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Abstract

Software development involves eliciting requirements in the early stages of
the development cycle. Business analysts typically conduct interviews with end-
users, and transcribe these into formal UML requirements models. This results
in a complex and time-consuming manual process. Our research leverages NLP
based chatbot technology to enable users to express their requirements directly,
thereby bootstrapping the formal modelling process in the early stages. The
chatbot aims to streamline elicitation for users not adept in the requirements
process. It captures the different requirements components of an Agile SDLC
process, specifically Use Cases, Classes, and Activities. In particular, Semantic
Role Labeling is applied to extract relevant meta data from a knowledge graph-
based conversation process. The chatbot uses a hybrid approach with a mixture
of direct input processing using a conversation strategy component, and ran-
domises variants of questions to the user in order to avoid repetitive, unnatural
interaction. The thesis has been conducted through research by design. Based
on an extensive literature study, an end-to-end prototype has been developed as
part of the LIACS ngUML / Prose to Prototype development tool project. This
enables the chatbot to generate UML diagrams which can be further refined in
a ‘human-in-the-loop’ fashion by analysts, in conjunction with the user.
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1 Introduction

Requirements elicitation is an essential part of the software development life
cycle [Cha+12]. Ease and correctness of elicited requirements plays a major
role in the development timelines of the omnipresent software products around
us. There are a lot of implementations in the literature for requirements elici-
tation during different stages of software development life cycle using focussed
techniques [SRV22] [Ram+21]. This work focuses on the development of a use
case driven hybrid chatbot for the purpose of requirements elicitation during
the early stages of the software development life cycle.

1.1 Problem Statement

Requirements elicitation is a complex process and is quite often error-prone for
users not very accustomed to it. The requirements elicitation process, however,
is a vital component of the software development life cycle (SDLC). There is a
need to streamline the requirements elicitation process to make it easy to use
for an average user in the early stages of SDLC. Additionally, agile processes
are iterative and increasingly use case driven. The requirements elicitation flow
needs to be use case driven but also capture all the other stages of elicitation
flow.

Current implementations of automated requirements elicitation rely heavily
on Natural language processing (NLP). The efficacy of these techniques depends
heavily on the input data structure and are heavily case and extraction depen-
dent. Eliciting requirements for use cases, classes and activities iteratively is a
complex process. Proper structure needs to be enforced to capture and process
the incoming data. Additionally, capturing all the requirements as a single file
or user story creates a complex processing scenario. It is very difficult for any
NLP algorithm to process it correctly and capture complete requirements data.

Even if the requirements elicitation process is broken down into stages, the
overall extraction procedure and mapping it to a knowledge base which can
correctly predict the next requirement to be asked is also a complex process.
In-order to correctly elicit requirements, firstly, the correct extraction algorithm
needs to be run. Then the metadata from the extraction run needs to be mapped
correctly to a knowledge base. The structure for the knowledge base for best
automation and extendability is also a non-trivial problem.

Additionally, if the requirements are elicited in a staged manner, the user
might want to switch between providing different kinds of requirements. The
strategy to determine the switching of the requirements elicitation which map
to different sections of the knowledge graph is also a complex problem. During
the whole flow, the monotonicity of the elicitation process needs to be avoided
to make the procedure more engaging for the user as well.
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1.2 Research Objective

The main objective of this research is the development of a methodology which
can streamline and ease the early stage requirements elicitation in the software
development life cycle (SDLC). The process of streamlining and ease of use is
of absolute necessity since typical users involved in requirements elicitation do
not have much expertise in the area. The derived research question is :

1. How can early stage requirements elicitation in SDLC be stream-
lined and improved using a chatbot?

The requirements elicitation in agile processes is typically use case driven
and iterative. The chatbot needs to be able to have a use case component as
the driving component for the requirements elicitation. At the same time, the
class and activity related requirements elicitation also needs to be done. The
chatbot should also not have a static and monotonous feeling when posing the
questions for requirements elicitation. All these issues are tackled using the
combination of knowledge graph and strategy component to create a hybrid
chatbot. The derived research question is :

2. How can combination of strategy and knowledge graph be done
to create a use case driven, dynamic and hybrid chatbot?

To answer the research questions posed as part of the thesis, the following
research objectives have been set.

Development of a prototype chatbot with the following features:

1. R-01: The chatbot should be able to streamline the requirement elicita-
tion process with different components of use case, classes and activity.

2. R-02: The chatbot should be use case driven and should be able to link
to different components using a strategy component.

3. R-03: The chatbot should be able to do complex input metadata extrac-
tion and map it to knowledge base to correctly predict the next question.

4. R-04: The chatbot needs to link the strategy component to the knowledge
base to create a hybrid chatbot.

5. R-05: The chatbot needs to be extendable for future research and com-
plexity increment.

6. R-06: The chatbot needs to be dynamic in the questions posed to the
user and not repeat same question always.

7. R-07: The chatbot needs to perform end to end requirements elicitation.
The elicitation process starts from capturing the user inputs in a struc-
tured format using the chatbot. It then performs the necessary processing
and extraction. At the end of the elicitation cycle, the user is presented
with the metadata/UML diagrams.
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1.3 Research Methodology

The research method applied in this thesis is research by design. In this research
method, knowledge is produced in a domain by deriving it from the design and
development. This research and development typically involves a new solution
to a research problem. The approach does not focus on review and evaluation of
existing solutions. This is a common approach implemented in Information Sys-
tems. According to Peffers et al. [5] design science “includes six steps: problem
identification and motivation, objectives for a solution, design and development,
demonstration, evaluation, and communication.”

Problem identification and motivation: The research problem of streamlining
the requirements elicitation during early stages of SDLC and making it more
use case driven using the strategy component have been described in the first
chapter. The background work and motivation to work in this specific direction
have been done in the second chapter

Objectives of a solution: The objectives of this thesis have all been inferred
from the derived research questions. The research questions have been derived
from the problem statement. A solution has been proposed, and a prototype
development has been done as part of this thesis. The comparison and novelty
of the prototype as compared to the existing work in the literature has been
done in the second chapter. Its value proposition for academics and future
extendability for research and development has also been kept in focus as part
of the prototype development.

Design and development: The third chapter describes the system and ar-
chitectural level designs and development of the proposed chatbot. The system
and architectural choices taken in the design and development have been related
to the research objectives of this thesis.

Demonstration: The fourth chapter details the implementation of the chat-
bot in pseudocode. The chapter describes how research objectives have been
achieved using different parts of the proof of concept demonstrator chatbot.

Evaluation: Chapter five focuses on case studies for different systems require-
ments elicitation performed. Specific focus has been kept on how the research
objectives have been met with the proof of concept demonstrator.

Communication: Chapter six justifies and communicates the novelty of the
proposed solution. It also dives into possible limitations and how they can be
handled by the extendability of the chatbot already built into the chatbot proof
of concept. The goal is to motivate the researchers and industry to further
improve and develop this proof of concept research done by design.
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1.4 Academic Contribution

This research facilitates the requirements elicitation in the early stages of the
software development life cycle. It performs complex metadata extraction and
streamlines the process using a hybrid chatbot implementation. The approach
is extendable in various directions, and the extendability is built into the im-
plementation. The complex metadata extraction flow and its mapping into the
chatbot has been done for the first time in the academic literature. Addition-
ally, a hybrid chatbot implementation with a complex strategy component and
a knowledge graph for the purpose of requirements elicitation has also been
done for the first time in the academic work. The work has been demonstrated
for complex systems in an end two end integrated pipelines from user input to
requirements diagrams.

