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Abstract

In this thesis, we analyse three state-of-the-art monocular depth estimation methods. These
neural networks are used for various Computer Vision tasks, such as autonomous driving.
We seek to discover the strengths and weaknesses of these methods in order to get a deeper
understanding of them. For this, we construct seven categories of scenes and analyse the
results of the three methods in these categories. For the analysis, we use eight commonly used
metrics and a new metric proposed by us.
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1 Introduction

Monocular depth estimation is a branch of Computer Vision and is important for, for example,
autonomous driving, robotics, and augmented reality. However, as many 3D scenes can be
constructed from the same 2D image, it is an ill-posed problem. Notwithstanding this, different
methods using deep convolutional neural networks have recently been able to accurately estimate
depth maps using only single images as input. Among these methods are AdaBins [1], Big to
Small [8], and Virtual Normal [17]. These three state-of-the-art methods have good results and
each has its own innovative way to try to better estimate the depth maps.

In this thesis, we will look at these three methods and extensively analyse them using different
image categories to ultimately try to learn what the strengths and weaknesses of these methods
are and why. With these results, we aim to get a better picture of the methods which we do not
get with their current presentations. Most often new methods only compare themselves to other
methods based on the same datasets on which they were trained. These subsets are thus similar
to the training data which can be a problem as it remains unknown how well the methods will
perform in real settings. By constructing a testing dataset from one or more different datasets, we
will get a better idea of their general performance.

In depth estimation, KITTI [5] and NYU Depth V2 [9] are the most popular datasets for training
and testing. As the three methods discussed in this thesis use these datasets for training as well, we
will not use them for testing. Rather, we will use the SUN RGB-D [10, 13, 7, 9] and DIODE [12]
datasets, two publicly available datasets with a plethora of different scenes. For the analysis we will
use eight evaluation metrics: three different thresholds for the accuracy, the root mean squared
error and its logarithmic variant, the absolute relative error, the squared relative error, and the log
error. In addition to these metrics, which are all used in previous works, we propose a new metric,
the local shape threshold, as the ninth metric.

One notion that will not be discussed in depth in this thesis, but is important for the subject, is
the general workings of Neural Networks. These networks require massive amounts of training data
with the corresponding ground truth, which is naturally relatively hard to obtain. This means that
improvements in datasets will likely greatly influence the performance of methods on general scenes.
Yin et al. [18] describe this more in-depth and have their own attempt at solving the, as they call
it, generalisation issue of monocular depth estimation.

In section 2 we will give a more in-depth explanation of the workings of the three methods. Section
3 describes the way the experiments are performed, together with an explanation of the datasets.
Section 4 presents the results of the experiments. In section 5 we discuss and share our insights on
the results. Lastly, in section 6 we will draw a conclusion.

This thesis has been written for the bachelor Computer Science at LIACS of Leiden University
under the supervision of Michael Lew and Erwin Bakker.
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2 Researched Methods

Depth estimation is a relatively young field of research and there are plenty of new methods released
every year. For this thesis, we have chosen three state-of-the-art methods published in the last
four years with code publicly available. These methods each use a different approach to deliver an
estimation of the depth map.

2.1 AdaBins

AdaBins [1] is the most recent method discussed in this thesis. Published in 2021, it uses the novel
idea of adaptive bins to better estimate depth with the use of different depth ranges. AdaBins uses
a standard encoder-decoder network followed by their own addition, as seen in Figure 1. They
have chosen to implement this module after the decoder to improve the resolution by working on
the original resolution instead of a lower one, which would have been the case if the module was
placed between the encoder and decoder. The idea behind their implementation is to divide the
depth range of every individual image into bins calculated for that picture specifically, instead
of a set of bins trained on an entire dataset which remains the same for all images, as was the
case for DORN [4]. These adaptive bins increase the amount of depth intervals at the depth range
most present in an image, which by itself decreases the amount of depth discretisation artifacts
in those areas. This is further decreased by calculating the final depth prediction with the linear
combination of the Softmax of a pixel together with the center of the depth bin assigned to that
pixel, resulting in a smooth depth estimation. For the loss function, AdaBins uses the Training
Loss as introduced by Eigen et al. [3] and a bin-center density loss, which tries to ensure the depth
ranges for the bins are estimated optimally.

Of these three methods, AdaBins has the best performance on the NYU Depth V2 [9] and KITTI [5]
datasets when trained on them.

Figure 1: AdaBins pipeline [1]

2.2 Big to Small

Big to Small (bts) [8], as the name suggests, shrinks the input to create an estimation of the
depth. It uses the standard encoder-decoder network with a dense feature extractor, a contextual
feature extractor (ASPP [15]), and their addition, the Local Planar Guidance layers. These layers
use a lower resolution than the original image, 8, 4, and 2 times smaller, but do have an output of
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the original size as well, ensuring they can be passed through to later steps. This pipeline can be
seen in Figure 2. Together with a reduction layer, to better estimate the object borders, the three
outputs are non-linearly combined to obtain the final depth estimation. For example, the coarsest
outputs can be the base of the estimation, while the finer outputs fill in the details. By using the
outputs of these layers instead of nearest neighbor upsampling and conventional skip connections,
an estimation of higher resolution can be obtained. bts uses the training loss as introduced by
Eigen et al. [3].

Based on the paper bts performs well on discerning objects, which can be attributed to the
reduction layer.

Figure 2: bts pipeline [8]

2.3 Virtual Normal

Virtual Normal Loss (vnl) [17, 16] uses an encoder-decoder network to predict the depth map of
an image. This depth map is subsequently transformed into a point cloud and this point cloud
is compared to the point cloud of the ground truth using the virtual normal, which is calculated
with the camera coordinate as the world coordinate. This pipeline can be seen in Figure 3. By
using this virtual normal instead of the surface normal, vnl compares the depth maps on a global
level instead of a local level, thereby being more resilient to noise. The divergence of multiple of
these virtual normals is used as one of the loss functions of the method. vnl also makes use of a
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second pre-existing constraint, the weighted cross-entropy loss, as seen in [2], a pixel-wise loss that
classifies the depth estimation as a classification problem.

vnl is noteworthy due to its direct computation of the point cloud, which can greatly help with
calculating other 3D features instead of using a different submodel for this.

