Universiteit

BJ L eiden Master Computer Science

Automatic Pass Detection in Soccer Tracking Data

Name: M.F.A. Aarnoutse
Student ID: 2682796

Date: August 27, 2023
Specialisation: Artificial Intelligence
Ist supervisor: Dr. A.]. Knobbe

2nd supervisor: ~ Dr. M. Baratchi

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

In this thesis, we developed a method for automatic pass detection in soccer matches using tracking data as input, and compare it
to the event data set of Sportradar. In order to evaluate the performance of our methods, we synchronised the event data set to the
tracking data, in which we update the time of the event with the frame number it occurred in. This acts as a ground truth for our
methods. In our first approach, we start by defining rules forwhat could encompass a pass. For each frame we find the nearest player
to the ball, ifthe player is within a certain distance to the ball, we check if the rules apply and predict a pass. In the second approach
we apply deep learning techniques to the tracking data to detect passes, specifically a convolutional neural network (CNN) and a
recurrent neural network (RNN). We compare the performance of these two approaches and find that a slightly better performance
is achieved using the recurrent neural network with bidirectional LSTM nodes than the rule-based system. We also find that the
rule-based system performs better than the CNN and that the vepresentation we use for the CNN is not suitable for this task. The
CNN is difficult to work with, due to the large size of the data set. The rule-based system does not have this disadvantage and might
be easier to understand and improve for experts. The vecurrent neural network achieves an F-score of 0.78 on the test set, while

the rule-based system achieves an F -score of 0.75.

Contents

Introductio

I.1 Problem Statement .

.......
2. Related Work

.....

B.2 TrackingDatal o ot
B.3 Data Preprocessing oot i e e
B.3.1 Coordinate system and pitch dimensiony
B.3.2 Synchronization of event and trackingdata
B.4 Deflnitionof apasg v vt e

4 Methodology

k.1 Rule-based approach

BI1 Evaluation oot et e e e
K.1.2 Hyperparameter optimization]
B2 Deeplearning
....................................
4.2.2 Convolutional Neural Networkl
4.2.3 Recurrent Neural Network

5 Experiments & Results

5.2 Event time correction

10
12
12
12
13
14

15
15
17
17
17
18
19
21

5.3 Rule-basedmode] 26

5.3.1 Hyperparameter Optimizationlt 27

5.4 DeepLearning 30
6.4.1 Convolutional Neural Network 30

5.4.2 Long Short-Term MeMOIY o . v v v v vttt e e e e 33

5.5 COMPATiSON . . .« © v o v e e e e e e e e 34

36
6.1 Rule-basedsystem] 36

.. 37
.. 37

6.4 Dataqualitf. 38

7 Conclusio: 39

.

B RNN Hyperparameter Optimization| 43

45

References 47

Chapter1

Introduction

FIFA created the FIFA Football Language in 2021, which will be their blueprint for how they analyse foot-
ball in the future (Wengex, 2021). In their vision they describe live metrics and new insightful stats that
would provide fans with context what is happening on the pitch. This is in line with the current trend in
the soccer business where more and more data is collected and used to provide insights into the game.
Companies such as Sportradar and Opta provide data to clubs, media and betting companies. However,
in the past, customers were only interested in the top leagues. Nowadays, clubs also want the data of
lower leagues and youth matches. The volume of matches that need to be analysed during a week there-
fore increases rapidly. Gathering the data from these matches has been done manually and the search for
more efficient alternatives is starting. In this thesis we will explore the possibility of using tracking data
to automatically generate the pass events that occurred in a match in order to augment and potentially

even replace the manual data collection process.

In soccer there are two types of data, namely event data and tracking data. Event data is the collection
of all actions made by all the players and/or referee; identifying the type of action, the location and addi-
tional properties of the action. Examples of events are passes, dribbles, shots, fouls and substitutions. In
each soccer match roughly 1,600 events are tagged, of those events more than 50% are passes. Shots ac-
count for 1.5% of the total events, while goals are even rarer with an occurence of less than 1% (Pappalardo
et al, 2019). As these passes are the most common event in a soccer match, automating the detection
could potentially relieve the taggers from the most time-consuming task. The other type of data used in
this thesis is tracking data, which is the collection of the location of all players and the ball gathered at a
certain frequency. It is collected by either wearables on the players and in the ball, or by computer vision
where either the cameras are set up live in the stadium or broadcast footage is used to generate tracking

data from. Common sample rates are 10 or 25 Hz, which results in over 140,000 data points per match

at the latter sample rate. In this thesis, we use tracking data provided by Sportlogiq, using a sample rate

of 25 Hz and collected from broadcast footage.

The collection of tracking data can be automated. This is currently not the case for the events. In order
to gather the events in a soccer match, at least four taggers are required to watch the match and keep
track of all actions themselves. Besides the fact that this is a time-consuming process and demands a lot
of human resources, it is also prone to human error. As tracking data becomes more readily available,
this can be used to validate and improve the event collection and potentially replace it with an automated
process. In this thesis, we will explore the possibility of using tracking data to automatically detect pass

events.

Not all events are suitable for automatic detection, a foul would be difficult to detect automatically as it s
not always clear when a foul is committed and depends on the referee’s interpretation. However, events
like passes, dribbles and shots are all on the ball, which makes the interaction visible in the tracking data.
Off-the-ball events, such as defensive actions or substitutions, are either more difficult or impossible
to detect automatically without additional information. In this thesis, we will focus on the automatic
detection of passes as these are by far the most common events in a soccer match (Pappalardo et al,,
2019). This results in a bigger data set to work with, and could relieve the taggers from the most time-

consuming task.

1.1 Problem Statement

In this thesis we explore the possibility of using tracking data to automatically detect passes. This leads

to the following research question:
How can we use tracking data to automatically detect passes in soccer matches?
In order to answer this question, we define the following sub-questions:
What rules can we define to detect passes in the tracking data?
How can we evaluate the performance of the pass detection?

How can we improve the performance upon the rule-based approach by using machine learning?

1.2 Outline

In Section @ we discuss the existing work in the field of event detection in soccer, where we can build
upon. Next, in Section H we compare the tracking data and the event data that is used in this thesis,

give an overview of the distribution of the event data set and explain the coordinate system used in the

tracking data. The methods used to detect the passes automatically are then described in Section E] The
results of the experiments are presented in Section H and discussed in Section H Finally, in Section ﬂ we

draw the conclusions of this thesis.

Chapter2

Related Work

This is a fairly new field of research, so there is not a lot of literature available regarding automatic event
detection on tracking data in soccer. However, there has been some research on using video data to detect
events. These events are limited to goals, shots, corners, free kicks, yellow cards, fouls and offside as they
rely on object detection on video data before the classification task (Fakhar, Rashidy Kanan, & Behrad,
2019). In this chapter we will discuss the research that has been done in similar tasks and how it relates

to our research.

Most of the research available deals with event recognition based on video, whether this is broadcast
footage or from dedicated cameras in stadia. Yu, Lei, and Hu (2019) developed a Convolutional Neural
Network (CNN) model for event and replay detection. The authors annotated the broadcast video when
a goal, shot, corner, free kick, yellow card, foul or offside event occurred. They achieved a precision of
0.340 and a recall of 0.409 on detecting goal events using their CNN with replay detection. Fakhar et al.
(2019) also employs highlight detection, but opted for a Long Short-Term Memory (LSTM) network to

classify events. Both these papers did not include passes in their events.

Automatic event detection. One paper in particular that made advancements in automatic event de-
tection is from Vidal-Codina, Evans, El Fakir, and Billingham) (2022). FIFA started researching this topic
and called it the first attempt that has been made at automatically detecting events from tracking data.
They used a deterministic decision tree-based algorithm where no learning is involved. They begun with
determining the state of ball control (dead ball, no possession, possession, or duel) for each frame by counting
the players in a radius around the ball, e.g. if there are at least two opponents within the radius, the ball
is in a state of duel. A switch to a different state is what they refer to as a control frame. The authors then

used a set of rules to determine the event type, e.g. a shot on goal, a cross, or a pass if none of the other

events apply. In the supplementary material they mention that an event is correctly detected if the event
is within a £10 s window of the manually annotated event, which are tagged by Sportec Solutions (STS).
They report a supra 90% precision and recall on the automatically detected passes, but do not make a dis-
tinction between the different providers for this metric. These events are predicted on tracking data of
31 matches, supplied by the three different providers; namely Track160 (9), Tracab (19) and Hawk-Eye (3).
These providers all have camera installations in the stadia that are used in the competitions and leagues

they provide in, thus no broadcast footage is used to generate the tracking data from.

