simplifying, we can use the finish tactic to
automatically find a proof to close the goal.
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theorem full_n_adder_unique {n : N} : ∀ (A B : array n bool) (CIN : bool),

∃!(SUM : array n bool)(COUT : bool), full_n_adder_spec A B CIN SUM COUT :=

sorry,

Figure 36: Theorem exists unique of full n adder spec

The proof is Figure 36 is marked with the placeholder sorry. This means that we were not able
to provide a proof for the uniqueness of the output pair for arrays of length n. Similarly, we were
unable to proof that our implementation in Section 3.3.4 complies with the specification given in
Figure 34. While we believe that both the specification and implementation are correct, due to
limitations in time and knowledge, we were unable to complete the proofs.

3.3.3 Implementation full binary adder

To implement the full binary adder, we will use the same approach used in Section 3.2.3. We
define a function that takes three inputs, namely A, B and C each of type bool, and produces an
output of type (bool × bool). The first member of the pair represents the sum and the second
member represents the carry-out. We will again define variables representing the output of the
gates in Figure 32. Finally we will return the output gates (XOR [p, CIN], OR [q, r]). The
implementation is shown in Figure 37.

def full_adder_imp (A B CIN : bool) : (bool × bool) :=

let p := XOR [A, B],

q := AND [CIN, p],

r := AND [A, B] in

(XOR [p, CIN], OR [q, r])

Figure 37: Implementation of a full binary adder

3.3.4 Implementation full adder

Figure 38: A description of a full n-bit adder
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In Figure 38 we illustrate how we will implement a full n-bit adder. For all inputs and outputs,
the corresponding types are shown. For every iteration, we generate an output bit in the array C

which contains the sum of the bits at that iteration from arrays A and B. We also produce a COUT

as input for the next iteration, or as output for the last iteration. After the last iteration, we will
have an output array C containing the binary sum of the arrays A and B, and we will also have a
carry-out COUT. This process is called ‘folding’.

def full_n_adder_imp {n : N} (A B : array n bool) (CIN : bool) : (array n bool × bool) :=

fold_array (full_adder_imp) (zip_array A B) (mk_array n ff, CIN)

def fold_array {n : N} {α β γ δ : Type} (f : α → β → γ → (δ × γ)) (a : array n (α × β))
(i : array n δ × γ) : (array n δ × γ) :=

fold_array_aux f a n (le_refl _) i

def fold_array_aux {n : N} {α β γ δ: Type} (f : α → β → γ → (δ × γ)) (a : array n (α × β)) :

Π (i : N), i ≤ n → (array n δ × γ) → (array n δ × γ)
| (nat.zero) h acc := acc

| (nat.succ j) h acc :=

let i : fin n := 〈j, h〉,
(SUM, COUT) := f (a.read i).fst (a.read i).snd acc.snd in

fold_array_aux j (le_of_lt h) (acc.fst.write i SUM, COUT)

Figure 39: Implementation of a full adder

The fold array function in Figure 39 takes a folding function, an input array, an initial value
for the accumulator which stores the partial calculated sum and carry-out, and produces a pair
where the first element is the sum and the second element is the carry-out. This function in turn
calls the fold array aux function with the needed arguments which applies the actual folding
logic. The full n adder imp function is the implementation of the adder. We call the fold array

function with the full adder imp as our folding function, (zip array A B) being our input arrays
combined into a single array and (mk array n ff, CIN) being the initial value of our accumulator.
This results in an implementation of a full n-bit adder.

3.3.5 Verification

The theorem in Figure 40 shows that our full binary adder complies with the given specification.
This is done by unfolding both the implementation and specification. We then check that the
implementation and specification have the same output pair for all possible inputs. During this case
analysis, we unfold as much as we can, and solve the goal automatically using the tautology tactic.
As discussed in Section 3.3.2, we believe that the specification and implementation are correct, but
due to limitations in time and knowledge, we were unable to finish the proofs. The unfinished proof
is shown in Figure 41.
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theorem full_adder_correct : ∀ (A B CIN : bool), ∀ (SUM COUT : bool),

full_adder_spec A B CIN SUM COUT ⇐⇒ full_adder_imp A B CIN = (SUM, COUT) :=

begin

intros,

unfold full_adder_imp full_adder_spec,

simp,

cases A; cases B; cases CIN;

