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Abstract

Biomarkers are an important tool to quantify the effect of a new drug in early-
stage clinical drug research. In clinical research into neuromuscular diseases (NMDs),
the most common methods that are used to measure these biomarkers, for example,
using electromyography (sEMG), are often invasive, expensive, and/or labor-intensive.
To mitigate this, a device that simulates a regular daily activity using the upper limbs
like opening a jar, is introduced. It could potentially be used to collect data from which
new biomarkers could be derived. At the Centre for Human Drug Research (CHDR),
which specializes in early-stage clinical drug research, 75 test subjects performed a
number of tasks using this device, while sEMG data was being recorded simultaneously.
We built a classification model that retrieves features from the data, and is able to
use these to differentiate between healthy test subjects and patients with NMDs. By
experimenting with different features and classification algorithms, we identify features
from both sEMG data and from data from the device that are influential in classification.
Only using features derived from a task during which participants were instructed to
hold open the device for as long as possible, a model was trained and evaluated using
nested cross-validation and achieved an average F1 score of 0.77. The features that
were found to be most influential were the time the device was held open, as well as a
combination of features pertaining to the grip on the device by the other hand that was
holding the device.
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1 Introduction

Neuromuscular diseases (NMDs) comprise a wide range of diseases that affect the peripheral
nervous system, skeletal muscles, or connections between the two. NMDs are often progressive
and can cause muscle weakness, sensory loss, pain, fatigue, autonomic dysfunction, or postu-
ral abnormalities [14][4]. Most NMDs have no cure and this wide range of symptoms makes
treatment and clinical research into new treatments difficult [17].

In early phase clinical trials, where potential new drugs are first tested on human test subjects,
it can be important to be able to quantify disease severity and the possible effect a new drug is
having on this severity. This is often done using biomarkers. Biomarkers are defined by the US
National institute of Health as “a characteristic that is objectively measured and evaluated as
an indicator of normal biological processes, pathogenic processes, or pharmacologic responses
to a therapeutic intervention or other health care intervention” [7]. In other words, a biomarker
is some measure that can be used to indicate the presence of a disease, its severity, and/or its
reaction to treatment.

Ideally, biomarkers should be generally easy to measure, non-invasive, and time and cost ef-
fective. In early phase clinical trial, this could mean that measurements would not have to be
performed by a medical doctor, but could be done by a research assistant or medical student.
This would reduce operating costs and widen the pool of potential employees able to perform
the measurement. Biomarkers retrieved from surface electromyography (sEMG) data are a
common source of biomarkers for NMDs. Although collecting sEMG data is non-invasive, a
trained medical professional and a relatively expensive setup are needed. Other commonly used
biomarkers for NMDs are muscle MRI, nerve ultrasound, or muscle or nerve biopsy [1]. Biop-
sies are invasive and require further analysis of tissue in a laboratory setting, which increases
necessary costs and effort. Muscle MRI and nerve ultrasound are less invasive, but are time
consuming and require trained personnel and expensive equipment.

Figure 1: The Jar Device. One hand is to be placed on the black lid, while the other hand
is placed around the white jar. The jar is secured onto the dark base.

The need for a more practical method of quantifying a loss in upper limb function due to
NMDs, has led to the development of a new device which simulates daily upper limb activity,
shown in Figure 1. This device simulates the daily task of opening a jar, which is a task that
a patient with an NMD might have difficulties with. The device consists of a standing bottle
with a lid that can be twisted. The torque required to twist the lid can be controlled. The
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system measures the rotation of the lid and the gripping force on the jar itself. For simplicity
and readability the device will be called the “Jar Device” in the remainder of this report
The rest of the report is structured as follows: The related work section outlines what research
has been done with regards to NMD biomarkers, and using machine learning to find new
candidates. The fundamentals section contains a list of definitions of the concepts used in the
following sections. The methods section outlines the datasets that were used, the classification
model, and feature importance analysis. The results section shows the performance of the
models that were trained and the feature importance in these models. The discussion contains
a review of the dataset, the methods, and an analysis of the results, as well as possible future
research in this area. And finally, the conclusion includes a brief summary of the contributions
of this report and some concluding remarks.
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2 Related Research

Scotton et al. [17] lay out three different types of biomarkers in NMDs: genetic biomarkers,
such as polymorphisms or allele variations in DNA and RNA, proteomic biomarkers, which
can be measured from bodily fluids, and other biomarkers, such as MRI images of affected
muscle tissue. The methods by which these biomarkers are discovered and validated are based
on scientific or clinical knowledge, or “omic” technologies.

Using techniques like these a number of biomarkers for NMDs have been found. Barp et al. [1]
discuss the application of biochemical biomarkers in the most prevalent NMDs, that can be
used for diagnostics, prognostics, or therapeutics. Critical issues for the introduction of new
biomarkers are also addressed. To facilitate easy and reliable collection of these biomarkers,
they should ideally be low-cost, non-invasive, less time-consuming, and less operator depen-
dent.

As mentioned above, one possible source of biomarkers for NMDs is sEMG signals. Flood et
al. [6] study the sEMG signals in patients with Parkinson’s disease (PD) and in healthy test
subjects. They find that characteristics of the sEMG signals recorded from quadriceps and
hamstring muscles during isometric leg extensions differ between healthy test subjects and
patients with PD. Determinism (a measure of the degree of repeating non-linear patterns)
was shown to be significantly higher, sample entropy (a measure of complexity) was shown to
be significantly lower, and intermuscular coherence (a measure of correlation between EMG
signals) is shown to be higher in PD patients. Besides sEMG signals, Emamzadeh et al. [5]
outline a number of biomarkers for PD that can be found through other techniques. These in-
clude a variety of modern imaging techniques such as transcranial B-mode sonography (TCS)
or magnetic resonance imaging (MRI), and neurochemical methods that use levels of certain
proteins like Glial Fibrillary Acidic Protein (GFAP) or proteasomes.

The biomarkers mentioned in this section all need to be measured in a clinical setting and by
trained medical staff. Youn et al. [20] give an overview of potential digital biomarkers that are
measured using digital biosensors. A patient with an NMD or a participant in a clinical trial
could wear or use these digital biosensors at home, which brings down cost and effort, while
being able to measure the biomarker continuously for a longer period of time.

With the advent of machine learning and artificial intelligence in the past two decades, new
methods of identifying potential biomarkers have been introduced. Other than differences be-
tween sEMG signals of healthy test subjects and patients with PD that were outlined above,
Kugler et al. [9] also identify a number of specific biomarkers from sEMG signal for PD using
machine learning. 12 channels of sEMG were recorded of ten participants, five with PD and
five without PD, during standardized gait tests. Four time-domain and four frequency-domain
features were extracted and used to train a Support Vector Machine classifier. Using leave-one-
out cross-validation, specificity and sensitivity were at 0.9, and kurtosis and mean frequency
were identified as the best features and most promising biomarkers.

Using a dataset of sEMG recordings of the upper limbs from four healthy test subjects and four
patients with PD, Rezaee et al. [16] utilize three different pre-trained deep learning structures
to generate feature vectors. The most promising features are then selected using a novel soft
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ensembling of subset feature selection methods, and used to train an SVM. This approach
achieved a specificity and sensitivity of 0.99. However because these features are created using
deep learning, they are difficult to interpret as biomarkers.