PassNet. PassNet is a solution for automatic pass detection (Sorano, Carrara, Cintia, Falchi, & Pap-
palardo, 2020). It combines three tasks; feature extraction, object detection and sequence classification.
A sequence of video frames is used as input for ResNet18, which reduces the dimensionality while retain-
ing the most important information. In the next task the authors train a Convolutional Neural Network
to assign bounding boxes based on a data set containing images of balls and persons, and labelled as
such. In the final task the output of both the ResNet18 and the CNN are combined and fed into a Long
Short-Term Memory (LSTM) network. The LSTM network is trained to classify the sequence as a pass or
not. The authors report an F}-score of 0.59, a precision of 0.48 and a recall of 0.77 in a scenario where

different matches are used for training and testing.

Eventand tracking synchronization. There are two potential issues when synchronizing the event data
and tracking data. Firstly, manually collecting event time stamps is prone to human error, e.g. reaction
time, distractions and decision times delay the time stamp. Secondly, the event data is collected on a

different clock than the tracking data, which can be oft by a few seconds (Anzer & Bauer], 2021).

The authors developed a synchronization algorithm while working on a goal scoring probability model
to combat these two issues. By calculating the distance between the ball and the player, the ball and the
event location, and the player and the event location, they could minimize a weighted sum and find the

frame where the pass has most likely been given. The algorithm is described in more detail in Section E]

Individual Ball Possession. Tracking data makes it possible to detect when players are in control of the
ball (Link & Hoernig, 2017). The authors developed a machine learning model that is able to determine
how long the ball is under influence by a player based on their distance to the ball combined with the
direction of motion, speed and acceleration of the ball. The result of their model is a list of timespans
where the player is on the ball. The authors suggest their work could be used to help detect match events

automatically.

Hyperparameter optimization. While using high quality data is important for the performance of a
model, a significant performance boost can be gained by hyperparameter optimization. It is possible to
tune these parameters manually, but this is time consuming and prone to human error. A more efficient
way is to use a hyperparameter optimization algorithm, such as grid search (Bergstra & Bengid, 2012) ora
Tree-structured Parzen Estimator (TPE) (Ozaki, Tanigaki, Watanabe, & Onishi, 2020). These algorithms

can be used to find the optimal parameters for a model.

Popular multi-objective optimization algorithms that require thousands of evaluations to converge are
not suitable for real-world applications. They suggest using a TPE algorithm, which is a single-objective
Bayesian optimization algorithm altered to utilize tree-structured parzen estimators, which makes it

more suitable for real-world applications with limited budget (Ozaki et al), 2020).

Chapter3

Data

In this chapter, we explore the data sets used to automatically detect passes during a soccer game. We
begin by describing the event data set, which contains manually tagged events. Then, we delve into the
tracking data set, which contains the positions of all the players and the ball during the match. We also
examine the dimensions of the pitch and how the coordinates are defined in the data sets, as well as
how the data sets are synchronized. Finally, we take a look at examples of passes in the data set and the

features that we use to detect them.

3.1 EventData

The event data that we are using in this thesis, is gathered by analysts at Sportradar. They watch the
matches and tag all the events. Each event covers a ball action of a player, a call by the referee, or other
moments in the match. For each event the analysts collects; the type of action, the player that performs
the action, the match time of the event, and the location of the event. Additionally, certain event types
have several extra properties to specify more details of the event. All the events are collected live during

a soccer match and are directly stored in a database, which is then made available to end user products.

The tagging procedure is executed by at least four analysts, which consist of one speaker and one typist
per team in the soccer match. This is shown in Figure @ The speaker has their eyes on the television
all the time and the typists enters the corresponding key combination in the input tool. This tool maps a
keypress to a specific event type. The types of events that are tagged are listed in Appendix @ Note that

not all events are on the ball, e.g. VARChecking or 0ffside.

There are two approaches to detecting pass events in a soccer match. You could either detect all other

Figure 3.1: Analysts watching the match and tagging events.

ball events and categorize the remaining events as passes as Vidal-Codina et al/ (2022) did, or you could

detect passes directly. In this thesis we will focus on the latter, as it could provide a short-term solution

without the need to understand all the other events.

In the future we would like to recognise these other events from tracking data. However, some events
are more complex to detect, and simply not feasible for this thesis. For example, a foul is not always clear
when it is committed and depends on the referee’s interpretation. We could use the fact that a foul is

often followed by a free kick, but then we would need to detect the free kick as well.

Figure B.2 shows the distribution of the most occurring events and shows that the majority of events

are passes, which is in line with the findings of Pappalardo et al, (2019), who found that roughly 50% of

the events are passes in their Wyscout data set. This makes sense in the context of soccer, as the ball is
mostly progressed by passing it to a teammate that is in a better position, or to keep possession of the
ball. Without the ball, it is impossible to score a goal, which is reflected in Figure @where GoalAttempt
and Goal are two of the least occurring events. This is also the reason we focus on the automatic detection

of passes in this thesis.

3.2 Tracking Data

Tracking data covers the location of all 22 players, referee, and ball during a soccer match. Depending
on the resolution of the tracking data, the sample rate can vary. Most common sample rates are 10 Hz
and 25 Hz for tracking data. In this thesis, we will be using tracking data provided by Sportlogiq with
a sample rate of 25 Hz, this means that we have a sample every 40 ms, containing the positions of the

players, referee, and ball. For a match played over two halves, this sums up to around 140,000 frames.

As our tracking data is generated from broadcast footage of the match, it is likely that not all players are

10

Distribution of events in Tottenham vs. Manchester Utd

800

600

Count

400

) l
. ==
N

Figure 3.2: The distribution of events in Tottenham Hotspur-Manchester United (2021-04-11).

visible in frame. This is especially true for the goalkeeper, as the camera is often focused on the ball and the
players near it. In the case this happens, the position is either interpolated based on their previous and
next known position, or the location is set to an inferred value based on the player’s position (e.g. around
the penalty area for a goalkeeper). This preprocessing is already done by Sportlogiq and therefore not

part of this thesis.

The tracking data provided consists of roughly 140,000 frames for each match. A single frame, which
is taken every 40 ms, contains the positions of the ball, referee, and all the players. The tracking data is

stored in a JSON file, which contains a list of frames. Each frame contains the following information:
1. time — The time since the phase started in seconds.
2. ball— The position of the ball in the frame.
3. referee — The position of the referee in the frame.
4. home_team — The positions of the players of the home team in the frame.
5. away_team — The positions of the players of the away team in the frame.

An example of a single frame is shown in Figure E where the tracking data is plotted onto a soccer pitch
using the standard pitch dimensions of 105 m long and 68 m wide. The home team plays from left to right

and is displayed in red, the away team is coloured blue, and the ball black.

11

- Y 1S 10 DO o T U
© =t x s B e\ RS
’ oL ATA A AR AR ATA AIA AIA AR AIA in AIAAA]

Figure 3.3: An example of a single frame in the tracking data (left) from Tottenham Hotspur-Manchester compared to broadcast
footage (right) (2021-04-11, four frames after kickoff, second half).

3.3 Data Preprocessing

In order to use both data sets, we need to preprocess them. As the players in the event data set use dif-
ferent IDs than the players in the tracking data, we need to find the matching Sportradar IDs for the
latter. The squad numbers of the players within a team are unique and locked once registered during the
season. This allows us to match the players in both data sets by their squad number. We also need to syn-
chronize the event and tracking data, as they are collected independently. First, we need to transform

the coordinates of the tracking data so that they are in the same coordinate system as the event data.

3.3.1 Coordinate system and pitch dimensions

Sportradar uses a coordinate system in the event data that is agnostic of the pitch dimensions, where the
origin is in the bottom left corner of the pitch. This means that the coordinates of the pitch are (0,0) in
the bottom left corner and (100, 100) in the top right corner. However, the tracking data uses a different
coordinate system, where (0, 0) is in the center of the pitch and the coordinates are in meters. When the
broadcast video is transformed to tracking data, pitch data is supplied to the tracking provider. These

pitch sizes vary per stadium, but are usually around 105 m long and 68 m wide.

In order to compare the data sets, we need to transform the coordinates of the tracking data to the same
coordinate system as the event data. When plotting the data, we use a standard pitch dimension of 105 m

long and 68 m, and convert the coordinates back to meters.

3.3.2 Synchronization of event and tracking data

The time of the event data set could have a systematic offset with the tracking data set as they are collected
independently. In addition, there is a delay of human interaction between seeing the event on live on
television and tagging it. As the positions added to the event data come from a tablet where the position

is selected on a map of the pitch by the analyst, there could be imperfections in the data due to human

12

error. In order to accurately compare both datasets we need to synchronize them (Anzer & Bauer, 2021).

