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Abstract

Zebrafish are, because of their distinct features, easy to use and often used model organisms
for biological research. To help decrease imaging time for zebrafish larvae, researchers have
developed the Vertebrate Automated Screening Technology (abbreviated to VAST ). This
paper describes a method for zebrafish imaging aimed at high-throughput, high-quality imaging
using the VAST.

The created method uses microscope control through an open source micromanager imple-
mentation and VAST control through Maarten Lamers’ VAI-box and the VAST applications’
external imaging functionality to create a two-camera setup for zebrafish imaging. The method
is capable of efficient bright-field- and fluorescent signal image capture for multiple zebrafish,
rotational angels, objectives and positions.

An implementation of the method was able to achieve 300 image captures in approximately
seven minutes after setup through its user interface. Although, among others, ease of use
could still be improved, the proposed method allows for efficient high-throughput, high-quality
zebrafish imaging using the VAST system.
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1 Introduction

This thesis reports on the BSc thesis research as part of the BSc Bioinformatics. The research has
been done in the period March 2023 till July 2023.

1.1 Research questions

To accommodate zebrafish 3D model creation we propose a method for automation of zebrafish
image capture using the VAST BioImager. We aim to create a method for high-throughput high-
quality zebrafish image capture using the VAST BioImager as created and distributed by Union
Biometrica [Uni23] (Section 2.2) and a LEICA microscope (Section 2.3).
We aim to automate alternating image capture between the VAST system’s inbuilt camera (the
VAST camera) and the LEICA microscope’s Baumer Optronics camera (the microscope camera) at
different zebrafish rotations. This allows for better quality and multi- channel image capture, which
could in turn be used for the creation of the zebrafish models described in Section 1.3.
Therefore, this paper will focus on the improvement of zebrafish imaging using the VAST system.
We aim to optimize quality, reproducibility and throughput.
These research aims are summarised in the following research questions:

RQ1: How can the two-camera setup for VAST imaging be optimized to enable high-throughput
and high-quality imaging?
RQ2: How can the measurement of fluorescence in VAST imaging be optimized to achieve higher
efficiency?
RQ3: How can a protocol for 3D reconstruction from the VAST using the microscope setup be
developed?

The first research question (RQ1) deals with the creation of a two-camera setup. This term is used
to describe a setup enabling the interplay between the VAST system’s camera and a microscope
camera. The concept of this arrangement entails seamless communication and coordination between
the VAST system camera, the camera that is part of the VAST system and used for calibration
and setup, and the microscope camera, used for high quality image capturing and fluorescence,
allowing them to operate in tandem. This collaborative setup necessitates a robust communication
framework that effectively integrates the functionalities of both the VAST system’s camera and the
microscope camera.

The second research question (RQ2) deals with multi-channel image acquisition. This research
question adds additional requirements to the two-camera setup (the ability to change filter and
exposure settings) and requests an efficient solution for fluorescent imaging using the VAST system.
Enabling efficient capture of fluorescent data allows future researchers to normalise said data by
using the surface area and volume calculated from the bright field 3D zebrafish model.

The third research question (RQ3) deals with combining the solutions to the previous ques-
tions into a protocol allowing for automated image capture using both the VAST system and the
LEICA microscope. This allows for high-throughput high-quality multi-channel image capture.
The images created by this process can then be used in the VAST pipeline for the creation of 3D
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reconstructions.

1.2 Thesis overview

The remainder of this thesis is structured as follows: in the next part of the introduction (chapter
1) some project background information will be given, followed by a disclaimer (chapter 1.4). In the
following chapter 2 important components for the creation of the method and the way they were
used are described. In chapter 3 the design of the imaging method is discussed. In chapter 4 we
will discus different implementations of the design, their results, and their impact on the zebrafish
imaging workflow. Finally, we will present conclusions from our results and discus the limitations
of this research, and propose possibilities for future work in chapter 5. Additional materials can be
found in the appendix (chapter 8).

1.3 Background

Zebrafish (scientifically named Danio Rerio) is a commonly used model organism. The species has
proven to be an invaluable, widely usable model organism that offers many benefits over other model
organisms. One of the key benefits of zebrafish as a model organism is its high genetic similarity to
humans. Around 70% of human genes have functional orthologues in zebrafish [HCTea13]. This
similarity means that defects in the zebrafish genome often have the same consequences as in
humans, allowing the study of human diseases (or diseases similar to human diseases) in zebrafish.
A combination of easy reproduction (including external fertilisation), large offspring size [DS09],
(relatively) easy insertion of compounds [Rub06] and translucence during early life stages further
explains the choice for Danio Rerio as a model organism.

A few examples of recent scientific research making use of zebrafish as a model organism are
given below:

1. Tuberculosis, a disease caused by bacteria, is a contagious disease which, if not properly treated,
can be fatal for humans. Tuberculosis can be studied in zebrafish by infecting them with a
tuberculosis inducing bacterium such as, for example, Mycobacterium Marinum. Zebrafish
were used to study correlation between transcribed genes and a tuberculosis infection. During
the study there was extra focus on genes related to the immune system. The results can be
used to further study diseases that are induced by mycrobacteria [MVSV+05].

2. Heart attacks are a major cause of death in humans. They occur when a blood vessel supplying
blood to the heart is blocked. When the person who suffered the heart attack survives, heart
tissue is irreversibly damaged, which makes them more susceptible to future heart failure
[GKDP15]. Finding a treatment to restore damaged heart cells is a major goal in medicine.
It was discovered that adult zebrafish can, in contrast to humans, regenerate heart tissue. A
protein called Neuregulin1 (abbreviated to Nrg1 ) plays a major role in this process [GKDP15].
Scientists are now investigating whether this protein could potentially repair mammalian
(human) heart tissue.

3. Danio Rerio is also used as a model for human cancer research [Shi13]. Besides their role as
model organisms, zebrafish also have a conserved cardiogenesis compared to humans, meaning
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a wider range of experiments can be done in comparison to mammalian model organisms.
This wider range of experiments in combination with more general advantages such as cost
make the zebrafish an excellent model organism for cancer research.

The research mentioned above makes use of the fact that due to the translucence of zebrafish
embryos, changes in phenotype (usually visualised through fluorescence) can easily be assessed. This
process of monitoring phenotype changes is called whole-organism phenotype screening [NSTG20].
Phenotype-based screening, in contrast to target-based screening, allows researchers to examine
a broader area than just the targeted cells. Since the whole organism is screened for changes,
phenotype-based screening allows for the detection of off-target effects in addition to monitoring
on-target effects.

Although whole organism phenotype screening has an advantage over target-based screening,
it is a time-consuming ordeal. In the case of zebrafish, phenotype-based screening requires, among
other things, the correct positioning and rotation of the zebrafish. Getting the zebrafish in the right
position for imaging is not an easy task, since the used zebrafish organisms are very small.
To help decrease imaging time for zebrafish larvae, researchers have developed the Vertebrate
Automated Screening Technology (abbreviated to VAST ) [PMCK+10].