Machine learning has been applied to identify new biomarkers for other diseases as well. Par-
mar et al. [12] use a dataset of CT images of 464 patients with lung cancer and extracts 440
features from the images. These images are fed into a range of feature selection algorithms and
classifiers, of which the random forest and näıve bayes classifiers, in combination with Min-
imum redundancy maximum relevance, Mutual information feature selection, and Wilcoxon
feature selection algorithms were most effective. Similarly, Abou Tabl et al. [18] study the
application of machine learning to the identification of biomarkers for breast cancer. In this
case genes function as features, and after feature selection, they are fed into a multi-class
classifier. The classes are based on survivability and given therapy. Genes that are used in the
model are identified as potential biomarkers and relevant literature confirms a relation between
these biomarkers and breast cancer (survivability).

More sophisticated machine learning models have been used towards the identification of po-
tential biomarkers as well. Putin et al. [15] use an ensemble of 21 deep neural networks (DNNs)
to identify potential biomarkers of human aging (meaning the correlation between chronological
and biological age). A relatively large dataset of 60,000 blood samples was used to successfully
train these DNNs and five potential biomarkers for a humans chronological age were identified.
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3 Fundamentals

This section contains descriptions of measures and concepts that are mentioned in the rest of
the report, but are otherwise not defined. Concepts are arranged alphabetically.

ANOVA F-statistic The ANOVA F-statistic is the ratio between the between-group vari-
ance and the within-group variance:

F =
between-groups variance

within-group variance
(1)

Here, the between-groups variance of a variable is the variance of the averages of the variable
within each class, around the average over all classes. The within group variance is the variances
within each class. Between-groups variance and within-group variance are sometimes called
explained variance and unexplained variance, respectively. In this report, the F-statistic is used
for feature selection by selecting the features (or variables) with the highest F-statistic.

Decision Tree Classifier The Decision Tree Classifier is a supervised machine learning
model that can be adapted for classification or regression tasks. A decision tree consists of the
root, nodes, branches, and leaves. A dataset enters the decision tree at the root and is split
at the first node. This split consists of a feature and a cut-off point, where data points with a
value for that feature on one side of the cut-off are sent to one branch and data points with
a value on the other side are sent to the other branch. The branches that come from the first
node are then split in new nodes and this process is repeated until the leaves are reached. The
final classification is done according to the leave in which a data point ends up.

What features and cut-offs are used for the splits and when to stop splitting and create a leaf is
determined by a number of user-specified hyperparameters. The quality of splits is determined
by 1 of 2 measures: Gini impurity or entropy, where a minimal value indicates the optimal
split. Gini impurity is the probability of misclassifying a data point in a branch if the data
point would be randomly classified according to the class distribution in that branch. Entropy
is a metric that describes the impurity of the datasets after a split. The max depth parameter
regulates when the tree stops making splits and ends with a leaf, by giving the tree a maximum
depth after which no more splits can be made.

The importance of each feature is defined as the cumulative loss in Gini impurity or entropy
over all nodes that use this feature in the decision tree.

F1-Score The F1-score is a performance metric that can be used to measure the perfor-
mance of a classifier. It is defined as the harmonic mean of precision and recall, which is
calculated as follows:

F1 = 2 · P ·R
P +R

(2)

Here, P is the precision and R is the recall.

Fourier Transform The Fourier transform is a transform that converts a function of time
to a function of frequency using the following formula:

9



f̂(ξ) =

∫ ∞

−∞
f(t)e−i2πξt (3)

Here, f̂ is the transformed function, ξ is the frequency, and t is the time. The output of this
function can be a complex-valued function. However, because the functions that are used in
this report are strictly real-valued, the Fourier transform results in real-valued functions. The
Fourier transform gives the frequency components of a function. In our studies we will use the
discrete fourier transform.

Nested Cross-Validation Nested cross-validation is an approach for optimizing hyper-
parameters and evaluating performance of a model, while avoiding the issue of overfitting on
the training dataset. A dataset is split into training and testing data k times. Here k is the
number of cross-validation folds of the outer cross-validation loop. Then each training set is
used to optimize the hyperparameters of the model, using a grid search with cross-validation.
This results in a trained model with optimized hyperparameters in each outer fold and a cor-
responding test set to evaluate each model. The model can then be evaluated by analyzing
the average performance over the outer cross validation folds. A visualisation of nested cross
validation is part of the processing pipeline shown in Figure 2 on page 15

Precision Precision is a performance metric that can be used to measure the performance
of a classifier. If a dataset consists of data points in 2 classes, positive and negative, the
precision of a classification of this data is defined as the fraction of correctly classified data
points among all data points classified as positive. It can be calculated using the following
formula:

P =
TP

TP + FP
(4)

Here, TP is the number of True Positive classifications and FP is the number of False Positive
classification.

Random Forest Classifier A random forest is a model that consists of an ensemble of
decision tree classifiers. Each decision tree makes a separate classification and the class with
the most votes is chosen as the model’s final prediction. The advantage of an ensemble of
trees over an individual decision tree is that individual trees typically exhibit high variance and
tend to over fit. By training each tree in a random forest on a different subset of the data,
drawn with replacement, and not allowing trees to be too deep, variance and overfitting is
reduced. Besides the same user-specified parameters as individual decision trees, the number
of trees in the ensemble can also be specified by the user.

The importance of each feature is defined similarly to individual decision trees, where loss in
Gini impurity or entropy is averaged over all trees in the random forest.

Recall Recall is a performance metric that can be used to measure the performance of a
classifier. If a dataset consists of data points in 2 classes, positive and negative, the recall of
a classification of this data is defined as the fraction of positive data points that are correctly
classified. It can be calculated using the following formula:
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R =
TP

TP + FN
(5)

Here, TP is the number of True Positive classifications and FN is the number of False Negative
classifications.

ROC-Curve The ROC curve is a plot that indicates the performance of a binary classifier.
It is created by plotting the true positive rate against the false positive rate at various threshold
settings. The area under the ROC curve is often used as a performance metric for a classifier.
A random classifier’s ROC curve is a straight diagonal line with an area under the curve of
0.5. A perfect classifier has a false positive rate of 0 and a true positive rate of 1, meaning its
ROC curve starts at coordinates [0, 0] in the ROC space, to [0, 1], to [1, 1], resulting in an
area under the curve of 1. This means that an area under the ROC curve that is close to 1
indicates a relatively strong classifier.

Support Vector Machine The support vector machine is a supervised machine learning
model that can be adapted for classification or regression tasks. When using the model for a
binary classification task, data points are viewed as points in n-dimensional space, where n is
the dimension of the data points. Data points are then separated by creating a hyperplane that
has the largest distance to the nearest training-data point of any class. New data points are
then classified by which side of the hyperplane they fall on. The margin of an SVM classifier
is the distance between the nearest training-data points of either class.

In reality, most datasets are not perfectly linearly separable. In these cases we adapt the model
to allow for some misclassifications, by using a soft margin. This soft margin necessitates a
user-specified parameter that regulates roughly how many misclassifications are allowed. This
means that this user-specified parameter specifies the trade-off between the number of mis-
classifications and the size of the margin.

The importance of each feature in an SVM is indicated by the coordinates of the vector
orthogonal to the hyperplane. A high value for a coordinate, corresponding to some feature,
relative to other coordinates, indicates that this feature has a larger influence on the final
classification.
SVMs are able make use of a number of kernels. Kernels are functions that transform the
feature space, before a hyperplane is used make a seperation between classes. Common types
of kernel functions are linear, polynomial, Radial Basis Function (RBF), or Sigmoid. Here,
we only use the linear kernel, because the resulting separating hyperplane will still be in the
same space as your input features. Therefore, its coefficients can be viewed as weights of the
features, which are needed to analyze what features are most influential in the classification
process.
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4 Methods

4.1 Dataset

The data were collected by CHDR (Centre for Human Drug Research) and contain data from
60 healthy test subjects and 15 patients with neuromuscular diseases. Participants of the study
performed 6 tasks on multiple occasions. Data was recorded using the Jar Device and 16 sEMG
channels.