We find the frame where the event occurred in the tracking data by minimizing a sum of features:
1. The distance between the player and the event position.
2. The distance between the ball and the event position.
3. The distance between the player and the ball.

In order to get the best results we could run hyperparameter optimization to get the optimal weights
for these features. We can validate all pass detection methods against this corrected event data set. This

corrected event data set will be used as the ground truth for all pass detection methods.

Start offset = 2640, end offset = 1560, pass frame = 2118

1
—— player-ball distance ~

7\
25 —— player-event distance /’ \\
—— ball-event distance e
=== sum
20
[V}
g
g 15
K] S
° Sao
10

2100 2110 2120 2130 2140 2150 2160
frame

Figure 3.4: The frame where the pass has most likely been given.

3.4 Definition of a pass

A pass is defined as an event where a player has control over the ball and attempts to kick the ball to
another player on the same team. This definition does not state that the pass has to be successful, but
only that the player attempts to pass the ball. It does not matter whether the ball is intercepted by an
opponent or if the ball goes out of play. The completion of the pass is determined if the next ball event is

from a different player on the same team.

13

3.5 Matches

The matches used in this thesis are listed in Table @ These matches are selected based on both the avail-
ability of the tracking and event data, where the former is more difficult as it is provided by an external
party. This is also the reason we use the 2020/2021 season of the English Premier League, as this is the

only season where we have access to both data sets.

MatchID Home Team Away Team Date

113989 Brighton Everton 2021-04-12
113995 Sheffield United Arsenal 2021-04-11
113996 Tottenham Hotspur Manchester United 2021-04-11
113999 Arsenal Fulham 2021-04-18
114005 Manchester United Burnley 2021-04-18
114008 Wolverhampton Wanderers Sheffield United 2021-04-17
114015 Manchester City Southampton 2021-03-10

Table 3.1: The matches used in this thesis.

14

Chapter 4

Methodology

In this chapter we will describe the methodology used to automatically detect passes in soccer tracking
data. We will be using two main methods in order to achieve this goal. We start by crafting a model based
on rules, which will act as our baseline in the subsequent experiments. In the second part we use neural

networks and experiment with different architectures and hyperparameters.

4.1 Rule-based approach

As stated in Section E‘], apassisdefined asaplayer controlling the ball and passing it to another player. In
order to detect passes, we will use a rule-based approach to capture the behaviour of a pass. The tracking
data can tell us which player is closest to the ball and from there we can determine if a pass has been

made.

d(p,q) = \/(p1 —q1)?+ (p2 — ¢2)? 4.1)

We start by calculating the distance for each player to the ball for all the frames. For this the Euclidean
distance is used as defined in Equation @ All consecutive frames where the same player is closest to the
ball are grouped together with their starting and ending frame index. From now on we refer to these as

a sequence. The rules a sequence must satisfy for it to be considered a pass are:
1. The distance between the player and the ball must be smaller than a certain threshold.
2. The ball must change direction by a certain delta.

3. The ball must accelerate by a certain delta.

15

4. The sequence must be longer than a certain length in frames.

These rules should capture an interaction with the ball. The first rule is necessary to ensure that the player
is within reach of the ball. If a player is not close to the ball, they are unable to interact with it. The exact

value will be determined by hyperparameter optimization later in this thesis.

The second rule, whether the ball changes in direction, would imply that the ball has been touched. This
is not always the case, as a curved ball changes direction without being touched by a player. As such, we
use the delta between the entry and exit direction of the ball. The entry direction is the average direction
from the first frame of the sequence to the frame where the distance between the player and the ball is
the smallest. The exit direction is calculated from that frame to the last frame of the sequence. The delta
between the entry and exit direction must be larger than a certain threshold. This threshold will also be

determined by hyperparameter optimization.

The third rule, whether the ball accelerates, is also necessary to ensure that the ball has been touched.
The calculation of this rule is in line with previous rule. The entry and exit speed are compared and the
resulting delta must be higher than a threshold that is to be determined by means of hyperparameter

optimization.

For thelast rule, the sequence must be longer than a certain length in frames. This is necessary to filter out
noise in the tracking data. The exact value will be, again, determined by hyperparameter optimization.

If all these rules apply we consider that a pass had been made within the sequence.

The next step is determining at which frame the pass has been made within the sequence. The most trivial
approach would be to minimize the player’s distance to the ball and take that frame. However, we noticed
that this not always results in the most accurate frames. When a player pings a football, which is the
art of rapidly passing the ball over a long distance, the time that the player makes contact with the ball
is very short. Players also tend to take a touch before passing the ball, which means that the distance
increases a bit before the actual pass is made. To combat these issues, we look for the latest occurrence
in the sequence where the distance to the ball is underneath a certain threshold. We then walk through

the frames backwards from that point until we find a local minimum. An example is shown in Figure @

If no local minimum can be found, we assume that the player has not touched the ball. These sequences
and the ones that do not meet the other criteria are removed from the dataset. This leaves us with a data

set of sequences that only contain passes and their predicted frame where the pass has been given.

To get the most out of this model, we optimize the hyperparameters and select the best values for the

parameters based on their performance on the validation set.

16

Pass detection for sequence 18 in match 113996

—— Distance of player to the ball
—— Predicted pass frame

-—-=- Last frame under threshold
--- Distance threshold

Distance (m)

1

41.0 41.1 412 413 414 415 416 417 418
Time (s)

Figure 4.1: The frame found after walking backwards from the latest occurrence where the distance to the ball is underneath a
certain threshold.

4.1.1 Evaluation

In order to determine if the pass has been detected correctly, we compare it to the event data set. After
the events have been corrected and their frame in the tracking data has been found we compare it to
the predicted frames. If the predicted frame is within a certain threshold of the corrected frame, we
consider it a true positive. Conversely, if the predicted frame is not within the threshold, we consider it

a false positive. If there is no predicted frame for a corrected event, we consider it a false negative.

In addition to the threshold, we also add the parameters of the event correction algorithm to the model

for hyperparameter optimization.

4.1.2 Hyperparameter optimization

In order to get the most out of our model we use a Tree-structured Parzen Estimator (TPE) algorithm
to optimize the hyperparameters. This algorithm is implemented and provided by the optuna package

(Akiba, Sano, Yanase, Ohta, & Koyama, 2019). The hyperparameters and their search space are shown in
Table @

4.2 Deeplearning

In this section, we will discuss the deep learning models that we have used for pass detection. We will
start by discussing the Convolutional Neural Network (CNN), followed by the Recurrent Neural Network
(RNN).

17

Hyperparameter Search space

Rule-based model

Minimum distance [0, 20]
Minimum length [0, 100]
Minimum direction change [0, 7]
Minimum speed increase [0,10]

Prediction evaluation

Corrected event threshold [0, 200]

Event correction

Event window start [—3000, 0]
Event window end [0, 3000]
Player/ball weight [0,1]
Ball/event weight [0,1]
Player/event weight [0,1]

Table 4.1: Hyperparameters and their search space. Splitinto three categovies; rule-based model, prediction evaluation, and event
correction.

We will treat the problem of pass detection as a binary classification problem, as there are two outcomes
which the network has to classify; either a pass occurs or it does not. The data set has been created in
a sliding window fashion with a window size of 50 frames and a stride of 25 frames. This means the
networks see 2 seconds at a time and moves 1 second forward for every sample. The label for the window
is 1 if a pass occurs in the window and 0 if it does not. The data set is split into a training, validation and

test set.

4.2.1 Features

In order to use the tracking data for pass detection we need to extract features from the data. The features
listed in Table @ are used throughout the deep learning experiments. As the deep learning experiments

all use a sliding window data set, the features will be extracted for every frame in a window.

The displacement of the ball d, displayed in Equation @, between the current frame ¢ and the next frame

t + 1is calculated using the Euclidean distance between the ball in the two frames.

d=(Tes1—)% + (Y41 — 92)? (4.2)

The direction of the ball between the current and the next frame is calculated with the two argument
arctangent function. The function takes the difference in y and x coordinates as arguments and considers

both signs, which results in the correct quadrant. The function is shown in Equation @, where z; and y;

18

Feature Description

Ball displacement The distance between the ball in the cur-
rent frame and the next frame.
Ball direction The direction the ball was travelling in

between the current frame and the next
frame. Calculated using the two argu-
ment arctangent function.
Distance to nearest home player The distance between the ball and the
nearest home player in the current frame.
Distance to nearest away player The distance between the ball and the
nearest away player in the current frame.

