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Abstract

Dice of Doom is a strategy game similar to Dice Wars and Risk. Since it is a game of
chance, finding an optimal strategy can be challenging. In this thesis, we explore optimal
strategies for Dice of Doom. The research is divided into two parts. In the first part, different
strategies are compared to a greedy strategy. The strategies examined are the random strategy,
the return zero strategy, the Monte Carlo strategy, the Monte Carlo Tree Search strategy, and
the expansion strategy. These strategies are compared to the greedy strategy using simulations.
In the second part, the focus is on determining the probability of winning when both players
play optimally. The difficulty is that the game contains cycles, which breaks the brute force
method. To solve this issue, policy iteration is applied. This approach resulted in a very
effective strategy, which was then compared to the greedy strategy.

In conclusion, this research found a strategy for the game Dice of Doom that is close to
optimal. One observation is that the greedy strategy outperforms any of the five compared
strategies when there is a maximum number of five dice allowed. However, when only two dice
are allowed per tile, the other strategies outperform the greedy strategy. The close-to-optimal
strategy was successful against the greedy strategy in both cases. Regarding the probability of
winning, we found that the starting player has a slight advantage over the other player. The
game becomes more ‘fair’ as the number of dice allowed on a tile increases.
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1 Introduction

Table top games have always been enjoyed by many people. It stimulates the brain to come up with
better and better strategies to compete against other players. One of those games is Dice of Doom.
This game, as explained in the book ‘Land of Lisp’ [Bar11], is very similar to the classic game Risk.
The goal of the game is to own the highest number of tiles on the map. To do this, players have to
make calculated decisions and take into account the odds of winning. Dice of Doom introduces
gameplay features different from Risk that make the game easier to learn, but hard to master.

1.1 Thesis Goal

This thesis explores the optimal strategies for the game Dice of Doom, consisting of two parts. In
the first part, a comparison is made between a greedy strategy and other strategies, to answer the
question: “How can a computer beat a human player who uses a greedy algorithm to play the game
‘Dice of Doom’?” In the second part, the research focuses on the question: “What is the probability
that a player wins, given a game state in ‘Dice of Doom’ when both players play optimally?” With
the outcomes of this research, we aim to develop a strategy that is optimal or close to optimal.

1.2 Related Work

For the scope of this research, we will be looking at games that are similar to Dice of Doom, and
research in those fields. There have been many studies to explore the battle outcomes, strategies,
and decision-making processes in games similar to the classic game Risk. In this section a short
overview is given about relevant research and key findings of the research.
In [Geo04], the analysis focuses on examining the factors that influence the probabilities of winning
battles in the game Risk. The paper provides insights into strategic decision-making by considering
various elements, like the troop deployment, dice outcomes, and the impact of different regions.
By analyzing battle outcomes, this study shows the dynamics of the game and offers guidance for
players aiming to improve their strategies.
In [Blo20], an application of the AlphaZero algorithm to the game of Risk is explored. The authors
developed an AI agent capable of learning to play Risk through self-play. By using deep neural
networks and Monte Carlo Tree Search, the AlphaZero agent achieved a remarkable performance,
surpassing human players. This research shows the potential of using AI techniques to enhance
game play and provide challenging opponents for players.
Furthermore, the use of Monte Carlo methods in board games, including Risk, has been extensively
studied. The paper [EMAS10] provides an overview of how Monte Carlo (MC) simulations can be
used to estimate winning probabilities and evaluate strategies in various games, including Risk.
MC simulations involve running numerous random simulations of game outcomes to approximate
winning probabilities and find optimal moves. This approach enables players to make better moves
based on statistical analysis, contributing to a deeper understanding of the game dynamics.
There was also an analysis of different agents in the game of Risk, as described in [Dro18]. This
research compares the performance of four agents, being Knapsack, Angry, Evaluate, and Random,
in a two-player version of Risk without neutral factions. The thesis extensively examines the
characteristics and strengths of each agent, considering factors such as aggressiveness, planning
moves in advance, and the behavior of greedy agents. Based on the analysis, the Angry agent was
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the most successful. This study provides insights into agent-based game play and highlights the
significance of agent characteristics in determining success in Risk.
In summary, previous research has examined various aspects of games like Risk, including battle
outcomes, the application of AI algorithms such as AlphaZero, the use of Monte Carlo simulations,
and the comparison of different agents. These studies contribute to a deeper understanding of
the dynamics, strategies, and the potential for AI agents. The insights gained from these works,
including strategies and algorithms, were used in our research on the game Dice of Doom.
There was no research found that directly involves the game Dice of Doom.

1.3 Thesis Overview

Section 2 of this thesis contains the in-depth rule set of the game Dice of Doom. In Section 3 the
methodology is described. In this section the implementation of the game is explained, as well as the
different strategies, how to obtain the best winning probability, and how to get a close-to-optimal
strategy. In Section 4 the results of this research can be found for both the strategies and the
probability of winning. In Section 5 the conclusion and further research are described.
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2 Rules of Dice of Doom

Dice of Doom is a simple game, but some gameplay features within the game are more complex. In
this section we explain how the game works and what the rules of the game are. Note that some
rules listed below are slightly different from the rules as explained in [Bar11]. In particular, we
added some limitations and exceptions to make the research more concrete.

2.1 The Basic Rules

We start with a list of basic rules of Dice of Doom. Exceptions are clarified in Section 2.2.

Setting up the Game

• There are two players, playing against each other.

• There is a hexagonal grid of 5× 5 hexagonal tiles. The tiles are placed in such manner that
the complete grid is diamond shaped.

• Each tile on the hexagonal grid is owned by one player.

• On each tile, there is a minimum of one 6-sided die belonging to the player who owns the tile.
Each die has an equal probability of rolling numbers 1 through 6. There is an upper bound of
five dice allowed on a tile, and any additional die on a tile will be removed from the game.

• While setting up the game, the tiles on the board are randomly distributed among the players.
This means that the ownership of the tiles is determined randomly, and the number of dice
placed on each tile is also chosen randomly. Of course, the number of dice does not exceed the
upper bound we just mentioned. It’s worth noting that due to this randomness, one player
might end up with a significantly greater number of tiles than the other player.

• Although it is not explicitly stated in [Bar11], in our implementation of Dice of Doom, the
player with ID 0 (represented by the color red) starts the game. However, in the 2-player
version of Dice of Doom, it doesn’t matter which player starts, as the ownership of the tiles is
randomly assigned.

The Turn of a Player

• A turn consists of a series of attacks followed by placing reinforcements before ending the
turn. The player is required to make at least one attack before placing reinforcements. Both
attacking and placing down reinforcements are regarded as moves.

• To initiate an attack, the player must select a tile adjacent to an enemy tile, and this chosen
tile must have a minimum of two dice on it. During an attack, the dice stacks on both tiles
are rolled independently. The sums of the rolled dice for both players are then compared. If
the sum of the attacker’s dice is greater than the sum of the defender’s dice, the attacker wins
the battle. If the sum of the attacker’s dice is less than or equal to the sum of the defender’s
dice, the attacking player loses the battle.
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• If the attacker wins, the defending player’s dice are removed from that tile and the attacking
player now owns that tile. All dice but one are moved to the newly owned tile.

• If the defender wins, the attacker removes all dice but one from the attacking tile. That is,
one die remains, and no dice of the defending player are removed.

• After the attack (regardless of the outcome of the attack), the player can choose to make
another attack, or place reinforcements and end his turn (the skip option).

• After the completion of a turn, the next player takes the turn.

Reinforcements

• Before a player can end his turn, he has to place down reinforcements on his tiles. These
additional dice can be placed down in any manner, but any dice exceeding the maximum of 5
dice on a tile are removed. When all dice are placed down, the turn ends.

• The number of reinforcement dice that the player must place down is equal to the number of
tiles in the player’s largest contiguous territory.

How to Win the Game?

• If a player cannot perform a single attack during his turn, the game ends. This can be the
case either if the player does not own any tiles, if the player owns all the tiles, or if all of the
tiles that are adjacent to enemy tiles have only one die.

• When the game ends, the player owning the most tiles wins.

• If the numbers of tiles owned are equal, the game results in a tie.

2.2 Exceptions

For the game Dice of Doom, there are not many exceptions, as the game is quite straightforward.
However, there is one tricky situation that can occur, which is the possibility for a game to continue
infinitely. To avoid this issue, a new rule is introduced. If a game of Dice of Doom exceeds 100
turns it results in a tie.
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2.3 Game Example

This section demonstrates a simple example using the rules of Dice of Doom. The game is played
on a 2 × 2 board with a limit of two players and five dice per tile. The red player starts the game.
The random initialization can be seen in Figure 1, where the numbers on the tiles represent the
numbers of dice.

Figure 1: Random board initialization. The red player starts.

The red player begins his turn by attacking the blue player, as seen in Figure 2. Both players roll
the dice on his respective tiles. The red player rolls three dice, while the blue player rolls two dice.
The sum of the red player’s dice is 8, whereas the sum of the blue player’s dice is 7. Therefore, the
red player wins the battle with a higher total. As shown in Figure 3, the red player can now take
over the blue tile, leaving behind one die.