4.1.1 Study Protocol

To collect data, 60 healthy test subjects, and 15 patients with neuromuscular diseases (Parkin-
son’s Disease, Myasthenia Gravis, or Inclusion Body Myositis) were recruited. Participants per-
formed 6 tasks with the Jar Device, where 3 tasks were done at 3 different resistance settings,
and three other tasks (ones that did not involve twisting the lid of the Jar Device) were done
once, resulting in a total of 12 tasks. Healthy test subjects performed all 12 tasks on 4 occa-
sions within 1 day. Patients with NMDs performed a set of tasks on 2 occasions, spread over
2 days, with 1 to 3 weeks in between occasions. sEMG data was not recorded on the first
occasion of the patients with NMDs. The 3 different resistance settings were selected based
on the subject’s age. During the tasks, the angle of the lid of the Jar Device, the grip on the
base of the Jar Device, as well as 16 channels of EMG data were recorded.

4.1.2 Healthy Subjects

Inclusion criteria for healthy test subjects were being between 21 and 80 years old and having a
body mass index (BMI) between 18 and 35 kg/m2. Exclusion criteria were any diseases or con-
ditions that impede upper limb function, not being able to understand the study requirements
and lifestyle restrictions, or not being able to give informed consent. Lifestyle requirements for
healthy test subjects were not taking in any medication that could affect upper limb function,
not consuming any alcohol within 24 hours before the study day, not doing any strenuous
physical activity within 48 hours before the study day, and not consuming more than 800 mg
of caffeine per day within 7 days of the stud day. On Occasion 1 and Occasion 3, subjects
were restricted in their hand and finger placement as well as in positioning of the arm. On
Occasion 2 and Occasion 4, subjects were not restricted in the positioning of their arms.

4.1.3 Patients with NMDs

Inclusion criteria for patients were having a neuromuscular disease, and a self-reported weak-
ness of the hands. Exclusion criteria were being unable to perform any of the tasks due to
physical limitations, as well as not being able to understand the study requirements and lifestyle
restrictions, or not being able to give informed consent. Patients were not restricted in the
positioning of their arm.

4.1.4 Tasks

The 6 tasks that participants performed are defined as follows:
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Task 1 The goal of this task is to twist the lid of the Jar Device 20 degrees and keep it at that
angle. The participant is free to choose in what direction to twist the lid. The task is
stopped when the lid reaches 15 degrees or when time runs out after 999 seconds. This
task was done at 3 different resistance settings for a total of 3 tasks. These are called
1a, 1b, 1c, where 1a is the heaviest setting and 1c is the lightest.

Task 2 The goal of this task is to twist the lid of the Jar Device to 15 to 20 degrees, hold it
there for 2 seconds, release it for 2 seconds, and repeat this for 30 seconds in total. The
participant is free to choose in what direction to twist the lid. A metronome is used to
assist the participant. This task was done at 3 different resistance settings for a total
of 3 tasks. These are called 2a, 2b, 2c, where 2a is the heaviest setting and 2c is the
lightest.

Task 3 The goal of this task is to grip the base of the Jar Device with maximum grip force,
hold this for 2 seconds, release for 2 seconds, and repeat this for a total of 30 seconds.
A metronome is used to assist the participant.

Task 4 The goal of this task is to grip the base of the Jar Device with maximum grip force,
immediately release, and repeat this as often as possible within 30 seconds.

Task 5 The goal of this task is to twist the lid of the Jar Device to its maximum angle of 40
degrees, immediately release, and repeat this as often as possible within 30 seconds. The
participant is free to choose in what direction to twist the lid. This task was done at 3
different resistance settings for a total of 3 tasks. These are called 5a, 5b, 5c, where 5a
is the heaviest setting and 5c is the lightest.

Task 6 The goal of this task is to grip the base of the Jar Device with maximum grip force, and
to maintain this grip as long as possible. The task is stopped when grip force reaches
75% of its own maximum or when time runs out after 999 seconds.

4.1.5 The Jar Device

The Jar Device is a device that simulates everyday tasks like twisting the lid of a jar and
gripping an object. The Jar Device records the angle of the lid (in degrees) and the grip force
on the base (in kg). The torque needed to open the Jar Device can be chosen manually and,
as mentioned above, tasks that require the twisting of the lid of the Jar Device are performed
at 3 different resistance levels. The resistance level is constant throughout a single task and
does not change depending on the angle of the lid. The sampling frequency of the Jar Device
is not constant throughout a single task.

4.1.6 sEMG

Concurrent with the recording of Jar Device data, 16 channels of sEMG data were also recorded.
These recordings were made of 3 flexor muscles in both lower arms (musculus flexor carpi ra-
dialis (FCR), musculus flexor carpi ulnaris (FCU) and musculus flexor digitorum superficialis
(FDS)), 3 extensor muscles in both lower arms (musculus extensor carpi radialis (ECR), mus-
culus extensor carpi ulnaris (ECU) and musculus extensor digitorum (ED)), and 2 muscles in
both hands (musculus abductor pollicis brevis (APB) and the first dorsal interosseous muscle
(FDI)). These muscles were identified using an anatomy atlas for needle EMG and palpation.
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The sEMG device has a sampling frequency of 125 Hz. It contains an analogue first-order
low-pass filter with a -3 dB point at 4.8 kHz, as well as a third-order digital sinc filter with a
cut-off frequency of 0.27 times the sampling frequency within the analogue-to-digital converter
to remove unwanted noise.

4.1.7 Data Pre-Processing

The Jar Device data was irregularly sampled, and therefore required resampling and interpo-
lation to a frequency of 11.11 Hz, corresponding to a sampling period of 90 ms. Spikes in the
sEMG signal are, by their nature, random. This is because if 2 or more motor units fire at the
same time and are located near an electrode, they produce a strong superposition spike [15].
To remove these non-reproducible random spikes in the sEMG data, smoothing algorithms
were applied. The data was first passed through a band-pass Butterworth filter with a lower
cut-off frequency of 5 Hz and a higher cut-off frequency of 50 Hz, a rectifier, and a low-pass
Butterworth filter with a cut-off frequency of 5 Hz.

4.1.8 Final Datasets

The study, as outlined above, resulted in 1 dataset of multivariate time series data for each
of the 12 tasks. These datasets include all instances where sEMG and Jar Device data were
recorded. Most participants will appear multiple times because the tasks were repeated on
multiple occasions: 4 for healthy subjects and 2 for patients, on one of which no sEMG
data was recorded. Each instance is an 18-dimensional multivariate time series. The first 2
dimensions have a sampling frequency of 11.11 Hz and contain the grip on the base of the Jar
Device and the angle of the lid of the Jar Device, respectively. The 16 subsequent dimensions
have a sampling frequency of 125 and contain the EMG signals from the subject’s dominant
arm and non-dominant arm, respectively. Every measurment that was done done using the
lowest resistance level for the participant performing the measurement is grouped together in
one dataset. Because the lowest resistance level is chosen based on the assumed (based on
age) relative strength of each participant, it can be assumed that it is equally difficult for each
participant to twist the lid. The same was done for the middle and highest resistance settings.