Figure 3: vnl pipeline [16]

3 Experiments

3.1 Datasets

Table 1 contains a concise overview of the datasets. The rest of this subsection will further elaborate
on them.

Dataset Sensor Indoors/Outdoors Scenes Images

NYU Depth V2 [9] Microsoft Kinect Indoors 464 407K
SUN RGB-D [10, 13, 7, 9] Multiple1 Indoors 47 10K
DIODE [12] FARO Focus S350 Indoors and Outdoors 25 26K
KITTI [5] Lidar Outdoors 61 93K

Table 1: Overview of the Datasets

3.1.1 Training

For this thesis, the trained models found on the GitHub pages of the methods are used. For AdaBins,
it is trained with EfficientNet-B5 [11] as the base network, for bts DenseNet161 [6], and for vnl
ResNeXt101 [14]. These base networks are the same for both the models trained on KITTI and the
models trained on NYU Depth V2.

1Intel Realsense, Asus Xtion, Kinect v1, Kinect v2

4



The choice was made to take the best-performing models for each method instead of trying to
keep the base networks the same for each method, because the base networks used in the different
methods did not fully overlap and because we are mainly looking at the strengths and weaknesses
of each method individually. This does mean that this difference should be kept in mind when
comparisons between methods are made.

We use both the network trained on KITTI and the network trained on NYU Depth V2 because
we want to find the strengths and weaknesses of the methods and not those of the training data.
These two training datasets differ enough to get a better idea.

KITTI [5]. The KITTI dataset is a large outdoor dataset containing images taken with a video
camera and depth maps obtained using a Lidar while driving through the streets of Karlsruhe. This
means the dataset only contains the street view of one city, which causes it to lack somewhat in
diversity, but makes it a decent dataset for training neural networks used for self-driving cars, for
example. In total it has 61 different scenes from the city roads. It is often used as a training and
testing dataset by methods for depth estimation to compare to other methods. vnl and bts train
on about 23.5K images from 32 scenes and AdaBins trains on a subset of about 26K images

NYU Depth V2 [9]. The NYU Depth V2 dataset is a large indoor dataset with images and
depth maps taken in houses and commercial buildings in three American cities using a Microsoft
Kinect. The dataset has some variety, but larger indoor areas like sports halls are notably absent,
which is perhaps because of the range at which the Kinect can detect the depth. It has 464 different
scenes of which vnl uses 249, with a total of 29K images, for training. bts trains on about 24K
images from 249 scenes and AdaBins on 50K images.

3.1.2 Testing

For the testing, we manually constructed several categories using the DIODE and SUN RGB-D
datasets. These categories were chosen based on different types of shapes and differences in depth
cues. With four indoor and three outdoor categories, we hope to be able to highlight the main
strengths and weaknesses of the methods. For bts we used the PyTorch implementation, the other
methods only have one implementation. Furthermore, during the testing, some minor changes were
made to the three methods to ensure the output was homogenised. For testing, the methods require
a depth range in which they place their estimations. However, as this depth range only scales the
output to the depth range and does not affect the results, we chose to use the standard max depth
for NYU Depth V2, which is 10 meters.

Other than these exceptions above, the testing was performed as is standard for the research
community, which is the same as used in, for example, Yin et al. [17].

DIODE [12]. DIODE is a diverse dataset with indoor and outdoor images together with the
corresponding depth maps obtained using a FARO Focus S350 scanner. This laser scanner can be
used indoors and outdoors and has a dense output resulting in rather accurate depth maps. It also
has a validity mask file for each depth map, which has the valid and invalid depth pixels as true or
false respectively that can be used to only evaluate the valid pixels. DIODE has 25 scenes publicly
available with a total of 9K indoor and 17K outdoor images.
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SUN RGB-D [10]. In addition to its own images, the SUN RGB-D dataset also contains images
from the NYU Depth V2 [9], B3DO [7], and SUN3D [13] datasets, although for our testing we
avoid the NYU Depth V2 images of this dataset. All images in this dataset are from indoor scenes
and are not greatly varied. The images are captured with the following sensors: the Intel Realsense,
the Asus Xtion, the Kinect v1, and the Kinect v2. Obtained depth maps are then improved by
combining multiple frames of a video into a single depth map. SUN RGB-D has 47 scenes with a
total of 10K images.

3.2 Data Categories

• Close-ups: This indoor category consists of 101 images taken from a short distance, resulting
in a small depth range. This helps to evaluate the method’s ability to cope with and estimate
finer details.

• Longer distance: This indoor category consists of 104 images with objects further away,
resulting in a larger depth range. This can help with discerning whether the method performs
well with less detail in parts of the image and occlusion of objects.

• Fake-light source: This indoor category consists of 127 images with turned-on sources of
a synthetic light in the image, which causes the source to be obscured with a bright light.
This category aims to evaluate a method’s ability to cope with bright unnatural spotlighting
instead of the usual sunlight or less bright, more evenly distributed unnatural lighting.

• Plants indoors: This indoor category consists of 71 images containing plants together
with non-animate objects. Indoor data with only, or mostly, plants proved to be difficult to
obtain, so these images were chosen instead. As plants have more unique shapes with more
irregularities, this category might help to identify whether the method can perform well on
those shapes and object types.

• Forest: This outdoor category consists of 152 images taken within a forest. Trees have a
rather different depth map compared to buildings and other man-made structures, which
is why we thought it to be a good way to see how the methods behave on new completely
different data with complex scenes.