Figure 2: The red player attacks the blue player indicated by the white arrow. The outcome of the
dice roll is displayed beside the board.

Figure 3: The red player has won the battle and takes over the blue tile, leaving one die behind.

After winning the battle, the red player can attack the other blue tile, but chooses the skip option
(end his turn). Now, reinforcements are added to the red player’s tiles. The number of dice added is
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equal to the total number of tiles in the largest contiguous territory owned by the red player. In
this case, it is equal to 3. As depicted in Figure 4, the dice are added to the tiles.

Figure 4: The red player ends his turn and gains reinforcements. A total of three reinforcements
are added to the red tiles.

Now it is the blue player’s turn. The blue player attacks one of the red player’s tiles using the three
dice on his tile, against the two dice of the red player. Both players roll their dice. As shown in
Figure 5, the blue player obtains a total of 9, and the red player obtains a total of 9 as well. Since
the totals are equal, the blue player loses the battle.

Figure 5: The blue player attacks one of the red player’s tiles. The dice show the outcome of the
battle.

Since the blue player lost the battle, the dice on the attacking tile are reduced to 1, as seen in
Figure 6. A player needs at least two dice on a tile in order to initiate an attack. This means that
he is unable to attack. As the blue player has already attacked during his turn, the player can end
his turn. In Figure 7, reinforcements are added to the blue tile, and it is now the red player’s turn.

Figure 6: The blue player loses two dice.
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Figure 7: The blue player ends his turn, and reinforcements are added. Now it is the red player’s
turn.

The red player attacks the last remaining tile of the blue player, as shown in Figure 8. The red
player rolls three dice and obtains a total of 9, while the blue player rolls two dice and obtains a
total of 6. With a higher total, the red player wins. Now all dice except for one die move to the
newly obtained tile.

Figure 8: The red player attacks the last tile of the blue player. The result of the thrown dice are
shown.
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Since the red player can no longer attack, he is forced to pass the skip option, as seen in Figure 9.
He can place down a total of 4 reinforcements.
The blue player has no remaining tiles on the board, meaning that the blue player can no longer
attack. As a result, the game ends. The tiles of both players are counted and compared. In Figure 10,
the outcome of the game is shown.

Figure 9: The red player can add a total of 4 reinforcements.

Figure 10: The red player has won the game.
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2.4 Variations

The game Dice of Doom can also be played with a few variations. These variations can change the
way the game is played, and influence the best strategy to play. The different variations mainly
deal with the initialization, variables and limits, and reinforcements.
For the initialization in the current game, the ownership and dice on a tile are set randomly.
However, this can be varied. One of the variations that we will examine in this thesis, is the random
initialization where the numbers of tiles owned by players are (nearly) the same. This way, the
games will be more interesting, as there is a smaller probability that the random initialization will
result in a nearly finished game. We also vary in the size of the board.
There are also some different variations that will not be considered in this thesis. This includes the
shape of the board. This for example can be in a not diamond-shaped lay-out, like a triangle or
even the shape of a country. One other variation that can be added, is to merge certain hexagons
together, meaning that tiles may have more neighbors than the maximum of 6 neighbors. This way
the game looks more like the games Risk and Dice Wars.
The game Dice of Doom has a lot of variables and limits that can be changed. One of the variations
that can be created using these limits, is a game with more than two players. There is also an
option to change the shape of the dice. All this however, will not be looked at in this thesis. We
will, however, be looking at the option to add fewer dice on the board.
Finally the game can be varied in the way that the reinforcements are calculated and distributed.
As described in [Bar11], one could also calculate the number of dice that are obtained by attacking,
minus one. This means that you get no reinforcements if you have no winning attacks. For example,
if the red player has already obtained three dice, and wins an attack in which he obtains an
additional two, the red player would have a total of five dice. If the red player now ends his turn,
he would get four reinforcements to place down. This will not be looked at in this thesis.
As for the distribution of reinforcements, there are two more variations for the game. The first
variation is deterministic. In this version the dice are placed in a deterministic order from left to
right and from the top to the bottom. Every tile gets at most one die added to it. The other version
is the weighted random distribution. In this version, the dice are randomly distributed over the
tiles, but the tiles with more dice, have a bigger probability to get an additional dice.
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3 Methods

In this section of the thesis, we discuss our implementation of the game Dice of Doom. The research
requires the development of three distinct components: the base game, strategy simulations, and an
algorithm to calculate the probability of winning. All of the code is written in the programming
language C++.

3.1 Implementation of the Game

To implement the game Dice of Doom, we make use of object-oriented programming (OOP) due to
the ease of separating the game’s components and the minimal need for shared information.
The game consist of the following components:

• The game board

• The game loop

• The different strategies

• The variables and upper bounds

A brief explanation is provided for each component below, along with an explanation of how these
components interact with each other.

3.1.1 The Board of the Game

The board component keeps track of the length and width of the board, as well as who owns which
tile and how many dice each tile has.
Besides storing information, the board component also has a few functionalities that are used by
the other components. These functionalities mainly consist of the moves a player can make, adding
reinforcements, and calculating the winner of the game.
There are also a lot of functionalities to make the game easier to understand for a human player.
For example, the ability to print the current board lay-out and the moves the current player can
execute.
Other functionalities are not necessarily needed for the base game, but are used by different
strategies later on in the research. These are functionalities like the probability a move has of
succeeding.

3.1.2 The Game Loop

In order to play the game, a game loop is required. This component is responsible for determining
the moves of a player using a certain strategy, passing the turn to the next player, and ending the
game when a player cannot perform any actions.
The game loop component uses the board component as a foundation to build on, as the game
requires a board to function. Furthermore, the board is used to execute the players’ moves and
determine the winner of a game.
This component also keeps track of the current player’s turn and the current turn that the players
are playing. Situations may arise where the game enters an infinite loop, as explained in Section 2.2.
To prevent these infinite games from occurring, the game results in a tie after one hundred turns.
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3.1.3 The Different Strategies

In order to play the game, we also need a way to execute different strategies. That is why there is a
strategy component. This component is used during the game loop to calculate the moves that the
player should execute according to the chosen strategy.
For the base game, there are only two different strategies: the human strategy and the greedy
strategy. More strategies can easily be added for the first research question, as we see in Section 3.2.

The Human Strategy

The human strategy consists of a human player who uses his insight to make a move. This strategy
requires the game to be visualized and shown to an actual human. However, this strategy is not
used in this thesis due to the challenges of conducting a significant number of experiments involving
human participation.

The Greedy Strategy

The other strategy is the greedy strategy. This strategy uses a greedy approach to calculate the
best move given a game state. The approach only looks one step into the future. To determine the
best move, the strategy examines all possible moves the player can make on the current board.
In order to find the best score for each move, the strategy looks at the following variables: the
probability p of achieving victory in an attack, the number of dice x on the board when winning an
attack, and the number of dice y on the board after losing an attack. Using this information, a
score can be calculated for every move:

score = x× p+ y × (1− p)

The numbers of dice x and y also include the amount of reinforcements that would be gained by
passing a skip move after the attack. This way, the growth of the largest contiguous area is also
taken into account and rewarded.
After the first move has been made, there is also an option to pass the turn to the next player.
The score of this move is equal to the number of dice resulting from adding reinforcements to the
current board. This score is used as a lower bound, as executing ‘bad’ moves makes it easier for the
opponent to counter-attack.
The algorithm prioritizes attacking over skipping, as having a larger area at the end of the turn
results in more reinforcements. If a move has the same score as the lower bound of the skip option,
the turn is passed. Since with the skip option no dice can be lost.
Once all the scores have been calculated, the strategy executes the move with the highest score. A
pseudocode description of the greedy strategy is given in Appendix A.

3.1.4 The Variables and Limits

In this research, certain variables and limits are used. As explained in Section 2, the game Dice
of Doom has predefined variables that are used in our research. These variables include the 5× 5
board, the maximum of five dice on a tile, and the requirement of two dice to initiate an attack.
In addition to these limits, a maximum number of turns is required. As described in Section 2.2,
there is a potential for the game to continue indefinitely. To ensure computational feasibility, we
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added a limit of 100 turns to the implementation. When the 100th turn is finished and there is no
winner, the game results in a tie.

3.1.5 The Probability of Winning a Battle

In order to calculate the probability of winning a battle, we first need to look at all the possible
battles that can happen. As explained in Section 2.1, a player can only attack from tiles that have
neighboring enemy tiles and have at least two dice themselves. In general we know that the attacker
can attack with a dice, and the defender can defend with b dice, with a ≥ 2, b ≥ 1, and a, b are
integers.
Once the combinations of a and b involved in possible attacks are identified, we need to calculate
the probability of winning these attacks. The condition for winning is that the sum of a dice must
be greater than the sum of b dice. This can be expressed as the following probability:

P (Sum(a) > Sum(b))

Here, the formula Sum(z) represents the sum obtained by rolling z dice randomly and summing
the numbers shown on the top faces of the dice. The notation P (X) denotes the probability of
event X to occur.