4.2 Processing Pipeline

To build a machine learning model that can distinguish between healthy test subjects and
patients with neuromuscular diseases, and to identify and analyze useful (combinations of)
features or biomarkers from this model, a processing pipeline was set up. This processing
pipeline takes in the raw multivariate time series data, transforms this into a feature set, and
returns a model and the features this model uses for classification. It first calculates a set
of feature sets, and then uses these to simultaneously train a data scaler, a feature selection
algorithm, and a classifier. The data scaler, feature selection algorithm, and classifier need to
be trained and tested. To prevent overfitting, we apply nested cross-validation (see Section 3.
Fundamentals). Figure 2 shows an overview of this processing pipeline.

4.2.1 Feature Creation

Each instance in the raw datasets contains an 18-dimensional multivariate time series. Using
this multivariate time series, features are created. These features can be split into 2 types:
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Figure 2: The processing pipeline that is used to identify which features are used for
successful classification of the data. The raw data is turned into a feature set, which is
used to train and test the models.

general features and specific features. Both types contain features from the time-domain and
from the frequency domain for which the Fourier transform was used (see Section 3.).

Specific Features
Specific features are features that were specifically designed for the task at hand. An example
of a specific feature would be the time a participant manages to keep the Jar Device opened
during task 1a. The number of specific features and their precise definition differs per task.
Appendix A contains all specific features and their exact definition, per task.

General Features
General features are calculated using functions not specifically designed for this task. This
includes, among others, the minimum or maximum value throughout a time series, the aver-
age or standard deviation of a time series, or the average frequency. 12 general features are
calculated for each dimension, leading to 192 features for each instance. Appendix A contains
all general features and their exact definition.

Feature Sets
Table 1 contains a description of the number of patients and healthy test subjects, as well as
the number of specific features based on Jar Device or sEMG data, for each feature set. Table
2 contains a lists of the specific features that are calculated for each task.

4.2.2 Data Scaler

After calculating features, each feature set is standardized using a data scaler. This entails
that the mean of each feature’s values in the training dataset is subtracted and the feature
is scaled such that the training dataset has unit variance. This is done because features with
higher variance, could inadvertently dominate the features with lower variance, which would
then largely be ignored by the classifier [19].
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Task Patients
Healthy test
subjects

Specific Jar
Device features

Sepcific sEMG
features

General Jar
Device features

General sEMG
features

1a 7 224 13 129 24 192
1b 14 226 13 129 24 192
1c 6 205 13 129 24 192
2a 7 225 11 34 24 192
2b 13 223 11 34 24 192
2c 16 213 11 34 24 192
3 16 237 9 34 24 192
4 16 237 6 33 24 192
5a 7 230 16 33 24 192
5b 13 234 16 33 24 192
5c 16 238 16 33 24 192
6 15 202 6 81 24 192

Table 1: The number of data points that were recorded, and the number of features that
were created for each task.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Total Grip
Grip Frequency
and Frequency
Dominance

Grip Peak
Polynomial Fit
Parameters

Grip Frequency
and Frequency
Dominance

Grip Frequency
and Frequency
Dominance

Grip Hold
Length

Grip Polynomial
fit parameters

Angle-Grip
Correlation

Grip Minimum
Polynomial Fit
Parameters

Grip Peak
Polynomial fit
Parameters

Angle-Grip
Correlation

Time to
Maximum Grip

Hold Length
Angle Peak

Polynomial Fit
Parameters

Grip Frequency
and Frequency
Dominance

Jamar-Jar Device
Grip Difference

Total Grip
Grip Polynomial
Fit Parameters

Angle Corrections
Angle Minimum
Polynomial Fit
Parameters

Jamar-Jar Device
Grip Difference

AUC Difference
Between Arms

Number of
Openings

AUC Difference
Between Arms

Angle Polynomial
Fit Parameters

Angle Frequency
and Frequency
Dominance

Average Metronome
Dominance

Frequencies and
Frequency Dominances

Angle Peak
Polynomial Fit
Parameters

Frequencies and
Frequency Dominances

Time to
Maximum Angle

Average Metronome
Dominance

AUC Difference
Between Arms

Angle Minimum
Polynomial Fit
Parameters

Average rectified
value slopes

and intercepts

Frequencies and
Frequency Dominances

AUC Difference
Between Arms

Frequencies and
Frequency Dominances

Angle Frequency
and Frequency
Dominance

Instantaneous median
frequency slopes
and intercepts

AUC Difference
Between Arms

Frequencies and
Frequency Dominances

Period Polynomial
Fit Parameters

permutation entropy
slopes and
intercepts

Average Rectified
Value Slopes
and Intercepts

AUC Difference
Between Arms

Instantaneous Median
Frequency Slopes
and Intercepts

Frequencies and
Frequency Dominances

Permutation Entropy
Slopes and
Intercepts

Table 2: The names of every specific feature that has been derived of each task. Descrip-
tions of these features can be found in Appendix A.

4.2.3 Feature Selection

Each of the 12 feature sets, collected from the 12 corresponding tasks, contains relatively few
instances and many features. A feature selection algorithm is applied to reduce the number
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of features to a maximum of 10. This is done for 2 reasons: The first is that we want to
keep the model, and which features it uses, interpretable. If classification were to be done
using a combination of, for example, 100 features, the importance of each separate feature
would be difficult to interpret. The second reason for applying a feature selection algorithm
is to avoid the ‘curse of dimensionality’, which states that a high-dimensional dataset needs
many instances to successfully train a classifier [2]. Because the number of positive cases is
relatively low in each dataset, using a limited number of features helps in avoiding the curse
of dimensionality.

Feature selection is based on the ANOVA (analysis of variance) F-value (see Section 3.),
which estimates the degree of linear dependency between a feature and the target variable.
The variables with the highest corresponding F-value are selected, with a maximum of 10
features being selected. If there are less than 10 features, all features are used, and no feature
selection is applied.

4.2.4 Classifier

The selected, standardized features are then fed into a classifier. Here, we experiment with 3
different classifiers: a decision tree, a random forest, and a support vector machine (see section
3.). All 3 classifiers were implemented using sklearn [13], and are chosen over other popular
classifiers because the relative importances of features after training the classifier are well
defined. These importances can later be used to analyze which features are most influential.

4.2.5 Nested Cross-Validation

To evaluate the data scaler, feature selection algorithm, and classifier we use nested cross
validation [11]. This is an approach to train models and optimize hyperparameters without
risking overfitting. Nested cross validation uses 2 cross validation loops. In every outer fold,
the dataset is split into a training dataset and a testing dataset. This training dataset is then
split into a training dataset and a validation dataset in each inner fold. This inner training
dataset and validation set are then used to optimize the models’ hyperparameters using reg-
ular cross validation and a grid search of the hyperparameter space. Here, the F1-score (see
Section 3.) is used to evaluate which hyperparameter setting performs best. Now, every outer
cross-validation fold contains a model with optimized hyperparameters and these models can
be evaluated using the test datasets from the outer folds. The hyperparameter spaces that
were used are shown in Table 3.

In the outer nested cross validation loop, 20% of datapoints is set aside for testing and in
the inner loop the same amount is set aside for validation. Data is sampled randomly using
resampling with replacement, only ensuring a distribution of positive and negative cases like
that of the original dataset. The outer cross-validation loop contains 100 folds and the inner
cross-validation loop contains 25 folds.