{

unfold bool_to_nat AND OR XOR,

simp,

unfold nat_to_bool,

tautology,

}

end

Figure 40: Theorem full adder imp complies with full adder spec

theorem full_n_adder_correct {n : N} : ∀ (A B : array n bool) (CIN : bool),

∀ (SUM : array n bool) (COUT : bool),

full_n_adder_spec A B CIN SUM COUT ⇐⇒ full_n_adder_imp A B CIN = (SUM, COUT) :=

begin

sorry,

end

Figure 41: Theorem full n adder imp complies with full n adder spec
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3.4 4-bit Shifter

A shifter circuit is a combinational circuit that shifts a data word to the left or to the right. Shifters
are often used to implement multiplication and division by powers of two. In this section we will
implement and verify a 4-bit shifter that is able to perform a logical left shift and logical right shift.
A logical left shift moves all bits one position to the left, with the right-most bit set to 0. Similarly,
a logical right shift moves moves all bits one position to the right, with the left-most bit set to 0.

Figure 42: A logical implementation of a 4-bit shifter

The circuit shown in Figure 42 represents the logic gates circuit of a 4-bit shifter, which is a
simplified version of the 8-bit shifter circuit presented in [Com21]. This simplification is to keep the
theorems concise but they can be applied to any n-bit shifter circuit using the same pattern.

3.4.1 Specification

The specification of our 4-bit shifter is shown in Figure 43. This specification is generalized for
n-bit arrays. The behavior of our shifter is determined by the input D. In the case that D is true,
the shifter is expected to perform a logical right shift. The function uses the read function on
array A to obtain the value at index (i.val - 1). If this value falls within the bounds of the array,
then the output array will receive this value at index (i.val), else it is given the value false. In
contrast, when D is false, the shifter is expected to perform a logical left shift. Again the function
uses the read function on array A to obtain the value at index (i.val + 1). If this value is within
the bounds of the array, then the output array will receive this value at index (i.val). Otherwise
it will receive the value false.
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def shft_spec {n : N} (A : array n bool) (D : bool) (OUT : array n bool) : Prop :=

if D = tt then OUT = 〈λ i, if h : i.val > 0 ∧ i.val - 1 < n then A.read 〈i.val - 1, h.right〉
else ff〉

else OUT = 〈λ i, if h : i.val + 1 < n then A.read 〈i.val + 1, h〉 else ff〉

Figure 43: Specification of a n-bit shifter

3.4.2 Specification Functionality

The proof in Figure 44 demonstrates that for all input arrays A and all inputs D, the specification
produces a unique output. We start by introducing the variables A and D. Then we apply the
exists unique of exists of unique lemma which has us prove the existence and uniqueness of
an output. For the existence, we simply unfold the specification and show that for each value of D,
there exists an output with the exists eq lemma. Finally for the uniqueness part, we show that if
y1 and y2 satisfy the specification, then they must be equal to each other. We do this by rewriting
and simplifying our hypotheses, and showing that this holds for each possible value of D.

shft_unique {n : N} : ∀ (A : array n bool) (D : bool),

∃! (OUT : array n bool), shft_spec A D OUT :=

begin

intros A D,

apply exists_unique_of_exists_of_unique,

{

unfold shft_spec,

cases D;

{

exact exists_eq,

}

},

{

intros y1 y2,

unfold shft_spec,

intros h1 h2,

cases D;

{

simp at h1 h2,

rewrite ←h2 at h1,

exact h1,

}

}

end

Figure 44: Theorem exists unique of shft spec

3.4.3 Implementation

To implement the shifter circuit, we define the outputs of each logic gate in the design presented in
Figure 42. After that we create a list where each index represents the correct output gate. Finally
we convert this list to an array as shown in Figure 45.
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def shft_imp (A : array 4 bool) (D : bool) : array 4 bool :=