The VAST system has already been used for improvements in zebrafish visualisation. Using
axial view images acquired by the VAST camera (explained in section 2.2) 3D models of zebrafish
were created [GVSV17]. These images are used to calculate the surface area and volume of the
zebrafish.

Although the VAST system was used, image acquisition was very time-consuming, since every image
for the model had to be manually acquired. Each acceptable model requires a minimal amount of 42
axial views, with each view equally distant from the previous rotational position. Usually 84 up to
100 images are used for model creation to guarantee good model quality [GVSV17]. Taking the bare
minimum (42) means that the creation of i zebrafish models requires at least 42×i images [GVSV17].

Model quality could further be improved by switching to a microscope for image acquisition.
This would increase image quality and allow for multiple channels (like fluorescence) to be captured.
However, usage of the microscope camera further increase the amount of images that have to be
taken for each organism, since the required images would have to be acquired at multiple positions
(at higher magnifications) with multiple channels. For i zebrafish, j positions and k channels, a
minimum of 100× i× j × k axial view images have to be acquired. This is infeasible to do by hand.

1.4 Disclaimer

This thesis came to be as a cooperative effort between its two authors. Most work has been done
in collaboration, with each author adding to the whole by contributing their distinctive line of
thought on the same problem.

Sybe van Benthum mostly focused on designing the method and perfecting the implementa-
tion for microscope control. Jens van Bijsterveld mostly focused on implementing the designs and
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understanding the different forms of VAST control. The order in which the author names appear
on the title pages is alphabetical and does not indicate anything additional.

Overall, each author has evenly contributed to the execution and presentation of the research, and
the creation of this paper. The synthesis of the efforts of both authors has resulted in a good design
and a good approach for extending the usage of the VAST BioImager.
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2 Materials and methods

This section deals with important components of the proposed imaging method. Each component
is discussed together with the way it was used in this project.

2.1 Zebrafish models system

As briefly mentioned before (Section 1.3), research for creating 3D models by using the VAST
system has already been done at Leiden University [GVSV17].
The 3D models were made by first capturing at least 42 images (each of a different angle, sampled
systematically at uniform intervals) of a zebrafish by using the VAST camera, the camera that
is part of the VAST system, used for basic image capture and control of the system. The images
are then preprocessed, segmented, and fed into multiple mathematical equations that return a
3D representation of the zebrafish by using parameterisation. The surface area and volume of the
zebrafish are also determined.
An example of a 3D zebrafish model can be seen in Figure 1.

Figure 1: An example of a 3D zebrafish model created by Guo et al.[GVSV17]

The research by Guo et al. can be seen as the instigation for this paper. Based on their research a
zebrafish pipeline was developed under the supervision of Fons Verbeek. This thesis provides one of
the final parts of this pipeline. The zebrafish pipeline is further explained in Section 2.4.

2.2 VAST system

In this paper, when the term VAST system is used, it is used as a reference to the VAST BioImager
as produced by Union Biometrica [Uni23].

The heart of the VAST system consists of a very thin glass tube called the capillary. The capillary is
placed between two stepper motors that allow it to rotate. Both ends of the capillary are connected
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to tubing, which in turn is connected to a pump. The tubing and pump allow fluids (containing
zebrafish) to be pumped through the capillary.
The stepper motors hold the capillary in place in a small plastic container, which is filled with
Milli-Q water during imaging. This submersion in Milli-Q is used to get a constant breaking index
with respect to the glass. A tray light provides light for the laterally placed VAST camera, that
captures the contents of the capillary through a prism.
A schematic illustration of the VAST system can be seen in Figure 2.

Figure 2: A schematic illustration of the VAST system as created by Union Biometrica. The
microscope camera (Microscope camera #2) was not discussed yet in the text. The microscope
camera for this project will be discussed in Section 2.3.

When using the VAST system zebrafish larvae are loaded into the capillary from a multiwell plate
(LP-sampler), falcon tube (default), or petri dish (manual). The zebrafish larva can then be imaged
from all different angles and positions by either moving (through the usage of the pump) or rotating
(through the usage of the stepper motors) the zebrafish. This is controlled through the VAST
application (Section 2.10) that runs on a connected personal computer.
Images of the correctly positioned zebrafish can be made by using the laterally placed VAST camera.
An example of an image taken by the VAST camera can be seen in Figure 3.
The VAST system used for this project also comes equipped with the options External Communi-
cations Package. This means the VAST system also has TTL ports, which allow for communication
with external devices by sending and receiving TTL triggers. What these triggers are for will be
explained later.

2.3 LEICA microscope

The VAST system schematic (Figure 2) also shows a second, external, camera. In this project the
VAST system is mounted to the stage of a LEICA DM6000 B microscope, equipped with a DFC
450 C (Baumer Optronics) CCD camera. The microscope is suitable for brightfield and fluorescence
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Figure 3: An example of images taken by the VAST camera.

microscopy. It is eqquiped with a Xeon lamp for providing the excitation wavelengths. For emission,
two filters are in the filter block:

• N21, allowing visualisation of green fluorescence

• I3, allowing visualisation of red fluorescence

The microscope is equipped with three lenses. The automation process described in this paper has
been created for usage with the lowest available magnification (2.5x), because a higher magnification
would require repositioning of the zebrafish subject during the imaging process. The other two
lenses, which might be used in future research improving on this thesis (outlined in Section 5.3),
are lenses enabling 4x and 10x magnification.
The microscope is controlled by the CTR6000 controller, either through a touch operated panel
with manual controls, or through either the proprietary LEICA Application Suite (Section 2.7) or
through comparable software like µManager (Section 2.8).

2.4 VAST pipeline

The VAST pipeline is a term used to describe a long-term project by Fons Verbeek and others to
create a high-throughput pipeline for 3D zebrafish model visualisation.

The pipeline starts with image acquisition through an interplay of the VAST system (Section 2.2),
the LEICA microscope (Section 2.3) and the VAST PC (Section 2.5). That part of the pipeline,
the last part to be finished, will be provided by the method proposed in this paper.
The acquired images are then processed in the way described by Guo et al. to create a 3D model.
This model will then be uploaded to a user interface designed and implemented by Rosa Zwart
[Zwa20] called the ZVizApp. The ZVizApp will provide users with a dashboard for visualising all
processed zebrafish. The app supports both brightfield and fluorescence reconstructions. This is
typically made for the Microscope camera output. Most reconstructions shown are based on output
from the VAST camera. A visual representation of the VAST pipeline can be seen in Figure 4.
Examples from the ZVizApp can be seen in Figures 5 and 6.
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Figure 4: A visual representation of the VAST pipeline. Images acquired with the VAST system
and the LEICA camera (both controlled through the VAST PC: Section 2.5) get sent to a server.
The server creates 3D zebrafish models, which are displayed on the ZVizApp.