• Parks: This outdoor category consists of 191 images with plants and man-made structures
as generally found in parks. This can test methods on their ability to accurately estimate
depth in scenes with varying objects, like benches and foliage, at varying distances.

• Man-made structures: This outdoor category consists of 125 images with only structures
such as buildings in the scene. This category tests the methods' capability of handling
geometric shapes, including different perspectives.

3.3 Normalising the Images

All input images were normalised to a resolution of 640x480. There are two ways to accomplish
this, either by resizing the image so that one axis matches the target resolution and padding the
other axis with black bars at both sides, or by cropping out the middle of the image, which is only
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possible if the original image is larger than the desired resolution. The first method scales all image
data, so the resulting image still has the exact same scene. Although the two edges with bars will
get some distorted predictions as the methods will still see the added bars, the evaluation does
ignore the bars. The second method retains the original resolution but loses a part of the image,
which will affect the prediction of all edges.

For this research, we have chosen to use the first method, because most of the images we use were in
the same shape as the target shape, so they only had to be scaled without any black bars necessary.
Furthermore, it significantly lessened the laboriousness of the process of finding suitable images for
the categories, as the part of the image lost with the second method did not need to be taken into
consideration.

3.4 Evaluation Metrics

Normally some of the metrics are unique to evaluating on a specific training and testing dataset.
However, we chose to use all eight metrics used across the three methods as our data differs from
any of the previous testing datasets. In addition to these eight metrics, we added a new one.

• Accuracy threshold: δ1, δ2, and δ3 are used to quantify how many predicted pixels are
within the threshold of 1.25 to the power of respectively 1, 2, or 3 when compared to the
ground truth.

• Local shape threshold: ν5, ν4, and ν3 are a new metric proposed by this thesis with
three different thresholds. This metric takes the values of a 5 by 5 window in the predictions
normalised by its center and compares this to the same window in the ground truth normalised
by its center. It then checks whether the absolute difference is less than the threshold. The
thresholds are 0.25{5,4,3}. The objective of this metric is to gain insight into the local shape
differences between the predictions and ground truths, which can help determine whether the
methods perform well on the local shapes.

∑n
w=1(

∑m
p=1 νp < thresh)∑n
w=1 wm

νp = |wp − ŵp|

Where n is the amount of windows, which may overlap, in the image, and m is the amount of
valid pixels in window w, the center also is an invalid pixel as it is always 0. wp is the center
normalised pixel in window w of the ground truth and ŵp is a center normalised pixel in
window ŵ of a prediction.

• Root Mean Square Error: RMSE is used to get the standard deviation. This metric heavily
punishes larger errors. √√√√ 1

n

n∑
p=1

(dp − d̂p)2
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• Root Mean Square Log Error: RMSE log is similar to the RMSE, but uses the
log-transformed prediction and actual value. This means the relative deviation is computed
instead of the absolute deviation, which means the scale is irrelevant and it punishes outliers
heavier when they are large relative to the ground truth.√√√√ 1

n

n∑
p=1

(log10 dp − log10 d̂p)
2

• Log10 Error: Log10 gives the error of the pixels on a logarithmic scale.

1

n

n∑
p=1

| log10 dp − log10 d̂p|

• Absolute Relative Error: AbsRel measures the error of the pixels in an image relative to
the ground truth. This means that all values for AbsRel above 1 are over-estimations.

1

n

n∑
p=1

|dp − d̂p|
dp

• Squared Relative Error: SqRel is similar to the AbsRel, but squares the error instead
of taking the absolute. This causes larger errors to be relatively more inflated than smaller
errors, thus it penalises those larger errors more.

1

n

n∑
p=1

(dp − d̂p)
2

dp

dp is a pixel in the ground truth and d̂p is a pixel in the prediction. n is the amount of valid pixels
in the image.

4 Results

In this section, we will present the data obtained from our experiments, which will be further
discussed in Section 5.

4.1 Performance in General

In this subsection, we compare the categories based on method and training dataset in order to
obtain insights into their general performances. The data obtained from running the experiments
is summarised in Tables 2 to 7. While this representation of the data might be less conclusive
about the strengths and weaknesses, as it might be too dependent on the training dataset, it is
included to verify this and to better study the impact of the training. Before diving into the results
per method and training, it is worth noting a few curiosities across the results, namely, the low
performance of the outdoor categories on AbsRel and SqRel and the low performance of Longer
distance overall, especially on the RMSE metric.
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The content of the tables is sorted on δ3 to make it easier to see the general performance per
category. This is, however, not the definitive order from worst to best, as not all other metrics
follow the same order, but the threshold is useful to determine what percentage of the pixels in the
image is performing well, while the other metrics are influenced more by large outliers.

The results of the methods trained on NYU Depth V2 [9] are in Tables 2, 4, and 6. As this training
dataset is completely comprised of indoor data, it is not unexpected to see the indoor categories
perform generally better, with all methods having their best performance in Close-ups on nearly all
metrics. However, Longer distance, while also an indoor category, is outperformed by all categories
with bts, and all categories except Forest with AdaBins and vnl. On the AbsRel metric, it is more
on par with the other indoor categories. Furthermore, in Tables 2 and 6 the outdoor categories
perform better on all metrics except for RMSE when there are fewer plants in the image. Yet in
Table 4 Forest outperforms the other outdoor categories on SqRel as well. Lastly, we do see that,
when sorting on δ3, RMSE log, log10, and the other two thresholds are also roughly sorted from
best to worst, although RMSE, AbsRel, SqRel, and local shape have an entirely different order.