let D':= NOT D,

p := AND [A.read 0, D],

q := AND [D', A.read 1],

r := AND [D, A.read 1],

s := AND [D', A.read 2],

t := AND [D, A.read 2],

u := AND [D', A.read 3] in

[q, OR[p, s], OR[r, u], t].to_array

Figure 45: Implementation of a 4-bit shifter

3.4.4 Verification

The theorem in Figure 46 shows that for all inputs A and D, the shifter implementation satisfies
the shifter specification. This is done by introducing the variables A and D, and unfolding the
specification. Then, the two cases of the input D are considered, which lets us prove both the left
shift and right shift. We can apply the same proof to each shift direction. Subsequently, we show
that for every index within the array bounds, the value computed by the implementation matches
the value specified by the specification. This is accomplished by using the reflexivity tactic. When
we reach an index outside of the array bounds, our hypothesis, which states that the array index
must be smaller than 4, will be false. Therefore by the principle of explosion we can complete the
proof.
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theorem shft_correct : ∀ (A : array 4 bool) (D : bool),

shft_spec A D (shft_imp A D) :=

begin

intros A D,

unfold shft_spec,

simp,

cases D;

{

simp,

unfold shft_imp,

apply array.ext,

intro i,

ring_nf,

unfold list.to_array,

dsimp at *,

unfold AND NOT OR,

simp,

cases i,

cases i_val with i_val1,

{

refl,

},

{

cases i_val1 with i_val2,

{

refl,

},

{

cases i_val2 with i_val3,

{

refl,

},

{

cases i_val3 with i_val4,

{

refl,

},

{

exfalso,

repeat { rw nat.succ_eq_add_one at i_property },

simp at i_property,

exact i_property,

}

}

}

}

}

end

Figure 46: Theorem shft imp complies with shft spec
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4 Sequential Circuits

Sequential circuits are circuits that do not only dependent on the current inputs, but also depend
on previous inputs and ouputs, or memory, or both.
In this section we will take a look at signals which model data lines over time (Section 4.1), a
memory component (Section 4.2), and a program counter (Section 4.3).

4.1 Signals

Sequential circuits operate based on a global clock. To be able to represent inputs and outputs over
this global clock (time), we defined functions that map a natural number (time) to an output value
such as a bool, array n bool and type α where α can represent any type. This methodology is
similar to the approach used in [Lee92] where they defined functions that map natural numbers to
booleans and vectors of booleans. The function definitions are shown in Figure 47.

def stream (α : Type) := N → α

def signal := stream bool

def sig_n (n : N) := stream (array n bool)

Figure 47: Implementations of various signals

4.2 Memory

A memory component is able to store single or multiple bits of data. Many implementations of
memory, with an emphasis on flip-flops have a so called metastable state. In this state, the output
of the flip-flop hovers between 1 and 0 for an indeterminate time [CM73]. To capture this behavior,
we will make use of an under-specification for a memory component. Consequently, we will not be
able to prove that our specification, given all inputs, has a unique output. What we can proof is
the following: given two input streams, if the specification is related to two output streams that
initially have an undetermined value, once the value of both output streams at a specific time
are determined and are equal to each other, then for any time thereafter, these streams will have
the same value. We call this ‘almost equal’. The concept of streams being ‘almost equal’ can be
compared to circuits having a metastable state. Once the output of a circuit is stable, then all
future outputs will be the same.
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4.2.1 Specification

Figure 48: Signal table of a memory component

In Figure 48 we have illustrated a table which shows the relationship between the time T and the
signals D (data input signal), S (set input signal), M (memory value signal) and O (output signal).
The behavior of the memory component is dependent on the value of St, in other words, the value
of S at time t. If St is 0, then the memory component retains its current memory value into time
t+1 (Mt+1 = Mt). Otherwise, if St is 1, the memory component updates its value at t+1 with the
value at Dt (Mt+1 = Dt). The output signal O is always equal to the memory value signal M, thus can
we quantify the M signal away.
We have marked these relations as so-called ‘frames’ in Figure 48. These frames relate the values
of the signals to each other. The frames that are marked with the letter C can be interpreted as
the signals M and O always being equal to each other. We can interpret the frame marked with the
letter B as follows, if at time t’ the signal S is 1, then the signal M at time t’+1 must be the same
value as signal D at time t’. Finally the frame marked with the letter A can be read as, if at time t
the signal S is 0, then the signal M at time t+1 receives the value of signal M at time t.