Figure 5: The ZVizApp homepage as it can be found at https://zebrafish.liacs.nl/#/gridTab.
The homepage shows all currently available zebrafish models, and allows you to select one for
additional information. This can be seen in Figure 6.
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Figure 6: An example of an additional model information page in the ZVizApp. The shown page
contains information about the zebrafish line, imaged channels, derived statistics, contact and
general experiment information. The page also contains the zebrafish model in an interactable
state. The information is derived from the .json metadata files as described by Rosa Zwart
[?]. It is important to note that the interface accomodates both Bright Field and fluorescence
reconstructions. Most reconstructions currently shown on the ZVizApp are made with the VAST
camera and therefore lack this information. The VAST camera reconstructions are used as control
reconstructions.

2.5 Computer hardware

As can be seen in the schematic representation of the VAST pipeline (Figure 4), the VAST system
and LEICA microscope are both controlled by a computer. This computer, which we will call the
VAST PC, is running Windows 10 and is equipped with two monitors.

The VAST PC is connected to all important hardware components. The main distinction is
between the VAST camera and the microscope camera. The microscope camera is directly con-
nected to the VAST PC, but the microscope itself is controlled through a CTR6000 controller. The
nature of the connections is listed below.

• Firewire connection with the DFC 450c microscope camera

• Ethernet (GigE) connection with the VAST camera

• USB connection with the CTR6000 controller

• USB connection with the VAST BioImager

• USB connection with the VAI-box (explained in Section 2.12)

2.6 Programming

For the implementation of our design, we chose the programming language Python. Mainly because
it offers a API to communicate with the microscope through µManager. Also, Python programs can
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often intuitively be read, meaning they should (within reason) be accessible for scientists without
extensive programming experience.
Python further allows easy installing and importing of modules, which makes usage of, for example,
Keyboard and Mouse (Section 2.11) convenient.

2.7 Leica Application Suite

Leica Application Suite (or LAS for short) is the proprietary, closed-source, microscope control
software provided by LEICA.
Although LAS allows for complete control over the LEICA microscope, it does not allow automation.
When using LAS, every action (changing a filter, capturing an image, changing the objective) needs
to be done by pressing the buttons in the user interface. This is, unfortunately, not high-throughput.

Throughout the project, LAS was used as a reference. It showed the different microscope functions
that could be controlled through the CTR6000 controller and was used as a point of comparison
for the images captured by our method.

2.8 µManager

µManager is an open source equivalent to LAS (discussed in Section 2.7). The µManager repositories,
which are hosted on GitHub [MM23], contain a wide variety of implementations, ranging from
completely user focused (with a graphical user interface) to completely developer focused (with an
API).

For this project, we opted for the pymmcore plus (short for Python MicroManager Core Plus)
implementation of µManager, an extension of the pymmcore module, which allows access to the
µManager C-core through a python API. The choice for a developer-oriented implementation
enabled automated microscope control without the need for a traditional graphical user interface.

Since µManager can be used for many different types of microscopes, a configuration file is
needed. This configuration file specifies the capabilities of a specific microscope, thereby telling
micromanager what can be controlled through the CTR6000 controller.
The configuration file for this project’s LEICA DM6000 B microscope was made by comparing
options in LAS to different options in the µManager configuration file creation wizard in the
µManager user interface. Configuration files can also be made by hand. The configuration file
syntax can be found on the µManager website [Mic].

The configuration file used for this project (and by extension, for the method proposed in this
paper) can be found in the Appendix (Section 8.1).

2.9 Wireshark

Wireshark is an open-source packet sniffer. A packet sniffer is a tool that is used to examine traffic
over different computational communication channels (WiFi, USB connections, etc.).
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Wireshark (together with similar tools like USBPCap and Device Monitoring Studio) was used in
an attempt to reverse engineer communication between the VAST application (Section 2.10) and
the VAST system (Section 2.2).

The reverse engineering process was ultimately unsuccessful because of a closed source (Cypress)
driver. Some artifacts from the reverse engineering process like, for example, a list of packets and
matching commands and a list of USB information, can be found in the appendix (Sections 8.2
and 8.3).

2.10 VAST application

The VAST application is an application for controlling the VAST system, provided by Union
Biometrica. Like LAS (Section 2.7), the VAST application allows for full control of the VAST sys-
tem but is unfortunately not scriptable. An example of the VAST application can be seen in Figure 7.

Central to the VAST application is the live VAST camera stream that displays the capillary.
While looking at this stream buttons can be used to for example, position, rotate or image the
capillary (and its contents).

Figure 7: An image capture taken while using the VAST application as created by Union Biometrica.
The VAST application displays the full range of control options for the VAST system, together
with a livestream from the VAST camera.

The VAST application also has some more complicated functions, like, for example, zebrafish
loading. Zebrafish loading is supposed to be an automated process, where the only user interaction
is the button LOAD. The VAST application should be able to use predefined templates to recognise
zebrafish, and thus make the distinction between air bubbles, debris, and imaging subjects.
However, during our usage of the VAST application, this zebrafish recognition function was far from
perfect. It kept classifying zebrafish as bubbles, and thus discarding them. The only way to allow
a zebrafish to remain in the capillary was to prematurely abort the loading operation while the
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zebrafish was visible on the camera stream. We call this process manual loading. Manual loading is
described in Section 4.3.

Another more complicated function of the VAST application is the External Imaging functionality.
The external imaging menu allows users to define the actions that should be taken by the VAST
system upon receiving TTL triggers.
An example of the external imaging menu can be seen in Figure 8.

Figure 8: An example of the VAST applications external imaging menu, which can be found under
Imaging/Imaging with an external device in the VAST application’s main screen (Figure 7).

As can be seen in Figure 8, the external imaging menu consists of a table and some additional
options. The table lists actions corresponding to received triggers from top to bottom. When
external imaging is activated, the actions in the top row will be executed. When the first trigger is
received, the second row will be executed. This goes on until all rows have been executed.

Although it was first attempted to completely circumvent VAST application usage in the fi-
nal method (by reverse engineering VAST application commands using Wireshark, Section 2.9)
both final implementations use the VAST application.

2.11 Keyboard and Mouse libraries

Keyboard and Mouse are two (suitably named) Python libraries for controlling a computer’s
keyboard and mouse. This allows programmers to spoof user interaction, thus automating user
interface usage. Both libraries are open-source and hosted on GitHub [Bop19] [Bop21].

The Keyboard and Mouse libraries were used in the UI spoofing implementation (Section 4.1.3) to
press buttons in the VAST application, thereby automating VAST control. The external imaging
implementation does not use Keyboard and Mouse, since it does not need spoofing of user interaction

12



to work. The UI spoofing implementation, which does use Keyboard and Mouse, was used for fast
prototyping.

2.12 VAI-box

The VAI-box (VAST Arduino Interface box) is an Arduino UNO created by Maarten Lamers.