Table 4.2: Features used for the recurrent neural network.

are the x and y coordinates of the ball in the current frame and ;. ; and y; 1 are the x and y coordinates

of the ball in the next frame. The result is an angle (f) in radians between —7 and 7.

0 = atan2(yer1 — Yo, Tep1 — Tp) (4.3)

The remaining features are the distances to the nearest player of each team. Like the displacement of the

ball, these are calculated using the Euclidean distance between the ball and the player.

4.2.2 Convolutional Neural Network

A convolutional neural network is a type of neural network that is commonly used for image classification.
It is able to extract features from an image by applying a convolutional filter. The filter is moved over the
image and the dot product is taken between the filter and the image. This results in a feature map and

enables the network to extract features from the image.

Spatio-temporal input

We settled on two methods for pass detection using a CNN. In both methods, we use the positions of
the home players, away players and the ball as input, but differ in the representation of the temporal
input. The first approach is to use a single image with Kernel Density Estimation (KDE) applied to three
channels for the positions of the home players, away players and the ball. In the second approach we use

a sequence of images as input.

Singleimage In order to use a convolutional neural network for pass detection, we need to convert the

tracking data to an image. KDE is applied to the positions of the home and away players, plus the ball.

19

These positions are weighted towards the end of the window (see Equation EI]).

window _length — frame_index

ight =
weg window_length

(4.4)

The resulting KDE is fitted onto a 100 x 100 grid. This results in an image with three channels; home

players, away players and the ball. A sample of the data set is shown in Figure @

Home Away Ball

Figure 4.2: Sample of a heatmap created by KDE.

Sequenceofimages Inthesecondapproach we will use a sequence of images as input. We set our initial
window size to 50, which means we will have a sequence of 50 images. Each frame contains the positions

of the home players, away players and the ball fitted onto a 100 x 100 grid. An example of a single frame

from the sequence is shown in Figure B

The difference with the heatmap approach is that we do not fit a KDE onto the data and there is no weight-
ing applied to the positions. The data we input into the network is the raw positions of the home players,

away players and the ball. Which results in more data for the network to learn from.

Home Away Ball

Figure 4.3: Sample of a single frame from a sequence.

Additional features In addition to the sequence of images, we will also add the following features with

a shape of (50, 4) to the input. These features are also used for the Recurrent Neural Network and are
further discussed in Section . The features are:

« The ball displacement between frames.

20

« The ball direction change between frames.
. The distance between the ball and the nearest home player.

- The distance between the ball and the nearest away player.

Architecture

The architecture we use for the CNN is shown in Figure E!] This shows the architecture for the sequence
of images. The architecture for the single image is the same, except for the input layer. The input layer for

the single image has a shape of (100, 100, 3).

4.2.3 Recurrent Neural Network

A recurrent neural network is commonly used for time series data. It is able to memorize information
from previous time steps. However, a simple recurrent neural network might have trouble with long
term dependencies. This is where the Long Short-Term Memory (LSTM) network comes in. In a bidi-
rectional LSTM network, the input is processed in two directions in separate recurrent networks. Those
networks are connected to the same output layer. Bidirectional LSTM networks show a significant im-
provement over unidirectional LSTM networks. These networks are also much faster to train than stan-
dard RNNs (Graves & Schmidhubet|, 20035)

In addition to the LSTM network, we will also experiment with a Gated Recurrent Unit (GRU) network.
A GRU network is comparable to an LSTM network in terms of performance. However, which network
performs better depends on the data set and the task. Both networks are able to learn long term depen-

dencies and are superior to a standard RNN (Chung, Gulcehre, Cho, & Bengid, 2014).

These recurrent neural networks are trained on the same data set as the other experiments using only
the features described in Section . The input shape for the recurrent neural network is (50, 4) as a
window size of 50 is used with a stride of 25.

Architecture

The architecture we use for the RNN is shown in Figure @ The two LSTM layers are bidirectional. We
also experiment with a GRU layer and a simple RNN layer, which replaces the LSTM layer.
Hyperparameter Optimization

As with the rule-based model, we will optimize the hyperparameters of the LSTM model. The hyperpa-

rameters we will optimize are shown in Table B

21

spatiotemporal_input
(50, 100, 100, 3)

v

conv_3d
(filters=16, kernel_size=(3, 3, 3))

v

max_pooling_3d
(pool_size=(2, 2, 2))

v

conv_3d
(filters=32, kernel_size=(3, 3, 3))

v

max_pooling_3d

feature_input

(pool_size=(2, 2, 2)) (50, 4)
flatten flatten

)

concat

A 4

dense
(units=64)

v

dropout
(rate=0.2)

A 4

output
(units=1)

Figure 4.4: Architecture of the convolutional neural network.

input
(50, 4)

bidirectional_lstm
(units=128)

bidirectional_lIstm
(units=64)

dense
(units=32)

dropout
(units=0.1)

dense
(units=1)

Figure 4.5: Architecture of the recurrent neural network.

22

Hyperparameter Search space

Number of layers [1, 2]
Number of units {128,256}

RRN type {LSTM, GRU, SIMPLE RNN}
Dropout [0,0.5]

Recurrent dropout [0, 0.6]

Bidirectional {True, False}

Table 4.3: Hyperparameters and their search space for the recurrent neural network.

23

Chapters

Experiments & Results

The results of the experiments are presented in this chapter. As described in the Chapter E] we developed
a rule-based system, and trained multiple deep neural networks, which we will compare to each other.
First, the results of the event and tracking data synchronization are presented, then the results of the
rule-based system for automatic pass detection are shown. Finally, the results of the neural networks,

including the CNN and the RNN, are presented.

5.1 Evaluation

For each sequence we look for the frame where the pass has been given, but it also possible that there is
no pass in the sequence. In order to evaluate the model, we create a confusion matrix and calculate the
precision, recall, and F} -score. Precision is the fraction of correctly predicted passes over all predicted

passes, and is defined as follows:

true positives
true positives + false positives

precision =

Recall is the fraction of correctly predicted passes over all actual passes, and is calculated as follows:

true positives
true positives + false negatives

recall =

24

The F} -score is a harmonic mean of the precision and recall. As it takes both the false negatives and false

positives into account, it is 2 good measure for a imbalanced data set. The F7 -score is defined as follows:

precision X recall
>< -

=2 —
precision + recall

Asimple classification accuracy is often a poor metric for measuring performance (Fawcett, 2006), which
is why we will use a receiver operating characteristic (ROC) curve to evaluate the model. The ROC curve
is a two-dimensional plot in which the true positive rate (TPR) is plotted on the y-axis against the false
positive rate (FPR) on the x-axis. The TPR is the same as recall, while the FPR is the fraction of incorrectly

predicted passes over all negative samples.

The area under the curve (AUC) is a measure of how well the model is able to distinguish between the
classes. A perfect classifier would have an AUC of 1.0, while a random model would have an AUC of 0.5.

This random classifier is represented by the diagonal dashed line in our ROC curves.

true positives
TPR = — -
true positives + false negatives
PR false positives

- false positives + true negatives

5.2 Event time correction

Due to the fact that the tracking data is collected with a different clock than the event data, the event
times have a systematic offset from the tracking data. We correct these times by finding the frame where
the sum of the distances between the ball and the player, the player and the event location, and the ball

and the event location is smallest. An example where these features are plotted, is shown in Figure @

Multiplying the time of an event by the framerate results in a naive frame number. However, the event
time is not necessarily the time of the pass, but the time of the pass event. This means that the ball could
have been passed before the event was tagged. In order to find the frame where the ball was passed, we
combine the event time with the tracking data by summing the previously mentioned features. The error

between the event time before and after the correction is calculated as follows:

error = (event time X frame rate) — pass frame

25

100

) Ill-IIlIIII
—-40 —-20 0 20 40 60

Error (in frames)

Count
N o
o o

N
o

Figure 5.1: The error between the event times and the found pass frames.

There were 664 passes—in the Tottenham Hotspur vs. Manchester United match—that could be found
in the tracking data, with a mean error of 19.97 frames and a standard deviation of 32.55 frames. The
distribution of the errors is shown in Figure @ Note that there are peaks on the edges of the distribution.
This could be due to the fact that the same player had an event before or after the pass event, which could
have caused the algorithm to match the wrong event. The mean error of 19.97 frames is under a second,

which is acceptable for our purposes.

5.3 Rule-based model

The rule-based model has been developed to automatically detect passes in the tracking data. In this
method we find sequences where the same player is nearest to the ball and determine based on the rules

described in Section B if a pass has been given.