def mem_spec {α : Type} (D : stream α) (S : signal) (M : stream α) : Prop :=

∀ t : N,
(S t = tt → M (t+1) = D t) ∧ --frame 1 D S M+1

(S t = ff → M (t+1) = M t) --frame 2 S M M+1

Figure 49: Specification of a memory component

The specification shown in Figure 49 describes the frames as discussed above. We have chosen an
arbitrary type α for the signals D and M, because we will use this specification for both signals of
type bool and signals of type array n bool.
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4.2.2 Specification Functionality

def almost_eq {α : Type} (N M : stream α) : Prop :=

∀ (t : N),
(N t = M t) → ∀ (t' : N), (t' > t) → N t' = M t'

def almost_eq' {α : Type} (N M : stream α) : Prop :=

∀ (t : N),
(N t = M t) → N (t+1) = M (t+1)

Figure 50: ‘Almost equal’ predicates

The two functions in Figure 50 say that at any time t, if two streams have the same output, then
for all time after t, they must still produce the same output. The function almost eq’ is a simpler
formulation of the same property, and a proof of their equivalence is shown in Figures 52 and 51.
The simpler property will be used in the almost uniqueness proof.

lemma help {t' t n: nat} (h: t' > t) (hh: t' - t = n): t' = t + n :=

begin

rw ←hh,
rw nat.add_sub_of_le,

exact le_of_lt h,

end

Figure 51: Help lemma for almost eq equiv
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lemma almost_eq_equiv {α : Type} (N M : stream α) : almost_eq N M ⇐⇒ almost_eq' N M :=

begin

unfold almost_eq almost_eq',

split,

{

intros h t,

specialize h t,

intros h1,

apply h,

{

exact h1,

},

{

simp,

}

},

{

intros h t h1 t' h2,

generalize hhh: t' - t = dt, -- We have t' > t, so take the difference (dt)

destruct dt; intros; rw a at hhh,

{ -- Suppose dt = 0, then we can close the goal

rw (help h2 hhh),

simp, tauto,

},

{ -- Suppose dt > 0, then do a strong induction

revert t',

apply (nat.strong_induction_on n); intros n_1 IH; intros,

destruct n_1; intros,

{ -- Suppose dt = 1

rw a_1 at hhh,

rw (help h2 hhh),

apply h, tauto,

},

{ -- Otherwise

rw (help h2 hhh),

apply h, simp,

apply (IH n_2),

{

rw a_1,

exact nat.lt_succ_self _,

},

repeat{

rw a_1,

simp,

},

}

}

}

end

Figure 52: Lemma almost eq equiv
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The theorem in Figure 53 shows that two output streams that satisfy the memory specification
must be almost equal to each other. We prove this by introducing our variables and hypotheses and
rewriting our simplified definition of almost eq using the almost eq equiv lemma. Next we unfold
the functions and apply the specialize tactic with respect to t on h1 and h2. Then we simplify our
hypotheses and split them into smaller parts. Finally, we consider each possible value of St and
finish the proof by using simplification and rewrite tactics, till we can show that our goal is the
same as one of our assumptions.

theorem mem_spec_almost_unique {α : Type} : ∀ (D : stream α) (S : signal) (M : stream α),
mem_spec D S M → ∀(N : stream α), mem_spec D S N → almost_eq N M :=

begin

intros D S M h1 N h2,

rw almost_eq_equiv,

unfold almost_eq',

intros t heq,

unfold mem_spec at h1 h2,

specialize h1 t,

specialize h2 t,

destruct h1,

intros h1l h1r,

destruct h2,

intros h2l h2r,

cases S t,

{

simp at h2r,

rw h2r,

simp at h1r,

rw h1r,

exact heq,

},

{

simp at h2l,

rw h2l,

simp at h1l,

rw h1l,

}

Figure 53: Theorem mem spec almost unique

4.2.3 Implementation

To implement a memory, we define a recursive function. This function recurses backwards and
checks the value of the S signal. If S has the value of 1, then it will simply return the value of D at
that specific time. If S has the value of 0, the function will recurse back and check the value of
the memory implementation at the previous time point. The base case is the initial value of the
memory module. The implementation of this memory module can be found in Figure 54.
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def mem_imp {α : Type} (I : α) (D : stream α) (S : signal) : stream α
| nat.zero := I