The Math behind the Winning Probability

Given the probability formula, we can express it in a different form. This involves summing the
probabilities where Sum(a) is equal to a variable i, and Sum(b) is less than i, for all i ranging from
a to 6a.

6a∑
i=a

P (Sum(a) = i)× P (Sum(b) < i)

The following recurrence relation is used to calculate the probability of P (Sum(a) = i):

P (Sum(a) = i) =


1 if a = 0 and i = 0

0 if i < a or i > 6a∑6
d=1

(
P (Sum(a−1)=i−d)

6

)
if a ≥ 1 and i ≥ a

There are three base cases in this recurrence relation. The first two base cases handle the scenarios
where there are zero or one dice. The third base case checks if the number i cannot be obtained
with a dice. In the recursive part of the formula, the sum is calculated by throwing one die resulting
in the value d. Then we evaluate the probability of obtaining the value i− d with a− i dice. This
is done for all six possible values d. Finally we average over these values. One additional benefit of
the third base case is that it also deals with the negative number i and the case where either a or i
is zero, both of which can occur in the recursive step.
Using this recurrence relation, we can also calculate the probability P (Sum(b) < i) as follows:

P (Sum(b) < i) =
i−1∑
j=b

P (Sum(b) = j)
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The Implementation

At the start of the program, all the probabilities are calculated and stored in a table. This table is
used for the required probabilities in different strategies. The table is indexed by the numbers of
dice, denoted as a and b, both with a limit corresponding to the maximum number of dice allowed
on a tile.
To efficiently compute the probabilities, we employ the bottom-up dynamic programming approach
with the recurrence relation P (Sum(a) = i). We use a 2D array of size (a + 1) × (i + 1) and
iteratively calculate the probability for each entry of a row based on the values computed in the
previous row. By evaluating the value at index (a, i), we obtain the probability P (Sum(a) = i),
which is then returned as the result.
The remaining functions used to calculate the probability P (Sum(a) > Sum(b)) follow the formulas
mentioned earlier. The resulting probabilities are given in Table 1, where the attacking tile contains
a dice and the defending tile contains b dice, with a maximum of five dice allowed on a tile. The
row corresponding to attacking with one die is included to display the odds, but it is not a valid
scenario in the game since a player needs at least two dice to start an attack.

HHH
HHHa

b
1 2 3 4 5

1 0.416667 0.0925926 0.0115741 0.000771605 2.14E-05
2 0.837963 0.443673 0.152006 0.0358796 0.00610497
3 0.972994 0.778549 0.453575 0.191701 0.0607127
4 0.997299 0.939236 0.74283 0.459528 0.220442
5 0.99985 0.98794 0.909347 0.718078 0.463654

Table 1: The probability P (Sum(a) > Sum(b)) when attacking with a dice and defending with b
dice.
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3.2 Strategies

As described in Section 3.1.3, we have defined a greedy strategy for the game Dice of Doom. For
the first research question, we need to find a strategy that can beat the greedy strategy. In order to
achieve this, we examine multiple strategies: the random strategy, the return zero strategy, Monte
Carlo strategy, Monte Carlo Tree Search strategy, and the expansion strategy. These strategies are
described below.
Note that each strategy has a random component. Once a move has been selected, executing the
move involves rolling the dice. Depending on the outcome, the move may result in either a winning
move (gaining a tile) or a losing move (losing dice). There is also the possibility to pass your turn
after making one or more attacks. It is good to note that the newly obtained tiles are also taken
into consideration for each of the strategies when deciding which move to make next. Furthermore,
the strategies have no influence on how the reinforcements are placed.
The reason for using the greedy algorithm in our research is the small computational power required.
Since a greedy algorithm looks only one step ahead, it requires fewer calculations compared to
algorithms that consider multiple steps or the full game tree. It is also more user-friendly, as with
some effort the greedy strategy can be applied by a human player. By conducting experiments, we
aim to determine the best strategy to use for playing the game.

3.2.1 Baseline

In this research, we use the greedy strategy as our baseline. When we let the greedy strategy play
against itself, we can observe if any apparent patterns exist. We may use such patterns to gain
further insight into the results obtained when comparing the other strategies against the greedy
strategy.

3.2.2 Random Strategy

For the random strategy, a list is constructed containing all possible moves a player can make. If
the player has already made a move, which implies that he can decide to end his turn, then a skip
option is added to the list with an equal probability of being selected as any other move. Once
the list has been constructed, this strategy randomly chooses a move from the list, which is then
executed on the board.
After a move is made, the strategy revisits all possible moves and reconstructs the list. This process
continues until either the skip option is chosen or there are no more available moves. In the latter
case, the turn is automatically passed, and the next player takes his turn.
The reason for using the random strategy is to measure the trade-off between exploration and
exploitation factors. While the greedy strategy calculates a local optimum (exploitation), the
random strategy makes moves at random (exploration). Additionally, the random strategy serves
as a baseline for comparing against the greedy algorithm. If the greedy strategy significantly
outperforms the random strategy, it implies that the greedy algorithm can be considered a valid
strategy, as it represents an improvement over random moves.
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3.2.3 Return Zero Strategy

The return zero strategy is a straightforward approach that selects the first available move. This
move is determined in a deterministic manner by iterating over the tiles from left to right and top
to bottom. If a valid move is found, this strategy selects and returns that move. If there are no
more possible moves on the board, and at least one move has already been executed, the strategy
skips the turn.
The idea behind this algorithm is related to the distribution of reinforcements. In one of the
implementations, reinforcements are distributed deterministically from left to right and top to
bottom. This aligns with the order in which the possible moves are constructed. On might expect
that executing moves on tiles more likely to receive reinforcements results in an increase in the
number of reinforcements obtained by the player.

3.2.4 Monte Carlo Strategy

In our implementation of the Monte Carlo (MC) strategy, we follow a five-step process similar to
the one described in [Ade14], but with a slight difference. Instead of running a single instance of
Monte Carlo on a given board, we run one Monte Carlo instances for each of the possible moves n,
as outlined below:

1. Pseudo-Population Selection: We start by selecting a pseudo-population or model that
represents the true population of interest. In our case, the model consists of the 2 boards
obtained after executing move n on the root board, or 1 board if move n is the skip move.

2. Random Board Selection: From the chosen pseudo-population, we randomly select one of the
boards by executing move n on the root board, which results in either a losing or winning
move.

3. Statistical Value Calculation: Using the obtained board, we simulate the game using the
random strategy until it reaches a terminal state (win, loss, or tie). We only consider the
outcomes of winning simulations as our main focus is on identifying moves that lead to
successful outcomes and maximize the probabilities of winning. An example of this step is
illustrated in Figure 11, where “move 1” results in a losing board state. However, despite the
initial setback, the simulation leads to a win, which is then added to the statistical value.

4. Iterative Trials: We repeat steps 2 and 3 for a specified number of trials (N = 100) to gather
a collection of statistics for move n.

5. Calculation of Statistic: Using the collected statistics from the N trials, we calculate the value
for the statistic of interest for move n.

After calculating scores for every move using the Monte Carlo algorithm, we compare the scores
and execute the move with the highest score. This process continues until the skip option is selected
or there are no more possible moves.
The advantages of the Monte Carlo algorithm, as explained in [Ade14], are its straightforwardness
and its ability to approximate the optimal solution. We chose this algorithm because of these
reasons.
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Figure 11: An illustration of a single simulation where executing move 1 on the root board results
in a losing move. The simulation results in a win for the player.

3.2.5 Monte Carlo Tree Search Strategy

AlphaGo Zero [EMAS10] is an AI program designed for playing the game of Go. One of its key
components is the Monte Carlo Tree Search (MCTS) algorithm, which differs from the regular
Monte Carlo algorithm in an important way: it focuses on exploring the most promising paths
instead of random paths. The MCTS algorithm can be applied to various games.
To initialize the MCTS algorithm, a tree is constructed with a single node as the root. This node
contains information such as the total number of games won and played, as well as game-specific
details like player ID and the next move to be made. The tree is then expanded using the following
steps, as illustrated by Figure 12:

1. Selection: The optimal path from the root to a leaf node is chosen. At each node V , the
best child is determined using the Upper Confidence Bound (UCB) formula:

UCB = (Cwins/Cgames + 0.5×
√

log Vgames

Cgames
)× Cchance

In the UCB formula, the first part represents the number of games won when simulating from
the child node (Cwins) divided by the number of games simulated from the child node (Cgames).
The second part of the formula involves the number of games simulated from the node V
(Vgames) and the number of games simulated from the child node (Cgames). The resulting value
is then multiplied by the probability of the move leading to a winning attack (Cchance). If no
games have been simulated from the child node, the UCB receives a default score of 10 to
prioritize unexplored paths over known paths.

2. Expansion: Once a leaf node has been selected, it checks if the leaf is already in a final game
state. If so, expansion and simulations are skipped. Otherwise, all possible moves from the
current game state are computed, and a new leaf is added to the tree for each move.
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3. Simulation: From the newly added leaf nodes, a random leaf node is chosen, and a predefined
number of simulations are performed. Each simulation applies the Monte Carlo algorithm,
starting with the selected move and then using the random strategy until the end of the game.
After completing all simulations, the child node is updated with the number of games won
and the number of games simulated.