When trained on KITTI [5] the results are obtained as seen in Tables 3, 5, and 7. This training dataset
consists of outdoor images, which can explain the better performance of the three outdoor categories
on most metrics. However, on AbsRel and SqRel the outdoor categories perform significantly worse,
which can be explained by the larger depth range outdoor images often have. This can cause high
AbsRel and SqRel with a low RMSE if the ground truth is close to the camera and the estimation is
relatively far away from the camera. In this situation, the relative error measured by the former two
metrics is higher than the absolute error measured by the latter metric. Remarkable is that Longer
distance has a rather low performance with this training dataset as well, as one would assume the
larger depth range would be more like the training data of KITTI. Instead, the methods perform
worse in this category even when compared to the other categories, although the local shape metric
does have better results than with some other categories. For example, Forest has a rather low
performance on the local shape metric. As with the results in the other tables, the results obtained
with KITTI as the training dataset are similar across categories as well. However, the metrics that
follow δ3 are slightly different. When trained on KITTI, RMSE almost perfectly follows the same
order, and RMSE log has more differences. Log10 has roughly the same order with this training
dataset as well.

Overall, when comparing the best and worst performing categories of the methods trained on
KITTI to those trained on NYU Depth V2, the former are generally performing worse than the
latter.

4.2 Performance Combined

In this subsection, we examine the outcome of combining the results based on the method, which
might help gain insight into the performance of the methods independent of the training datasets.
This is important as the training dataset influences the results, and we seek to determine properties
of the methods, not the datasets. As mentioned in the previous subsection, the results follow a
pattern that does not differ greatly per method and training dataset, which suggests that the
influence of these datasets might be significant. In Tables 8, 9, and 10 these new results can be
seen. While the general order is again similar, there are some curious differences.
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Category
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

Forest 0.077 0.158 0.261 0.044 0.147 0.29 1.09 1.964 0.631 25.972 42.299
Longer distance 0.046 0.122 0.319 0.06 0.192 0.496 8.589 1.273 0.523 0.792 6.7
Parks 0.175 0.342 0.472 0.051 0.174 0.375 1.299 1.442 0.44 14.374 33.417
Man-made structures 0.223 0.424 0.604 0.119 0.382 0.692 1.099 0.971 0.308 6.234 15.343
Fake-light source 0.38 0.623 0.736 0.18 0.47 0.822 1.693 0.594 0.224 0.675 2.44
Plants indoors 0.369 0.692 0.836 0.116 0.36 0.672 2.249 0.578 0.2 0.647 2.146
Close-ups 0.248 0.634 0.883 0.241 0.558 0.885 0.76 0.456 0.172 0.434 0.472

Table 2: AdaBins [1] trained on NYU Depth V2, sorted on δ3

Category
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

Longer distance 0.004 0.007 0.014 0.151 0.235 0.493 10.556 2.464 1.046 0.916 8.808
Plants indoors 0.032 0.09 0.199 0.169 0.391 0.687 3.158 1.281 0.53 0.726 2.456
Fake-light source 0.053 0.125 0.228 0.194 0.451 0.797 2.444 1.204 0.501 0.685 1.906
Close-ups 0.055 0.124 0.23 0.303 0.524 0.834 1.385 1.033 0.427 0.642 0.929
Parks 0.108 0.246 0.413 0.066 0.199 0.374 1.31 1.307 0.427 7.421 11.652
Man-made structures 0.164 0.358 0.519 0.183 0.482 0.717 1.077 0.94 0.328 2.636 3.051
Forest 0.198 0.411 0.581 0.061 0.159 0.278 0.612 1.565 0.436 12.516 10.165

Table 3: AdaBins [1] trained on KITTI, sorted on δ3

Category
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

Longer distance 0.035 0.108 0.302 0.044 0.159 0.451 8.594 1.289 0.531 0.81 6.847
Forest 0.119 0.278 0.451 0.035 0.124 0.275 0.795 1.766 0.529 19.011 23.167
Parks 0.178 0.334 0.459 0.034 0.126 0.326 1.38 1.447 0.444 14.295 35.586
Man-made structures 0.192 0.386 0.558 0.068 0.246 0.59 1.32 1.05 0.342 7.652 26.645
Fake-light source 0.4 0.634 0.755 0.115 0.375 0.773 1.662 0.559 0.209 0.669 2.409
Plants indoors 0.347 0.642 0.812 0.084 0.286 0.613 2.302 0.603 0.212 0.717 2.329
Close-ups 0.27 0.665 0.904 0.138 0.432 0.825 0.731 0.44 0.163 0.43 0.494

Table 4: bts [8] trained on NYU Depth V2, sorted on δ3

Category
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

Longer distance 0.003 0.007 0.013 0.071 0.195 0.465 10.518 2.522 1.071 0.924 8.829
Plants indoors 0.032 0.075 0.152 0.112 0.339 0.658 3.227 1.412 0.582 0.765 2.649
Fake-light source 0.035 0.083 0.162 0.12 0.376 0.759 2.516 1.342 0.559 0.733 2.029
Close-ups 0.042 0.099 0.188 0.137 0.402 0.786 1.48 1.212 0.496 0.683 1.048
Parks 0.118 0.27 0.422 0.053 0.178 0.36 1.373 1.327 0.438 7.033 14.656
Man-made structures 0.171 0.326 0.472 0.123 0.395 0.685 1.158 1.024 0.362 2.751 4.523
Forest 0.24 0.452 0.602 0.046 0.15 0.282 0.666 1.494 0.412 11.21 13.581

Table 5: bts [8] trained on KITTI, sorted on δ3
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Category
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