4.2.6 Performance Metrics

As is shown in Table 1, the datasets that are used to train the models, are unbalanced, there
are far more negative cases (healthy test subjects) than positive cases (patients with NMDs).
Although accuracy is a popular and intuitive performance metric, it is not suited for models
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Classifier Hyperparameter Possible values

Decision Tree
criterion {”gini”, ”entropy”}
max depth {3, 6, 9, None}

Random Forest
n estimators {50, 100}
criterion {”gini”, ”entropy”}
max depth {1, 3, 5}

Support Vector Machine C {0.01, 0.1, 1, 10}

Table 3: The hyperparameter spaces of the three classifiers that were used during the grid
search.

that are trained and tested on these unbalanced datasets, because if the model classifies
every instance as negative, accuracy would still be high. 2 performance metrics that are of
interest are recall and F1-score. Recall is the fraction of positive instances that are correctly
classified. F1-score is the harmonic mean between recall and precision (see Section 3.). Using
these 2 metrics ensures that more focus is placed on finding all positive instances, and that
classifying every instance as negative is not incentivized. The average recall and F1-score are
calculated to indicate the performance of the model, regardless of a specific train-test split. To
further analyze the performance in the outer folds, confusion matrices and ROC-curves (see
Section 3.) are created for every outer fold. Then the averages of these confusion matrices and
ROC-curves are calculated to indicate the performance of the model, regardless of a specific
train-test split.

4.2.7 Feature Importance

To interpret which of the selected features are actually used by the classifier and how influential
they are relative to each other, we turn to feature importance. As mentioned earlier, feature
importance is well defined for the 3 classifiers we are using. In the decision tree, a feature’s
importance is defined as the normalized cumulative reduction of the splitting criterion by that
feature. It is defined similarly for a random forest, the only difference being that features can
be used in multiple trees. In support vector machines weights are assigned to features. The
sign of the dot product between a point in the feature space and a vector of these weights
determines the final classification. These weights can be positive or negative and when the
absolute value of one of these weights is relatively large, the corresponding feature can be
interpreted as relatively important.

4.3 Experiments

Models using all possible combinations of data sources (Jar Device, sEMG, or both), types
of features (specific, general, or both), and classifiers (decision tree, random forest, or SVM)
are evaluated using the nested cross validation approach that was outlined previously. The
average recall, average precision, average area under the ROC-curve, average confusion matrix,
and average ROC-curve over the 100 outer cross-validation folds, are recorded. To further
understand the role a particular feature plays in the classification process, the distribution of
the feature within each of the 2 groups can be plotted.
To improve classification while only using the data obtained from the Jar Device, feature sets
from multiple tasks are merged. This is done by concatenating any datapoints from different
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tasks that have an identical subject number and occasion. The datasets from the 5 tasks that
performed best when using only Jar Device features (1c, 2a, 4, 5a, and 5c) are chosen and
any combination of these 5 feature set is used to train models. Again, the same 3 feature sets
(specific, general, or both) and 3 classifiers (decision tree, random forest, or SVM) are studied.
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5 Results

5.1 Single Task Experiments

To indicate the difference in performance between models that used only Jar Device data,
sEMG data, or both, the best performing model per data source according to one or more
numerical performance metrics (F1, Recall, or AUC ROC-curve) are shown in Table 4. To
indicate how the choice of type of features impacts what model performs best, Table 5 shows
the best performing model per type of feature.

Data source Task Types of Features Classifier F1-score Recall AUC ROC-curve
Jar Device & sEMG 2b General Random Forest 0.865 ± 0.126 0.930 ± 0.151 0.991 ± 0.020
Jar Device & sEMG 4 General Decision Tree 0.886 ± 0.144 0.870 ± 0.188 0.932 ± 0.094

Jar Device 1c Specific SVM 0.769 ± 0.241 0.695 ± 0.291 0.884 ± 0.210
Jar Device 1c General & specific Random Forest 0.326 ± 0.350 0.270 ± 0.303 0.989 ± 0.028

sEMG 1b General & specific Random Forest 0.878 ± 0.127 0.937 ± 0.168 0.994 ± 0.009
sEMG 4 General Decision Tree 0.882 ± 0.149 0.867 ± 0.189 0.932 ± 0.095

Table 4: The models that performed best according to at least one of the three numerical
performance metrics, per data source. The highest values for each of the 3 performance
metrics are shown in bold type.

Data source Task Types of features Classifier F1-score Recall AUC ROC-curve
Jar Device & sEMG 2b General Random Forest 0.865 ±0.126 0.930 ±0.151 0.991 ±0.020
Jar Device & sEMG 4 General Decision Tree 0.886 ±0.144 0.870 ±0.188 0.932 ±0.094

Jar Device & sEMG 5b Specific SVM 0.636 ±0.248 0.637 ±0.291 0.967 ±0.041
Jar Device 1c Specific SVM 0.769 ± 0.241 0.695 ± 0.291 0.884 ± 0.210

sEMG 1b General & specific Random Forest 0.878 ±0.127 0.937 ±0.168 0.994 ±0.009

Table 5: The models that performed best according to at least one of the three numerical
performance metrics, per type of features that were used. The highest values for each of
the 3 performance metrics are shown in bold type.

Figure 3 depicts the confusion matrix, ROC-curve and feature importance of the models that
performed best over all the models that were tested, which used general and specific features
derived from sEMG data from task 1b and a Random Forest classifier.
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(a) Average confusion matrix. (b) average ROC-curve.

(c) Average feature importances.

Figure 3: The average confusion matrix, average ROC-curve and average feature impor-
tances of the model that performed best over all the models that use features derived
from Jar Device data, sEMG data, or both. This model used general features derived
from sEMG data of task 1b and a Random Forest classifier.

Because the ideal biomarker would be derived only from Jar Device data, the model that
performded best over all the models that only used Jar Device data is shown in Figure 4. Here
the confusion matrix, ROC-curve and feature importance of this model, which used specific
features from task 1c and an SVM classifier, are shown.To better understand the role the
most influential features derived from Jar Device data play in the classification process of this
model, the distribution of these features within the 2 groups are plotted. The distributions of
the 5 features with the highest feature weights in the model shown in Figure 4, within each
of the 2 groups are plotted in Figure 5.
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(a) Average confusion matrix. (b) average ROC-curve.

(c) Average feature weights.

Figure 4: The average confusion matrix, average ROC-curve and average feature weights
of the model that performed best over all the models that only use Jar Device data. This
model used specific features derived from task 1c and an SVM classifier.
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(a) Distribution of the hold time feature

(b) Distribution of the grip corrections feature

(c) Distribution of the grip intercept feature

(d) Distribution of the grip slope feature

(e) Distribution of the total grip feature

Figure 5: Distributions within each group of the five most influential features that were
used in the model shown in Figure 4. This model was trained using specific features
derived from Jar Device data of task 1c and an SVM classifier.
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5.2 Experiments Using Merged Feature Sets

To attempt to train a better performing model using only Jar Device data, features from
multiple datasets were used for training. Table 6 shows the model that outperformed all other
models that were trained using features from multiple tasks in every performance measure.
Figure 6 shows the confusion matrix, ROC-curve and feature importance of this model.

Tasks Features Classifier F1-score Recall AUC ROC-curve
1c, 3 Specific features SVM 0.868 ± 0.230 0.840 ± 0.273 0.886 ± 0.202

Table 6: The model, that makes use of features derived from Jar Device data of multiple
tasks and performs best according to every performance metric
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(a) Average confusion matrix. (b) average ROC-curve.

(c) Average feature weights.