Since the VAST PC does not have TTL ports, a way to convert TTL triggers to serial com-
munication was needed. To accommodate this, the VAI-box acts as an interpreter between the
VAST system’s TTL ports and the VAST PC’s USB port.
The VAI-box GPIO pins are connected to the in- and output TTL connectors on the VAST system.
The VAI-box is also connected to the VAST PC by USB connection. Power is supplied through a
power supply. A schematic view of the wiring can be found in Figure 9.

Figure 9: A schematic representation of wiring between the VAI-box, VAST PC, VAST system and
the power grid. The VAI-box documentation can be found in the appendix (Section 8.4).

If the VAI-box receives a trigger from the VAST system (GPIO pin 2 becomes HIGH), the VAI-box
sends a message (R1) to the VAST PC using serial communication. The VAI-box can also be used
to send messages back to the VAST system. By sending TT, the VAI-box will send a trigger to the
VAST system’s TTL Input 1. By sending TS, the VAI-box will send a trigger to the VAST system’s
TTL Input 2.

The VAI-box was necessary for usage of the external imaging implementation 4.1.4 in order
to facilitate communication between the VAST PC and the VAST system.
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3 Design

We will now describe the process of designing a method that combines components from Section
2 into a workable approach for high-quality high-throughput image acquisition using the VAST
BioImager.
In practice, designing the method required designing an overarching application for controlling
both the VAST system and the LEICA microscope with as little user interaction as possible.

3.1 Requirements from the research questions

Before starting work on the design, it was necessary to take inventory of all requirements and
restrictions we had already defined in the research questions.

As discussed, research question 1 mainly deals with effective communication between the VAST sys-
tem and the LEICA camera. Effectiveness for imaging sets specific requirements for both microscope
and VAST control.
Effective microscope control would mean an implementation that could autonomously capture
images. This would mean control over light, objectives, table height and camera actions. Effective
VAST control would mean complete control over relevant VAST actions for zebrafish positioning.
These are the rotate, pump and move options.

Research question 2 extends upon the requirements from research questions 1 by adding multi-
channel imaging (fluorescence imaging) to the requirements. This means an extension on the
microscope features mentioned above. Control over diaphragms, filters and exposure time are added
to the requirements.
VAST control requirements are also extended with control of the traylight. In theory, bright field
LEICA images would be possible with and without the traylight, but an active traylight during
fluorescence imaging would negate any fluorescent signal.
Research question 3 deals with combining the previous research questions into a single workable
solution. This solution should first capture images with the VAST camera. These images will be
used to create a control reconstruction. Afterwards, the microscope camera will be used for image
capture. Since the microscope has better lenses and is able to capture fluorescence, these captures
will be used for creating the desired reconstructions (with gene expression information).

3.2 Flowchart

To help in implementing the method, a flowchart was created. This flowchart contains a walk
through the final approach. Blue boxes represent actions taken by the VAST system, while red
boxes represent actions taken by the LEICA microscope. The coloured containers in the background
are the states that need to be kept by the VAST PC.

The flowchart can be found in Figure 10.
Using the flowchart, an initial design of the resulting GUI could be made. This design shows what
controls are required, and uses grouping and continuity derived from the flowchart to depict the
expected flow. This GUI design derived from the flowchart can be seen in Figure 11.
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VAST initialisation
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Move fish to start
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Figure 10: The flowchart depicting the final design of the imaging method proposed in this paper.

Experiment name

Amount of fish

Image empty capilary

Load fish

Objective selection Channel selection

Create external imaging file

Calibrate sharpness

Start imaging procedure

Figure 11: The initial design for the GUI accompanying the final implementation. It shows the
grouping of buttons and the expected control flow. White buttons require information about the
process as a whole, for example, the amount of fish that are to be imaged, or which channels to use
for imaging. Green buttons require user interaction. These buttons are used for processes needed to
prepare for autonomous imaging. The red button starts the automated imaging procedure.
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3.3 Method design

Using the requirements set by the research questions, and the crude design shown in the flowchart
(Figure 10), pseudo-code for the automated imaging process was created. This pseudo-code is shown
below.

For f in fish # Repeat procedures for each fish that needs to imaged

For r in rotations # For each rotation (between 42 and 240)

Do rotate(r) # Move the subject to the correct angle using the VAST

Do VAST_imaging # Image the subject using the VAST camera

For o in objective # For each objective we want to use

Do LEICA_objective(o) # Switch the current objective

Do LEICA_height(o) # Switch to the optimal height for objective o

For p in positions # For each position needed for that objective

Do move(p) # Move the subject to the correct position

For r in rotations # For each rotation (between 42 and 240)

Do rotate(r) # Move the subject to the correct angle using the VAST

For c in channels # For each imaging channel we want to use

Do LEICA_imaging(c) # Image the subject using the LEICA camera

Do create_metadata(f, o, p, r, channels)

Do save_metadata() # Save metadata for these captures

From this pseudo-code design, it was concluded that for maximum coherence and minimum
dependency, interaction between the VAST system and the LEICA microscope was not necessary.
It is sufficient for both systems to communicate with the VAST PC, which will keep track of the
current place in the program, and send commands to either system if an action is required.
This state machine approach was required, since our tests pointed out that direct VAST control
through code would be nearly impossible, meaning the VAST application would need to be used
as preparation for the imaging procedure. Prototyping (using the Keyboard and Mouse libraries:
Section 2.11) pointed out which preparations a user should do before the automated process could
take over.
Using the flowchart, GUI design and pseudo-code as a guide, two different implementations were
made (Section 4.1). Each implementation uses the flow as described in the flowchart and pseudo-
code, but a different kind of VAST control. The UI spoofing implementation (Section 4.1.3) was
used for fast prototyping of the eventually created external imaging implementation (Section 4.1.4).
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4 Results

4.1 Design implementation

Implementing the design found in the flowchart (Figure 10) was done in multiple steps. First of all,
classes for executing microscope actions and VAST actions were created. Then, two overarching
implementations were created. The UI spoofing implementation (Section 4.1.3) was used for
prototyping. The external imaging implementation (Section 4.1.4) was made as an improvement on
the UI spoofing implementation.

4.1.1 Microscope control

For implementing control of the LEICA microscope, we used the µManager implementation pymm-
core plus (Section 2.8) and the configuration file (Section 8.1). We implemented this combination in
a specialised class (MicroscopeManager) containing functions specifically designed for controlling
the LEICA DM60000B through the CTR6000 controller.
The MicroscopeManager class allows for easy control of the LEICA microscope without having to
rely on complicated labels as found in the configuration file. The class was implemented in such a
way that changing the class attributes (brightness, light, lens, objectives) directly results in
changes in the underlying pymmcore plus class, thus resulting in physical changes on the microscope.

The class functions (switch filter, switch objective, snap picture) allow for easier implemen-
tation of microscope control in the main code by applying changes to multiple class attributes
(like for example turning on the light, then snapping a picture), but also by checking if requested
changes are valid. This makes the implementation more robust and allows for less mistakes during
code execution in the overarching implementations.