Forest 0.085 0.179 0.286 0.075 0.194 0.296 1.009 1.931 0.614 24.534 36.614
Longer distance 0.057 0.156 0.386 0.055 0.176 0.466 8.215 1.142 0.465 0.795 6.559
Parks 0.191 0.342 0.475 0.051 0.178 0.379 1.266 1.43 0.437 12.895 24.956
Man-made structures 0.203 0.392 0.564 0.095 0.324 0.646 1.239 1.027 0.332 7.022 20.465
Fake-light source 0.451 0.683 0.804 0.173 0.458 0.802 1.536 0.501 0.183 0.646 2.46
Plants indoors 0.373 0.683 0.83 0.122 0.356 0.658 2.218 0.575 0.199 0.672 2.081
Close-ups 0.396 0.795 0.945 0.202 0.514 0.853 0.648 0.375 0.133 0.411 0.514

Table 6: vnl [17] trained on NYU Depth V2, sorted on δ3

Category
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

Longer distance 0.001 0.002 0.007 0.157 0.251 0.502 10.569 2.498 1.068 0.929 8.878
Plants indoors 0.012 0.038 0.104 0.197 0.432 0.726 3.238 1.414 0.594 0.763 2.554
Fake-light source 0.032 0.073 0.122 0.217 0.479 0.834 1.485 1.167 0.493 0.693 1.05
Close-ups 0.045 0.084 0.151 0.377 0.612 0.891 2.54 1.365 0.575 0.741 2.048
Parks 0.165 0.359 0.525 0.084 0.233 0.395 1.18 1.255 0.384 8.342 14.199
Man-made structures 0.24 0.432 0.581 0.211 0.521 0.733 1.015 0.914 0.308 2.868 4.196
Forest 0.245 0.469 0.625 0.063 0.172 0.291 0.59 1.57 0.424 13.64 11.964

Table 7: vnl [17] trained on KITTI, sorted on δ3

AdaBins performs rather well in the Man-made structures category, which is approximately the
best-performing category together with Close-ups. The other two outdoor categories, however,
perform significantly worse on all but one metric. Plants indoors and Fake-light source follow
Close-ups relatively close in terms of performance.

BTS performs well in Forest, especially on the RMSE and δ threshold metrics, but it underperforms
somewhat on the other metrics. On the local shape metric it even performs worst out of all
categories. Close-ups is performing rather nicely as well, especially on the AbsRel and SqRel, where
it significantly outperforms most other categories. Of the outdoor categories, Parks has the worst
performance, with a relatively large difference between this category and the other two categories.
It is performing worse than the indoor categories, except for Longer distance on most metrics.

VNL performs well in Man-made structures and Close-ups, with Parks performing rather well as
well. Plants indoors, while outperforming Fake-light source on δ3, performs worse than the latter
on all other metrics, which is not unique to vnl, but most noticeable for this method. Forest
underperforms on most metrics with a relatively large margin.
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Category
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

Longer distance 0.025 0.065 0.167 0.106 0.214 0.495 9.573 1.869 0.785 0.854 7.754
Forest 0.138 0.285 0.421 0.053 0.153 0.284 0.851 1.765 0.534 19.244 26.232
Parks 0.142 0.294 0.443 0.059 0.187 0.375 1.305 1.375 0.434 10.898 22.535
Fake-light source 0.217 0.374 0.482 0.187 0.461 0.810 2.069 0.899 0.363 0.680 2.173
Plants indoors 0.201 0.391 0.518 0.143 0.376 0.680 2.704 0.930 0.365 0.687 2.301
Close-ups 0.152 0.379 0.557 0.272 0.541 0.860 1.073 0.745 0.300 0.538 0.701
Man-made structures 0.194 0.391 0.562 0.151 0.432 0.705 1.088 0.956 0.318 4.435 9.197

Table 8: AdaBins [1] Tables 2 and 3 Combined, sorted on δ3

Category
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

Longer distance 0.019 0.058 0.158 0.058 0.177 0.458 9.556 1.906 0.801 0.867 7.838
Parks 0.148 0.302 0.441 0.044 0.152 0.343 1.377 1.387 0.441 10.664 25.121
Fake-light source 0.218 0.359 0.459 0.118 0.376 0.766 2.089 0.951 0.384 0.701 2.219
Plants indoors 0.190 0.359 0.482 0.098 0.313 0.636 2.765 1.008 0.397 0.741 2.489
Man-made structures 0.182 0.356 0.515 0.096 0.321 0.638 1.239 1.037 0.352 5.202 15.584
Forest 0.180 0.365 0.527 0.041 0.137 0.279 0.731 1.630 0.471 15.111 18.374
Close-ups 0.156 0.382 0.546 0.138 0.417 0.806 1.106 0.826 0.330 0.557 0.771

Table 9: bts [8] Tables 4 and 5 Combined, sorted on δ3

Category
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

Longer distance 0.029 0.079 0.197 0.106 0.214 0.484 9.392 1.820 0.767 0.862 7.719
Forest 0.165 0.324 0.456 0.069 0.183 0.294 0.800 1.751 0.519 19.087 24.289
Fake-light source 0.242 0.378 0.463 0.195 0.469 0.818 1.511 0.834 0.338 0.670 1.755
Plants indoors 0.193 0.361 0.467 0.160 0.394 0.692 2.728 0.995 0.397 0.718 2.318
Parks 0.178 0.351 0.500 0.068 0.206 0.387 1.223 1.343 0.411 10.619 19.578
Close-ups 0.221 0.440 0.548 0.290 0.563 0.872 1.594 0.870 0.354 0.576 1.281
Man-made structures 0.222 0.412 0.573 0.153 0.423 0.690 1.127 0.971 0.320 4.945 12.331

Table 10: vnl [17] Tables 6 and 7 Combined, sorted on δ3
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NYU Depth V2

Method
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

AdaBins 0.077 0.158 0.261 0.044 0.147 0.29 1.09 1.964 0.631 25.972 42.299
bts 0.119 0.278 0.451 0.035 0.124 0.275 0.795 1.766 0.529 19.011 23.167
vnl 0.085 0.179 0.286 0.075 0.194 0.296 1.009 1.931 0.614 24.534 36.614