Figure 6: The average confusion matrix, average ROC-curve and average feature weights
of the model that performed best over all the models that use features derived from Jar
Device data of multiple multiple tasks. This model used specific features derived from
tasks 1c and 3 and an SVM classifier.
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6 Discussion

6.1 Dataset

The datasets that were collected for each of the 12 tasks were limited in size. Especially the
amount of data points from patients with NMDs is relatively low, with datasets from tasks 1a
and 5a even containing less than 10 complete (meaning both Jar Device data and sEMG data
were recorded) data series from patients with NMDs. This was mainly caused by the fact that
healthy test subjects were able to repeat all 12 tasks on 4 occasions on 1 day and patients
with NMDs could only perform 1 set of tasks per day on 2 days. With a larger amount of data,
especially from patients with NMDs, it is expected that the performance of the models would
have improved, which, in turn, would have strengthened the potential of the identification of
any biomarkers. With a large enough dataset, training more sophisticated machine learning
models like the DNNs mentioned in the Related Reseach Section would also be possible.

When collecting data, it is important that the collection process is consistent for all partic-
ipants to minimize unwanted noise in the data. When analyzing the datasets, some issues
regarding this consistency arose. Healthy test subjects were restricted in their posture and
hand placement during the first and third occasion. On the second and fourth occasion for the
healthy test subjects and on both occasions for the patients with NMDs, posture and hand
placement were not restricted, which may have led to inconsistencies in the sets.

When performing tasks that involve twisting the lid of the Jar Device, 3 different resistance
levels were used. These levels were selected based on age, to compensate for the fact that
younger people are generally stronger than older people. However, age is far from the only
factor in a participant’s strength and some participants may have performed these tasks on
resistance levels that were lower or higher relative to their actual strength.

Lastly, because healthy test subjects performed 4 complete sets of tasks on 1 day, there might
have been some fatigue that did not affect the patients with NMDs, who only performed 1 set
of complete tasks per day, with at least a week in between. These issues have likely introduced
unwanted experimental inconsistencies to the data. Without these inconsistencies, the models
likely would have performed better and, like before, this would have strengthened the potential
of any biomarkers that were identified.

Other possible inconsistencies in the datasets may have been introduced by apparent incorrect
instructions or handling of the devices. For example, all datasets contain data points where
data was recorded but the participant did not perform any task. Other examples of faulty
data like this include data points where the participant starts the task before the recording
has started, where the recording is ended before the participant finishes the task, or where
the participant finishes a task and starts over, within the same recording. These data points
were discarded, which largely negated these issues, although it did lead to a smaller amount of
usable data. Issues like this could likely be avoided by automating larger parts of the recording
process. For example, when a task started, the Jar Device recording and sEMG recording had
to be started and stopped manually and separately. Starting and stopping these automatically
and simultaneously would most likely have prevented some of these mistakes.
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6.2 Methods

The results in Table 4 show that, generally, when using only sEMG data, using general features
results in models that perform better. Of the specific features used by the model that uses
general and specific features derived from sEMG data, only 3 are selected more than ten times
and those features have relatively low feature importance. However, using specific features
results in better performing models, when only using features from Jar Device data. A possible
explanation for this is that Jar Device data is more intuitively interpretable than sEMG data,
and this makes the creation of useful informed features easier. This, in turn, could mean that
features derived from sEMG data could be improved with a deeper understanding of the data.
Another possible explanation is that the low sampling frequency of the sEMG data resulted in
data that contains a limited amount of information.

In the processing pipeline, we experimented with 3 different classifiers and optimized their
hyperparameters in the inner cross-validation folds. In contrast, just 1 feature selection algo-
rithm was experimented with, and its hyperparameters were not optimized. This could mean
that some features that could potentially be used as biomarkers have been missed because the
feature selection algorithm that was used was not optimized.

6.3 Results

Models trained using Jar Device & sEMG features
The best performing model over all the experiments is the model that uses general features
derived from Jar Device and sEMG data from task 4. When looking at the average feature
importances of this model, the feature with the highest feature importance is the average
value of the 10th sEMG channel, which is collected from the flexor carpi ulnaris muscle in the
subject’s non-dominant hand. No single feature sticks out as a single deciding factor. However,
of the features with an average importance of at least 0.05, all but one are characteristics of
this same sEMG signal, indicating that this signal could contain potential biomarkers. Since
participants were instructed to use their dominant hand (although patients with NMDs were
allowed to switch hands, if they wanted to) and EMG channels 9 through 16 are derived from
the subjects non-dominant arm, this sEMG channel is collected from the hand that is gripping
the Jar Device. Although participants were not specifically instructed with regards to their grip
for this task, this suggests that the way in which a subject grips the Jar Device, while keeping
the lid at an angle, contains potential biomarkers. Other features are selected but have an
average feature importance of (close to) 0. This indicates that the feature selection algorithm
does not always select features that are useful for classification. In other words, features se-
lected using the ANOVA F-statistic are not nececerally useful for classification.

Models trained using only Jar Device features
The ideal biomarker, however, would only use features derived from Jar Device data, since
collecting data using only the Jar Device is more effective in terms of costs and effort. Models
that only make use of features derived from Jar Device data did not perform as well as the
other models, but were still able to correctly identify healthy test subjects in nearly all cases
and patients with NMDs in a majority of cases. Since sEMG data is considered the state of
the art when it comes to biomarkers for NMDs, this difference in performance between models
using the two data sources is to be expected.
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The model that performed best using only features derived from Jar Device data, used specific
features derived from data of task 1c. When looking at the average feature importances, the
most infuential feature is the time a participant is able to hold the Jar Device open. Holding
the Jar Device open for as long as possible is the exact goal of the task, which indicates that
this task was well designed. Other notable features with relatively high feature weights are the
intercept, slope, quadratic term, and RMSE of the grip, which together indicate the shape
of the grip curve, while the Jar Device is being held open. This further indicates that, even
though no instructions were given with regards to gripping the Jar Device, the grip a partici-
pant needs to keep the lid twisted contains information that indicates the presence of an NMD.

When looking at the distributions of the most influential features in the model that was trained
using only features dervide from Jar Device data, we see that patients with NMDs were gen-
erally able to hold the Jar Device open longer than healthy test subjects. This is unexpected
because these are patients with self-reported weakness of the hands. An explanation could be
that patients with NMDs are actually able to hold the Jar Device open for longer, but another
possibility is a difference in the way in which the data was collected, such as a difference in
encouragement from the person recording the data, or a choice in which hand to use, which
healthy test subjects did not have. The number of patients in this dataset is too low to draw a
definite conclusion. The other features that were most influential in this model all have to do
with the grip on the Jar Device while it is being held open. We can see that patients generally
correct their grip more times per second, have a higher grip intercept, and apply more total
grip. The role which the slope with which the grip changes plays is less clear from this graph.
The distributions of these 4 features show that patients with NMDs were more active with
regards to their grip on the 4 to hold its lid open. This could be done unknowingly, or because
the instructions that were given to the patients with NMDs were slightly different to those
given to the healthy test subjects. Despite the reservations with regards to possible discrep-
ancies within the data collection process, these are the most promising potential biomarkers
derived from the Jar Device.

Models trained using merged feature sets
To attempt to improve performance while only using features derived from Jar Device data,
features from multiple tasks were merged. The best performing model that utilizes data from
multiple tasks, uses specific features derived from data from task 1c and 3, and an SVM classi-
fier. However, only features derived from data from task 1c are selected in more than 10 outer
folds. The model that uses the same features and classifier, but only data from task 1c, does
not perform as well. This difference is likely caused by the exclusion of some datapoints in the
merged dataset. Data points are only included in the merged dataset if the subject number
and the occasion are present in both initial datasets. Such a difference in performance, caused
by the exclusion of a small number of datapoints further indicates that a larger dataset is
needed for more robust results.