The file containing the MicroscopeManager class can be found in the paper’s GitHub reposi-
tory [vBvB23a]. The class makes use of a configuration file with some information extracted
through trial and error. This file can also be found in the GitHub repository [vBvB23b].

4.1.2 VAST control

Control of the VAST system was first attempted through reverse engineering VAST application
(Section 2.10) commands through Wireshark (Section 2.9). Sending the found commands over the
USB connection would, theoretically, allow for headless VAST control.
VAST control was eventually established through the VAI-box (Section 2.12). Communication with
the Vai-box was implemented through the Python module PySerial in a class (VastManager).

The VastManager class connects to the VAI-box by scanning all available COM ports for a
device with a matching description field (Arduino UNO). Once the correct COM port is found, a
serial connection is established using a baudrate of 115200.

The VastManager class also has helper functions for, for example, waiting until a message is received
by the VAST PC (listen for response, printing the current VAI-box settings (get settings),
and sending the “Send pulse to Input 1”” command to the VAI-box (trigger vast).
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The file containing the VastManager class can be found in the paper’s GitHub repository [vBvB23c].

4.1.3 UI spoofing implementation

The first overarching implementation that was created was the UI spoofing implementation. This
implementation combines microscope control through the MicroscopeManager class with auto-
mated VAST control by spoofing UI interaction through the Keyboard and Mouse Python modules
(Section 2.11).

The UI spoofing implementation can be found in the GitHub repository [vBvB23d].

4.1.4 External imaging implementation

The UI spoofing implementation returned great results, but also had some downsides (described
in Section 4.2). The second overarching implementation, the External imaging implementation,
improved on the UI spoofing implementation by combining microscope control through the
MicroscopeManager class with VAST control through the VastManager class and VAST application
external imaging functionality (Section 2.10).

Usage of the external imaging functionality requires the ability to send and receive triggers,
which was handled through VastManager and the VAI-box, and the ability to create a text file with
actions for each trigger. The external imaging implementation manages the creation of the text file.
This is done by creating a file with all required data entries based on the amount of objectives and
fluorescent channels that should be used during imaging.

Since (like the UI spoofing implementation) the external imaging implementation still requires
some form of user interaction, a small user interface was made for ease of use. This user interface
does nothing more than enforcing the order of operations, and is not a final application, but more
a proof of concept.

Both the external imaging implementation code and user interface can be found in this paper’s
GitHub repository [vBvB23e] [vBvB23f]. The complete workflow for using the external imaging
implementation is described in Section 4.3.

4.2 Results

As mentioned in Section 4.1.3, one of the two final implementations (the UI spoofing implementa-
tion) does have some drawbacks. They are listed below.

First of all, the UI spoofing implementation has a fixed set of not automated prerequisites before
execution. Before deploying the UI spoofing implementation the target directory for the VAST
camera image acquisition should be empty. This is done by either emptying the default target
directory or changing the target directory by saving a picture to a different directory before
executing the python script. Another prerequisite is that the VAST system’s traylight should be
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turned on at the start of the process. Since the traylight is controlled by a toggle box, the python
application does not know its state, so it assumes the traylight as on at the start of the script.
The last prerequisite to using the UI spoofing implementation is that the VAST application should
be maximised in the leftmost screen. Since the mouse library uses coordinates to click certain
buttons, the positions of relevant UI elements should be constant. By always having the VAST
application maximised on the left-most screen, this is achieved.

The second disadvantage, after the prerequisites, is that the UI spoofing implementation is not
as headless as we would have liked. This means that movement of the mouse at an inopportune
moment can disrupt image acquisition. This means that, since the mouse and keyboard are used,
the computer cannot be used during image acquisition.

The second functional implementation, the external imaging implementation, does not suffer
from these drawbacks. However, it does require a little more user interaction than the UI spoofing
implementation, since relevant steps in the VAST application, like for example loading the external
imaging file, are not automated.

By using the external imaging application, images were acquired from a Fli GFP zebrafish (a ze-
brafish with green fluorescent proteins in the cardiovascular system). Figure 12 shows a compilation
of 100 bright field images acquired through the VAST camera. Figures 13 and 14 show compilations
of the same positioning taken with the LEICA microscope, using bright field and fluorescence
(respectively). A single fluorescent channel capture can be seen in Figure 15. All images were taken
in approximately 7 minutes, which would not have been possible by hand.
It can be seen that the LEICA captures (Figure 13) has a better resolution than the VAST camera
(Figure 12). This is the reason for using the VAST camera reconstructions as a control for the
LEICA camera reconstructions.

Figure 12: A compilation of 100 bright field images of a flea zebrafish acquired by the VAST camera
during execution of the external imaging implementation.

4.3 Workflow

This section will describe the workflow that was used to acquire the images shown in the section
above (Section 4.2).
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Figure 13: A compilation of 100 bright field images of a flea zebrafish acquired by the LEICA micro-
scope during execution of the external imaging implementation. The images are little overexposed,
but parameter tuning of light brightness and/or exposure can easily fix this.
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Figure 14: A compilation of 100 green fluorescence images of a Fli GFP zebrafish acquired by the
LEICA microscope during execution of the external imaging implementation. A single fluorescent
channel capture can be seen in Figure 15
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Figure 15: A single green fluorescent capture of a Fli GFP zebrafish acquired by the LEICA
microscope during execution of the external imaging implementation.
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As described in Section 2.10, zebrafish loading using the VAST is, at this moment, not with-
out hiccups. To overcome this, a process we call manual loading was used in order to load zebrafish
into the VAST system. The steps for manual zebrafish loading are presented below. These were
derived from the notes on zebrafish loading made by Professor Fons Verbeek, which can be found
in the appendix (Section 8.5) as a reference.

1. Wash all remaining zebrafish (parts) out of the VAST system using the Prime and Waste

buttons

2. Place the loading tube into the petridish with zebrafish

3. Use manual pumping to remove any excess air bubbles from the loading tube

4. Use the Load button to initilise zebrafish loading

5. Using the loading tube, suck up a few zebrafish. Ensure there is space between the individual
zebrafish to ensure they do not get stuck within the system

6. Once enough zebrafish have been sucked into the tube, pause loading using the Pause button

7. Move the loading tube to a falcon tube without zebrafish (just eggwater) and remove any
excess air bubbles

8. Continue loading until you see a zebrafish, then press Abort operation

9. Use manual pumping

The external imaging implementation workflow is as follows:

1. Load the required amount of zebrafish into the VAST system using the manual loading process
described above.

2. Run the external imaging implementation user interface. From now on, this will be refered to
as the UI.

3. Use the UI to define the amount of zebrafish that are to be imaged and the name of the
experiment.

4. Use the UI to select the required objectives and channels for image acquisition.

5. Press the Image empty capillary button in the UI. This button will walk you through imaging
the empty capillary in the VAST application, and will then image the empty capillary using
the LEICA microscope.