1.5 Outline

Chapter 1 of this thesis provide an introduction to the thesis. It details at the
problem statement of the thesis. Then it creates research questions and ob-
jective based on the problem statement. It provides the research methodology
of the thesis and justifies the academic contribution. Chapter 2 reviews the
background work done in the literature for the problem statement. It draws
inspiration from the work literature to create a methodology to approach the
research objectives. Chapter 3 focuses on system design of the overall end to end
prototype of the chatbot. It proposes a system architecture using the methodol-
ogy shortlisted in chapter 2 to solve the research objectives created in 1. Chapter
4 details the implementation for the prototype done for the proposed system
architecture in 3. It hierarchically details each function implemented for the
proposed architecture to achieve the research objectives. Chapter 5 details how
different complex system use cases were validated using the developed chatbot
in an end to end pipeline.
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2 Background

2.1 Requirements Elicitation in Software Development Life
Cycle

Requirements Engineering (RE) has become an important pivoting point for the
software industry for more than a decade, [Hor+19][Lam00]. Requirements elic-
itation is one of the most important and key phases of the Software Development
Life Cycle (SDLC) [Cha+12]. Correct management of a project requirements
help in achieving the right solution within the time and budget the companies
have been allocated [LB99]. Additionally, the validation of the elicited require-
ments is an important step to ensure the quality of requirement documents
[Nae+13]. Therefore, elicitation of requirements require proper attention from
requirement engineers and other related stakeholders [MMY08].

To this end, there are various techniques that have been used to elicit infor-
mation from people in the literature. These techniques depend on the specific
project or situation, [Fer+17][KZ09]. Some examples of the techniques used for
the elicitation process are:

• Interviews: It is an open-ended or structured method to understand
customer’s expectations from a software. The stakeholder providing the
requirements and the person conducting the interview both need to have
a certain amount of expertise for this methodology to work well.

• Brainstorming: It is a group technique used when a lot of new ideas
for development need to be generated. This also requires a highly trained
facilitator to streamline the elicitation process.

• Facilitated Application Specific Technique : It is used as a bridging
technique between developers to customer’s expectation.

• Quality Function Deployment : This technique aims to emphasize and
prioritize customer requirements.[LNZ01]

• Use Case Approach : The approach uses both textual and pictorial
representations to provide a better understanding of the requirements.
These may include major things like actor, use cases and use case dia-
grams.[RKW95]

Requirements elicitation is the method of learning, obtaining and compil-
ing system requirements using some method of user engagement in the pro-
cess [Zha07][PGR18][Dav+06]. There are various crucial components associated
with it.

1. The process of providing is not always executed by a trained requirements
engineer. The process is often run by personnel with only basic under-
standing of the requirements process. The fundamental knowledge of how
a requirement might relate to any process is also often lacking.
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2. The right question needs to be often posed to the person providing the
requirements. Responses and therefore the elicited requirements have a
heavy dependence on the questions posed for the requirements’ elicitation.

3. Requirement elicitation is often done in the preliminary stages of the
SDLC. This results in a lot of requirements being incomplete and im-
precise. These incomplete and imprecise requirements get converted into
subsequent processes incorrectly. Since the elicitation is done in the pre-
liminary stages and any error in beginning can result in big delays in the
overall SDLC.

4. Elicited requirements need to have certain amount of correctness for the
SDLC cycle to carry forward without any hassles. Therefore, the elicited
requirements need to be validated against some standards.

In-order to alleviate the above issues and streamline the process of require-
ments elicitation, in this work we have proposed the usage of a chatbot. The
chatbot is expected to gather and process the requirements in a streamlined
manner. The chatbot is expected to be simple, yet dynamic enough that a
basic user can create requirements using it.

2.1.1 Agile Use Case Driven Approach

A lot of SDLC are increasingly transforming into agile approaches where use case
requirements are of the highest importance [Rup10]. The steps are executed in
short sprints iteratively, and small requirements need to be gathered at the start
of the process and validated at the end. This process is done iteratively. Multiple
implementations of agile use case driven requirements’ elicitation can be found
in the literature. [Hor+19] proposes the usage of requirements analysis methods
underlying GORE (Goal Oriented Requirement Engineering) concepts. As part
of the methodology, soft goals can be identified quickly at an early stage of
software development using the concept of agility. It ensures active participation
of stakeholders in identifying soft goals. [Fra+21] propose extension of agile
requirements’ elicitation by applying situational method engineering. There is
a fundamental lack of work to make the agile use case driven elicitation process
simpler and streamlined for the user.

In this work, we are proposing the use of the chatbot to streamline the
process of requirements elicitation. The implementation focuses on a use case
driven approach and manages the flow of the elicitation process using the strat-
egy component of the implementation. Use cases are first elicited and then,
depending on the user’s responses to the chatbot, the chatbot dynamically asks
for more use cases or classes or activities.
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2.1.2 Chatbot

The work profile of a business analyst involves tasks like interviews, obser-
vations, document analysis and interface analysis [Kle+12]. These tasks are
mundane and repetitive. There is a huge scope of automation in these tasks.
Chatbots have been used quite widely for the automation of such tasks. High uti-
lization has been observed in the retail industry [Cas+20] [AAG22][ZH18]. The
combination of streamlined process and machine learning on existing datasets
have been used to automate a lot of mundane processes [GHV20]. Using the
chatbots, the error component created by having a human in the loop gets re-
duced, and the knowledge set of the human in the loop can be a lot diverse and
less focussed on the specific task being handled by the user. This also enhances
the user experience, since the streamlined process leads to fewer errors and uni-
fied flow. There have been multiple attempts to utilize the chatbots in other
industries like the human resource work. Chatbots have streamlined the new
employee onboarding process. There have also been attempts to automate the
development of chatbots [Pér+21] due to their widespread utilization in busi-
ness processes. They utilize multi component approach with basic and strategy
components to automate the development of the chatbots.

There have been different attempts to create different architectures of chat-
bots[Abd+22][AAB20]. There are kinds of chatbots that a specific for a certain
function[NL20]:

• Menu/button-based chatbots : These are based on static decision tree
hierarchies presented to the user as a menu button.

• Linguistic Based (Rule-Based Chatbots) : They create a conversa-
tional automation using a series of if/then logic. Language conditions like
order of words, synonyms etc. need to be defined for the chatbot.

• Keyword recognition-based chatbots : They are based on keyword
recognition using Natural Language Processing (NLP) techniques. Com-
plex responses from the user can be interpreted using NLP and an appro-
priate action can be executed by the chatbot.

• Machine learning chatbots : These chatbots evolve over time based
on user-types, responses, processes etc.

• Hybrid models : These are typically used by businesses are they offer the
best of both Rule and NLP based chatbots using hybrid implementations.

• Voice bots : These chatbots can respond and process speech along with
other NLP post-processing features of the ML or hybrid chatbots.

Various machine learning models for chatbot have been proposed in the lit-
erature. [BEF21] and [Csa19] propose the use of transformer based approach.
[JRG20] proposes the use of end to end memory network based approach. Tak-
ing inspiration from the [Tha+21] the chatbot can be implemented in the SDLC
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cycle in exceedingly initial stages of product development. This iterative ap-
proach of gathering requirements and posing the next right question to the user
can help companies to reduce repetitive work. Hybrid chatbot implementation
based on NLP can be used to provide both dynamic and streamlined require-
ments’ elicitation flow.