4. Backpropagation: The results obtained from the child node are propagated up the tree. The
parent node’s total number of wins and total number of simulations are updated accordingly.
In our implementation, the values in the backpropagation process are multiplied at each step
by the probability of reaching the move from that ancestor. This backpropagation continues
until it reaches the root node.

Figure 12: Steps involved in the Monte Carlo Tree Search algorithm.

The loop described above is repeated for a fixed number of iterations. After this, the best move is
selected based on the total number of simulations performed for each move, rather than the win to
total games ratio. This is because the selection phase already accounts for the best possible score
using the UCB formula. Therefore, the move with the highest number of simulations is chosen. The
process continues until the skip option is selected or no more moves are available.
During the selection phase of the MCTS algorithm’s loop, there is a small issue: the construction of
the tree does not explicitly consider losing moves and assumes that all moves leading to the optimal
game state are winning moves. This decision was made based on AlphaGo’s approach, which did
not factor in the probability of winning a move but focused on games without probabilities, such as
Go and chess.
In our implementation, we initially considered both winning moves and losing moves by simulating
them. However, we found that including losing moves did not significantly improve the results
compared to the greedy strategy. To maintain simplicity and stay closer to the original algorithm,
we decided to exclude losing moves from further consideration in this strategy. Additionally, we
experimented with slight changes to the algorithm, which resulted in equal or worse outcomes,
which made us decide to stick as closely as possible to the original algorithm.

3.2.6 Expansion Strategy

The expansion strategy is similar to the greedy strategy in that it only looks one move ahead.
However, the score calculation for a move is different. Instead of considering the average number
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of dice that can be obtained, it focuses on the average increase in the size of the largest cluster
of tiles achievable with a move. Figure 13 illustrates the difference between the greedy algorithm
and the expansion strategy. The greedy algorithm selects the move with a winning probability
of approximately 99%, depicted by the white arrow labeled by number 1. This move is favorable
for the greedy strategy since it maximizes the number of dice obtained while also looking at the
possible reinforcements:

score1 = (38 + 13)× 0.99 + (35 + 12)× 0.01 = 50.96

score2 = (38 + 14)× 0.74 + (35 + 12)× 0.26 = 50.7

This scoring formula for the greedy strategy is explained in Section 3.1.3.
However, the expansion strategy makes a different move, indicated by the white arrow labeled by
number 2. Although this move may not result in the largest number of dice, it does result in the
largest contiguous territory:

score1 = 13× 0.99 + 12× 0.01 = 12.99

score2 = 14× 0.74 + 12× 0.26 = 13.48

This strategy continues by prioritizing moves that expand the largest territory. If there are multiple
territories of equal size, the algorithm treats moves that expand any of these territories equally. If
no further moves are available to expand the largest territory, the strategy skips the turn. If the
skip option is not yet available, meaning that no moves have been made yet, the strategy executes
a random move and checks if any new moves can increase the largest area. If this is not the case,
the turn is skipped, after all.

Figure 13: A 5 × 5 board illustrating the difference between the greedy strategy (1) and the
expansion strategy (2).

The reason for choosing this strategy is to examine the relative importance of having a larger
contiguous territory versus possessing more dice. If there is a significant difference, the player
can adjust his strategy accordingly and focus on one of the two options. If there is no significant
difference, the player can select the strategy that he finds easier to use.
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3.3 Probability of Winning

In the second part of this research, we examine the winning probabilities of a player in the game
states of Dice of Doom, assuming both players play optimally. In this part, we define a game state as
a combination of the skip option, the current player and a possible board state that can be created
given a size of the board, the number of players, and the maximum number of dice that can be on
a tile. For our analysis, we have set the number of players to two and the maximal number of dice
to five, as described in Section 2.1. We have chosen these values to ensure computational feasibility.
However, these numbers can be changed in our method and are not fixed values. Furthermore,
unlike the previous section about the strategies that used a limit of 100 turns for a game, we do
not use this restriction here, since for a given game state, we cannot determine how many turns
have already been played to reach that state.
To implement the optimal play of both players, we use a strategy similar to the Minimax method
described in [MSZ13]. Unlike the greedy strategy, this approach considers the entire game tree and
selects the best path.
In this method, we also consider the probability of a game ending in a tie. This factor is influenced
by the different board sizes we test in this method. Since there is no tiebreaker in this game, no
points are added to the probability of winning or losing when a tie occurs. Therefore, the probability
of a tie must also be calculated.
Additionally, there is a possibility that the game continues indefinitely, which presents a challenge
to calculate the exact probability and introduces uncertainties. In this section, we address this issue
and suggest a solution to reduce the probability of uncertainties to zero.

3.3.1 Total Combinations of the Board

To compute the winning probabilities, we need the possible board combinations, which include all
possible ways to distribute dice and assign ownership to each tile. Each tile has an owner (red or
blue) and a number of dice (ranging from 1 to 5).
To construct the formula for calculating the total number of board combinations, we also need to
consider whose turn it is on a given board and whether the skip option is available. We assume
that it is always the turn of the red player, as there is always a mirrored version of any given board
where the ownership of the red and blue players is reversed. This means that the new red player in
the mirrored board was the old blue player. Therefore, we have not considered the current player in
the formula. Regarding the skip option, which indicates that a player has already attacked during
his turn, there is no simple way to compact this. While there are certain board states where the
skip option cannot be achieved, calculating these states precisely is difficult, and they represent
only a small portion of the total combinations. Taking all this information into account, the general
formula for calculating the total number of board combinations is as follows:

total = (Mp ×Md)
(w×h) × 2

In this equation, w and h represent the width and height of the game board, respectively. Mp

represents the number of players, and Md represents the maximum number of dice per tile. The
multiplication by two accounts for the availability of the skip option.
For the board used in the game Dice of Doom, this equation results in a total of 2 septillion
(1025 × 2) board combinations.
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3.3.2 How to Implement

To calculate the probability of winning, we employ the brute force algorithm, which involves
examining all possible moves for a given board. This algorithm uses a game tree, where the leaf
nodes represent final game states in which the player either wins, loses, or ties. At each node in the
tree, the player can choose which move to make. The root of the tree corresponds to the starting
game state for which we want to determine the probabilities.
When making optimal moves at the nodes of the tree, we select the move that obtains the highest
probability of winning by examining the probabilities of winning of the node’s children. The winning
probability of the selected move is then stored in the current node. This process continues until the
root of the tree contains its win probability.
To store the probabilities of winning, losing, or ending in a tie, we use a data structure that holds
all three values. This data structure is returned by the brute force algorithm.
As explained in Section 3.3.1, we assume that in every state, the turn is for the red player. Of
course, this assumption does not accurately reflect real gameplay. To correctly compute the win
probabilities, we simply flip the ownership of each tile at the end of each turn. The old blue player,
who now possesses the mirrored red tiles, can start his turn.

3.3.3 Board Conversion

To convert a given game state into an encoding, we examine the board state. By considering the
width and length of the board, along with the ownership and number of dice for each tile, we can
encode the current board. The conversion algorithm uses a variable e, initialized to 0, which will
eventually hold the final encoding. We iterate over the tiles and apply the following formula:

e = (e×Mp + np)×Md + nd

In this formula, Mp represents the number of players, np represents the owner of the tile, Md

represents the maximum number of dice, and nd represents the number of dice on the tile. The
iteration over the tiles continues until all tiles have been processed. At the end, the resulting
encoding e represents a number ranging from 0 to the maximum number of possible combinations
divided by 2.
It is important to note that this encoding specifically aims to retrieve the board state for a given
board configuration. However, it does not account for the skip option. To incorporate the skip
option into the game state, the following formula is used:

e = e× 2 + s

Here, s represents the availability of the skip option, which is represented as either 0 (false) or 1
(true).
During the decoding of the game state, the first step involves checking whether the the skip option
is available by checking if the encoded number is odd or even. After obtaining the skip option, the
integer e is divided by 2.
Using this remaining e, we can reconstruct the original board state by reversing the encoding
process. The decoding continues until reverse iteration is complete and e becomes 0. This signifies
the completion of the encoding process.
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3.3.4 Array of Probabilities

To speed up the process of calculating the probability of winning, we introduce an array that stores
the probabilities for each board state. In this array, each index corresponds to the encoding of a
specific game state, while the value at that index represents the winning probability for that game
state.
During the calculations of the winning probability for each game state, we can now look up
previously calculated game states. If the value is known, it can be used as the winning probability
instead of calculating it again.
It is worth noting that out of all possible board combinations, a small portion is already in a final
state. This portion is typically around 10% to 20%, depending on the size of the board. For these
board situations, the probabilities are relatively easy to calculate.

3.3.5 Problem of Cycles

There is a significant problem with this brute force method to compute the win probabilities.
For certain game states, the method does not halt. This means that somewhere in the brute force
search space, there are loops. These loops are created by a sequence of specific moves that result in
the original game board, as illustrated in Figure 14. One option is to end the game after playing a
certain number of turns. This ensures that the loop eventually ends. However, this would leave a
lot of uncertainty for larger game boards. Instead, we discuss two other methods to deal with these
loops.