6. Press the Create external imaging file button in the UI. This button will create the external
imaging text file and walk you through the process of loading it into the VAST application
external imaging menu.

7. Press the Start imaging procedure button in the UI. This button will ask you to turn on the
checkbox for external imaging in the VAST application and ask you to press the Run external
imaging button in the VAST application.
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8. From this point, all imaging steps are automated. You are now free to drink a cup of coffee
while the external imaging implementation acquires zebrafish images from 100 different
rotations.

During imaging, metadata is saved in a python dictionary. At the end of the imaging process, all
metadata is saved as s json file. This json file contains information about the fish number, objective,
position, angle and channels used for each captured image.

24



5 Conclusion and discussion

5.1 Conclusions

In this paper, we have discussed the components, design and implementation of a method al-
lowing high-throughput high-quality image acquisition using the VAST system. We have seen
that the output and performance of two types of implementations (UI implementation and ex-
ternal imaging implementation) are comparable, but that the external imaging application is the
smoothest, most foolproof method for high-throughput high-quality multi-channel image acquisition.

We can conclude that the proposed method optimizes the interplay between the two different
camera systems and optimizes acquiring fluorescent data from zebrafish larvae by decreasing the
amount of user interactions needed for acquiring a 3D zebrafish model from a variable 42× i× j× k
(where 42 is the absolute minimum, because usually 100 images are used for a reconstruction) to a
constant value, decreasing hands-on time for researchers wishing to acquire 3D zebrafish models.
We can also conclude that the proposed method can, in the future, be integrated into the VAST
pipeline, through proper use of its inbuilt metadata and naming conventions.

5.2 Discussion

The research, although ultimately successful, was hampered by unfortunate hardware defects. The
most unfortunate (and reoccurring) defect was the breaking of the capillary. Handling the capillary
should always be done with extreme care, since its minimal size makes the glass very fragile, and
therefore easy to break.

The switching from windows 7 to windows 10 of the VAST PC at the start of the project was
another hiccup. Switching between operating systems might require an update or change in the
drivers used to control either the VAST system or the LEICA microscope. A solution for the future
could be to run the VAST application inside a virtual environment or container in order to ensure
independence from the operating system.

It is unfortunate that, because of the proprietary cypress driver implicated in the VAST communi-
cation protocol, we were unable to create a truly headless implementation of the proposed method.
The created methods all require actions to be taken in the VAST application.

A shortcoming of the implementations is the fact that both implementations do not factor in the
magnification of different objectives. An objective with a higher magnification might need the
zebrafish to shift positions in order to image it in its entirety. Although an option for position
shifting is implemented in the code, manual measurements would need to be made in order for
the implementation to know where the zebrafish needs to be positioned. This would also require
extensive validation experiments before usage.

The UI design that was created for the external imaging is still a proof of concept, and does
not yet resemble a user interface that is practical to use. The options in the UI are not properly
grouped or ordered yet. As suggested by a member of the audience during the final presentation, it
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would have been more logical to order the options in the user interface in the same order as the
pseudo-code shown in Section 3.3.

5.3 Future work

The implemented solution greatly improves the workflow to use the VAST pipeline. Image capture
time is greatly shortened, leading to scientists having more time to do other tasks. Despite that there
is still a lot to improve on the solution presented here. The devised improvements can be divided in
3 categories: User interaction improvements, better support for high magnification and automasation.

One of the improvements that are aimed at enhancing the user experience will be to remove
the VAST Bioimager software from the workflow. The software is now used in addition to the
control software that was developed. The VAST software is needed to load fish and to set the script
for the external imaging functionality. As using two pieces of software to control one process is not
complimenting with the human computer interaction guidelines, the VAST bioimager software has
to be cut out of the process. To do this, all functionality that is used must be replaced. As earlier
mentioned, trying to reverse engineer the VAST software probably won’t work. So the only option
is to use an API that has not yet been provided by Union Biometrica.

The other enhancement would be to further develop the control software. The software that
we presented here is more of a proof of concept. The software could be improved greatly. Some
examples are: The layout could be improved, functionalities could be better explained, more
functions could be added. Improving user interaction is beyond the scope of this study, so it will
not be discussed further.

To support imaging with higher magnification, where the fish couldn’t be completely captured in
one shot, further enhancements have to be made. A system has to be in place that can automatically
slide the table, snap a picture, slide, snap a picture and so on. This way the fish could be completely
captured, with much more detail. A problem with this is that the capture will be much longer and
the fish will probably move during that time, that spoils the capture.

Other enhancements would be to decrease the amount of times the researcher has to intervene,
as to further automate the process. Now every fish has to be loaded manually. If you want to do
statistically significant research, you need to image a lot of fish. So that’s a lot of work if you have
to load them manually. Automating this would save a lot of time.

Another task that has to be done for every fish is focusing the microscope. If an auto focus
algorithm is developed or implemented, this wouldn’t be a issue anymore.

When doing research to one type of fish the current solution and the improvements presented here
above, will perform very good in theory, but when you want to research many different types of
fish, it wouldn’t work. This is because the tube with fish has to be changed manually. To solve this
Union Biometrica has developed a device that uses a 96 well plate and robotic arm to automatically
sample fish. This device could be incorporated into the workflow.
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Further research could also focus on integrating the implementation described in this paper
into the VAST pipeline. This integration would allow researchers to see 3D models of zebrafish
in the ZVizApp (Section 2.4) in near real time. The integration into the pipeline would require
an alteration to the metadata saved in the external imaging implementation in order to meet the
requirements defined by Rosa Zwart [?].

It can be concluded that the research done so far is only the start of an easy, automated VAST
system. The efforts done so far only scratch the surface of possibilities for future zebrafish imaging.
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8 Appendix

The appendix contains additional information that might not be necessary to understand the paper,
or the project it is based on, but could be of help for researchers wishing to continue the project.