2.2 Natural Language Processing

The science of using artificial intelligence for the purpose of understanding text
or spoken words is referred to as Natural language processing (NLP) [Lid01].
Computational linguistics-rule-based modeling of human language are combined
with statistical, machine learning and deep learning models in this science. A
combination of these technologies can process human language and make deci-
sions based on those. It is used in computer programs across business world,
research wherever automation is needed based on a human textual or audio
input.

NLP can be used in various tasks like:

• Speech recognition: This involves methodologies and technologies that
enable the recognition and translation of spoken language. This spoken
language is translated into text by computers. It provides the main benefit
of searchability.[Red76]

• Part of speech tagging: This process does the marking up a word
in a text. This is done corresponding to a particular part of speech.
Additionally, it is based on both its definition and its context.[BM]

• Word sense disambiguation: It is the process of identifying the sense of
a word. It is meant to distinguish the sense in a sentence or in a segment.
It is also meant to distinguish out of context usage.[Nav09]

• Named entity recognition: It seeks to locate and classify named en-
tities mentioned in unstructured text. It classifies them into pre-defined
categories such as person names, organizations, locations, quantities, mon-
etary values, percentages, medical codes, time expressions etc. [Moh14]

• Co-reference resolution: This task of finds all expressions that refer to
the same entities in a text.[DW15]

• Sentiment analysis: It is the use of natural language processing, text
analysis, computational linguistics, and biometrics. It aims to systemati-
cally identify, extract, quantify, and study affective states and subjective
information in the text. [MHK14]

• Language generation: It is a software process driven by artificial intel-
ligence. It produces natural written or spoken language. This is derived
from structured and unstructured data.[GK18]
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For the purpose of creating a hybrid chatbot, combination of the techniques
of NLP need to be deployed. For the purpose of this thesis, a pre-existing library
set needs to be used to speed up the deployment of the proof of concept.

2.2.1 Allen NLP

For the purpose of automation and speed of deployment of NLP based tools, a
combination of multiple library sets need to be used. AllenNLP provides a single
combination of multiple NLP based tools which provide a precise definition of
the approach, easy reproducibility of the results, and a basis for expanding the
study. It is a widely used tool across the research community for the purpose
of deploying NLP tools in their research projects [Gar+18]. The AllenNLP tool
set contains a Semantic Role Labeling library with pretrained models. These
models are a good fit for the hybrid chatbot.

2.2.2 Semantic role labeling

Semantic role labeling (SRL) labels parts of speech in a sentence. The goal is
to understand what they represent. This method can be particularly helpful
in determining how speakers of a certain language refer to subjects. It also
helps identify other primary elements in a sentence. [CLS08] [He+17] It helps
machines to understand the roles of words within sentences. Natural Language
Processing programs benefit from this, as NLP needs to understand not just the
words of languages, but how they can be used in varying sentences.
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Figure 1: Example of Semantic Role Labeling

Figure 1 shows a snapshot of a typical usage of SRL. The algorithm creates
a frame for each verb in the sentence. For each verb, the algorithm creates a list
of arguments 0 and 1. The representation created by the algorithm is can be
used for mapping the next question in the knowledge graph. Other techniques
can also be used as an extension of the chatbot. For this thesis, SRL was chosen
as the correct candidate.

2.3 Knowledge Graphs

Knowledge graphs are collections of interlinked descriptions of concepts, entities,
relationships and events. [Hog+21] They are used in various fields, ranging from
computational methodologies like artificial intelligence to information and data-
management systems [Umu+20].

There are many possibilities for the design and complexity of a knowledge
graph. Fundamentally, the graph comprises edges and nodes, as shown in figure
2. In the context of chatbot, the knowledge graph plays a crucial role in creating
the dynamics of the questions posed to the user. [AJ20]. There can be highly
complex and self learning knowledge graph implementations, but for the purpose
of this thesis, only pre-compiled knowledge graphs have been used.
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Figure 2: Example of Knowledge Graph

2.4 UML

In the field of software engineeering, UML is used as a general-purpose, devel-
opmental modeling language [Sel06] [Bai+05]. It provides a standard way to
visualize the design of a system. Figure 3 shoes an example of use case UML
diagram. Typical uses in software requirements elicitation are use case, class
and activity visualization. In the context of this thesis, the diagrams are used
as a method to visualize the metadata generated from the extraction of require-
ments by the chatbot. Other methods in the literature to visualize the software
requirements as a complement to UML diagrams include C4 model [VGG20].
The generated metadata in this thesis is visualized using UML diagrams, but
the approach can be translated to a C4 model as well.

Figure 3: Example of UML Diagram for Use Case
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3 System design

The design of the chatbot for requirements elicitation has been done as part of a
complete end to end pipeline. This chapter explains design from an overall sys-
tem design and integration perspective. Various design and integration choices
have been explained in the subsequent sections.

3.1 High Level Architecture

Figure 4 shows the high level architecture of the implemented chatbot. From
the user perspective, the user can provide a response on the frontend interface.
The response in principle can be both text or audio. For the proof of concept
implementation in this thesis, the response has been limited to a textual value.

The response received from the user passes through the interface chatbot
component. This chatbot component has been kept focussed on the early stage
requirements. There have been other works which focuses on modifying the
already elicited requirements. The high level architecture shares an implemen-
tation and similarities with the chatbot, but the system level implementation
has been implemented as a completely separate pipeline in both the frontend
and backend.

Figure 4: High Level Architecture
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Fundamentally, the received response is in a structured format. The reason
behind it is that the questions are targeted and streamlined to specific stages of
the elicitation, as explained in the section 3.2. The response passes through an
extraction algorithm. The extraction algorithm for the purpose of this thesis
has been kept as semantic role labeling, as explained in section 2.2.2. The
extracted metadata is passed through a process of knowledge graph matching
and prediction of the next question. Once the next question is determined, the
next question to be posed to the user is sent to the frontend. The metadata
requirement for the extraction purposes to be extracted in the next question is
sent to the metadata extractor.

3.2 UCA Architecture

The architecture to streamline the development requirements elicitation has
been kept as a Use Case - Activity - Class (UCA) architecture as shown in the
figure 5.

Figure 5: Component Architecture

The architecture has different components for use case, class and activity
requirements elicitation. In each of the components, there are different prop-
erties of the component that can be elicited from the user input. The list of
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Figure 6: Interaction between UCA components and the strategy Component

properties has been kept limited for the purposes of proof of concept. They
can be further expanded. The overall architecture does not limit it and is ex-
pandable. The strategy component controls how the process of elicitation is
streamlined. The chatbot implementation is use case driven have by default the
use case requirements are elicited first, then the next set of class and activity
requirements are elicited. The interaction between the UCA components and
the strategy components is shown in figure 6.

3.3 System Components

Figure 7: System Components

The actual implementation of the system for the proposed architecture in
3.2 is divided into multiple components, as shown in figure 7. The core of
any system specific chatbot implementation is its knowledge base component.
The knowledge base consists of the requirements questions and requirements
knowledge graph. The knowledge base has both the multiple components of
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use case, class, activity and strategy embedded within both the questions and
the graph. The chatbot main component acts an interface to the frontend,
where the input is provided by the user. The chatbot main interface calls the
conversation step interface. The extraction of metadata, mapping to the next
question using the knowledge base and sending the next question to the user
through chatbot main interface are executed by the conversation step.