The best performing model that utilized data from multiple tasks only uses features derived
from data from task 1c, which seems to suggest that using features from multiple tasks does
not necessarily improve results. Much like the model that only used data from task 1c, the
hold time feature has the highest feature weight. Again, nearly all other influential features
are derived from the subjects’ grip on the Jar Device.
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According to the characteristics of an ideal biomarker that were mentioned in the Related Re-
search Section, biomarkers derived from Jar Device data should be prefered over those derived
from sEMG data, given that they are equally informative, which remains the most important
characteristic of any biomarker. The Jar device setup is cheaper, and less complicated than the
sEMG system and, in contrast to the sEMG system, operating the Jar Device does not require
a medical professional. Comparing the Jar Device biomarkers in this section to biomarkers for
NMDs found in the literature that was mentioned in the Related Research section is difficult,
because the Jar Device data from which potential biomarkers are derived has not yet been
studied with regards to potential biomarkers.

6.4 Future Research

As was mentioned previously, a larger, more consistent dataset would most likely significantly
improve the performance of the classifiers and make the results more robust. However, if the
tasks were to be repeated to expand the dataset, it would suffice to only repeat those that
seemed yielded the best performing models and the most promising biomarkers, like task 1b,
1c or 4. This would reduce the cost of repeating the same tasks somewhat.

Furthermore, the potential biomarkers that have been identified in this report would still need
to be validated before they can be used in clinical research. This process of validation would
need to ensure tolerability, difference between patients and controls, repeatability, detection
of clinical events, and correlation with traditional biomarkers, as is described by Kruizinga et
al. [8]. When biomarkers are technically validated, further validation in a clinical setting would
be needed.

The methods that are described in this report have identified biomarkers for NMDs using the
sEMG and Jar Device data. However, if a dataset containing time series data of patients with
some disease and healthy test subjects is suspected to contain biomarkers for that disease,
the same methods of extracting features, training and evaluating classification models, and
analyzing the most influential features can be applied. When using only general features, the
methods can even be copied exactly to identify potential biomarkers. Specific features would
need to be handcrafted based on knowledge of the dataset and scientific knowledge of the
disease at hand.
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7 Conclusion

We have constructed a method of identifying potential biomarkers for NMDs using datasets
recorded using the Jar Device and sEMG data. This data was recorded from a group of patients
with NMDs and healthy test subjects. By building a classification model and analyzing which
features played a role in the classification process, a number of potential biomarkers were
identified. As was expected, classification using sEMG data was successful and some possible
sources of biomarkers based on sEMG data were identified. Models that were trained using
features derived from both Jar Device and sEMG data, were shown to achieve the highest
performance metrics and the average feature importance of this model indicates that the sEMG
signals from the arm that is gripping the Jar Device are most influential in the classification
process and contain potential biomarkers.The best performing model that only used features
derived from Jar Device data, used data of task 1c. The time a subject was able to hold the
Jar Device open during this task and characteristics of the grip on the Jar Device during the
task were identified as potential biomarkers that could be measured using only the Jar Device.
These potential biomarkers are promising, but would need additional validation before being
used in a clinical setting.
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A Feature descriptions

This appendix contains a description of the specific features that were derived for each separate
task, as well as a list of the general features that were used for all tasks.

A.1 Specific features

A.1.1 Task 1

Total Grip The total grip is defined as the area under the curve of the grip, over the period
where the Jar Device is considered open. It is meant to capture the total amount of grip the
subject needs to keep the Jar Device open. Grip Corrections Grip corrections is defined as
the number of times the Jar Device goes from increasing to decreasing or from decreasing
to increasing while the Jar Device is considered open, per second. It is meant to capture the
number of times the subject has to re-adjust their grip to keep the Jar Device open.

Grip Polynomial fit parameters The grip polynomial fit parameters are defined as the
3 coefficients of a 2nd order polynomial fit of the grip, while the Jar Device is considered
opened, as well as the RMSE of this fit. They are meant to capture the change in the grip on
the Jar Device while the subject is keeping the Jar Device open.

Hold Length The hold length is defined as the amount of time the subject is able to hold
the Jar Device open. The Jar Device is considered when the lid is twisted to 20 degrees in
either direction and is considered closed when it reaches 15 degrees. They are meant to capture
the change in angle while the subject is keeping the Jar Device open.

Angle Corrections Angle corrections is defined as the number of times the angle of the
lid of the Jar Device goes from increasing to decreasing or from decreasing to increasing. It
is meant to capture the number of corrections the subject needs to keep the lid of the Jar
Device as close to 20 degrees as possible.

Angle Polynomial Fit Parameters The angle polynomial fit parameters are defined as
the 3 coefficients of a 2nd order polynomial fit of the grip, while the Jar Device is considered
opened, as well as the RMSE of this fit. It is meant to capture the change in the angle while
the subject is keeping the Jar Device open.

Time to Maximum Angle The time to maximum angle is defined as the time between
the start of the measurement and the moment the maximum angle over the entire measurement
is reached. It is meant to capture how quickly the subject is able to twist the lid of the Jar
Device.

Frequencies and Frequency Dominances The frequency and frequency dominance are
defined as the frequency with the highest corresponding power spectral density in the frequency
spectrum of an sEMG signal and the area under the curve of the sEMG signal within 0.25 Hz of
its maximum divided by the area under the curve of the whole frequency spectrum, respectively.
These features were calculated for all 16 sEMG channels. These features are meant to capture
the most dominant frequency and its dominance in each of the sEMG signals.
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AUC Difference Between Arms This AUC difference between arms is defined as the
difference in average area under the curve of the sEMG signals of each of the 8 channels
between the left and right arm. The sEMG signals are normalized using the maximum of the
MVC measurements. These features are meant to capture the difference in sEMG activity
between the subjects left and right arm.

Average Rectified Value Slopes and Intercepts The Average rectified value slopes
and intercepts are defined as the slope and intercept fitted to the average rectified value
(ARV) as described by Clancy et al. [3][10]. The ARV is calculated using windows of 1 second
with 50% overlap between windows, resulting in a temporal resolution of 0.5 seconds. These
features are meant to capture change in muscle fatigue, as muscle fatigue is associated with
an increase in sEMG amplitude. The ARV slope and intercept were calculated for 16 sEMG
channels.

Instantaneous Median Frequency Slopes and Intercepts The instantaneous me-
dian frequency slopes and intercepts are defined as the slope and intercept fitted to the
instantaneous median frequency (IMDF). The IMDF is the frequency at which the area under
the curve of the frequency spectrum is split in half. The IMDF is calculated using windows of 1
second with 50% overlap between windows, resulting in a temporal resolution of 0.5 seconds.
These features are meant to capture the change in muscle fatigue during the measurement,
as muscle fatigue is associated with a decrease in sEMG frequency.

Permutation Entropy Slopes and Intercepts The permutation entropy slopes and
intercepts are defined as the slope and intercept fitted to the permutation entropy (PE). The
PE is calculated by determining patterns in the signal using a moving window and calculating
their relative probabilities within the entire signal. The PE is then defined as the entropy of
these patterns. The PE is calculated using windows of 1 second with 50% overlap between
windows, resulting in a temporal resolution of 0.5 seconds. These features are meant to capture
the change in complexity of the sEMG signal.

A.1.2 Task 2

Grip Frequency and Frequency Dominance The grip frequency and frequency dom-
inance are defined as the frequency with the highest corresponding power spectral density in
the frequency spectrum of the grip and the area under the curve of the sEMG signal within
0.25 Hz of its maximum divided by the area under the curve of the whole frequency spectrum,
respectively. They are meant to capture whether the subject grips the Jar Device with the
same frequency as they twist its lid.

Angle-Grip Correlation The angle-grip correlation is defined as the correlation between
the angle and the grip between the first and last opening. It is meant to capture whether the
subject opens the Jar Device and applies pressure to it simultaneously.