Figure 14: An example of a loop in a 1× 2 board situation.

3.3.6 Conversion to Absorbing Markov Chains

We may approach these loops by considering them as Absorbing Markov chains [KS76]. In short, a
Markov chain is a countable set of states connected to each other with certain probabilities. The
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introduction of absorbing states turns a Markov chain into an absorbing Markov chain. Absorbing
states possess a special property: instead of transitioning to another state, they transition to
themself with a 100% probability, essentially acting as black holes. For every non-absorbing state,
there must exist a path from that state to an absorbing state.
In our case, we can view the game loop as a Markov chain, because there are a countable number
of states, as described in Section 3.3.1, and each game state has a probability of transitioning to
another game state, as described in Section 3.1.5. For final game states, we can assign a transition
to itself with a 100% probability, making them absorbing states. This way, all states adhere to the
definition of a Markov chain.
Since the absorbing states represent the final game states and for every game state, there exists a
path to a final state, we can conclude that the game can be represented as an absorbing Markov
chain. Additionally, we introduce two new labels apart from absorbing and non-absorbing. One
of the labels used is called ‘known’, which is defined by either being an absorbing state with a
known probability of winning or a state where all possible children are known. If all the children of
a state are known, the probability in the current state can be calculated. The other label is called
‘unknown’, which occurs when one or more of a state’s children are unknown. The optimal winning
probability of the state cannot be calculated if at least one of the children remains unknown. Such
states consist of those in a loop or those dependent on the win probability of a state in a loop.
Figure 14 shows an example of these states being in a loop, where not all children are known, and
thus the optimal winning probabilities cannot be assigned to them.
There are ways to solve absorbing Markov chains. However, those methods cannot be simply applied
to our game tree. In some cases, multiple cycles are merged, resulting in a node in the cycle that
has two or more paths that eventually lead back to itself, as illustrated in Figure 15. The graph
shows state A leading into states B and C, and both B and C lead back into A. Since B and C are
both dependent on state A, they are both unknown. This causes the problem of not knowing which
move is the optimal move from state A. We did think of a way to solve this problem, which involved
trying both unknown moves and seeing which of the two gave more optimal results. However, for a
2× 2 game board, the number of states similar to state A is around 300. Which meant that we
would have to check an impractically large number of possibilities.

Figure 15: Cycle problem: What is the best move for state A?
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3.3.7 Policy Iteration

To avoid the complexity of trying to calculate the exact probabilities in case of cycles, we use the
policy iteration method as described in [How60]. This method allows us to achieve a close-to-optimal
result through an iterative process. The method consists of multiple iterations. In the first iteration,
the probabilities of all possible game states where the red player starts are initialized. In the
following iterations, new probabilities for the states are calculated using the children of the given
states.
For the initialization, the value is calculated as follows:

v0(k) =

{
1 if the red player wins

0 otherwise

That is, for each state k, it is checked if the red player has won in that state. If he has, the value of
v0(k) is set to 1, indicating a 100% winning probability in that state. If it is known to be a losing
state or a tie, the winning probability is set to 0. If the node is not a final state, its value is also set
to 0. In each subsequent iteration, we determine the maximum value among the children of the
current node k and calculate the probability of reaching that specific node.

vn(k) = max
o

∑
l

Pk,l(o)× vn(l)

In this formula, n is the current iteration, o represents all possible moves for state k, and l represents
all game states. The value of Pk,l(o) is the probability that the player transitions from state k to
state l using move o. This probability is then multiplied by the probability of state l from the
previous iteration. The sum of all Pk,l(o) always adds up to 1 for a fixed k.
If these iterations were repeated infinitely, the system should converge to a situation where:

v∗(k) = max
o

∑
l

Pk,l(o)× v∗(l)

Here, the probability v∗(k) is solely dependent on v∗(l) in the same iteration, making it the final
answer.
However, there are some limitations to this method. First, most of the nodes will remain at a
probability of 0 for the first iterations. At the start, only the final states are known, and over
the iterations, that information propagates to the other nodes. Additionally, this method can be
computationally expensive for large board sizes. As the board size increases, so does the number
of states in the Markov chain, the number of possible moves for a state, and consequently, the
number of iterations needed to obtain a more accurate result. Another limitation is that, for our
implementation of the board game, the reinforcements must be placed in a deterministic manner.
Otherwise, it becomes very complex to determine the new board state after a skipping move.
In our implementation, we made some adjustments to this method. First, to calculate the best
possible move from a given state k, we only examine the states that can be reached from that state,
rather than considering all game states l. Second, if a state becomes ‘known’ in iteration n = i, it
is skipped in all iterations n > i. After a large number of iterations, only the states that are either
part of a cycle or dependent on a cycle remain unknown. In our method, we chose to perform a
total of 100 iterations to obtain an accurate result. In practice, we found that already after around
20 iterations for a small board size, the system had somehow converged.
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3.4 Optimal Strategy

In addition to the strategies described in Section 3.2, we introduce a close-to-optimal strategy based
on the method outlined in Section 3.3. The reason it is referred to as close-to-optimal, rather than
simply optimal, is because the method approximates the optimal strategy through a number of
iterations. If only a small number of iterations is used, the strategy may not perform optimally.
This close-to-optimal strategy relies on the winning probability in every game state. It determines
one of the optimal moves by calculating the weighted average win probabilities of the winning
and losing moves, maximizing this value. Additionally, the skip option is used as a baseline for
comparison whenever it is available. In our case, the optimal move refers to the move with the
highest win probability.
The structure of this strategy is relatively simple compared to other strategies. At the beginning of
the game, it calculates the best move and its corresponding winning probability for all possible
states, storing these values in a lookup table. Once the table has been constructed, the game can
start. For any given game state, the player can simply consult the lookup table using the current
board lay out and the skip option, and execute the best move suggested by the lookup table.
This method offers several advantages. In addition to its accuracy, an advantage is that the lookup
table only needs to be calculated once. After creating the tables for various games with different
parameters, they can be reused across multiple matches. Although this lookup table can be applied
to other strategies as well, it neglects the random element present in most strategies.
This method also has a serious disadvantage. As mentioned in Section 3.3.1, the original game
has an enormous number of 2 septillion game states. Calculating and storing the probability for
each state over many iterations is practically infeasible. Therefore we only experiment with smaller
board sizes.
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3.5 Simulations

To obtain answers to the research questions, we need to generate results through simulations. In
the first part of the experiments, we focus on comparing the greedy strategy to other strategies. In
the second part, we analyze the probability of winning and how it varies with different limits and
board sizes.

3.5.1 Strategies

The different strategies are compared to the greedy strategy. To achieve this, we simulate a total of
100.000 games (if possible), and determine which of the two strategies wins more games. To ensure
fairness in the simulations, we alternate the starting player throughout the simulations, starting
with the greedy strategy.
At the end of the simulations, we obtain the results, which include the number of wins, losses, and
ties. As explained in Section 2.2, a game that exceeds 100 turns are also considered a tie.
Regarding the experiments, we examine variations in board sizes, board initialization, maximum
number of dice, and reinforcement types. The chosen board sizes are as follows: 1× 2, 2× 2, 2× 3,
3× 3, 3× 4, 4× 4, and 5× 5. For board initialization, we use the two methods described in Section
2.4: random and random but with an equal number of tiles (± 1) for both players. The maximum
number of dice on a tile is set to two, respectively five. The reinforcement types used, as described
in Section 2.4, are random, deterministic, and weighted random.
If the simulations become too time-consuming for any of the experiments, the total number of games
played is reduced to 10.000. If even that proves to be time-consuming as well, further reductions in
the number of games is made. However, this may lead to less precise results, although it may still
provide insights into differences between the two strategies.
For the strategy that is created by taking the close-to-optimal approach from Section 3.4. We only
use the deterministic distribution, since it meets the method’s requirements.

3.5.2 Probability of Winning

The second part of the simulations focuses on the probability of winning. We conduct two experiments
using the lookup table. The first experiment involves determining the average win probability,
which helps us assess whether it is advantage to be the starting player. In the second experiment,
we compare the optimal move to the greedy move. This allows us to determine whether the greedy
algorithm is optimal.
To calculate the average win probability, we use the array of probabilities explained in Section 3.3.4.
This table stores the winning probability, losing probability, and tie probability. By averaging these
values across all game states, we can calculate the average win probability.
For comparing the optimal move to the greedy move, we also use the lookup table. As described in
Section 3.4, the lookup table contains the win probabilities from which we can deduce the optimal
moves. For each possible game state in which you can make a move, we collect the win probability
of the move made by the greedy strategy and the win probability of the optimal move. Then, we
separately sum up these two probabilities. If the sum of probabilities are identical, we know that
the greedy algorithm is optimal. If the sum of probabilities of the optimal strategy is higher than
that of the greedy strategy, we know that the greedy strategy is not optimal. We assume that the
greedy strategy does not outperform the optimal strategy.
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In this experiment, we also include the random strategy. This strategy acts as a baseline. For every
game state, we take a random move and sum the probabilities of that move. Just like we did for
the greedy strategy. We assume the sum of the random strategy to be lower than both the greedy
strategy and the close-to-optimal strategy.
For the experiments, we examine variations in board sizes and the number of dice. The selected
board sizes are as follows: 1× 2, 2× 2, 2× 3, 3× 3, 3× 4, 4× 4, and 5× 5. The maximum number
of dice on a tile is set to two, respectively five.
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4 Experiments

To evaluate our methods, we conducted simulations as described in Section 3.5. The experiments
consisted of two parts: testing different strategies (Section 4.1) and analyzing the probability of
winning (Section 4.2). The results of both experiments are described below.