3.3.1 Requirements Questions

The first part of the knowledge base consists of the requirements questions. The
questions are put in the knowledge base as a JSON file. The file is parsed by
the chatbot each time a new requirements elicitation request is initialized from
the frontend. The questions form the base of the requirements elicitation flow.
There need to be a new set of questions formulated for a chatbot deployment
for each new system. The questions are created based on following set of rules:

1. The questions for the format : ”Component type Q level count” :
”Question language <<substitution tag>>?”

2. The key for the JSON file is the questions ID given by : ”Compo-
nent type Q level count”.

3. Component type can be either of the following:

(a) g: for generic questions

(b) u: for use case component

(c) c: for class component

(d) a: for activity component

(e) s: for strategy component

4. level is the depth of questions graph in the same component (count start
from 0). This is defined differently for strategy component. It is detailed
in section 3.3.3.

5. count is the count of questions at the same level in the graph, these will be
used and explained in section 3.4.2 (count starts from 0). This is defined
differently for strategy component. It is detailed in section 3.3.3.

6. <<substitution tag>>: is the already extracted metadata from the
previous questions which has to be substituted in this question before
posing it to the user.

By using the ruleset described above, automation can be done for new ques-
tions generation for a new system. This automation was not done as part of
this thesis. An example of a question can be:
”u Q 1 1” : ”What would you like to have in your <<system name>>?”
The explanation for the example is :
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• u Q 1 1

– Use case component

– Second level of the questions in the graph

– Second question in the same level

3.3.2 Knowledge Graph

The questions described in the section 3.3.1 are interconnected in the form of
a knowledge graph. The knowledge graph is used in the chatbot to predict
the next question to be posed to the user using the extracted information from
the questions already answered and the knowledge graph itself. The knowledge
graph needs to be formulated for each chatbot deployment for a new system.
The knowledge graph is in a JSON format and follows the following rules:

Figure 8: Format definition of Knowledge Graph used in Chatbot

1. The format for the rules is shown in figure 8.

2. The first level of keys either points to a dictionary of nodes or a list of
edges.

3. Inside the dictionary of nodes, the keys are question ids which follow the
same format as the requirements questions.
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4. Individual questions are modeled as nodes in the graph. Each question
(modelled as a node) has its own dictionary of features. Currently, this
dictionary is limited to two features.

(a) extract type: This lists the possible algorithms that can be run on
the input from the user. Currently, this is limited to Semantic role
labeling and is run using the keyword ”semrol” for the extraction
type. For the strategy questions, there is a separate tag ”direct”
used. This is explained in section 3.3.3.

(b) metadata: This lists the possible metadata to extract from the re-
sponse received from the user when this node question gets asked.
The possible keywords are listed in the section 4.2

5. Inside the list of edges, each edge contains a dictionary with the following
features:

(a) source: This refers to the question id of the source node

(b) target: This refers to the question id of destination node

(c) metadata: This is the feature of the edge which limits its access to
only when the ”metadata” tag explained in section 4.2 is met.

The proposed format for the knowledge graph is both extendible and regular
for automation for any future improvements beyond the scope of this thesis.

Figure 9 shows an example of a simple knowledge graph. The graph consists
of two questions with questions ids ”g Q 0 1” and ”g Q 1 1” as nodes and an
starting from ”g Q 0 1” and targeting ”g Q 1 1”. Figure 10 shows the actual
knowledge graph structure that gets built with the convention described in this
section.

3.3.3 Conversation Strategy

The conversation strategy component is needed for controlling the dynamic
behavior of the chatbot. It controls the following behaviors in the chatbot:

1. Repetition of chatbot within the same component.

2. Jumping of chatbot from one component to another.

3. Generation of Metadata.

4. Generation of UML diagrams.

To implement the above behaviors reliably, the strategy is broken down into
multiple parts. The strategy questions follow the following format.

1. The questions for the format : ”s Q component level count” : ”Ques-
tion language”

2. The key for the JSON file is the questions ID given by : ”s Q component level count”.
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Figure 9: Example usage of the Knowledge Graph format for the chatbot

3. Component level can be either of the following, it is dependent on the
level after which the strategy question asked to the user:

(a) u: for use case component

(b) c: for class component

(c) a: for activity component

4. count is the count of questions at the same level in the graph. In the
current implementation, count 0 is hard-coded for posing the questions to
view the metadata generated till now. This will trigger both diagram gen-
eration and metadata lists to be printed in the chatbot frontend. Count
1 is hard for posing the question if the user wants to repeat more require-
ments in the same level or wants to switch to another level in the UCA
framework.
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Figure 10: Detailed knowledge graph

An example of a strategy question ””s Q u 1” : ”Would you like to
add another use case?”
The explanation for the example is :

• s Q u 1

– It is a strategy question.

– It is asked at the end of the use case level.

– It is count 1 question. Currently, count 1 questions are hard-coded
to ask if the user wants to repeat the previous level or jump to the
next level.

The generation of metadata lists to be printed in the chatbot and the UML
diagrams are currently triggered as a response to the same strategy questions
at the end of each UCA level. An example of a strategy question used for gen-
erating the output metadata is :

””s Q u 0” : ”Perhaps you would like to see the requirements so
far (metadata)?”
The explanation for the example is :

• s Q u 0

– It is a strategy question.

– It is asked at the end of the use case level.

– It is count 0 question. Currently, count 0 questions are hard-coded to
ask if the user wants to generate the metadata of elicited requirements
till now as lists and diagrams.
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In the current implementation of the proof of concept, the interpretation of
the responses received from the user for the strategy questions is not passed
through an extraction algorithm (like SRL). Instead, it is directly interpreted.
This limits the usage of responses to simple Yes/No like responses for the strat-
egy questions. The implementation for the strategy decisions is discussed in
chapter 4. The conversation strategy can be further extended to include strat-
egy questions to resolve the conflict between the user position in the graph and
where the user wants to be. This can be done with real-time visualization of
the knowledge graph traversal and more control of traversal jumps through the
strategy component.

3.3.4 Chat Conversation History

Chat conversation history is a log of all the nodes traversed by the user, as well
as all the responses received from the user. Currently, this serves the purpose
of a logging mechanism for each requirements elicitation project. This can be
further extended to create a mechanism for self learning dynamic chatbot. The

Figure 11: Example of partially traversed knowledge graph.

log is created in the form of a list of nodes traversed (chat nodes) and a list
of responses received from the user (chat responses). As an example, figure 11
shows the partially traversed knowledge graph. The node IDs and the responses
from the user for each of the questions gets logged.
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3.4 Methodologies

The responses received from the user either go through the process of extraction
or interpreted directly and passed through strategy response as explained in
3.3.3. In the case where the responses go through the process of extraction,
a relationship methodology needs to be setup between the questions asked,
response received, extraction process and subsequent questions asked.

3.4.1 Metadata Complexity, Extraction and Mapping

For each of the questions posed in the, the responses are expected to be in a
given format for the current elicitation methodology to work. This is detailed
later in the 4. Assuming a given format is followed, the following steps need to
be executed for correct extraction of a complex metadata.

• Language to Semantic Role Labeling: Each response when passed
Semantic Role Labeling (SRL), generates the following:

– List of verbs in the sentence.

– Arguments list as done through identification and classification in
[SL19].

– Relative position of each of the Arg0, Arg1 and Verb, so that they
can be extracted from the sentence.

• For each question’s expected response, the information to be extracted
and saved(either or all of Arg0, Arg1 and verb) needs to be known. This
is coded in terms of metadata information associated with the node of
the question.

• Based on the extracted information and metadata label of the question,
the correct information is saved in the global variables as described in 4.2.