| (nat.succ y) := if S y = tt then D y

else mem_imp y

Figure 54: Implementation of a memory component

4.2.4 Verification

theorem mem_correct {α : Type} : ∀ (D : stream α) (S: signal), ∀ (I : α),
mem_spec D S (mem_imp (I) D S) :=

begin

unfold mem_spec,

intros,

split,

{

intros h,

unfold mem_imp,

rw if_pos,

exact h,

},

{

intros h,

unfold mem_imp,

rw if_neg,

simp,

exact h,

}

end

Figure 55: Theorem mem imp complies with mem spec

The proof in Figure 55 shows that the mem imp complies with the mem spec. We start by introducing
the variables. Then we unfold the specification, which allows us to introduce the time variable t.
Finally we proof each frame using the split tactic. The proof can be finished by the fact that our
hypothesis of St is the same as the if-statement condition, which results in an equality.
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4.3 Program Counter

A program counter is a component within digital systems that holds the address of the next
instruction to be executed. This address is incremented by one at every clock cycle. The program
counter can also jump to a specific address, but for simplicity we have not added this functionality
in our program counter. The program counter we will look at, is able to increment at every clock
cycle and can also be reset based on a reset signal R.

4.3.1 Specification

The behavior of the program counter is dependent on the value of the reset signal R at time t. If Rt
is 0, the program counter will reset the value it contains to an array of ff, and reflect this change
in the output signal O at time t+1. This essentially sets the output of the program counter to 0.
Otherwise, if Rt is 1, the program counter increments the value it contained at Ot, and returns the
incremented value at Ot+1. The specification is given in Figure 56.

def pc_spec {n : N} (R : signal) (O : sig_n n) : Prop :=

∀ t : N,
(R t = tt → O (nat.succ t) = mk_array n ff) ∧
(R t = ff → O (nat.succ t) = (full_n_adder_imp (O t) (mk_array n ff) tt).fst)

Figure 56: Specification of a n-bit program counter

One thing to note about the above specification is that we are using the full n adder imp

component in our specification, because we have already introduced this component earlier. This
component could be changed to a function that simply increments the value of a boolean array by
1.

4.3.2 Implementation

Because we are working with signals, we can not easily implement our program counter using two
separate components (full adder and memory). This is because of the way we implemented the
signals. LEAN3 can not easily proof the termination of such function compositions, thus the values
of the entire stream (a signal) must be known a priori. A solution to this problem is to create a
single component, similar to the one made for the memory which then has an adder integrated in it.

def pc_imp {n : N} (I : array n bool) (R : signal) : sig_n n

| nat.zero := I

| (nat.succ y) := if R y = tt then mk_array n ff

else (full_n_adder_imp (pc_imp y) (mk_array n ff) (tt)).fst

Figure 57: Implementation of a n-bit program counter

As shown in Figure 57, we recursively call the adder function on the previous value of the program
counter. This increments the counter each time step, unless the reset signal is set, which causes it
to be set to an array of ff, essentially resetting the program counter to 0. This is all under the
assumption that the full n adder imp is correctly implemented.
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4.3.3 Verification

theorem pc_correct {n : N} : ∀ (R : signal) (I : array n bool),

pc_spec R (pc_imp (I) R) :=

begin

intros,

unfold pc_spec,

intros t,

split,

{

intros h1,

unfold pc_imp,

rw if_pos,

exact h1,

},

{

intros h1,

unfold pc_imp,

rw if_neg,

simp,

exact h1,

}

end

Figure 58: Theorem pc imp complies with pc spec

The proof in Figure 58 is analogue to the one for the Memory component in Figure 55. We introduce
the variables R and I, unfold the specification and introduce the variable t. Then we split our
specification into the two separate frames to prove. For each of these frames, the proof can be
finished by the fact that our hypothesis of Rt is the same as the if-statement condition, which
results in an equality.
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5 Case Study: Verification of a FSM

In this section we will take a look at a design of a binary sequence recognizer by Alberto I. Leibovich
and Pablo E. Leibovich [LL16]. This binary sequence recognizer is able to recognize the binary
pattern ‘101’ followed by any number of consecutive ’1’s in a bit stream. We will limit us to only
the recognition of the binary pattern ‘101’. In their article, the authors give truth tables of logic
components and a schematic of the circuit in the GreenPAK software. Our objective is to take these
truth tables and turn them into specifications in LEAN3, create a specification for the expected
behavior of the whole circuit and then implement these specifications. We will then prove that our
implementations comply with these specifications.