4.1 Strategies

As explained in Section 3.2, we compared our strategies to the greedy strategy. There are six
strategies, including the close-to-optimal strategy described in Section 3.4. We analyzed the results
of these strategies and their performance to the greedy strategy. If any significant positive results
are observed in favor of the competing algorithms, we can conclude that there is a strategy that
can beat a human player using the greedy algorithm.

4.1.1 Baseline

For the baseline, we compared the greedy strategy to itself. The results, shown in Table B.1.1,
yield several interesting observations. When the maximum number of dice was reduced to two,
the number of ties increased. We also noticed a slight improvement in the number of wins when
we used non-deterministic reinforcement types for the greedy algorithm. Additionally, more ties
occurred when the board initialization resulted in an equal number of tiles for both players.

4.1.2 Random Strategy

The random strategy selects a move randomly. When comparing this strategy to the greedy strategy,
the results shown in Table B.1.2 lead to some interesting findings. One such finding is that the
random strategy seems to outperform the greedy strategy for smaller board sizes and when the
maximum number of dice is two. This is not the case for reinforcement type 2. However, the greedy
strategy makes clearly outperforms the random strategy when the maximum number of dice allowed
on a tile is set to five. Additionally, there are more ties when we use non-deterministic reinforcement
types.

4.1.3 Return Zero Strategy

For the return zero strategy, which always selects the first move in the list, the results are presented
in Table B.1.3. When compared to the greedy strategy, the return zero strategy shows slightly
better performance than the random strategy. For this strategy, as for the random strategy, we
observe that it outperforms the greedy algorithm when the maximum number of dice is reduced to
two. In all the other situations, the greedy algorithm clearly outperforms the return zero strategy.
Additionally, we see a slight increase in wins for initialization type 2 compared to type 1. Specifically,
for games with a maximum of five dice, the greedy strategy wins more often when there is an equal
board initialization compared to a random board initialization. For games with a maximum of two
dice, the return zero strategy has a slight advantage with an equal board initialization.
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4.1.4 Monte Carlo Strategy

The Monte Carlo strategy has fewer results, as shown in Table B.1.4. This is because when the size
of the board increases, the number of moves that need to be simulated increases as well. Similar to
the previous strategies, the performance of the Monte Carlo strategy varied depending on whether
there were two or five dice. Furthermore, we found that this strategy has a lower win to lose ratio
compared to the other strategies, and the completely random board initialization seems to have a
higher win rate for the Monte Carlo strategy compared to the other initialization type.

4.1.5 Monte Carlo Tree Search Strategy

The Monte Carlo Tree Search (MCTS) strategy has even fewer results, as shown in Table B.1.5.
As described in Section 3.2.5, the MCTS strategy uses a Monte Carlo search in the leaf nodes
of its tree, which is computationally expensive. As the board size increases and the number of
possible moves grows, the tree becomes larger. Based on the limited results obtained, we found
that the number of wins of the MCTS strategy are slightly better compared to the win rates of
other strategies, especially for the maximum of two dice. However, we need more research results
to draw a definitive conclusion.

4.1.6 Expansion Strategy

The expansion strategy is similar to the greedy algorithm. When comparing it to the greedy strategy,
the results shown in Table B.1.6 indicate a significant difference between the two strategies other
than the 1 × 2 board size. Similar to the random strategy and return zero strategy, the same
occurrence is observed for the maximum of two and five dice. Overall, no significant results were
found.

4.1.7 Close-to-Optimal Strategy

For the close-to-optimal strategy, the results shown in Table B.1.7 indicate that it outperforms the
greedy strategy for all board sizes except for the 1 × 2 board size, which is as expected. Unlike
the previous strategies, the close-to-optimal strategy also outperformed the greedy strategy when
the maximum number of dice is five. Some results are missing due to the large number of board
combinations for a 5× 5 board, as explained in Section 3.3.1. For this reason it was not possible for
us, storage wise, to simulate the bigger board sizes. Additionally, other reinforcement types were
not fully explored, as the close-to-optimal algorithm relies on a deterministic reinforcement method.
Despite these limitations, the promising results suggest that the close-to-optimal strategy may also
outperform the greedy algorithm on a 5× 5 board.
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4.2 Probability of Winning

In the second part of our research, we examined the optimal win probability and analyzed the
performance of the greedy strategy. Since the probability table can only be used during gameplay,
it is difficult to experiment with the results. However, we focused on two points of interest: the
average win probability of the starting player and how optimal the greedy strategy is. Note that
there are some missing data points in the tables for larger board sizes. This is due to the number
of board combinations, as explained in Section 3.3.1.

4.2.1 Average Win Probability

To calculate the average win probability, as explained in Section 3.5, we took the average of the
probabilities from all game states. The results, shown in Table B.2.1, reveal an advantage for the
starting player. For both the maximum of five and two dice, the starting player has a higher win
probability compared to the second player, with this advantage increasing as the size of the board
increases. This advantage also increases when the maximum number of dice on a tile is set to two.
Additionally, the maximum of five dice has a significantly lower average tie probability compared
to the maximum of two dice.
One other minor detail that can be seen in the table, is that for bigger board states, the probabilities
do not sum up to one. As mentioned, policy iteration approximates the win probabilities. This
means that for more accurate results, more iterations are required.

4.2.2 How Optimal is the Greedy Strategy?

The results regarding the optimality of the greedy strategy are outlined in Table B.2.2. The
table displays three different strategies: the close-to-optimal strategy, the greedy strategy, and the
random strategy. Additionally, the table shows the number of game states where a move is possible,
signifying states that are not final. The percentage of these states in relation to the total number of
states is also indicated. The random strategy acts as a baseline to provide further insight into the
overall improvements of the greedy strategy and the close-to-optimal strategy.
By comparing the results of the different strategies, we found that the greedy strategy is not
optimal. The average win probability of the greedy strategy is not greater than the average win
probability of the optimal strategy. In our experiments, we also discovered that the greedy strategy
does not have a single move which outperforms the close-to-optimal strategy. This implies that in
all states where a move can be executed, the close-to-optimal strategy either equals or outperforms
the greedy strategy.
Moreover, the results also show an increase in win probability when the board size increases. Also,
when comparing the maximum number of dice that are allowed on a tile, the win probability for
the maximum of five dice is lower compared to the win probability when the maximum is two dice.
This result is also shared with the previous results of Table B.2.1.
Furthermore, the different strategies do not show a significant difference. This is probably caused
by the number of similar moves that all three strategies executed which resulted in the same
probability. When a move is made that doesn’t match the optimal move, the penalty would not be
significant, as the move would still have a probability close to the optimal value.
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4.3 Conclusion

The main aim of this thesis is to find the optimal strategy for the game Dice of Doom. This goal
has been divided into two main parts: different strategies and win probabilities. Furthermore, we
implemented the game Dice of Doom in C++. This research contained different strategies, with the
greedy strategy being the most important. There were several different problems we encountered
when trying to obtain the optimal winning probability. In order to solve these issues, we used policy
iteration. Lastly, we conducted experiments, and presented the results.
In conclusion, several key observations can be made regarding the first research question. First, we
found that the greedy strategy outperforms every other strategy when the maximum number of dice
is five. However, when the maximum number of dice is reduced to two, the greedy strategy seems
to be outperformed by every other strategy. We have found no explanation for this yet. Another
clear, though not necessarily surprising, result is that the equal initialization method leads to more
ties between strategies.
Furthermore, the research revealed no significant difference between the various reinforcement
methods used in the experiments. Additionally, when having our baseline, the greedy strategy,
compete against itself, we found fewer ties with a maximum of five dice than with a maximum of
two dice per tile.
For the second research question, we made several observations. We determined that the greedy
strategy is not optimal because there is a difference in win probability compared to the close-to-
optimal strategy. Moreover, the starting player has a slight advantage in a game with five dice,
while starting with two dice offers a considerable advantage. This suggests that allowing more dice
to be on a tile makes the game more fair for both players. Additionally, we found that there were
more ties when fewer dice were involved.
Regarding the insights gained from converting the win probabilities, obtained with policy iteration,
to a strategy, we found that for smaller game boards, the performance of the greedy strategy and
the close-to-optimal strategy remained practically equal. However, as the size of the board increases,
the close-to-optimal strategy outperforms the greedy strategy. Also in these simulations, we found
that the equal initialization method led to an increased number of ties in both research questions.