• SRL to Knowledge Graph: The extracted and saved information needs
to be mapped in the knowledge graph. The mapping in the knowledge
graph is done using the process of assignment to global variables and
substitution to the tags using the global variable information. The imple-
mentation is detailed in chapter 4.
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3.4.2 Randomization and Knowledge Graph

Each level of the knowledge graph used in the prototype chatbot has multi-
ple counts of questions. For the current implementation, each question is a
rephrased version of the questions asking the same software requirements infor-
mation from the user. When the chatbot traverses the knowledge graph and
reaches a given level, it randomizes the question it poses to the user if there are
multiple options available. As an example:

1. ”u Q 1 1” : ”What would you like to have in your <<system name>>?”

2. ”u Q 1 2” : What things do you want in your <<system name>>?”

Above are two questions in the level one of the use case component asking
for the use case name from the user.

3.4.3 Extendable Framework

The system has been designed to be extendible from the proof of concept done
in this thesis in the following ways :

• More Components can be added to the requirements elicitation flow. This
is enabled by the regular expressions used to code a component. Addi-
tionally, more features can be added for the elicitation purpose in a given
UCA level.

• For adding more features in requirements elicitation in a given level, the
generation of questions can be automated due to the regular expression
methodology used.

• Similar to requirements questions, the knowledge graph is also coded with
regular expressions. This facilitates the extension using automation for
new features and level or different chatbot.

• The strategy component currently is limited to a simple implementation,
but is well integrated into the knowledge graph to provide a hybrid dy-
namic chatbot. Complex extraction and learning can be added to the
strategy component standalone. This is not done as part of proof of con-
cept design.

• Metadata extraction and mapping is semantic role labeling driven in the
proof of concept. The knowledge graph encoding and interpretation scheme
offers the extendible framework to add keyword for additional algorithms
to improve the extraction and mapping.
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4 Implementation

The High Level Architecture described in chapter 3 is achieved through a low
level design methodology.

4.1 Information Flow

The sequence of events (also detailed in figure 12) in the chatbot are as following:

1. The chatbot poses a question to the user.

2. The user sends the response back to the chatbot.

3. The response is either directly interpreted or passes through an extraction
process. The decision to either directly interpret or pass into extraction
is based on the extract type and metadata values associated with the
question posed to the user.

4. If the response is directly interpreted, then next question is determined
based on the strategy response. This question is sent to the user and
the sequence is repeated. Also, necessary action is taken depending on
the strategy response.

5. If the response passes into extraction, the extraction is done based on
extract type associated with the question’s node in the knowledge graph.

6. After the extraction, the process of assignment and substitutions are car-
ried out. The detailed description of these processes is described in 4.

7. For the assignment and substitution process to work, the chatbot uses
tags, which are described in 4.2.

8. Once the substitution is completed, the next question is sent to the user
and the process is repeated.

4.2 Globals and Tags

The information flow is managed with the use of the following:

• Global Variables: These are used to save the extracted metadata from
the user’s responses. Table 1 details and provides a description of each
used variable. The global variable lists have one to one correspondence
within the same level. For example, the second item in use case name
and use case actor will correspond to the second use case. If the actor
in the two are common, duplicates are removed during the UML diagram
generation process.
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Figure 12: Information flow in the chatbot

• Metadata Tag: These are the tags in associated with the nodes and
edges. With every node they signify what information needs to be ex-
tracted from the user’s response. when associated with an edge, they
signify that a particular edge is selected only if the metadata tag meets
the value we expect. Table 2 details and provides the meaning of each tag
for both nodes and edges.

• Substitution Tags: These are tags which are build into the questions
stored in the knowledge base. The task of mapping is to find the correct
information stored in the global variables and map them into these tags
before posing the next questions to the user. Table 3 details and provides
a description of each of the substitution tag.
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Global Variable Description Example

system name It saves the system name of the
SDLC in the generic level

[order entry system]

system users It saves the list of system users
in the generic level

[Order Manager,
Warehouse Manager]

use case It saves the list of use case names [process an order, ap-
prove an order]

use case actors It saves names of the actors in-
volved in particular use cases.

[Warehouse Manager,
Order Manager]

use case relationship It saves names of relationships
between use case actors and use
case names. Extracted infor-
mation is saved in these vari-
ables. Transformation to rela-
tionship types is done during the
diagram generation process.

[interacts, interacts]

class name It saves extracted class names. [order]
class attribute It saves the list of class at-

tributes.
[ID,date,item]

class related name It saves the class name to which
the main class elicited is related

[product]

activity name It saves the list of activity names. [receive an order]
activity seq a It saves the first step in the ac-

tivity sequence.
[places, an order]

activity seq b It saves the second step in the
activity sequence.

[approves, an order]

activity seq b It saves the third step in the ac-
tivity sequence.

[sends, details]

Table 1: Global Variables
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Metadata Tags Description

system name System name needs to be extracted from user response.
system users System users needs to be extracted from user response.
use case Use case name needs to be extracted from user response.
use case actors Use case actors need to be extracted from user response.
use case relationship Use case relationships needs to be extracted from user

response.
class name Class name needs to be extracted from user response.
class attribute Class attributes need to be extracted from user response.
class related name Class name related to the main class elicited to be ex-

tracted from user response.
activity name Activity name needs to be extracted from user response.
activity seq a First activity step to be extracted from user response.
activity seq b Second activity step to be extracted from user response.
activity seq c Third activity step to be extracted from user response.

Table 2: Metadata Tags

Substitution Tags Description

system name System Name needs to be found from the global vari-
ables and substituted.

system users System Users needs to be found from the global variables
and substituted.

use case Use Case Name needs to be found from the global vari-
ables and substituted.

use case actors Use Case Actors need to be found from the global vari-
ables and substituted.

use case relationship Use Case relationship needs to be found from the global
variables and substituted.

class name Class Name needs to be found from the global variables
and substituted.

class attribute Class attributes need to be found from the global vari-
ables and substituted.

class related name Class Name related to the main class needs to be found
from the global variables and substituted.

activity name Activity Name needs to be found from the global vari-
ables and substituted.

Table 3: Substitution Tags

4.3 Code Structure

The code implementation database is part of the ngUML database. The main
chatbot code is under the chatbot subdirectory. The code is broken down into
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the following files:

• nguml/chatbot/knowledge base/requirements Questions.json: JSON
file with all the questions for the requirements elicitation purpose. The for-
mat for the question is described in chapter 3. The detailed requirements
questions are list in the appendix.

• nguml/chatbot/knowledge base/requirements Kgraph.json: JSON
file with all the nodes and edges information necessary to create a knowl-
edge graph of the requirements questions. The format for the nodes and
edges is described in chapter 3. The detailed knowledge graph nodes and
edges are listed in the appendix.

• nguml/chatbot/utils/requirements.py: Python file with all the func-
tions necessary for the chatbot extraction process.

• nguml/chatbot/consumers.py: Python file to manage the link be-
tween the frontend interface of the chatbot to the backend implementa-
tion.

The code calls the following built in internal API for the purpose of the in-
tegration with the overall project and to create a proof of concept demonstrator.
In the current implementation, the internal api path is set to nguml/model/tools

• internal api path/project : Library of internal functions to create and
manage projects with ngUML.

• internal api path/system : Library of internal functions to create and
manage systems with ngUML.

• internal api path/usecase model : Library of internal functions to
create and manage use case models with ngUML.

• internal api path/class model : Library of internal functions to create
and manage class models with ngUML.