8.1 µManager configuration file

# Reset

Property,Core,Initialize,0

# Devices

Device,COM1,SerialManager,COM1

Device,BaumerOptronic,BaumerOptronic,BaumerOptronic

Device,Scope,LeicaDMI,Scope

Device,IL-Turret,LeicaDMI,IL-Turret

Device,ObjectiveTurret,LeicaDMI,ObjectiveTurret

Device,TL-FieldDiaphragm,LeicaDMI,TL-FieldDiaphragm

Device,TL-ApertureDiaphragm,LeicaDMI,TL-ApertureDiaphragm

Device,IL-FieldDiaphragm,LeicaDMI,IL-FieldDiaphragm

Device,IL-ApertureDiaphragm,LeicaDMI,IL-ApertureDiaphragm

Device,FocusDrive,LeicaDMI,FocusDrive

Device,MagnificationChanger,LeicaDMI,MagnificationChanger

Device,IL-Shutter,LeicaDMI,IL-Shutter

Device,TL-Shutter,LeicaDMI,TL-Shutter

Device,XYStage,LeicaDMI,XYStage

Device,Transmitted Light,LeicaDMI,Transmitted Light

# Pre-init settings for devices

Property,Scope,AnswerTimeOut,250.0000

Property,Scope,Port,COM1

# Pre-init settings for COM ports

Property,COM1,AnswerTimeout,5000.0000

Property,COM1,BaudRate,19200

Property,COM1,DTR,Disable

Property,COM1,DataBits,8

Property,COM1,DelayBetweenCharsMs,0.0000

Property,COM1,Fast USB to Serial,Disable

Property,COM1,Handshaking,Off

Property,COM1,Parity,None

Property,COM1,StopBits,1

Property,COM1,Verbose,1

# Hub (parent) references

Parent,IL-Turret,Scope
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Parent,ObjectiveTurret,Scope

Parent,TL-FieldDiaphragm,Scope

Parent,TL-ApertureDiaphragm,Scope

Parent,IL-FieldDiaphragm,Scope

Parent,IL-ApertureDiaphragm,Scope

Parent,FocusDrive,Scope

Parent,MagnificationChanger,Scope

Parent,IL-Shutter,Scope

Parent,TL-Shutter,Scope

Parent,XYStage,Scope

Parent,Transmitted Light,Scope

# Initialize

Property,Core,Initialize,1

# Focus directions

FocusDirection,FocusDrive,0

# Roles

Property,Core,Camera,BaumerOptronic

Property,Core,Shutter,Transmitted Light

Property,Core,Focus,FocusDrive

Property,Core,AutoShutter,1

# Labels

# IL-Turret

Label,IL-Turret,4,5-EMP

Label,IL-Turret,3,4-LGC

Label,IL-Turret,2,3-EMP

Label,IL-Turret,1,2-N21

Label,IL-Turret,0,1-I3

# ObjectiveTurret

Label,ObjectiveTurret,6,7-0x 0na

Label,ObjectiveTurret,5,6-0x 0na

Label,ObjectiveTurret,4,5-4x 0.1na

Label,ObjectiveTurret,3,4-63x 1.4na

Label,ObjectiveTurret,2,3-2x 0.07na

Label,ObjectiveTurret,1,2-20x 0.4na

Label,ObjectiveTurret,0,1-10x 0.3na

# Group: Camera

ConfigGroup, Camera, Default, Camera, Binning, 0
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8.2 VAST command packets

All packets are sent to endpoint 0x01, from device BioSorter

Turn 3.6 degrees:

01 16 13 00 00 00 00 02 31 31 61 4D 31 56 33 30 ........11aM1V30

30 44 33 32 50 32 37 52 03 3B 00 00 00 00 00 00 0D32P27R.;......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

Pump 1 micro st

01 05 05 00 00 00 00 2F 31 4E 31 0D 00 00 00 00 ......./1N1.....

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

01 05 04 00 00 00 00 2F 31 3F 0D 00 00 00 00 00 ......./1?......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

01 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .€..............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

01 05 0D 00 00 00 00 2F 31 4E 31 49 56 31 30 30 ......./1N1IV100

44 31 52 0D 00 00 00 00 00 00 00 00 00 00 00 00 D1R.............

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

Turn off traylight

00 00 00 02 FF C0 ....ÿÀ

Turn on traylight

00 00 00 02 CC 04 ....Ì.

00 00 00 02 FE C0 ....À

500 micro meter right
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01 16 0D 00 00 00 00 02 31 31 61 4D 32 44 35 30 ........11aM2D50

30 52 03 3C 00 00 00 00 00 00 00 00 00 00 00 00 0R.<............

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

500 micro meter left

01 16 0D 00 00 00 00 02 31 31 61 4D 32 50 35 30 ........11aM2P50

30 52 03 28 00 00 00 00 00 00 00 00 00 00 00 00 0R.(............

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

Turn off

01 16 04 00 00 00 00 2F 32 54 0D 00 00 00 00 00 ......./2T......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

01 05 04 00 00 00 00 2F 31 54 0D 00 00 00 00 00 ......./1T......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

01 16 04 00 00 00 00 2F 31 54 0D 00 00 00 00 00 ......./1T......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

01 16 04 00 00 00 00 2F 31 54 0D 00 00 00 00 00 ......./1T......

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................

00 00 00 02 FF C0 ....ÿÀ
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8.3 USB information

DEVICE ID 0bd2:2006 on Bus 002 Address 002 =================

bLength : 0x12 (18 bytes)

bDescriptorType : 0x1 Device

bcdUSB : 0x200 USB 2.0

bDeviceClass : 0x0 Specified at interface

bDeviceSubClass : 0x0

bDeviceProtocol : 0x0

bMaxPacketSize0 : 0x40 (64 bytes)

idVendor : 0x0bd2

idProduct : 0x2006

bcdDevice : 0x100 Device 1.0

iManufacturer : 0x1 Error Accessing String

iProduct : 0x2 Error Accessing String

iSerialNumber : 0x0

bNumConfigurations : 0x1

CONFIGURATION 1: 160 mA ==================================

bLength : 0x9 (9 bytes)

bDescriptorType : 0x2 Configuration

wTotalLength : 0x35 (53 bytes)

bNumInterfaces : 0x1

bConfigurationValue : 0x1

iConfiguration : 0x0

bmAttributes : 0x80 Bus Powered

bMaxPower : 0x50 (160 mA)

INTERFACE 0: Vendor Specific ===========================

bLength : 0x9 (9 bytes)

bDescriptorType : 0x4 Interface

bInterfaceNumber : 0x0

bAlternateSetting : 0x0

bNumEndpoints : 0x5

bInterfaceClass : 0xff Vendor Specific

bInterfaceSubClass : 0x0

bInterfaceProtocol : 0x0

iInterface : 0x0

ENDPOINT 0x1: Bulk OUT ===============================

bLength : 0x7 (7 bytes)

bDescriptorType : 0x5 Endpoint

bEndpointAddress : 0x1 OUT

bmAttributes : 0x2 Bulk

wMaxPacketSize : 0x40 (64 bytes)

bInterval : 0x0

ENDPOINT 0x81: Bulk IN ===============================

bLength : 0x7 (7 bytes)
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bDescriptorType : 0x5 Endpoint

bEndpointAddress : 0x81 IN

bmAttributes : 0x2 Bulk

wMaxPacketSize : 0x40 (64 bytes)

bInterval : 0x0

ENDPOINT 0x82: Bulk IN ===============================

bLength : 0x7 (7 bytes)

bDescriptorType : 0x5 Endpoint

bEndpointAddress : 0x82 IN

bmAttributes : 0x2 Bulk

wMaxPacketSize : 0x400 (1024 bytes)

bInterval : 0x0

ENDPOINT 0x86: Bulk IN ===============================

bLength : 0x7 (7 bytes)

bDescriptorType : 0x5 Endpoint

bEndpointAddress : 0x86 IN

bmAttributes : 0x2 Bulk

wMaxPacketSize : 0x200 (512 bytes)

bInterval : 0x0

ENDPOINT 0x8: Bulk OUT ===============================

bLength : 0x7 (7 bytes)

bDescriptorType : 0x5 Endpoint

bEndpointAddress : 0x8 OUT

bmAttributes : 0x2 Bulk

wMaxPacketSize : 0x200 (512 bytes)

bInterval : 0x0
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VAST BioImager Interface to External Device 

18-7-2018 MHL; MINOR CHANGES 22-5-2023 MHL; 

Overview 
The “VAST BioImager” can communicate via pulses fed into its ports IN.1 and IN.2, or via pulses that it sends out of 

its ports OUT.1 and OUT.2. So, if you want to control the VAST from a PC, you must be able to generate and capture 

simple electrical pulses (TTL level, 5V). 