As there is no learning involved in the algorithm itself, but only during hyperparameter optimization
(HPO), we could get away with a smaller training set on which HPO is performed. The smaller training
set leads to multiple benefits, first of all, due to only having the two matches running HPO is faster, and
secondly, we can find out if the model is able to generalize to unseen data, as the test set is not used

during HPO. The split of the matches into training and test sets is shown in Table @

Table @ shows the results of the classification in a confusion matrix on the entire test data set. The model
has an F} -score of 0.75 and is able to detect 3,759 passes from the Sportradar event data set, but fails to
find the remaining 1,128 passes. The mean absolute error (MAE) on the predicted frame for a sequence

is 21.81 frames. This means that the events tagged by Sportradar are on average 0.87 s away from the

26

MatchID Home Team Away Team Date

Training set

113989 Brighton Everton 2021-04-12
113995 Sheffield United Arsenal 2021-04-11
Test set
113996 Tottenham Hotspur Manchester United 2021-04-11
113999 Arsenal Fulham 2021-04-18
114005 Manchester United Burnley 2021-04-18
114008 Wolverhampton Wanderers ~ Sheffield United 2021-04-17
114015 Manchester City Southampton 2021-03-10

Table 5.1: The split of the matches into training and test sets for the rule-based model.

predicted pass frame.

Score
True
Pass No Pass MAE 21.81
Precision 0.73
Predicted Pass 3,759 1,418 Recall 0.77

No Pass 1,128 0 Fy-score 0.75

Table 5.2: Confusion matrix on the test data set

5.3.1 Hyperparameter optimization

The F} -score is used as the objective function during hyperparameter optimization. After running more
than 500 iterations, we receive the hyperparameters listed below. These hyperparameters have been used
for the previously reported results of the rule-based model. The hyperparameters used for the event cor-
rection are frozen to the values listed in Table @, and will be used for labelling the data set for the deep

learning model.

The optimization history of the hyperparameter optimization is shown in Figure . Within a few trials
a passable model is found, however there is slight improvement over the next 500 iterations. The best
parameters were found at trial number 375, which has an F; -score of 0.75. The entire optimization took

over 5 hours and 40 minutes, in which 528 iterations have been run.

The hyperparameter importance is estimated using a functional ANOVA framework (Hutter, Hoos, &
Leyton-Brown, 2014), which is included in the optuna package (Akiba et al|, 2019). It fits a random forest
model on the results of the hyperparameter optimization and estimates the importance of both the in-

teraction between the hyperparameters and the hyperparameters individually. The results are shown in

27

Hyperparameter Value

Rule-based model

Minimum distance 2.03
Minimum length 10

Minimum direction change 0.09
Minimum speed increase 9.58

Prediction evaluation

Corrected event threshold 200

Event correction

Event window start —1,880 ms
Event window end 140 ms
Ball/event weight 0.44
Player/event weight 0.33
Player/ball weight 0.23

Table 5.3: Hyperparameters and their found values.

Optimization History Plot

0.8 ® Objective Value
Best Value

0.7

0.6

0.5

0.4

0.3

Objective Value

0.2

0.1

Trial

Figure 5.2: The optimization history of the hyperparameters.

Figure E, which shows that the most important hyperparameters are the minimum direction change

and the minimum length of a sequence.

The relation between the most important hyperparameters is shown in a parallel coordinate plot in Fig-
ure B The figure shows that while the minimum direction threshold is important, it is important to be
close to zero in order to get a good result. The exit speed increase was not important at all as shown in

Figure E, this is also reflected in the parallel coordinate plot where a wide range of values is used which

28

Hyperparameter Importances

minjrames- 0.16

event_frame_tolerancel <0.01
playerfballfweight| <0.01
window_offset_start| <0.01

exitﬁspeedfdelta| <0.01

Hyperparameter

window_offset_end| <0.01
minidistancefthreshold‘ <0.01
ball_event_weight‘ <0.01

player_event_weight <0.01
0 0.2 0.4 0.6 0.8

Importance for Objective Value

Figure 5.3: The importance of the hyperparameters.

all result in a similar objective value. That is not the case for the minimum frame length, which seems to

be important for values between 10 and 30.

Parallel Coordinate Plot

0.7682 3.1344 9.991 99

Objective Value

0.7

0.6

0.5

0.4
0.3
0.2
0.1
0.01088 0 0.145 0
% %, L ”;
7 Ccty, by, n " so, e, /’\frs
S, ~re 4 % s
(8 S/’O/C, 78

Figure 5.4: The relation between the most important hyperparameters.

29

5.4 Deep Learning

In this section we will discuss the results of the deep learning models. We will start with the Convolu-
tional Neural Network (CNN) and then move on to the Recurrent Neural Network (RNN). All the results
shown are produced using the same test set, which consists of one match. The validation set contains
two matches and the training set contains the remaining four matches. The split that has been made is

shown in Table E‘]

For the experiments we will be going through the tracking data in a sliding window fashion. The window
size is set to 50 frames and the stride is set to 25 frames. These parameters are chosen based on the results

of the hyperparameter optimization of the rule-based system.

MatchID Home Team Away Team Date

Training set

113989 Brighton Everton 2021-04-12
113995 Shefhield United Arsenal 2021-04-11
113996 Tottenham Hotspur Manchester United 2021-04-11
113999 Arsenal Fulham 2021-04-18

Validation set

114005 Manchester United Burnley 2021-04-18
114008 Wolverhampton Wanderers ~ Sheffield United 2021-04-17
Test set
114015 Manchester City Southampton 2021-03-10

Table 5.4: The split of the matches into training, validation and test set.

5.4.1 Convolutional Neural Network

As described in the previous chapter, we experiment with two different types of input. In the first exper-
iment we use the heatmaps as input, and in the second we use the raw positions to generate an image
for each frame. In the third experiment we apply an ablation study to the second experiment to see if
the image representation is necessary. For these experiment we will be going over the tracking data in a

sliding window fashion, with a window size of 50 and a stride of 25.

Heatmaps

Inthe first experiment a heatmap is used as input, where the positions are plotted onto different channels

of the image. Temporality is added by weighting their positions by the time they occur in the window.

Figure @ shows the learning curve of the CNN over 20 epochs. The loss jumps around a lot on the val-

30

idation data, which is not the case for the training loss. The training loss shows little movement and
decreases over time to 0. If we take a look at the accuracy, we see that we reach 1.0 when training, but

validation hovers around 0.5. These are all signs over overfitting. The model does not generalize well to
newly seen data.

) —— CNN (heatmaps) train 1.0

II —=- CNN (heatmaps) validation
1
\ 0.9
1
|
1
1
1
1
1

—— CNN (heatmaps) train
—=- CNN (heatmaps) validation

o
©

°
N

Accuracy

X N 0.6

N 0.5 - o

0 2 4 6 8 10 12 14 16 18 20 0 2 4

6 8 10 12 14 16 18 20
Epoch

Epoch

Figure 5.5: The learning curve of the CNN trained on heatmaps.

Score
True
Pass No Pass Precision 0.54
Predicted Pass 1,215 1,019 };efag r ggg
NoPass 630 697 1-8COTe '

Accuracy 0.54

Table 5.5: Confusion matrix and scores of the CNN (heatmap) predictions

Table E shows the classification report of the CNN trained on heatmaps. The model has a precision of

0.54 and a recall of 0.66. The F-score is 0.60 and the accuracy is 0.54. These results are only slightly
better than a random classifier.

Window of Frames

In the second experiment we change the input for the model. The previous experiment used heatmaps to
train the model on, these are substituted with an image per sequence in the frame. They are fairly similar
to the heatmaps, however they only contain data for a single frame and are not fitted with Kernel Density

Estimation. In addition to the window of images we also add four features to the model as described in

Section .

Figure @ shows the learning curve of the CNN trained on sequences of images. After two epochs the
model has converged, after which learning has almost no impact on the validation loss anymore. This is

reflected in the accuracy, for which the accuracy on the training set keeps improving, while the accuracy
on the validation set stagnates.

31

2.5 CNN (window) train 0.86 CNN (window) train
CNN (window) validation CNN (window) validation

o
©
&

2.0

o
<)
N

Loss
Accuracy
o
[=]
S

o
3
©

1.0

°©
g9
=)

0.5

o
S
N

Epoch Epoch

Figure 5.6: The learning curve of the CNN trained on windows.

The confusion matrix of the predictions on the test set for the CNN trained on sequences of images is
shown in Table @ The model has a precision of 0.68 and a recall of 0.67, the F1 score is 0.68 and the
accuracy is 0.80. The F;-score is better than the one of the CNN trained on heatmaps, but is this due to

the fact that the image representation is better or do the additional features carry the model?