KITTI

Method
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

AdaBins 0.198 0.411 0.581 0.061 0.159 0.278 0.612 1.565 0.436 12.516 10.165
bts 0.24 0.452 0.602 0.046 0.15 0.282 0.666 1.494 0.412 11.21 13.581
vnl 0.245 0.469 0.625 0.063 0.172 0.291 0.59 1.57 0.424 13.64 11.964

Table 11: Forest. Bold is best, underlined is second best

4.3 Categories Compared Across Methods

In this subsection, we investigate the performance of the methods per category. For improving
existing methods, it is not only necessary to look at the strengths and weaknesses of those methods,
but also at how they perform compared to each other, as a strength of a method could still be
worse than a weakness of another method, as an extreme example. To this end, we compare some
of the categories on performance without combining the results of the two training datasets, as the
compared values are all obtained using the same dataset. These tables do not have new results, but
only a different presentation of the same results as in Section 4.1. We only mention and include
tables of significant differences, not when the methods only differ slightly.

Table 11 shows that bts performs relatively well in the Forest category when trained on NYU
Depth V2 compared to the other two methods. When trained on KITTI, it is more tied with vnl.
On the local shape metric, it performs approximately equally for both training datasets. In the
category Man-made structures vnl performs better than the other two methods on most metrics
when trained on KITTI as seen in Table 12, although AdaBins does not fall far behind. However,
when trained on NYU Depth V2, AdaBins performs best and even achieves results comparable to
the results of vnl trained on KITTI. In Table 13 we see that vnl outperforms the other methods
on most metrics with both other methods performing similarly.

All indoor categories roughly follow the same pattern, where AdaBins performs best when trained on
KITTI, vnl performs best when trained on NYU Depth V2, and bts mostly performs second best
in both cases, albeit with a similar performance compared to the third. The only metric that has
contrary results is the local shape, where the performance of AdaBins and vnl is swapped. Notable
as well is that AdaBins performs relatively well on SqRel in almost all experiments. Close-ups is a
generally high-performing category, especially when trained on NYU Depth V2, but vnl also excels
in this case, with only SqRel and the local shape thresholds not performing significantly better,
as seen in Table 14. The other two methods are approximately even with bts performing slightly
better. In Table 15 the pattern previously mentioned is visible. For Fake-light source specifically,
the other methods underperform significantly, while being at approximately the same level as each
other. Table 16 shows that vnl performs well in Longer distance relative to the other methods.
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NYU Depth V2

Method
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

AdaBins 0.223 0.424 0.604 0.119 0.382 0.692 1.099 0.971 0.308 6.234 15.343
bts 0.192 0.386 0.558 0.068 0.246 0.59 1.32 1.05 0.342 7.652 26.645
vnl 0.203 0.392 0.564 0.095 0.324 0.646 1.239 1.027 0.332 7.022 20.465

KITTI

Method
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

AdaBins 0.164 0.358 0.519 0.183 0.482 0.717 1.077 0.94 0.328 2.636 3.051
bts 0.171 0.326 0.472 0.123 0.395 0.685 1.158 1.024 0.362 2.751 4.523
vnl 0.24 0.432 0.581 0.211 0.521 0.733 1.015 0.914 0.308 2.868 4.196

Table 12: Manmade structures. Bold is best, underlined is second best

Method
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

AdaBins 0.108 0.246 0.413 0.066 0.199 0.374 1.31 1.307 0.427 7.421 11.652
bts 0.118 0.27 0.422 0.053 0.178 0.36 1.373 1.327 0.438 7.033 14.656
vnl 0.165 0.359 0.525 0.084 0.233 0.395 1.18 1.255 0.384 8.342 14.199

Table 13: Parks, trained on KITTI. Bold is best, underlined is second best

Method
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

AdaBins 0.248 0.634 0.883 0.241 0.558 0.885 0.76 0.456 0.172 0.434 0.472
bts 0.27 0.665 0.904 0.138 0.432 0.825 0.731 0.44 0.163 0.43 0.494
vnl 0.396 0.795 0.945 0.202 0.514 0.853 0.648 0.375 0.133 0.411 0.514

Table 14: Close-ups, trained on NYU Depth V2. Bold is best, underlined is second best

NYU Depth V2

Method
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

AdaBins 0.38 0.623 0.736 0.18 0.47 0.822 1.693 0.594 0.224 0.675 2.44
bts 0.4 0.634 0.755 0.115 0.375 0.773 1.662 0.559 0.209 0.669 2.409
vnl 0.451 0.683 0.804 0.173 0.458 0.802 1.536 0.501 0.183 0.646 2.46

KITTI

Method
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

AdaBins 0.053 0.125 0.228 0.194 0.451 0.797 2.444 1.204 0.501 0.685 1.906
bts 0.035 0.083 0.162 0.12 0.376 0.759 2.516 1.342 0.559 0.733 2.029
vnl 0.045 0.084 0.151 0.217 0.479 0.834 2.54 1.365 0.575 0.741 2.048

Table 15: Fake-light source. Bold is best, underlined is second best
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Method
higher is better lower is better

δ1 δ2 δ3 ν5 ν4 ν3 RMSE RMSE log log10 AbsRel SqRel

AdaBins 0.046 0.122 0.319 0.06 0.192 0.496 8.589 1.273 0.523 0.792 6.7
bts 0.035 0.108 0.302 0.044 0.159 0.451 8.594 1.289 0.531 0.81 6.847
vnl 0.057 0.156 0.386 0.055 0.176 0.466 8.215 1.142 0.465 0.795 6.559

Table 16: Longer distance, trained on NYU Depth V2. Bold is best, underlined is second best

5 Discussion

5.1 Strengths and Weaknesses of the Methods

With the results mentioned in Section 4, we can make assumptions about the strengths and
weaknesses of the three methods. One general notion about the Forest category is that the images
have a relatively high number of invalid pixels, while these pixels are not evaluated, they are
mostly between branches where the depth value would be larger. If the methods fail to estimate
the branches correctly and instead estimate them to be in the further away background, this will
impact the AbsRel and SqRel metrics especially. This can explain the high results for those metrics
in Table 11 and can be seen especially in the first row of Figure 8.