4.4 Future Work

Since this research is in a relatively new field, focusing on the game Dice of Doom, we have several
suggestions for further research. These ideas involve improvements or extensions to the existing
research, as well as applying similar methods to other games.
First, the difference in performance of the greedy strategy when the maximum number of dice is
reduced to two could be further explored. Conducting a detailed analysis of the game mechanics and
evaluating the implementation of the strategy may help uncover the reasons behind this difference.
This may result in useful improvements or modifications to the greedy strategy.
As discussed, the impact of the reinforcement methods made no difference. However, further research
can explore the reinforcement implementation where players have full control over the placement of
their reinforcements. Investigating optimal reinforcement placement and analyzing their impact on
the game’s outcome can improve the understanding of different strategies for Dice of Doom.
Further research can focus on studying the variations as described in Section 2.4. Analyzing how
these variations affect game play, strategy effectiveness, and winning probabilities may lead to
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improvements to the original game.
Given the similarities between Dice of Doom and other dice-based strategy games such as Risk
and Dice Wars, further research could explore the application of the policy iteration method in
these games. Analyzing the performance of policy iteration across different games can show its
effectiveness in other strategy games.
While our research mainly focused on two-player games, extending the analysis to multiplayer
games could be an interesting direction for further research. Multiplayer games are a lot more
complex as they have to take communication between players into account. This can lead to greater
diversity of strategies to use against the greedy strategy.
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A Greedy Algorithm

Input: A board layout, the skip option and the current player.
Output: The suggested move to execute.

Function greedy_strategy():

max = the maximum number of moves possible on the board for the current player

best = 0

curr_best = -1

For i from 0 to max-1:

winning_board = a copy of the current board

losing_board = a copy of the current board

chance = the probability of winning the attack for move i

Perform a winning move for move i on winning_board

Perform a losing move for move i on losing_board

score_win = the number of dice on winning_board + reinforcements

score_lose = the number of dice on losing_board + reinforcements

score = chance × score_win + (1.0 - chance) × score_lose

If score > curr_best:

curr_best = score

best = i

If the skip option is available:

score_skip = the number of dice on the board + reinforcements

If score_skip >= curr_best:

best = max

Return best
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B Experiment Results

B.1 Strategies

Below are the tables displaying the results. In the tables, the letter A represents the wins of the
current strategy, while the letter B represents the wins of the greedy strategy. The different types
mentioned in the first row of the table indicate the reinforcement types, with Type 1 representing
deterministic distribution, Type 2 representing the fully random method, and Type 3 representing
the weighted random method. The ‘Init’ column refers to the board initialization, which can be
either random (0) or random with the same number of tiles for both players (1). The ‘Dice’ column
indicates the maximum number of dice per tile in the game, which can be either five dice or two
dice. The ‘Size’ column represents the size of the board, including the width and height.
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B.1.1 Baseline

Both A and B stand for the greedy strategy.

Type 1 Type 2 Type 3 Variables
A B Tie A B Tie A B Tie Init Dice Size
44597 45043 10360 45030 44759 10211 44495 44997 10508 0 5 1x2
39695 39517 20788 39927 39299 20774 39533 39610 20857 1 5 1x2
36379 36357 27264 36548 36598 26854 36410 36651 26939 0 2 1x2
22980 23010 54010 22624 23265 54111 23188 22774 54038 1 2 1x2
4735 4819 446 4922 4943 135 5016 4799 185 0 5 2x2
4571 4576 853 4857 4713 430 4788 4783 429 1 5 2x2
4460 4436 1104 4444 4397 1159 4464 4345 1191 0 2 2x2
3608 3650 2742 3662 3660 2678 3671 3713 2616 1 2 2x2
4754 4688 558 5084 4883 33 4964 4949 87 0 5 2x3
4555 4587 858 4902 4985 113 4948 4895 157 1 5 2x3
4598 4779 623 4657 4545 798 4680 4601 719 0 2 2x3
4208 4150 1642 4099 4182 1719 4181 4144 1675 1 2 2x3
4376 4274 1350 4926 5043 31 4928 4936 136 0 5 3x3
4090 4131 1779 4906 5033 61 4924 4935 141 1 5 3x3
4270 4238 1492 4464 4301 1235 4608 4463 929 0 2 3x3
4193 4116 1691 4298 4215 1487 4465 4458 1077 1 2 3x3
4223 4179 1598 4950 4968 82 4854 5047 99 0 5 3x4
3949 3928 2123 4932 4940 128 4899 4987 114 1 5 3x4
3314 3288 3398 3708 3692 2600 4254 4204 1542 0 2 3x4
2994 2969 4037 3537 3435 3028 4041 4056 1903 1 2 3x4
3972 4026 2002 4851 4869 280 4923 4981 96 0 5 4x4
3746 3748 2506 4814 4827 359 4992 4892 116 1 5 4x4
2172 2157 5671 3005 3009 3986 3678 3670 2652 0 2 4x4
1719 1847 6434 2808 2816 4376 3621 3516 2863 1 2 4x4
326 335 339 478 421 101 486 491 23 0 5 5x5
326 294 380 428 457 115 506 468 26 1 5 5x5
80 81 839 223 229 548 244 273 483 0 2 5x5
65 70 865 179 188 633 249 233 518 1 2 5x5
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B.1.2 Random Strategy

Here, A stands for the random strategy, and B stands for the greedy strategy.

Type 1 Type 2 Type 3 Variables
A B Tie A B Tie A B Tie Init Dice Size
44786 44781 10433 44868 44659 10473 44627 44978 10395 0 5 1x2
39860 39417 20723 39441 39780 20779 39623 39422 20955 1 5 1x2
36647 36210 27143 36532 36667 26801 36854 35952 27194 0 2 1x2
22980 22607 54413 22833 22937 54230 23343 22647 54010 1 2 1x2
44003 54215 1782 42850 55364 1786 41378 56174 2448 0 5 2x2
40529 55340 4131 38536 57349 4115 36482 58529 4989 1 5 2x2
45213 42801 11986 42959 44337 12704 44638 43411 11951 0 2 2x2
37613 34917 27470 34696 36892 28412 37548 34740 27712 1 2 2x2
37922 61624 454 36376 63054 570 35849 63319 832 0 5 2x3
32122 66742 1136 29842 68835 1323 29982 68283 1735 1 5 2x3
53625 40106 6269 42921 49758 7321 49380 44021 6599 0 2 2x3
51184 33276 15540 36424 46340 17236 45715 38289 15996 1 2 2x3
33176 66824 0 31099 68901 0 32363 67636 1 0 5 3x3
27470 72530 0 25052 74948 0 26956 73043 1 1 5 3x3
74240 24434 1326 48388 49353 2259 67171 28819 4010 0 2 3x3
78471 19922 1607 47386 49889 2725 70201 25001 4798 1 2 3x3
28377 71615 8 27034 72951 15 30001 69975 24 0 5 3x4
20584 79383 33 19827 80145 28 23325 76636 39 1 5 3x4
82465 15021 2514 47243 44692 8065 78031 16119 5850 0 2 3x4
85552 10130 4318 45219 43600 11181 81148 10971 7881 1 2 3x4
25134 74839 27 24257 75717 26 28132 71843 25 0 5 4x4
18293 81679 28 17592 82383 25 22160 77814 26 1 5 4x4
89649 8074 2277 49595 39409 10996 81335 8896 9769 0 2 4x4
92054 5205 2741 48924 37619 13457 83932 5479 10589 1 2 4x4
19015 80557 428 19320 80312 368 26293 73610 97 0 5 5x5
12694 86908 398 13395 86229 376 21986 77881 133 1 5 5x5
93797 4066 2137 45921 34894 19185 85750 3610 10640 0 2 5x5
95133 2914 1953 45181 33505 21314 87383 2372 10245 1 2 5x5
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B.1.3 Return Zero Strategy

Here, A stands for the return zero strategy, and B stands for the greedy strategy.