However, modern PCs do not have general purpose I/O (GPIO) pins, so it is not possible to directly generate or 

capture simple pulses with a modern PC. Unless you use a simple device in-between the VAST and PC to do so. Such 

a device can be an Arduino. It can communicate with a PC via standard serial protocol (over a USB cable), while 

communicating with the VAST by generating and capturing pulses on its GPIO pins. 

Serial communication between PC and Arduino enables the PC to send commands to the Arduino or receive 

information from it. Any PC programming environment will support serial communication, so this enables a wide 

range of PC programming tools to communicate with the VAST (via the Arduino). 

Pulse-based communication between the Arduino and VAST is limited to whatever communication the VAST 

firmware allows. For designing the Arduino firmware, we used the VAST communication capabilities described in 

“VAST BioImager User’s Manual Rev. 1.06”. 

IN-1, IN-2, OUT-1, OUT-2: TTL communication sites reserved for sending signals between VAST control module and an 

external microscope equipped camera. IN ports set to receive signals from outside source, OUT ports are set to send 

signals to an external device. See section External communications for more information. [PAGE 8] 

The Arduino with support hardware was built into a self-contained box. We refer to this as the “grey box”. Updates 

of the Arduino firmware can be simply made using the standard Arduino development environment. 

  

8.4 VAI-box documentation

37



Basic Use 
• Connect grey box via USB to the PC. 

• Connect grey box to the VAST BioImager as shown below, using three BNC type co-axial cables. 

• Connect grey box “POWER” to 5V – 9V DC power (center-positive). 

• Make sure that the voltage stabilizer on top of the grey box is on (green LED should light up). 

• Serial protocol over USB between PC and Arduino; default speed 115200 bps. 

• Serial commands start with 2-char command identifier, followed by optional parameter, followed by a 

newline (char 10, a.k.a. ‘\n’). 

Connection Diagram 

 

Connection notes: 

VAST “Grey Box” Arduino Description Related serial command 

IN.1 OUT.1 digital i/o pin 4 triggers VAST BioImager to proceed 
to next larva 

TT 

IN.2 OUT.2 digital i/o pin 5 triggers VAST BioImager to forward 
larva to output container, not to 
waste 

TS 

OUT.1 IN.1 digital i/o pin 2 indicates that larva is in place, ready 
for external imaging 

R1 

OUT.2 n.c. digital i/o pin 3   

 

  

5V TTL 

IN.1 IN.2 OUT.1 OUT.2 

VAST BioImager module 

 

PC 

USB 

Camera 

IN.1 

OUT.2 OUT.1 

5V – 9V DC POWER SUPPLY 

(center-positive) 
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Serial Line Command List 
 

Command Parameters Description 
   

Commands sent by the Arduino over the serial line, to the PC 
R1 - Received pulse from VAST port OUT.1 
R2 - Received pulse from VAST port OUT.2 
OK - All is well at the Western front... 
OK <text> Internal settings are returned in response to “X?” command 

E0...E3 <text> Error message 
   

Commands sent to the Arduino over the serial line, from the PC 
TT - Transmit “trigger” pulse to VAST port IN.1 
TS - Transmit “sort” pulse to VAST port IN.2 
   
XH - Set received pulse detection from lines VAST OUT.1 and OUT2 to “high” (rising 

flank) 
XL - Set received pulse detection from lines VAST OUT.1 and OUT2 to “low” (falling 

flank) 
XP 200 (e.g.) Set transmitted pulse width to 200ms 
XD 100 (e.g.) Set minimum separation of detected pulses to 100ms 
XB 9600 (e.g.) Set serial line baudrate. Calling command XB forces an automatic storage to 

EEPROM (similar to XS command). Accepted baudrates are 9600, 19200, 57600, 
and 115200. Requires Arduino restart to affectuate. 

XS - Store current internal settings in EEPROM 
XF Y Set internal settings to factory defaults (command “XFY”) 
X? - Print current value of all internal settings on serial line 
XV - Print firmware version string on serial line 
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The bubbles – Fish Loading  (BK) 
It is always important to use the purge (or wash?) option. That has to be done before you start to 
make sure all air-bubbles and old debris is cleared out of the tubing before you start.  
When you use the method where you take the tube out and load directly from a petri-dish there are 
a few tricks as well:  

1) pause the loading in the software before you take the tube out, and make sure the loading is 
never running when the tube is not submerged to avoid sucking any air into the tube.  
 

2) when the tube is submerged in the petri-dish with your larvae, push the reverse button a few 
times before you resume the loading. That way you can get rid of any tiny air bubbles at the 
very end of the tube.    
 

3) when that is done, you load up your embryos from the petri-dish, with suitable distance 
between them. This is because sometimes one will be moving more freely than others through 
the tubing, and if one catches up to another one that increases the risk of them getting stuck.  
 

4) when you have a number of larvae in the tube, you should pause the loading again before you 
take the tube out of the petridish. Pay attention as you reinsert the tube in the falcon tube 
with the little motor, if it gets caught or shaken a bit, a drop may come out at the very end 
and can then form an air bubble during the loading. If that happens, use the reverse function 
to push that air back out of the tube.   
 

5) then resume the loading, and try to keep a count of how many larvae you have loaded, so you 
can better keep track of when it is necessary to load new ones again.  

 

6) If you still have trouble after that, it is possible that a kink has formed in the tubing where the 
larvae get stuck. -So, try to check at the places where the tube bends to see if it's kinked and 
forms a clot. Otherwise, you can use the pump control options to increase the speed of the 
pumping, that should help by running a faster flow.   
 

7) If you work with fixed larvae, you will find that they are very prone to get stuck. Then it is 
important to use some tween or another detergent to keep the larvae gliding. If you do this, 
you should also change the liquid in the feeding reservoir tank on the side of the machine. 
But bear in mind that that will increase the risk of air bubbles.  
 

8) For fixed fish (Rico Bogarts) recommended to use 0,1 % pvp. This  makes sticky fish glide 
better.  

 

8.5 Manual zebrafish loading notes
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