Score
True
Pass No Pass Precision 0.68
Pass 1,047 486 Recall 0.67

Predicted F-score 0.68

NoPass 518 3,058 Accuracy 0.80

Table 5.6: Confusion matrix and scores of the CNN (window) predictions

Ablation Study

In the third experiment we perform an ablation study on the CNN trained on the sequences of images.
We remove the convolutional layers from the network and train only on the feature input, this results in
a Dense Neural Network (DNN). The network is then trained for 50 epochs on the same data set, without

the convolutional input. The learning curve for this network is shown in Figure Q

The results on the test set are shown in Table Q The model has a precision of 0.72 and arecall of 0.59, the
F1 score is 0.65 and the accuracy is 0.80. The DNN has similar results to the CNN trained on sequences
of images. This means that the image representation does not add much to the model. In fact, the DNN
does not look fully converged yet after 50 epochs, so it might be able to improve further. Interesting to
note is that the validation accuracy is higher than the training accuracy. However, the accuracy of the

predictions on the test set is lower than the training accuracy.

32

18
—— DNN train 0.84 —— DNN train =

16 —=- DNN validation —=-- DNN validation . _—_o-—=7

o
<)
N

o
©
S

1.4

1.2

Loss

Accuracy
e o @©
SNy
S o =]

1.0

0.8

°
oS
N}

e
g
=]

0.6

o
o
©

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Epoch Epoch

Figure 5.7: The learning curve of the DNN trained on the features.

Score
True
Pass No Pass Precision 0.72
Pass 923 358 Recall 0.59

Predicted F -score 0.65

No Pass 642 3,186 Accuracy 0.80

Table 5.7: Confusion matrix and scores of the DNN predictions

5.4.2 Long Short-Term Memory

Atlast, we experiment with a Recurrent Neural Network (RNN). The RNN is trained on the same features
that were used for the CNN (windows). The network consists of two LSTM layers containing 256 and 128
units respectively, both with a recurrent dropout of 0.4. The network has been trained for 30 epochs, after

which early stopping is applied.

The results on the test set are shown in Table @ The model is able to predict 87% of the samples in the
test set correctly. The precision on the passes is 0.84, while the recall is fairly lower at 0.72. The F} -score

is 0.78.

Score
True
Pass No Pass Precision 0.84
Pass 1,132 214 Recall 0.72

Predicted F'-score 0.78

No Pass 433 3,330 Accuracy 0.87

Table 5.8: Confusion matrix of the LSTM predictions
Thelearning curve of the modelis shown in Figure @ After10 epochsthelearning speed declines, but the

model keeps slightly improving. The validation loss is lowest at epoch 25, after which it starts increasing

again. The network has been trained for 5 more epochs after this point, but the validation loss does not

33

decrease anymore. The accuracy seems to reflect this as well, as it does not improve after epoch 25.

—— LSTM train —— LSTM train
0.6 —== LSTM validation === LSTM validation St A
0.88 A

At
=

0.5

Loss
Accuracy

0.4

0.3

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch

Figure 5.8: The learning curve of the LSTM.

Hyperparameter optimization

The results shown above are achieved after hyperparameter optimization. The parameters and their ob-
jective value are shown in Appendix . In the first experiment we look for the differences in performance

between the LSTM, GRU and a simple fully-connected RNN layer. The latter performs significantly worse
than the other two.

We also find that the difference between using one and two layers for the LSTM and GRU is negligible.
After running another experiment with bidirectional layers, we find that the performance of the LSTM

is slightly better. The final parameters we use for the LSTM are shown in Table @

Hyperparameter Value

Number of layers 2

Number of units 128 in the first layer, 64 in the second layer
RNN type LSTM

Dropout 0.1

Recurrent dropout 0.4

Bidirectional True

Table 5.9: Hyperparameters for the recurrent neural network.

5.5 Comparison

In this section we will compare the results of the different models; the CNN, LSTM and the rule-based
system. Figure @ shows the ROC curve of the models. The LSTM performs best with an AUC of 0.94,
followed by the CNN trained on windows of images with 0.88. After running the DNN multiple times,

34

we find that the performance is consistent, but always has a horizontal line in the ROC curve, which
means that at that certain threshold a lot of false positives are introduced. The CNN trained on heatmaps

performs the worst of all the deep learning methods with an AUC of 0.54.

1.0
0.8
2
&
o 0.6
=
=
&
o 0.4
=}
ful td
= —— LSTM (AUC = 0.94)
0.2 CNN (window) (AUC = 0.88)
—— DNN (AUC = 0.80)
—— CNN (heatmaps) (AUC = 0.54)
0.0 —==- Random
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 5.9: ROC Curve of the Neural Networks

The results of all the models are visible in Table . The LSTM performs the best, with the rule-based
system coming in second. The LSTM has a better precision (0.84) compared to the rule-based system
(0.71), but a lower recall (0.72) compared to the rule-based system (0.80). In the end, the F-score of the
LSTM is slightly higher (0.78) than the rule-based system (0.77).

Precision Recall F-score

Rule-based system 0.73 0.77 0.75
CNN (heatmaps) 0.54 0.66 0.60
CNN (windows) 0.68 0.67 0.68
DNN 0.72 0.59 0.65
LSTM 0.84 0.72 0.78

Table 5.10: Precision, recall and F1 score of the different models.

35

Chapteré6

Discussion

In this section we discuss the results found during the experiments in the previous chapter. We ran ex-
periments on both a rule-based system and a variety of neural networks. These methods will be compared
to each other and we will discuss which neural network performed best. We will also discuss the quality

of the data set and how this affects the results.

6.1 Rule-based system

We present a rule-based system that is able to automatically recognize most of the passes in a soccer
match after hyperparameter optimization with an F-score of 0.75. Most of the hyperparameters do
not seem to influence the objective value, the F} -score, however the minimum direction change and the
minimum length of sequences do. The best value for the minimum direction change was 0.09, which is
likely due to the fact that there is no directional change when the ball is not touched by the player. The
ball must be touched by a player in order to pass it, whether this pass is made direct or the ball controlled
first, therefore there is a directional change before or when a pass is made. This results in a value that

filters out the sequences where the nearest player did not touch the ball.

The speed increase when a ball is passed does not seem important for the performance of the model, as
a wide range of values give good objective values, thus can be concluded that the minimum direction
threshold is a better indicator of when the ball has been passed. The minimum number of frames in a
sequence is best around 10. This is likely necessary for it to filter out noise, while being short enough to

capture the majority of passes.

36

6.2 CNN

The representation used in the CNN has not been proven to work. Using the heatmaps, we condensed
the spatio-temporal data into one image with KDE applied to three channels; both the teams, and the
ball. However, the network did not seem to converge and the loss on the validation set grew large quickly.
The accuracy on the validation set hovered around 0.5 without any significant improvements during the
training. This might be due to the fact that the representation is not suitable for this task. The same was
visible to an extent in the CNN trained on windows and the additional features. This time, the accuracy

on the validation set was around 0.8 without any signs of learning during the training process.

In the next experiment we removed the image representation and only used the features extracted from
the tracking data; the ball displacement, direction of the ball, and the distance to the nearest players of
both the teams. This time, the network showed it was able to learn from the data, but achieved similar
results to the CNN with the windows and the additional features. This confirms that the image represen-

tation is not suitable for this task and unnecessary.

6.3 LSTM

The Long Short-Term Memory network gives the best results out all of our experiments. The data set is
easier to handle than the CNN as it does not contains any images, thus is also easier to train. While the
accuracy is 89%, it is not directly comparable to the rule-based system. The rule-based system only looks
at moments where a pass could potentially occur, and the LSTM evaluates all the windows in the data set
for a window size and stride. This means that the accuracy of the LSTM will be higher as it contains the
more common negative samples as well. The LSTM is also able to capture passes that are not captured
by the rule-based system. This is because the rule-based system is limited by the rules defined. If we
compare the F'-score of the LSTM with the rule-based system, we see that the LSTM scores 0.78 while
the rule-based system scores 0.75. As it also could learn from the negative cases, it is able to capture

slightly more passes than the rule-based system.

The features of a few predictions of the LSTM are plotted in Figure @ In the first example the home
player made at pass at around 20 frames into the window, which it predicted correctly. The second exam-
ple also shows a pass, but this time it is right at the end of the window, of which it has trouble predicting

indicated by the lower confidence. The third example shows a negative sample, where no pass was made.