Type 1 Type 2 Type 3 Variables
A B Tie A B Tie A B Tie Init Dice Size
44789 44810 10401 44788 44861 10351 44865 44742 10393 0 5 1x2
39947 39363 20690 39762 39611 20627 39601 39432 20967 1 5 1x2
36331 36609 27060 36559 36402 27039 36545 36329 27126 0 2 1x2
22763 23018 54219 22840 22954 54206 22731 22875 54394 1 2 1x2
43395 55018 1587 43378 55074 1548 41505 56878 1617 0 5 2x2
39236 56722 4042 38907 57121 3972 35975 59879 4146 1 5 2x2
51146 37087 11767 51217 37100 11683 50992 37114 11894 0 2 2x2
47096 25938 26966 46810 26321 26869 47222 25772 27006 1 2 2x2
41735 57911 354 42319 57237 444 39567 59806 627 0 5 2x3
37430 61405 1165 38339 60476 1185 35382 63143 1475 1 5 2x3
65670 28467 5863 65590 28739 5671 65756 28394 5850 0 2 2x3
68076 17172 14752 68160 16938 14902 68076 17128 14796 1 2 2x3
40095 59905 0 41863 58137 0 38100 61900 0 0 5 3x3
36488 63512 0 38575 61425 0 34597 65403 0 1 5 3x3
84232 15768 0 84109 15891 0 84267 15733 0 0 2 3x3
89488 10512 0 89485 10515 0 89547 10453 0 1 2 3x3
3511 6487 2 4068 5931 1 3634 6352 14 0 5 3x4
3056 6942 2 3715 6283 2 3255 6727 18 1 5 3x4
9121 803 76 9140 793 67 9155 774 71 0 2 3x4
9491 313 196 9426 340 234 9420 355 225 1 2 3x4
3511 6488 1 4013 5987 0 3585 6412 3 0 5 4x4
3068 6932 0 3639 6361 0 3243 6754 3 1 5 4x4
9600 387 13 9596 392 12 9636 344 20 0 2 4x4
9812 137 51 9804 139 57 9801 134 65 1 2 4x4
2957 7004 39 3757 6239 4 3529 6470 1 0 5 5x5
2347 7621 32 3475 6519 6 3324 6675 1 1 5 5x5
9896 104 0 9894 106 0 9885 115 0 0 2 5x5
9952 48 0 9957 43 0 9954 46 0 1 2 5x5
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B.1.4 Monte Carlo Strategy

Here, A stands for the Monte Carlo strategy, and B stands for the greedy strategy.

Type 1 Type 2 Type 3 Variables
A B Tie A B Tie A B Tie Init Dice Size
4445 4463 1092 4467 4487 1046 4425 4582 993 0 5 1x2
3938 3998 2064 4029 3951 2020 3858 4057 2085 1 5 1x2
3620 3682 2698 3672 3641 2687 3580 3681 2739 0 2 1x2
2271 2320 5409 2214 2270 5516 2335 2256 5409 1 2 1x2
4642 5206 152 4563 5277 160 4425 5431 144 0 5 2x2
4227 5337 436 4276 5324 400 4103 5496 401 1 5 2x2
4507 4320 1173 4266 4504 1230 4507 4298 1195 0 2 2x2
3764 3455 2781 3426 3773 2801 3712 3548 2740 1 2 2x2
3402 6555 43 3238 6673 89 3206 6624 170 0 5 2x3
2616 7279 105 2547 7263 190 2435 7222 343 1 5 2x3
5653 3701 646 4541 4575 884 5558 3741 701 0 2 2x3
5592 2907 1501 3838 4200 1962 5381 2976 1643 1 2 2x3
340 658 2 334 655 11 333 645 22 0 5 3x3
246 745 9 256 724 20 255 701 44 1 5 3x3
577 370 53 569 374 57 581 356 63 0 2 3x3
543 300 157 564 298 138 547 286 167 1 2 3x3
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B.1.5 Monte Carlo Tree Search Strategy

Here, A stands for the Monte Carlo Tree Search strategy, and B stands for the greedy strategy.

Type 1 Type 2 Type 3 Variables
A B Tie A B Tie A B Tie Init Dice Size
4454 4528 1018 4456 4474 1070 4489 4447 1064 0 5 1x2
3968 3943 2089 3860 4077 2063 3948 3970 2082 1 5 1x2
3679 3633 2688 3659 3577 2764 3688 3638 2674 0 2 1x2
2298 2255 5447 2308 2223 5469 2304 2256 5440 1 2 1x2
4786 5050 164 4797 5059 144 4743 5079 178 0 5 2x2
4607 4988 405 4729 4851 420 4714 4846 440 1 5 2x2
4426 4423 1151 4467 4422 1111 4429 4444 1127 0 2 2x2
3625 3627 2748 3584 3667 2749 3589 3583 2828 1 2 2x2
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B.1.6 Expansion Strategy

Here, A stands for the expansion strategy, and B stands for the greedy strategy.

Type 1 Type 2 Type 3 Variables
A B Tie A B Tie A B Tie Init Dice Size
45316 44364 10320 44744 44843 10413 44851 44899 10250 0 5 1x2
39470 39740 20790 39643 39744 20613 39407 39703 20890 1 5 1x2
36628 36340 27032 36466 36546 26988 36345 36690 26965 0 2 1x2
22921 23054 54025 22720 23105 54175 22964 23125 53911 1 2 1x2
43109 55269 1622 43146 55328 1526 41606 56749 1645 0 5 2x2
38799 57150 4051 38577 57427 3996 36607 59371 4022 1 5 2x2
51679 36925 11396 51701 36729 11570 51941 36525 11534 0 2 2x2
47495 25342 27163 47462 25261 27277 47539 25435 27026 1 2 2x2
43861 55774 365 45213 54440 347 44359 55204 437 0 5 2x3
40763 58062 1175 42733 56111 1156 41550 57211 1239 1 5 2x3
66594 27796 5610 66636 27727 5637 66601 27877 5522 0 2 2x3
68436 16567 14997 68509 16460 15031 68774 16480 14746 1 2 2x3
42211 57789 0 45359 54641 0 43857 56143 0 0 5 3x3
39015 60985 0 43437 56563 0 41495 58505 0 1 5 3x3
85055 14945 0 84900 15100 0 84682 15318 0 0 2 3x3
89995 10005 0 90149 9851 0 90043 9957 0 1 2 3x3
3854 6145 1 4563 5437 0 4204 5794 2 0 5 3x4
3469 6528 3 4292 5705 3 3996 6001 3 1 5 3x4
9138 794 68 9178 758 64 9149 801 50 0 2 3x4
9476 306 218 9477 291 232 9510 273 217 1 2 3x4
3771 6228 1 4540 5460 0 4105 5895 0 0 5 4x4
3239 6761 0 4293 5707 0 3873 6127 0 1 5 4x4
9643 342 15 9692 295 13 9679 309 12 0 2 4x4
9837 102 61 9813 122 65 9837 104 59 1 2 4x4
3158 6823 19 4387 5612 1 3948 6050 2 0 5 5x5
2733 7248 19 4168 5832 0 3687 6305 8 1 5 5x5
9924 74 2 9914 83 3 9907 92 1 0 2 5x5
9966 34 0 9962 37 1 9961 38 1 1 2 5x5
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B.1.7 Close-to-Optimal Strategy

Here, A stands for the close-to-optimal strategy, and B stands for the greedy strategy.

Type 1 Variables
A B Tie Init Dice Size
44529 45221 10250 0 5 1x2
39619 39492 20889 1 5 1x2
36347 36896 26757 0 2 1x2
22915 23286 53799 1 2 1x2
52107 46277 1616 0 5 2x2
52124 43708 4168 1 5 2x2
50784 37670 11546 0 2 2x2
46154 26475 27371 1 2 2x2
56182 43110 708 0 5 2x3
58688 39274 2038 1 5 2x3
66783 27627 5590 0 2 2x3
69127 16021 14852 1 2 2x3
- - - 0 5 3x3
- - - 1 5 3x3
84692 15308 0 0 2 3x3
89945 10055 0 1 2 3x3
- - - 0 5 3x4
- - - 1 5 3x4
74056 8577 17367 0 2 3x4
74990 4036 20974 1 2 3x4
- - - 0 5 4x4
- - - 1 5 4x4
- - - 0 2 4x4
- - - 1 2 4x4
- - - 0 5 5x5
- - - 1 5 5x5
- - - 0 2 5x5
- - - 1 2 5x5
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B.2 Win Probability

B.2.1 Average Win Probability

The table below shows the average win, lose and tie probability for the corresponding board size
and maximum number of dice.

Win Lose Tie Dice Size
0.518462 0.4177 0.0638379 5 1x2
0.564132 0.427367 0.00850344 5 2x2
0.58442 0.41484 0.00191217 5 2x3
- - - 5 3x3
- - - 5 3x4
- - - 5 4x4
0.457404 0.334841 0.207755 2 1x2
0.571355 0.348744 0.0798978 2 2x2
0.617684 0.343413 0.0363597 2 2x3
0.671319 0.317899 0 2 3x3
0.720518 0.264849 0.00335683 2 3x4
- - - 2 4x4

B.2.2 How Optimal is the Greedy Strategy?

The table below shows the win probabilities for the close-to-optimal strategy, the greedy strategy
and the random strategy. It also shows the total number of game states in which you can execute a
move, and the fraction of those states compared to all possible states. This is shown for several
variations in board size and maximum number of dice.

Optimal Greedy Random Move Fraction of Total Dice Size
0.562088 0.560606 0.520434 140 0.7 5 1x2
0.587457 0.571895 0.561298 18040 0.902 5 2x2
0.593854 0.571531 0.560918 1933600 0.9668 5 2x3
- - - - - 5 3x3
- - - - - 5 3x4
- - - - - 5 4x4
0.531846 0.503339 0.475694 20 0.625 2 1x2
0.642072 0.618661 0.576064 412 0.804688 2 2x2
0.66309 0.642069 0.603897 7300 0.891113 2 2x3
0.690821 0.673406 0.637657 500696 0.955002 2 3x3
- - - - - 2 3x4
- - - - - 2 4x4
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