5.1 FSM Schematic / Design

Figure 59: State diagram with initial state S0, sourced from [LL16]

In the state diagram of the circuit, shown in Figure 59, there are a couple things to notice. First of
all, there was an error in the diagram. The bi-directional transition S0 ←→ S1 under input X = 1
should be a single transition of S0 → S1. The transitions from state S3 under input X = 1 will
cause the state-machine to stay in an accepting state and under input X = 1, the state machine
goes to the initial state S0. Because we are only interesting in the accepting behavior of the binary
sequence ‘101’, we will not add these transitions from state S3 in our specification.
In Figure 60 the block diagram of the sequence recognizer is shown. We will model the CLK with
our signal inputs and outputs. Furthermore, we will refer to the ‘2-L0’ AND-gate as LUT0. The
in-and-outputs Q0 and Q1 refer to the outputs of the two flip-flops being used. The input X is the
input stream where we will recognize the sequence ‘101’ and the output Z is the output of the
circuit. The truth-tables of the LUT units are shown in Figure 61.
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Figure 60: Flip-Flop based block diagram, sourced from [LL16]

Q1 Q0 X OUT
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

(a) LUT2

Q1 Q0 X OUT
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

(b) LUT3

Q1 Q0 OUT
0 0 0
0 1 0
1 0 0
1 1 1

(c) LUT0

Figure 61: Truth tables of LUT units, sourced from [LL16]

5.2 Specification

We begin with making the specifications for the LUT units, which are essential parts in our final
implementation to be able to recognize the binary sequence ‘101’. This is accomplished by looking
at the truth tables in Figure 61, and identifying the rows where the combinations of inputs result
in an output of 1. These combinations are captured using the ‘if’ condition in our specifications.
The ‘else’ clause in our specification captures all combinations which do not meet the requirements
of the output being 1. In other words, the cases where the output is 0. These specifications are
shown in Figure 62. The uniqueness of the output for all input combinations for these specifications
can be proven similarly to the circuits we have seen before, therefore these proofs are omitted.
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def LUT2_spec (Q1 Q0 X OUT : bool) : Prop :=

if (¬Q1 ∧ ¬Q0 ∧ X) ∨ (¬Q1 ∧ Q0 ∧ X) ∨ (Q1 ∧ ¬Q0 ∧ X) ∨ (Q1 ∧ Q0 ∧ X) then OUT = tt

else OUT = ff

def LUT3_spec (Q1 Q0 X OUT : bool) : Prop :=

if (¬Q1 ∧ Q0 ∧ ¬X) ∨ (Q1 ∧ ¬Q0 ∧ X) ∨ (Q1 ∧ Q0 ∧ X) then OUT = tt

else OUT = ff

def LUT0_spec (Q1 Q0 OUT : bool) :=

if Q1 ∧ Q0 then OUT = tt else OUT = ff

Figure 62: Specifications of LUT units

The behavior of the circuit can be described as follows: when the circuit encounters a 1 at time t,
followed by a 0 at time t+1 and then a 1 at time t+2, then the output at time t+3 must be 1. In
all other cases the output must be 0 at time t+3. This effectively only allows the pattern ‘101’ to
be accepted. In Figure 63, the first conjunct describes the sequence of ‘101’, which results in an
output of 1 at time t+3. The other conjuncts correspond to the invalid sequences and result in an
output of 0 at time t+3. The last conjunct does not explicitly describe the values of Xt+1 and Xt+2.
These values will later be assumed when we create our proof.