• internal api path/activity model : Library of internal functions to
create and manage activity models with ngUML.
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4.4 Functions and Pseudocode

The overall code is broken down into multiple functions to implement require-
ments elicitation chatbot. This section describes the pseudocode and function-
ality of those functions

4.4.1 Chatbot Main

Algorithm 1 chatbot main() function

Require: message input

if system state == 0 then
next qid← start qid
current qid← start qid
response← questions[current qid]

else if system state == 1 then
next qid, response← conv steps(message input, current qid)
node history ← append(current qid)
current qid← next qid
chat history ← append(message input)

end if

The chatbot main() function receives an input message from the user through
the chatbot frontend connected via a web socket. The pseudo code is shown in
algorithm 1. system state variable controls the state of the chatbot. If the
state is 0, it implies a new SDLC elicitation process has started. The start-
ing node of the knowledge graph is set. The node history variable logs the
nodes traversed by the user in the knowledge graph. chat history variable
logs the overall messages inputs from the user for post-processing and analysis
requirements.

4.4.2 Conversation Steps

The chatbot main() function calls the conversation step function. The goal
of the conv steps() function is to execute all the steps necessary to interpret
message from the user, elicitate requirements from it, and then pose the correct
question to the user in response.

The pseudocode for the conv steps() functions is shown in algorithm 2.
The functions creates a decision on whether to pass the input through strat-
egy reponse or through the extraction cycle based on the extract type tag asso-
ciated with the node of the last posed question to the user. If the tag is direct,
then strategy response gets called otherwise the extraction flow gets called. The
extraction flow is broken down into multiple stages called within the conversa-
tion step. First extraction using SRL is called, then the assignment process,
then the next nodes are searched, finally the substitution process is called.
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Algorithm 2 conv steps() function

Require: message input, requirements questions, knowledgegraph

if direct process == 1 then
next qid, response ← strategy response(message input, current qid

current qid← next qid
else if direct process == 0 then

arg0, arg1, verbs← extraction(message input, current qid)
global variables = assignment()
next qid, response = substitution()
current qid← next qid

end if

4.4.3 Strategy Response

The strategy response is currently responsible for making decisions on whether
to generate the metadata output and whether to repeat a level in the UCA ar-
chitecture. It gets called when the extract type for the question posed to the
user is direct. Strategy response algorithm follows a direct mapping based on
user response to next question ID to be posed to the user. Currently, the com-
plex language constructs are not interpreted within the response, but because
of the overall modular structure, that can be added.

4.4.4 Extraction

The extraction algorithm pseudocode is shown in algorithm 3. The SRL output
using the algorithm is used as an input for the extraction flow to proceed. The
extraction flow first finds all the verbs from outputs. Then, it creates a lists
of all the argument 0 and argument 1 associated with each verb. The code
supports rejecting a list of verbs. Currently, it is common to all the questions.
This can be extended to be metadata tag specific. The useful arguments and
verbs are saved into a list ( after removing the rejected ones).

Algorithm 3 extraction() function

Require: srl result

new verb← find verbs from srl(srl result)
arg0, arg1← find arg0 arg1 from srl verbs(new verb, srl result)
useful verbs, useful arg0, useful arg1←
keep useful verbs arg0 arg1(new verb, arg0, arg1, rejected verbs)
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4.4.5 Assignment

The assignment function is used to save the correct extracted metadata from
the list of verbs and arguments into the correct global variables (detailed in
table 1. The pseudocode for the assignment function is shown in algorithm 4.

Algorithm 4 assignment() function

Require: useful verbs, useful arg0, useful arg1

global variables← useful verbs, useful arg0, useful arg1

4.4.6 Substitution

After the assignment process, the knowledge graph is searched for all the match-
ing edges. One of the edges is picked at random. The target node for that edge
has a question ID associated with it. The question associated with the ID has
a tag present in it, which is detailed in table 3. These substitution tags need
to be swapped with the correct information from the global variables. The
pseudocode for the substitution process is detailed in algorith 5.

Algorithm 5 substitution() function

Require: global variables

response← reponse replace(global variables)

4.4.7 Creating Metadata

The metadata creation is triggered by the strategy response function based on
a input from the user. Depending on which level strategy function triggers the
metadata creation, different types of metadata are created.

1. Use Case:List of use cases, actors and their relationships are generated.
A use case diagram is also generated.

2. Class:List of class and their attributes is generated. A class diagram is
also generated.

3. Activity:List of activity name and activity sequences are generated. An
activity diagram is also generated.

The generation of the UML diagrams is done through internal API in the
ngUML project.

35



5 Prototype Validation

Organizations use Enterprise resource planning (ERP) to manage day-to-day
business activities such as accounting, procurement, project management, risk
management and compliance, and supply chain operations. Based on ERP
systems used in logistics companies, the case studies are divided into three de-
partments. [MW12]

• Order Entry System: The order entry management starts with a cus-
tomer placing an order. Upon approval by the order manager, fulfillment
is notified of the order.

• Warehouse Management System: Inventory is sorted, selected, and
packed according to order entries. The warehouse manager updates the
transport department once the product is ready for shipment.

• Delivery Management System: In the final stage, the transport man-
ager selects mode of transport, updates the order status and the product
is shipped to the end customer.

5.1 System Overview

The chatbot is integrated as part of larger SDLC requirements elicitation frame-
work in ngUML. Figure 13 shows the interface to that chatbot visible to the
user from the frontend. This has been integrated in the larger ngUML project.
Figure 14 shows the default message displayed on every chatbot bootup. Fig-
ures 15 and 16 show the randomization process of the chatbot for each node as
they show different questions asked in the first level of the generic questions.

Figure 13: Chatbot Frontend Interface
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Figure 14: Chatbot Default Message on Bootup

Figure 15: Generic Level Randomized Question 1
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Figure 16: Generic Level Randomized Question 2

5.2 Case Study 1 : Order Entry System

The first case study focuses on the lifecycle of the order-to-cash process in which
an order is received which is a sales order, the sales order has attributes like
sales order ID, date, and item. The customer places an order online, The order
manager processes the order. Multiple use cases are visualized in this case study.

5.2.1 General Requirements

The goal of the general questions is to gather the details of the system being
generated. These details are later used in the UCA requirements elicitation.
Figure 17 shows the chatbot capturing the generic requirements for the creation
of an order entry system.

Figure 17: Generic requirements for order entry system
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5.2.2 Use Case Requirements

Figure 18 shows that the chatbot elicitates the first set of use case requirements.
Figure 19 shows the strategy component sending the chatbot to elicitate another
set of use case requirements. The user response triggers the elicitation of the
second set of use case requirements. Figure 20 shows that the chatbot elicitates
the second set of use case requirements. Finally, figure 21 shows the metadata
generated by the chatbot. It can be seen that the metadata generated has two
sets of values for the two cycles of elicitation of use cases conducted in the case
study.

Figure 18: Use Case requirements for order entry system

Figure 19: Strategy Questions for Use Case requirements
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Figure 20: Second Use Case Requirements Elicitation

Figure 21: Use Case requirements output generation
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5.3 Case Study 2 : Warehouse Management System

The second case study focuses on warehouse management system (WMS) or
inventory management, which deals with fulfillment and update of stock and
finally provides details to the delivery department. This case study showcases
the elicitation of class requirements after the use case requirements.

5.3.1 General Requirements

Figure 22 shows the generic requirements, focusing on the generic level captured
for the warehouse management system.

Figure 22: Generic Requirements for Warehouse Management System
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5.3.2 Use Case Requirements

Figure 23 shows the elicitation of use case requirements for a warehouse manage-
ment system. Figure 24 shows the generation of strategy component, generating
the use case metadata and switching to class requirements elicitation based on
the user response.

Figure 23: Use Case requirement for Warehouse Management System

Figure 24: Conversation strategy component triggering class requirements
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5.3.3 Class Requirements

Figure 25 shows the capture of the class requirements, and figure 26 shows the
display of the metadata captured using the strategy questions.