37

Features at 18:29 (true: 1.0, predicted: [0.9625764]) Features at 25:12 (true: 1.0, predicted: [0.50914824]) Features at 20:51 (true: 0.0, predicted: [0.18870449])
—— ball direction —— ball direction 6

12 ball velocity ball velocity
—— home —— home

10 —— away — away 4

Feature value
Feature value
Feature value

2 —— ball direction
Wﬁ - ball velocity
0 Zala —— home

v
_— V —— away
-2
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Frame number Frame number Frame number

Figure 6.1: Three samples and their predictions of the LSTM.

6.4 Data quality

The results found in the experiments depend on the quality of the data used. This might be the most
important factor in succeeding in this task. If the event data set is not complete, we will not be able
to find all passes in the tracking data. However, the other way around is also true, if the tracking data
lacks precision or contains inconsistencies, the rules defined will not be able to capture the passes. This
happens when the ball is not tracked correctly, or when the players are not tracked correctly. This can be

caused by occlusion, or if some players are swapped in the tracking data.

Due to the fact that we use tracking data generated from broadcast video, there are instances where a
replay is shown or the camera is zoomed in on a player while the ball is brought back into play via a
throw-in or goal kick. As the ball or players are not visible on screen, assumptions are made where these
could be. The interpolation of the tracking data is done by Sportlogiq, and is currently out of scope for
this thesis. However, increasing the quality of the tracking data will likely increase the performance of

the methods presented in this thesis.

38

Chapter?7

Conclusion

In this thesis, we developed two distinct methods for automatic pass detection, a rule-based system and
a neural network. We found that the rule-based system was able to recognize most of the passes in a
soccer match with an F7 -score of 0.75. The passes that were not recognized were either passes that did
not show up on the broadcast video, or due to lack of quality in the tracking data. The LSTM was able to
classify 87% correctly on a data set with a window size of 50 and a stride of 25. It had an F} -score of 0.78

on the test data set.

The other neural networks that were experimented with did not perform as well as the LSTM. The CNN
trained on heatmaps did seem to converge, and had a huge validation loss throughout the learning pro-
cess. The CNN trained on sequences had the same problem, although less severe. In the ablation study
where we removed the image representation from the CNN, we found that the network performed better.
This suggests that the image representation is not necessary and only hindered the network. This finally
led to the LSTM, which performed the best out of all the neural networks, and was able to capture passes

that were not captured by the rule-based system.

We set out to answer if it is possible to automatically detect passes in soccer using tracking data, and if
so, which method performs best. We found the rules that make it possible to detect passes in tracking
data, most notably the change in direction when a pass is given, and the speed boost given to the ball. We
also found that the LSTM was able to predict more passes correctly than the rule-based system, which
suggests that there is room for improvement in the latter. In the end, we were not able to match the
figures from [Vidal-Codina et al| (2022), however it is likely that the difference in performance is due to
the difference in tracking data quality. The tracking data used in this thesis was collected from broadcast

video, while the tracking data used by Vidal-Codina et al| (2022) was collected from dedicated cameras

39

in the stadia.

In future work we like to explore different tracking data sets. The quality of the tracking data is important
for the performance of these methods and advancements already have been made during the course of
this thesis. As the tracking data used was collected from broadcast video it would be interesting to see
how the methods perform on tracking data collected from wearables or multiple in-stadium cameras.
This would resolve an issue where there is no tracking data available during replays or where the live feed

is zoomed in on a single player.

Another direction for future work is to explore different events. While there has been some work on dif-
ferent events using a decision-tree algorithm (Vidal-Codina et al}, 2022), it would be interesting to see if
aneural network can capture more complex and less obvious events. For example, the detection of a foul
is not always clear and depends on the referee’s interpretation. However, a neural network might be able
to learn the distinction between a foul and a normal tackle with additional video data where it might for

example learn the referee’s gestures, the outcome and the reaction of the players.

Finally, we could leverage the tracking data for more complex statistics. For example, we could use the
tracking data to detect players offering themselves to receive a pass, and use this to calculate the space
created by a player—or use it to calculate the statistics envisioned by Arséne Wenger in the FIFA Football
Language—such as opposition line breaks, the pressure applied to a ball carrier, and when a team loses

the ball due to pressure (Wenger, 2021).

40

Appendix A

Event Types

41

Name

Description

StartPhase
EndPhase
Goal
OwnGoal
YellowCard
RedCard
SubIn
SubOut
OutO0fPlay
Foul

Pass
Reception
GoalAttempt
SaveOnGoalAttempt
Interception
GoalKick
ThrowIn
Penalty
FreeKick
Touch
Dribble
Clearance

DefensiveBlock
Duel

0ffside
FreeKickOnGoal

DefensivePositioning

PlayerOutOfPlay
PlayerBackInPlay
VARChecking
VARRefereeChecking
VARDecision

The start of a new phase in the match.

The end of a phase.

A goal has been scored.

An own goal has been scored.

Avyellow card has been given.

Ared card has been given.

A player has been substituted in. This event is always paired with SubOut.
Aplayer has been substituted out. This event is always paired with SubIn.
The ball went out of play.

A player has been fouled.

The ball has been passed. Pass completions depends on the next event.
The ball has been received.

An attempt to score has been made.

The goal attempt has been saved.

The ball has been intercepted.

A corner kick has been taken.

The ball has been thrown back into play.

A penalty has been taken.

A free kick has been taken.

A touch has been taken.

A dribble is annotated when the player runs more than 5m with the ball.
Anactionislabeled as clearance if the player clears the ball without having
the intention to reach a team mate.

The ball has been blocked.

The ball is in contest between two players.

Offside has been given.

Free kick has been taken and was on target.

A defensive action without touching the ball.

A player is out of play.

A player has come back into play.

The VAR is checking.

The referees themselves checks the VAR images.

A decision has been made by the VAR.

Table A.1: The different types of events that are tagged in the Sportradar data set.

42

Appendix B

RNN Hyperparameter Optimization

43

num_units dropout optimizer num_rnn_layers rnn_type recurrent_dropout Accuracy

256 0.1 adam 2 Istm 0.2 0.792
256 0.1 adam 2 Istm 0.4 0.787
256 0.1 adam 1 Istm 0.4 0.781
128 0.1 adam 2 Istm 0.4 0.781
256 0.1 adam 2 gru 0.2 0.78

128 0.1 adam 2 Istm 0.3 0.779
128 0.1 adam 2 gru 0.2 0.779
256 0.1 adam 1 gru 0.2 0.775
256 0.1 adam 1 Istm 0.3 0.774
256 0.1 adam 1 Istm 0.2 0.773
256 0.1 adam 2 gru 0.3 0.773
128 0.1 adam 2 gru 0.4 0.773
128 0.1 adam 1 gru 0.4 0.772
128 0.1 adam 2 Istm 0.2 0.772
128 0.1 adam 1 gru 0.3 0.769
128 0.1 adam 1 gru 0.2 0.769
128 0.1 adam 1 rnn 0.3 0.768
256 0.1 adam 2 gru 0.4 0.768
128 0.1 adam 2 gru 0.3 0.764
256 0.1 adam 1 rnn 0.2 0.764
128 0.1 adam 1 Istm 0.3 0.762
256 0.1 adam 1 rnn 0.3 0.761
128 0.1 adam 1 Istm 0.2 0.761
128 0.1 adam 1 rnn 0.2 0.76

256 0.1 adam 2 Istm 0.3 0.757
128 0.1 adam 1 rnn 0.4 0.755
128 0.1 adam 2 rnn 0.4 0.749
256 0.1 adam 2 rnn 0.2 0.749
256 0.1 adam 1 gru 0.4 0.748
256 0.1 adam 1 rnn 0.4 0.745
128 0.1 adam 2 rnn 0.2 0.744
128 0.1 adam 2 rnn 0.3 0.744
128 0.1 adam 1 Istm 0.4 0.742
256 0.1 adam 2 rnn 0.4 0.737
256 0.1 adam 1 gru 0.3 0.718
256 0.1 adam 2 rnn 0.3 0.686

Table B.1: Hyperparameter optimization results.

rnn_type recurrent_dropout bidirectional Accuracy

Istm 0.4 1 0.821
gru 0.4 1 0.799
gru 0.4 0 0.76

Istm 04 0 0.755

Table B.2: Hyperparameter optimization results for divectionality on a network with two layers of 256 and 128 units.

44

Appendix C

Dashboard

During the course of this thesis a platform has been developed in to order to get a better understanding of
the rule-based system. The dashboard is built using React, and the soccer pitch is plotted using the d3.js
library. This made it possible to make it fully interactive. Hovering over a player shows their ID, name

and squad number (see Figure @).