def SeqRec_spec (X OUT :signal) : Prop :=

∀ t : N,
(X t = tt → X (t+1) = ff → X (t+2) = tt → OUT (t+3) = tt) ∧
(X t = tt → X (t+1) = tt → X (t+2) = tt → OUT (t+3) = ff) ∧
(X t = tt → X (t+1) = tt → X (t+2) = ff → OUT (t+3) = ff) ∧
(X t = tt → X (t+1) = ff → X (t+2) = ff → OUT (t+3) = ff) ∧
(X t = ff → OUT (t+3) = ff)

Figure 63: Specification of a Sequence Recognizer

5.3 Implementation

def LUT2 (Q1 Q0 X : bool) : bool :=

OR [AND [Q1, Q0, X], AND [Q1, NOT Q0, X], AND[NOT Q1, Q0, X], AND[NOT Q1, NOT Q0, X]]

def LUT3 (Q1 Q0 X : bool) : bool :=

OR [AND [NOT Q1, Q0, NOT X], AND [Q1, NOT Q0, X], AND [Q1, Q0, X]]

def LUT0 (Q1 Q0 : bool) : bool :=

AND[Q1, Q0]

Figure 64: Implementation of LUT units

The implementations of the LUT units is similar to creating the specifications. We use a n-bit OR
gate for all the possible entries of the truth tables in Figure 61, and for each of these entries, we
connect the input combinations with a n-bit AND gate, negating the inputs with a NOT gate if
necessary.
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def SeqRecAux {n : N} (X : signal) : Π (i : N), i ≤ n → bool → bool → bool → N → bool

|(nat.zero) h Q1 Q0 O k :=

if O = tt then tt

else ff

|(nat.succ t) h Q1 Q0 O k :=

if O = tt then tt

else if k < 3 then

let Q1_next := LUT3 Q1 Q0 (X t),

Q0_next := LUT2 Q1 Q0 (X t),

O_next := LUT0 Q1_next Q0_next in

SeqRecAux (t) (le_of_lt h) Q1_next Q0_next (O_next) (k+1)

else ff

def SeqRec (X : signal) : signal :=

λ n, SeqRecAux X (n) (le_refl _) ff ff ff 0

Figure 65: Implementation of a Sequence Recognizer

In LEAN3, recursive functions must be proven to terminate. We are making use of pattern matching
for our sequence recognizer implementation, where in each recursive call a value decreases, which
LEAN3 can recognize and automatically proof for us that it will terminate. We can use this method
because, if we approach the pattern ‘101’ from both sides, it will still result in the same pattern.
This allows us to keep the current LUT unit implementations and specifications. If we want to
recognize any other pattern which is not a palindrome, we would have to apply a different strategy.
We can for example apply forwards recursion, but we would have to use termination by to proof
the termination of the function.
The definitions in Figure 65 implement a sequence recognizer for the pattern ‘101’. The SeqRec

function calls the recursive auxiliary function SeqRecAux on the argument n of the output signal
(SeqRec(X) n), with the recursion parameters being initialized to 0 and ff. For each iteration, we
keep track of the flip-flop values Q1 and Q0, the output value O and the number of steps we went
backwards k. While the number of steps is smaller than 3, we will calculate the next values of the
flip-flops and output. This simulates a cycle of the circuit diagram illustrated in Figure 60. If after
3 time steps the output is 1, then the output of this function is also 1, else it is 0.

5.4 Verification

The theorem in Figure 66 shows the correctness proof of our implementation for the given specifica-
tion. We start by introducing the input stream X, unfolding the specification and introducing the
time variable t. Next we use the repeat tactic to split the conjuncts and proof them using the same
proof. For each conjunct we unfold the implementation as much as we can. At some point, we can
not unfold it any further because we need to rewrite the assumptions of the values Xt, Xt+1 and Xt+2
in our goal. Then by using simplification tactics and considering the possible values of t, we can
close the proof using the reflexivity tactic, or in some cases by simply unfolding. The last part of
the proof is specifically for the last conjunct. This proof is the same but instead of being able to
rewrite the hypotheses of the values Xt+1 and Xt+2, we directly do a case analysis on all possible
values.
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theorem SeqReq_correct : ∀ (X : signal),