Figure 25: Class requirements for the Warehouse Management System

Figure 26: Strategy component triggering the display of requirements metadata
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Figure 27 shows the interactive user interface to display new project created
for class diagrams generation.

Figure 27: New project creation in the frontend user interface

Figure 28 shows the interactive user interface capturing the warehouse man-
agement system elicited using the user responses.

Figure 28: New system creation triggered by the user responses of warehouse
management system in frontend
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Figure 29 shows the interactive user interface with the class diagrams being
displayed with two classes elicited from the user inputs and also the relationship
between them.

Figure 29: User interface display of the class requirements as a UML diagram

The elicited requirements can be modified further using multiple iterations
within the requirements elicitation chatbot created in this thesis, or using the
changes chatbot implemented in other work. Also, the user interface can be
used to add more details and capture or change any new requirements as shown
in the figure. Figure 30 shows attributes being added to the class diagram from
a user interface screenshot.

Figure 30: User Interface screenshot with class diagram
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5.4 Case Study 3 : Delivery Management System

The third case study focuses on eliciting requirements to build a transportation
system. The activity requirements are kept in focus for this use case.

5.4.1 Activity Requirements

Figures 31 and 32 show the activity requirements being captured for the delivery
management system.

Figure 31: Activity requirements elicitation for delivery management system

Figure 32: Sequence of activities in delivery management system
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Figure 33 shows the metadata captured for the delivery management system
triggered by the strategy question.Figure 34 shows the log of the user responses
and nodes traversed by the user.

Figure 33: Conversation strategy component for metadata display

Figure 34: Code log of user responses and the nodes traversed
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5.5 Discussion

5.5.1 Research Objectives vs Prototype

The thesis had the objective to conduct design by research. As part of the
design of the prototype, the following features were kept as part of the research
objectives. Next, the status on achieving those features with respect to the
prototype development done as part of this thesis is discussed.

1. R-01 - The chatbot should be able to streamline the requirement elicitation
process with different components of use case, classes and activity.
The developed chatbot prototype comprises Use case, Class and Activity
component. All the component execute the requirements elicitation for
SDLC in a streamlined fashion. As part of the proof of concept, only a
few features sets of these components were implemented. The proposed
architecture has flexibility to add additional features in each of the com-
ponents. The chatbot asks very basic questions in a streamlined manner
to ensure that a beginner in the area of requirements elicitation can use
it and still correctly elicitate the requirements.

2. R-02: The chatbot should be use case driven and should be able to link to
different components using a strategy component.
The chatbot designed chatbot has a use case driven design for requirements
elicitation. All the other components can be accessed dynamically using
the strategy component. The strategy component is under the control of
the user. The chatbot starts from the use case component and can be
diverted in different component directions based on user inputs.

3. R-03: The chatbot should be able to do complex input metadata extraction
and map it to knowledge base to correctly predict the next question.
The prototype chatbot provides complex NLP extraction flow using Se-
mantic Role Labeling (SRL). The information extracted using SRL is
mapped into metadata. It is further assigned and substituted into the
correct questions and positions using a knowledge graph.

4. R-04: The chatbot needs to link the conversation strategy component to
the knowledge base to create a hybrid chatbot.
The developed prototype has an intricately woven conversation strategy
component and the knowledge-base based design. The strategy compo-
nent dictates how the chatbot is expected to jump around the knowledge
graph based on inputs received from the user. The implementation does
not yet give graph visualization and has limited traversal capabilities. The
designed framework allows extension in this direction. Further, the noted
down node history depth can further be used for adaptive conversation
strategy. This can be used as a measure of timing in the conversation
strategy.
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5. R-05: The chatbot needs to be extendable for future research and complex-
ity increment.
The framework and methodology created as part of the chatbot develop-
ment is completely extendible. More components and features of com-
ponents can be added. Requirements questions and knowledge graph is
based on a standard rules. They can be extended and automated. The
strategy component can be extended to add more dynamics with respect
to user inputs. Also, new algorithms can be used for metadata extraction
and mapping.

6. R-06: The chatbot needs to be dynamic in the questions posed to the user
and not repeat same question always.
The chatbot prototype has multiple questions in the requirements ques-
tions for each level of each component. These questions are randomized
when they are posed to a user whenever the chatbot reaches a given level
for any component. This ensures non-monotonicity of the chatbot behav-
ior.

7. R-07: The chatbot needs to perform end to end requirements elicitation.
The elicitation process starts from capturing the user inputs in a struc-
tured format using the chatbot. It then performs the necessary processing
and extraction. At the end of the elicitation cycle, the user is presented
with the metadata/UML diagrams.
The implemented chatbot prototype provides the capability of interacting
with the user in the frontend to capture requirements in a streamlined
manner. The collected inputs are automatically extracted and mapped
into a database of metadata and UML diagrams. This is the first aca-
demic implementation of end-to-end pipeline of requirements elicitation
using a chatbot, covering all the components of UML. To the best of
our knowledge, the literature review was done for requirements elicitation
processes and automated chatbots. According to the literature review, a
dedicated chatbot showcasing the complete requirements elicitation pro-
cess has not been done before this work.

Based on the review of the research objectives set for the research by design,
a prototype of a chatbot has been developed. The chatbot meets the feature
expectations set with respect to the research objectives of this thesis.
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5.5.2 Review of the research questions

The research objectives for the prototype chatbot development were derived
from a set of research questions in the thesis. This section discusses how the
overall research answers the research questions of this thesis.

1. How can early stage requirements elicitation in SDLC be stream-
lined and improved using a chatbot?

A chatbot has been proposed as part of this thesis to streamline the pro-
cess of requirements elicitation in early stage SDLC. The chatbot has a UCA
architecture to ensure all aspects of early stage SDLC requirements elicitation
is covered. The implementation has been done to cover the breadth of the topic
and yet keep the requirements elicitation task simple and streamlined.

2. How can combination of strategy and knowledge graph be done
to create a use case driven, dynamic and hybrid chatbot?

The implemented chatbot implements a combination of both strategy com-
ponent and knowledge graph based chatbot development. The strategy compo-
nent drives the overall process in terms of type and amount of requirements the
user wants to elicitate at the given time. The knowledge graph component drives
the overall elicitation of requirements for each of the UCA components. The
chatbot prototype still has some missing text processing cleanup requirements
for the improvement of display and finesse.

5.5.3 Validation Summary

The research in this thesis was conducted by design. As part of the design,
a prototype chatbot was developed for requirements elicitation in early stages
of SDLC. The performance of the chatbot was validated through multiple case
studies done in this chapter. Additionally, the proof of concept prototype chat-
bot adheres to all the research objectives set as part of the thesis goals. This
helped advance the research by answering the research questions posed in this
thesis.
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6 Conclusion

This thesis proposed the methodology for the development of a chatbot for
requirements elicitation in the Software Development Life Cycle (SDLC). A hy-
brid chatbot with a strategy and knowledge graph-driven approach was created.
The chatbot was used case driven and yet dynamic enough. This was achieved
using the proposed multi-component UCA approach, connected by the strategy
component.

6.1 Academic relevance

The proposed chatbot for the requirements elicitation streamlines the process as
well as captures all the different components of SDLC requirements (use case,
classes, and activity). All the different components (UCA) have been linked
together via the strategy component. This work is the first-ever implementation
in academics of an end-to-end streamlined requirements elicitation methodology
using a chatbot.