L] O .(m15) thnjbjerg
) L]
e

® Home ® Away @ Ball

Figure C.1: Hovering over a player shows their ID, name and squad number

The full dashboard is shown in Figure @ After selecting a match, the sequences found by the rule-based
system are displayed on the right. These are interactable, and clicking on a sequence will show the cor-
responding pass in the soccer pitch. The sequences are colour coded based on their occurrence in the
rule-based predictions and the ground truth. The sequences that are correctly predicted have a green

check mark. If the rule-based system predicts a pass that is not in the event data set, a yellow question

45

mark is shown. The sequences that are in the event data set, but are not found with the rule-based system

are marked with a red cross.

Soccer Event Recognition Dashboard Login
Dashboard
Select a match Sequences
Round 31 - ID 113996 - Tottenham Hotspur vs Manchester United v Pogba
[Aurier
© Phase 1 Phase 2 Page Size 500 v < Page 1 of 144

@ Moura Rodrigues da Silva

Frame 871) 0m 355
Cavani
a
@ Hoibierg
Hejbjerg 1404
864-875 (871)
.
Dier
> o °
. L4 q . @ Wan-Bissaka
°
.
$ hford
) @ Rashfor
.
o . 8 o
McTominay
° °
.
Wan-Bissaka

McTominay
® Home ® Away ® Ball
@ Rodrigues de Paula Santos
Pass from 17175

 Maguire

—e— Distance

—e— Accaleration

346 347 348 349

Figure C.2: Dashboard

By moving the selected frame slider around and keeping an eye on the soccer pitch, we can see the ball
and players move around the pitch. This is useful when trying to understand why a certain pass was not
detected by the rule-based system. In our findings we see that the ball sporadically disappears from the
tracking data, comparing this with the video data of the match shows that this either is due to the ball

being out of frames, or it disappears in the empty stands during COVID-19 matches.

46

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019, July). Optuna: A Next-generation Hy-
perparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (pp. 2623-2631). Anchorage AK USA: ACM. Retrieved 2023-08-23,
from https://dl.acm.org/doi/10.1145/3292500.3330701 doi:10.1145/3292500.3330701

Anzer, G., & Bauer, P. (2021). A Goal Scoring Probability Model for Shots Based on Synchronized Posi-
tional and Event Data in Football (Soccer). Frontiers in Sports and Active Living, 3. Retrieved 2023-03-10,
from https://www.frontiersin.org/articles/10.3389/fspor.2021.624475

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014, December). Empirical Evaluation of Gated Recurrent
Neural Networks on Sequence Modeling. arXiv. Retrieved 2023-06-15, from http://arxiv.org/abs/1412
.3555 (arXiv:1412.3555 [cs])

Fakhar, B., Rashidy Kanan, H., & Behrad, A. (2019, June). Event detection in soccer videos using
unsupervised learning of Spatio-temporal features based on pooled spatial pyramid model. Multime-
dia Tools and Applications, 78(12), 16995-17025. Retrieved 2022-10-01, from https://doi.org/160.1007/
511042-018-7083-1 doi:10.1007/s11042-018-7083-1

Fawcett, T. (2006, June). An introduction to ROC analysis. Pattern Recognition Letters, 27(8),
861-874. Retrieved 2023-05-30, from https://www.sciencedirect.com/science/article/pii/,
S816786550500303X doi: 10.1016/j.patrec.2005.10.010

Graves, A., & Schmidhuber, J. (2005, July). Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks, 18(5), 602—610. Retrieved 2023-05-30,
from https://www.sciencedirect.com/science/article/pii/S0893608005001204 doi: 10.1016/
j.neunet.2005.06.042

47

https://dl.acm.org/doi/10.1145/3292500.3330701
https://www.frontiersin.org/articles/10.3389/fspor.2021.624475
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1007/s11042-018-7083-1
https://doi.org/10.1007/s11042-018-7083-1
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S016786550500303X
https://www.sciencedirect.com/science/article/pii/S0893608005001206

Hutter, F., Hoos, H., & Leyton-Brown, K. (2014, January). An Efficient Approach for Assessing Hyper-
parameter Importance. In Proceedings of the 31st International Conference on Machine Learning (pp. 754—762).
PMLR. Retrieved 2023-08-23, from https://proceedings.mlr.press/v32/hutterl4.html (ISSN:
1938-7228)

Link, D., & Hoernig, M. (2017, July). Individual ball possession in soccer. PLOS ONE, 12(7), e0179953.
Retrieved 2023-02-22, from https://journals.plos.org/plosone/article?id=10.1371/journal
.pone.0179953 (Publisher: Public Library of Science) doi: 10.1371/journal.pone.0179953

Ozaki, Y., Tanigaki, Y., Watanabe, S., & Onishi, M. (2020, June). Multiobjective tree-structured parzen
estimator for computationally expensive optimization problems. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference (pp. 533-541). Canciin Mexico: ACM. Retrieved 2023-03-31, from
https://dl.acm.org/doi/10.1145/3377930.3389817 doi: 10.1145/3377930.3389817

Pappalardo, L., Cintia, P., Rossi, A., Massucco, E., Ferragina, P., Pedreschi, D., & Giannotti, F. (2019,
October). A public data set of spatio-temporal match events in soccer competitions. Scientific Data, 6(1),
236. Retrieved 2023-07-25, fromhttps://www.nature.com/articles/s41597-019-0247-7 (Number:
1 Publisher: Nature Publishing Group) doi: 10.1038/s41597-019-0247-7

Sorano, D., Carrara, F., Cintia, P., Falchi, F., & Pappalardo, L. (2020, July). Automatic Pass Annotation
from Soccer VideoStreams Based on Object Detection and LSTM. arXiv. Retrieved 2023-06-27, from http://
arxiv.org/abs/2007.06475 (arXiv:2007.06475 [cs])

Vidal-Codina, F., Evans, N., El Fakir, B., & Billingham, J. (2022, September). Automatic event detection
in football using tracking data. Sports Engineering, 25(1), 18. Retrieved 2023-03-07, from https://doi
.org/10.1007/s12283-022-00381-6 doi:10.1007/s12283-022-00381-6

Wenger, A. (2021, August). Football Language. Retrieved 2023-06-27, from https://
www.fifatrainingcentre.comwww.fifatrainingcentre.com/en/resources-tools/football

-language/index.php

Yu, J., Lei, A., & Hu, Y. (2019). Soccer Video Event Detection Based on Deep Learning. In I. Kom-
patsiaris, B. Huet, V. Mezaris, C. Gurrin, W.-H. Cheng, & S. Vrochidis (Eds.), MultiMedia Modeling
(Vol. 11296, pp. 377-389). Cham: Springer International Publishing. Retrieved 2022-11-07, from
http://link.springer.com/10.1007/978-3-030-05716-9_31 (Series Title: Lecture Notes in Com-
puter Science) doi: 10.1007/978-3-030-05716-9_31

48

https://proceedings.mlr.press/v32/hutter14.html
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179953
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179953
https://dl.acm.org/doi/10.1145/3377930.3389817
https://www.nature.com/articles/s41597-019-0247-7
http://arxiv.org/abs/2007.06475
http://arxiv.org/abs/2007.06475
https://doi.org/10.1007/s12283-022-00381-6
https://doi.org/10.1007/s12283-022-00381-6
https://www.fifatrainingcentre.comwww.fifatrainingcentre.com/en/resources-tools/football-language/index.php
https://www.fifatrainingcentre.comwww.fifatrainingcentre.com/en/resources-tools/football-language/index.php
https://www.fifatrainingcentre.comwww.fifatrainingcentre.com/en/resources-tools/football-language/index.php
http://link.springer.com/10.1007/978-3-030-05716-9_31

	Introduction
	Problem Statement
	Outline

	Related Work
	Data
	Event Data
	Tracking Data
	Data Preprocessing
	Coordinate system and pitch dimensions
	Synchronization of event and tracking data

	Definition of a pass
	Matches

	Methodology
	Rule-based approach
	Evaluation
	Hyperparameter optimization

	Deep learning
	Features
	Convolutional Neural Network
	Recurrent Neural Network

	Experiments & Results
	Evaluation
	Event time correction
	Rule-based model
	Hyperparameter optimization

	Deep Learning
	Convolutional Neural Network
	Long Short-Term Memory

	Comparison

	Discussion
	Rule-based system
	CNN
	LSTM
	Data quality

	Conclusion
	Event Types
	RNN Hyperparameter Optimization
	Dashboard
	References