SeqRec_spec X (SeqRec X) :=

begin

intros X,

unfold SeqRec_spec,

intros t,

repeat{

split,

intros h1 h2 h3,

unfold SeqRec,

repeat {

unfold SeqRecAux,

simp,

},

simp [LUT0, LUT2, LUT3, AND, OR, NOT],

rw h3,

rw h2,

rw h1,

simp [NOT],

ring_nf,

simp,

cases t;

{

unfold SeqRecAux,

refl,

try {unfold NOT},

},

},

intro h1,

unfold SeqRec,

repeat {

unfold SeqRecAux,

simp,

},

simp [LUT0, LUT2, LUT3, AND, OR, NOT],

cases X (t+1); cases X(t+2);

{

simp [NOT],

ring_nf,

simp,

cases t;

{

unfold SeqRecAux,

finish,

},

},

end

Figure 66: Theorem SeqRec complies with SeqRec spec
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6 Conclusions and Future Work

In this section we will conclude the thesis, discuss our research and look at possibilities for future
work.

6.1 Conclusion

Let us recall the research question:

”How can we verify the correctness of a combinational and sequential circuit implemen-
tation, with respect to a given formal specification, using the LEAN3 interactive theorem
prover?”

Throughout this thesis, we have seen quite a few combinational and sequential circuits, with some
circuits being a bit more complex than others. For nearly all circuits, with the exception of the
n-bit full adder, we have successfully shown how we can specify the behavior, implement the circuit,
and verify our implementation with our specification using the LEAN3 theorem prover.

LEAN3 has shown to be a very useful tool in helping us formalizing specifications, implementa-
tions and creating proofs. Many of the reasoning steps, such as term rewriting, could be partially
automated and even some small parts of the proof could be fully automated. We were also able to
use tactics that were automatically suggested, which helped us in finding the correct lemmas to
apply. The mathlib library for LEAN3 contained a lot of useful existing lemmas which eliminated
the need to write many lemmas ourselves.

However, one observation we have made during the process of formalizing our circuits was the
significant time it took to accomplish this. This observation was also made by Shiraz and Hazan
[SH17], where they have spent approximately 12 man-months to formalize and proof combinational
circuits. It is crucial to consider whether the time and effort invested in formally verifying circuits
is worthwhile. Even though this process is time-consuming, it is important to weigh it against the
potentially high costs of errors in circuit designs, so that risks, for example the Intel FDIV bug
discussed in Section 1.1, can be significantly reduced.

We illustrated the steps on how to make formal specifications for combinational and sequen-
tial circuits. Furthermore, we have also shown how to create functional implementations for these
specifications and how we can utilize LEAN3 to prove that the implementations comply with the
specifications. This has allowed us to answer our research question by demonstrating the process of
formal specification and verification of circuits using LEAN3.

6.2 Discussion and Future Work

Challenges with Proofs
One of the biggest challenges faced during this research was with the proof of the n-bit full adder.
While the steps to design the specification and implementation were manageable, the steps towards
the verification became too complex. The amount of time reserved for this research, combined with
the steep learning curve of the LEAN3 theorem prover, was not enough to fully understand the
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concepts needed for verifying non-trivial properties of arrays.

Signals in Sequential Circuits
The way we used signals for sequential circuits in LEAN3 made it very non-intuitive to implement
sequential circuits. While trying to design a program counter, we wanted to use two separate
components and compose them. Unfortunately, the specific usage of our signals prevented us to
do this. Future work might take a look at a different approach, where we can create circuits more
intuitively, based on single clock times.

Extending the Research
While this thesis may be the initial step of formal verification of circuits in LEAN3, this research
can be extended to more complex circuits. A couple examples are: specifying and implementing
a processor, cache memory and a memory management unit (MMU). This research can be of
particular interest to engineers and designers at companies such as ARM, Intel, and AMD. The
implementation of formal verification can contribute to the functionality, reliability, safety, and
security of digital circuits.

Memory Overhead
An interesting observation made while working with the LEAN3 theorem prover was the consider-
able amount of memory being used on the system running LEAN3, even for relatively small circuits.
This might become a bottleneck if we want to verify larger, more complex circuits and is a direction
for potentially fruitful future research.

Improving automation in the prover
An interesting subject for future research is to further improve the automation of the prover,
specifically for proofs that are related to combinational and sequential circuits.
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