Longer distance. As this category is unique in its performance, even across the training datasets,
we will mention our thoughts on it before analysing the data per method. Longer distance is
performing significantly worse than the other categories. This could be attributed to the alienness
of the category compared to the training datasets, as a large enclosed space is not widely present
in those datasets. We do, however, see better performance within this category when looking at
images with objects closer to the camera instead of all objects being further away. Notable is that
even the images that perform the worst have a visual result that looks somewhat like the ground
truth with the main difference being that the estimations place everything closer to the camera.

All in all, the category might underperform due to the training data lacking images with a relatively
high minimum depth or due to the possibility that the methods might be unable to handle scenes
without an object close to the camera as, for example, an anchor point from which to estimate the
rest of the depth. The latter idea is further consolidated by looking at the local shape metric, as it
has relatively high results for this category, suggesting the differences between the ground truth
and the prediction are not necessarily large on a local scale, but perhaps only on a global scale.
Some examples of the performance in Longer distance can be found in Figure 7. In this figure the
first row performs relatively well on most metrics, the second row performs relatively well for only
vnl, and the fifth row performs poorly on most metrics, especially on the δ threshold metrics. The
last row falls in line with the notion that the category might only have worse performance due to
its high minimum depth as the shape of the ceiling is visible, but the depth at which it is estimated
differs.

Fake-light source and Plants indoors are special cases as well. In each of the methods, they perform
adequately but not relatively good or bad, although due to their lower performance compared to
Close-ups, they could be evaluated as a more neutral attribute of the methods and not a weakness
or strength. One limitation of this evaluation is that both categories contain images that widely
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differ from other images in their respective category, which might affect the results negatively.
However, as will be discussed in subsection 6.1, this is currently difficult to avoid.

5.1.1 AdaBins

AdaBins as a method should excel at tasks with a larger depth range as it can adapt to these ranges.
However, it does not seem to perform better in the categories with complex depth. Close-ups has a
good performance, as well as Man-made structures on most metrics. This might be due to the less
complex scenes in these categories. The former has little difference in objects per image and the
latter has mostly standard geometric shapes, albeit with some distortion due to perspective. These
attributes can make it easier for AdaBins to find a linear combination of the bin centers without
losing much detail.

While this combination of the bins seems to help with the former two categories, it is less clear with
the more complex scenes like in the categories Forest and Parks. For example, in Parks AdaBins
has a better visual result on the trees and shrubbery compared to the other methods, although
the metrics do not support this. Figure 10 shows a few examples of this. However, compared to
the other methods, most estimations made by AdaBins do seem to have the most detail. The low
scores on the metrics could be explained by the estimation being off on the depth itself, while the
relative depth across the image is correct.

Overall, supported by the tables, the strengths of AdaBins are its ability to achieve relatively
good results when the training dataset does not contain scenes similar to the test dataset, and its
performance on indoor scenes and scenes with mainly geometric shapes. Its weakness seems to lie in
its ability to estimate images with large depth ranges when complex objects like plants are present.

5.1.2 BTS

bts seems to perform well on outlines of objects, even in the Forest category it estimates the
general outlines better than AdaBins and vnl. While this is mainly suggested by the metrics, in
the images we see that bts follows the general colour of most scenes better, as seen in Figure 8.
This is most likely why it performs better on the metrics compared to the other two methods,
as especially δ3 punishes the output less when it is approximately right while still lacking detail.
The local shape further supports this as its lower performance may indicate the details are not
adequate. Interestingly, bts performs relatively poorly in Parks compared to the other two outdoor
categories. This might be due to the increased large changes in depth in this category, which does
not combine well with the method bts uses for its object outlining method. A scene with occlusion
caused by small objects, like branches, especially has these object outlines poorly estimated.

In general, bts achieves good results in specifically the Forest category, as well as scenes with
almost no non-geometric shapes. Scenes with more complex occlusion due to, for example, branches
of trees seem to perform worst, although in general, this method has the most constant performance
across all categories with less pronounced strengths and weaknesses.
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5.1.3 VNL

vnl tries to reconstruct a point cloud and with that information estimate the depth. This seems to
be working quite well for most categories. In Man-made structures especially, the lines between
concrete blocks are visible and in brick walls, the wall joints are often visible as well. These small
details, while not evidently influencing the metrics, make the estimation look more correct. Some
examples can be seen in Figure 9, especially in rows two and three. The presence of these geometric
shapes in Parks might explain the performance of vnl in this category as well. This is supported by
Figure 10, where it is noticeable that it can accurately estimate the structures, but lacks somewhat
in estimating the plants.

On the indoor categories, the performance of vnl correlates with the previous notions. In Figure 6,
especially in row four and five, and to a lesser degree in the other rows, we can see vnl performing
worse compared to the other methods in estimating details of plants. This reinforces the idea that
the method performs relatively poorly on plant-like objects. When trained on NYU Depth V2 it
achieves results better than the other two methods. While at first it could be attributed to the
training data, the differences with the other two methods imply that the method itself is in part
responsible for the results.

On average, the strengths of vnl are, according to our data, estimating geometric shapes like
buildings even with other shapes present, and especially correctly estimating details like lines
between blocks or bricks. Complex scenes with plants, especially when not containing geometric
shapes as well, are the weakness of this method.