The chatbot uses a hybrid approach with a mixture of direct input process-
ing using the strategy component as well as complex metadata extraction and
mapping. Using the hybrid approach, it is able to predict the next question
using a knowledge graph. It is the first such implementation of a chatbot in
academics. The hybrid approach linked with complex mapping provides an ideal
extendible framework for the academic work to be executed and augmented in
future iterations of the design.

The user experience has been kept in perspective while designing the chatbot.
It is ensured that the same questions don’t get posed to the user again and again.
This removes the element of monotonicity. The chatbot also provides an end-
to-end platform for the requirements elicitation flow through its integration into
the ngUML project. The user can directly provide inputs and get the metadata
and UML diagrams using an active interactive platform.

The ngUML project provides further advantages with its multiple other
projects, where the requirements once created can be actively modified using
other projects[cite]. This is the first such implementation in academics where a
single platform provides a complete SDLC requirements elicitation solution.

6.2 Limitations

The thesis has been done as research by design. As part of the design goals
in the thesis, a proof-of-concept chatbot has been developed for early-stage
requirements elicitation in SDLC. Due to limitations in the design and research
time, certain assumptions have been taken to simplify the development of the
proof of concept. Currently, they put a limitation on the scope of requirements
that can be elicited using the demonstrator. There are also limitations on the
format in which the chatbot expects the inputs to be provided in order to
successfully do the metadata extraction and map to the next questions in the
knowledge graph.
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During the course of the development of the chatbot, the limitations have
been handled in a way that they can be easily improved upon. The design
methodology has taken care that the overall approach and implementation is
based on an extendible framework.

6.3 Future work

The research and implementation done as part of a chatbot implementation
for requirements elicitation of SDLC open up multiple possibilities for future
research and development in this area. Future research and development are
two-pronged.

1. Enabled as extensions of the proof of concept:
The proof of concept implementation in this thesis provides an extendible
framework. It provides extendability with respect to adding more compo-
nents to the chatbot. Additionally, both the requirements questions and
the knowledge graph are created in a well-defined language. This helps
on two fronts. One, if there is a need for chatbot implementation for a
different system, the rules allow for the easy creation of the two files in the
knowledge base. Second, it leaves the scope for future automation of the
two files. This automation can be used for the automated development
of system-specific chatbots and for chatbots with self-evolving strategies
and dynamics. The architecture developed leaves an open room for more
complex metadata extraction algorithms to be used. These algorithms
can both improve and complement the existing metadata extraction done
as a proof of concept.

2. Research needed to augment and complement the current chat-
bot design:
As part of a long term research, visualization and systematic validation
plays an important role. Due to limitations of time, certain parts of val-
idation pipeline still need development. Additionally, even though the
existing framework is open to automation and self learning algorithms,
such implementation was not done. Extensions of this research can im-
plement learning on the data collected from the users. This learning aug-
mented with the validation can lead to evolving knowledge base questions
and graphs. This can also lead to more fluid interactions between the
strategy component and the knowledge graph metadata mapping. The
input patterns which can be extracted and mapped as part of the thesis
were limited as well. The extendible framework allows for more complex
Semantic Role Labeling methodologies to be applied for extraction and
subsequent mapping in the chatbot.
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[PGR18] Carla Pacheco, Ivan Garćıa, and Miryam Reyes. “Requirements
elicitation techniques: a systematic literature review based on the
maturity of the techniques”. In: IET Software 12 (4 2018), pp. 365–
378. doi: https://doi.org/10.1049/iet-sen.2017.0144. url:
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.

1049/iet-sen.2017.0144.

[Ram+21] Guus J Ramackers et al. “From Prose to Prototype: Synthesising
Executable UML Models from Natural Language”. In: IEEE, 2021,
pp. 380–389. doi: 10.1109/MODELS- C53483.2021.00061. url:
https://doi.org/10.1109/MODELS-C53483.2021.00061.

[Red76] D R Reddy. “Speech recognition by machine: A review”. In: Pro-
ceedings of the IEEE 64 (4 1976), pp. 501–531. doi: 10.1109/PROC.
1976.10158.

[RKW95] B Regnell, K Kimbler, and A Wesslen. “Improving the use case
driven approach to requirements engineering”. In: 1995, pp. 40–47.
doi: 10.1109/ISRE.1995.512544.

[Rup10] Nayan B Ruparelia. “Software Development Lifecycle Models”. In:
SIGSOFT Softw. Eng. Notes 35 (3 May 2010), pp. 8–13. issn: 0163-
5948. doi: 10.1145/1764810.1764814. url: https://doi.org/
10.1145/1764810.1764814.

[Sel06] Bran Selic. “Tutorial: An Overview of UML 2”. In: Association
for Computing Machinery, 2006, pp. 1069–1070. isbn: 1595933751.
doi: 10.1145/1134285.1134510. url: https://doi.org/10.
1145/1134285.1134510.

[SL19] Peng Shi and Jimmy Lin. “Simple BERT Models for Relation Ex-
traction and Semantic Role Labeling”. In: (Apr. 2019). url: http:
//arxiv.org/abs/1904.05255.

[SRV22] Martijn B J Schouten, Guus J Ramackers, and Suzan Verberne.
“Preprocessing Requirements Documents for Automatic UMLMod-
elling”. In: ed. by Paolo Rosso et al. Vol. 13286. Springer, 2022,
pp. 184–196. doi: 10.1007/978-3-031-08473-7_17. url: https:
//doi.org/10.1007/978-3-031-08473-7_17.

56

https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1145/1459352.1459355
https://doi.org/10.1109/ICCSP48568.2020.9182168
https://doi.org/10.1109/ICCSP48568.2020.9182168
https://doi.org/10.1109/MS.2020.3030198
https://doi.org/10.1109/MS.2020.3030198
https://doi.org/https://doi.org/10.1049/iet-sen.2017.0144
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2017.0144
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2017.0144
https://doi.org/10.1109/MODELS-C53483.2021.00061
https://doi.org/10.1109/MODELS-C53483.2021.00061
https://doi.org/10.1109/PROC.1976.10158
https://doi.org/10.1109/PROC.1976.10158
https://doi.org/10.1109/ISRE.1995.512544
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.1145/1134285.1134510
https://doi.org/10.1145/1134285.1134510
https://doi.org/10.1145/1134285.1134510
http://arxiv.org/abs/1904.05255
http://arxiv.org/abs/1904.05255
https://doi.org/10.1007/978-3-031-08473-7_17
https://doi.org/10.1007/978-3-031-08473-7_17
https://doi.org/10.1007/978-3-031-08473-7_17


[Tha+21] Mansi Dinesh Thakkar et al. “Infini – A Keyword Recognition Chat-
bot”. In: 2021, pp. 1036–1042. doi: 10.1109/ICAIS50930.2021.
9395818.

[Umu+20] Umutcan et al. Why We Need Knowledge Graphs: Applications.
Springer International Publishing, 2020, pp. 95–112. isbn: 978-3-
030-37439-6. doi: 10.1007/978-3-030-37439-6_4. url: https:
//doi.org/10.1007/978-3-030-37439-6_4.

[VGG20] Andrea Vázquez-Ingelmo, Alicia Garćıa-Holgado, and Francisco J.
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Appendices

A Knowledge Base

Figure 35: Requirements question in the knowledge base
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B Knowledge Graph Nodes

Figure 36: Generic Nodes of the knowledge graph

59



Figure 37: Use Case Nodes of the knowledge graph
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Figure 38: Class nodes of the knowledge graph
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Figure 39: Activity Nodes of the knowledge graph
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Figure 40: Strategy Nodes of the knowledge graph
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