Angle Peak Polynomial Fit Parameters The angle peak polynomial fit parameters
are defined as the slope and intercept of the 2nd order polynomial fitted through the peaks
(open angles) of the angle of the lid of the Jar Device, as well as the RMSE of these peaks
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around the fit. They are meant to capture how the angle to which the subject opens the Jar
Device changes.

Angle Minimum Polynomial Fit Parameters The angle minimum polynomial fit
parameters are defined as the slope and intercept of the 2nd order polynomial fitted through
the minima (closed angles) of the angle of the lid of the Jar Device, as well as the RMSE of
these peaks around the fit. They are meant to capture how the angle to which the subject
closes the Jar Device changes. This angle should always be 0, but subjects often did not fully
close the Jar Device during this measurement.

Angle Frequency and Frequency Dominance The angle frequency and frequency
dominance are defined as the frequency with the highest corresponding power spectral density
in the frequency spectrum of the angle and the area under the curve of the sEMG signal
within 0.25 Hz of its maximum divided by the area under the curve of the whole frequency
spectrum, respectively. They are meant to capture how closely the subject is able to follow
the metronome.

Average Metronome Dominance The average metronome dominance is defined as the
average (over all sEMG channels) area under the curve of the frequency spectrum within 0.25
Hz of the frequency of the metronome, divided by the area under the curve of the entire
frequency spectrum. It is meant to capture the presence of this frequency in the sEMG data.

AUC Difference Between Arms This feature has the same definition as the feature
with the same name from task 1.

Frequencies and Frequency Dominances These features have the same definition as
the features with the same names from task 1.

A.1.3 Task 3

Grip Peak Polynomial Fit Parameters The grip peak polynomial fit parameters are
defined as the slope and intercept of the 2nd order polynomial fitted through the peaks
(gripping moments) of the subjects’ grip on the Jar Device, as well as the RMSE of these
peaks around the fit. They are meant to capture how the grip the subject applies on the Jar
Device changes during the measurement.

Grip Minimum Polynomial Fit Parameters The grip minimum polynomial fit pa-
rameters are defined as the slope and intercept of the 2nd order polynomial fitted through the
minima (releasing moments) of the subjects grip on the Jar Device, as well as the RMSE of
these peaks around the fit. They are meant to capture how the grip the subject applies to the
Jar Device when they should release it changes. This grip should always be 0, but subjects
often did not fully release the Jar Device during this measurement.
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Grip Frequency and Frequency Dominance The grip frequency and frequency dom-
inance are defined as the frequency with the highest corresponding power spectral density in
the frequency spectrum of the grip and the area under the curve of the sEMG signal within
0.25 Hz of its maximum divided by the area under the curve of the whole frequency spec-
trum, respectively. They are meant to capture how closely the subject is able to follow the
metronome.

Jamar-Jar Device Grip Difference The Jamar-Jar Device grip difference is defined as
the difference between the maximum grip achieved during the maximum voluntary contrac-
tion measurement using the Jamar dynamometer and the maximum grip achieved during the
measurement. It is meant to capture the difference between a subjects maximum grip on the
2 devices.

Average Metronome Dominance This feature has the same definition as the feature
with the same name from task 2.

AUC Difference Between Arms This feature has the same definition as the feature
with the same name from task 1.

Frequencies and Frequency Dominances These features have the same definition as
the features with the same names from task 1.

A.1.4 Task 4

Grip Frequency and Frequency Dominance These features have the same definition
as the features with the same names from task 3.

Grip Peak Polynomial fit Parameters These features have the same definition as the
features with the same names from task 3.

Jamar-Jar Device Grip Difference This feature has the same definition as the feature
with the same name from task 3.

AUC Difference Between Arms This feature has the same definition as the feature
with the same name from task 1

Frequencies and Frequency Dominances These features have the same definition as
the features with the same names from task 1

A.1.5 Task 5

Grip Frequency and Frequency Dominance These features have the same definition
as the features with the same names from task 3.

Angle-Grip Correlation This feature has the same definition as the feature with the
same name from task 2.
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Total Grip The total grip is defined as the area under the curve of the grip, over the period
in between the first and last gripping moment. It is meant to capture the total amount of grip
the subject needs to open the Jar Device.

Number of Openings The number of openings is the number of times the subject is able
to completely open the Jar Device during the measurement. Here, the Jar Device is considered
completely opened when its lid is twisted more than 40 degrees in either direction. This feature
is meant to capture how well the subject is able to perform the task, exactly as it is presented.

Angle Peak Polynomial Fit Parameters These features have the same definition as
the features with the same names from task 2.

Angle Minimum Polynomial Fit Parameters These features have the same definition
as the features with the same names from task 2.

Angle Frequency and Frequency Dominance These features have the same defini-
tion as the features with the same names from task 2.

Period Polynomial Fit Parameters The period polynomial fit parameters are defined
as the slope and intercept of the 2nd order polynomial fitted through to the periods of time
between consecutive openings, as well as the RMSE of these periods around the fit. These
features are meant to capture the change in speed with which the subject is able to open and
close the Jar Device.

AUC Difference Between Arms This feature has the same definition as the feature
with the same name from task 1.

Frequencies and Frequency Dominances These features have the same definition as
the features with the same names from task 1.

A.1.6 Task 6

Grip Hold Length The grip hold length is defined as the amount of time the subject is
able to grip the Jar Device with sufficient force. The time is measured from the moment where
the grip on the Jar Device is at its maximum value until it reaches 75% of this maximum value.
This feature is meant to capture the time the subject is able to maintain maximum grip.

Time to Maximum Grip The time to maximum grip is defined as the time between the
start of the measurement and the moment the maximum grip over the entire measurement is
reached. It is meant to capture how quickly the subject is able to increase their grip on the
Jar Device.

Grip Polynomial Fit Parameters The grip polynomial fit parameters are defined as
the 3 coefficients of a 2nd order polynomial fit of the grip, from the time the subject reaches
maximum grip, until it reaches 75% of this maximum value. They are meant to capture the
change in the grip while the subject is trying to maintain maximum grip.
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AUC Difference Between Arms This feature has the same definition as the feature
with the same name from task 1.

Frequencies and Frequency Dominances These features have the same definition as
the features with the same names from task 1.

Average rectified value slopes and intercepts These features have the same defini-
tion as the features with the same names from task 1.

Instantaneous median frequency slopes and intercepts These features have the
same definition as the features with the same names from task 1.

permutation entropy slopes and intercepts These features have the same definition
as the features with the same names from task 1.

A.2 General features

Minimum This feature is defined as the minimum value of the time series.

Maximum This feature is defined as the maximum value of the time series.

Fifth Percentile This feature is defined as the fifth percentile value of the time series.

Ninety-Fifth Percentile This feature is defined as the ninety-fifth percentile value of the
time series.

Variance This feature is defined as the variance of the time series.

Average This feature is defined as the average value of the time series.

Standard Deviation This feature is defined as the Standard Deviation of the time series.

Kurtosis This feature is defined as the kurtosis of the time series.

Dominant Frequency This feature is defined as the frequency with the highest corre-
sponding power spectral density in the frequency spectrum of the time series.

Dominant Frequency Power This feature is defined as the power spectral density of
the dominant frequency of the time series.

Average Frequency This feature is defined as the sum of all frequencies in the frequency
spectrum of the time series multiplied with their corresponding power spectral density, divided
by the sum of all power spectral densities.
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Instantaneous Median Frequency This feature is defined as the frequency at which
the area under the curve of the frequency spectrum of the time series is split in half.
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