5.2 Local Shape Differences

In this subsection, we will discuss the results of the local shape threshold and its implications.
Notably, bts performs worse than the other two methods in all categories for this metric, even
the Forest category, in which it has the overall best performance. As this metric measures the
differences between local shapes, it implies that those do not match often for the Forest category
and the output is more like a blur which is approximately at the correct depth. This is supported by
Figure 8, although the other methods do not perform significantly better on this metric while that
would be suggested by the figures. Overall, this would imply that bts would be better than the
other methods in real scenarios within the Forest category, as accurately estimating the distance
between the camera and the objects is arguably more important than the local shapes of the output
being accurate.

Our assumptions about Longer distance are supported by the local shape threshold. While it does
not perform on par with the other indoor categories, it significantly outperforms two out of three
outdoor categories on this metric. This suggests that the current methods do not perform badly on
local shapes. However, they seem to be having difficulty with the general layout of the scene, and
cannot accurately estimate the distance between the objects and the camera, while being able to
better estimate the depth differences within and between objects.

The last categories with interesting local shape results are Fake-light source and Plants indoors.
As previously mentioned, across the other metrics, they perform generally equally. However, on
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this metric, Fake-light source performs significantly better. As with the other categories mentioned
in this subsection, this implies that this category performs well on the local shapes compared to
Plants indoors, which is not unexpected as the latter category has complicated shapes like plants
which are more difficult to predict correctly in the local shape, while the general global shape is
less difficult.

In general, the proposed metric is useful for determining whether a method is performing worse
due to inaccurate estimations of local shapes or not. While this information is less useful to verify
whether a method would perform well in real settings such as autonomous driving, it is a useful
analysis metric which can be used to further improve methods.

5.3 Best and Worst Images

Apart from our categories, we look at the images individually to try to discern any pattern that
might suggest a weakness or strength.

• As seen in Figure 4, vnl is rather accurate when estimating the corner of the wall and the
ceiling, as well as the ceiling itself. The other two methods seem to often estimate the ceiling
as an extension of the wall.

• The brighter light sources in Fake-light source have an aura of light around them in the
images, which seems to affect the estimations. As seen in Figure 5 this is mostly the case,
although row five shows an example where the methods still estimate the object well. While
this can be mitigated by using better cameras as well, finding a method that can deal with
this type of image can contribute to the accessibility of depth estimation software for private
use.

• For Forest we see in Figure 8 that AdaBins estimates most details correctly, perhaps even
better than bts. Overall, all methods perform better when there is no clutter of branches,
which can indicate they perform better in less complex scenes in this category.

• In Man-made structures the worst-performing images have a few traits in common. They are
taken from a frog's-eye view, which causes the nearest point to be somewhat further away
from the camera, and a large part of the image is occupied by the sky. While the sky itself is
not evaluated, it might confuse the methods in this specific type of image, especially since
KITTI does not contain images with a perspective pointed towards the sky. Figure 9 shows
an example of this type of image.

6 Conclusions and Further Research

In this thesis, we sought to identify the strengths and weaknesses of AdaBins [1], bts [8], and
vnl [17]. In addition, we proposed a new local shape metric using center normalised windows.

We identified a generally poor performance of all three methods on images with no objects close
to the camera, which might be caused by either the training datasets or the methods themselves.
Moreover, we presented data supporting the conclusion that: AdaBins performs well in the Close-ups
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and Man-made structures categories while performing worse in the Forest, Parks, and Longer
distance categories; bts performs well in the Close-ups and Forest categories and worse in the
Parks and Longer distance categories while maintaining the overall most constant performance of
the three methods; vnl achieves good results in the Close-ups and Man-made structures categories
while achieving worse results in the Forest and Longer distance categories, with the difference
compared to AdaBins that vnl performs better in Parks. Lastly, we described specific scenes that
achieve poor results, which we speculate is due to a considerable amount of clutter in the scene or
a large part of the scene being occupied by the sky.

The new metric we propose, the local shape threshold ν, gives useful insights, especially for verifying
whether a category performs well or not due to mismatched local shapes or different minimum
depths compared to the ground truth. In particular, it was interesting to discover that in some cases
the performance of the methods was the opposite on this metric compared to the existing metrics.
This metric can be useful for further research as it can help to identify these weaknesses and
strengths more easily. For example, our data implies that bts has the most possible improvement
in the local shapes, which can be a focus for further research in this specific method while learning
from methods that perform better on this metric.

6.1 Further Research

In order to advance this research or other monocular depth estimation research, the obvious solution
is to produce more, and more diverse, datasets. Not only for training, but also for testing can this
be an improvement. One of the main struggles with finding strengths and weaknesses is that the
data should be as similar as possible to each other and differ only on one or a few categories in
order to more easily identify these qualities of the methods. For example, by taking a picture of the
same scene with either different lighting, added and removed objects, or even the same objects
with a different placement. With new specialised datasets, this research could be performed in a
more reliable manner. Without producing new datasets, there could be research performing tests
on different subcategories from the categories compared in this thesis, or even on more categories.
In particular, research on the exact reason why images with no objects close to the camera achieve
the results that they do in Longer distance would contribute to better understanding monocular
depth estimation.
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Image GT AdaBins [1] BTS [8] VNL [17]

Figure 4: Close-ups trained on NYU Depth V2
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Image GT AdaBins [1] BTS [8] VNL [17]

Figure 5: Fake-light source trained on NYU Depth V2
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Image GT AdaBins [1] BTS [8] VNL [17]

Figure 6: Plants indoors trained on NYU Depth V2
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Image GT AdaBins [1] BTS [8] VNL [17]

Figure 7: Longer distance trained on NYU Depth V2
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Image GT AdaBins [1] BTS [8] VNL [17]

Figure 8: Forest trained on KITTI
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Image GT AdaBins [1] BTS [8] VNL [17]

Figure 9: Man-made structures trained on KITTI
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Image GT AdaBins [1] BTS [8] VNL [17]

Figure 10: Parks trained on KITTI
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