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Abstract

In solving real-world artificial intelligence problems, the significance of game-solving cannot
be overlooked. Many real-world problems have imperfect information elements. This makes
solving imperfect information games especially relevant. One such game is Klaverjas. Klaverjas
is a trick-taking game played with four players in teams of two. The objective of this game
is to collect as many points as possible by winning tricks. In this thesis, we introduce a
Klaverjas agent. Inspired by the remarkable success of AlphaZero in the realm of game-solving,
we have drawn inspiration from its methods and applied them to the development of our
Klaverjas agent. We did this to answer the question: How applicable are the techniques used
in AlphaZero to imperfect information games? We developed an agent using an imperfect
information variant of Monte Carlo tree search. We combined this with three different state
value estimators, i.e., a random rollout approach, a neural network approach trained on
human-generated data and a neural network approach trained on self-play data. We tested our
agents against a rule-based agent. The score we kept track of was the average point difference
per round. Against the rule-based agent, the random rollouts agent scored 55 points more
than its competitor, the human-data agent scored 50.5 more, and the self-play agent scored
45.8 more. We found that the Monte Carlo tree search variant is an effective approach for
solving Klaverjas.
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1 Introduction

Advancements in artificial intelligence have not only grabbed the attention of researchers but also
that of the general public. One area where artificial intelligence has shown remarkable progress
is in the realm of games. Games have long served as a benchmark for developing and evaluating
artificial intelligence algorithms. This is partially due to their well-defined rules, clear objectives,
and competitive nature. Through strategic decision-making, pattern recognition, and sophisticated
planning, artificial intelligence agents have been able to achieve superhuman performance in various
game environments [Tes95, CJH02, BBJT17]. The progress made by studying games enables the
development of algorithms that will scale to more complex, real-world problems.

One notable example of the advancements in artificial intelligence through games is AlphaGo.
This artificial intelligence agent defeated the world-renowned Go player Lee Sedol in 2016 [SHM+16].
Go is an ancient board game with a higher complexity than chess. The victory of AlphaGo over
Lee Sedol was a pivotal moment that showcased the power of artificial intelligence and its potential
to surpass humans in highly complex tasks. Building upon the success of AlphaGo, subsequent
advancements led to the development of AlphaZero [SSS+17, SHS+17]. Unlike its predecessor,
AlphaZero learns solely through self-play, without human-designed heuristics or domain-specific
knowledge. Surprisingly this simple approach achieved superior performance. The techniques used
in AlphaGo and AlphaZero that helped them become successful are the combinations of Monte
Carlo Tree Search (MCTS) and neural networks trained with reinforcement learning.

While the achievements of AlphaZero have undoubtedly pushed the boundaries of artificial
intelligence research, it is crucial to recognise the limitations of its approach. A limitation of
AlphaZero is its reliance on perfect information games. In perfect information games, all players
have complete knowledge of the game state. These games are thus well-suited for algorithmic
optimisation and analysis. However, most real-world problems do not have perfect information.
Real-world problems are often characterised by imperfect information [HS16], where players have
limited or incomplete knowledge of the environment. Because of this hidden information, the
decision-making process is more complicated. Therefore, advancements in artificial intelligence
research that focus on imperfect information would be beneficial to help solve these hard imperfect
information problems. In real-world scenarios, imperfect information problems are not the hardest
problems because we know what we do not know (known unknowns). There are also problems
in which we do not know what we do not know (unknown unknowns). Unknown unknowns can
have a high impact but are less common and harder to reason about. Because of this, we will
only focus on imperfect information (known unknowns). As AlphaZero has proven to be such a
successful technique, it would be interesting to see how well it would do in imperfect information
settings. In the past, this has not been that successful [BBLG20], but recently progress is being
made [BBLG20, BCK23]. To further test how applicable the techniques of AlphaZero are to
imperfect information games, we have applied them to the game of Klaverjas. Klaverjas is an
imperfect information game that is popular in the Netherlands. Despite its popularity there is
currently no human-level agent developed for it. This makes it an interesting game for our research.
Our goal was to develop an AlphaZero-inspired Klaverjas agent with the aim of optimal performance.
The primary research question we aimed to address was: How applicable are the techniques used
in AlphaZero to imperfect information games in particular Klaverjas? Additionally, we wanted to
identify what parts of AlphaZero contribute the most to our agent’s potential strength. Specifically,
the extent to which our agent’s efficacy stems from MCTS, neural networks, or reinforcement
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learning.
To answer these questions, we developed a Klaverjas agent that uses an imperfect infor-

mation variant of MCTS called single-observer information set Monte Carlo tree search (SO-
ISMCTS) [CPW12]. We combined this search algorithm with three different state value estimator
algorithms. We used a random rollout approach, a neural network approach trained on human-
generated data and a neural network approach trained on self-play data. This gave us three different
agents, which we will call rollout agent, human-data agent and self-play agent from now on. The
rollout agent works by randomly playing moves till the end of the round and taking the end score
as a value estimate. The neural networks try to predict the state value and have as input an
array representing the current state of the game from the perspective of one of the players. The
human-data agent trains this network solely on games played by humans. While the self-play agent
only uses games it played against itself to train its neural network.

To compare the performance of our agents, we let them play against a rule-based agent. In
addition to this, we also tested them against each other. By doing this we can see if the differences
in performance against the rule-based agent are good estimates of how good they would do when
playing directly against each other. In addition to this, we tested different exploration rates with
the rollout agent. We then used these optimised values for testing the other agents. Furthermore,
we test the effect of more searches and more rollouts on the performance and the compute time.
This way we have selected the most time-efficient method. We expected that the use of search
could create a decently performing agent but that for better performance we needed to use neural
networks.

Our thesis will be organised as follows. We will first look at some background knowledge in
Section 2. In this section, we take a look at related work and explain Klaverjas, MCTS, SO-ISMCTS,
reinforcement learning and two other Klaverjas agents. Then, our methods are explained in Section
3. This section explains the implementations of the SO-ISMCTS, the neural network, the self-play
agent, the human-data agent and the testing. After our results in Section 4, a discussion is provided
in Section 5. Next, the limitations and future work are discussed in Section 6. Finally, Section 7
concludes.

2 Background

This section contains an overview of related work and the required background knowledge. It
contains an explanation of related work on AlphaZero, Klaverjas, MCTS, reinforcement learning
and two other Klaverjas agents.

2.1 Related work

The techniques from AlphaZero have already been applied to a variety of imperfect information
games. In [BCK23], the use of perfect information Monte Carlo [LSBF10] was combined with a
similar value and policy network as in AlphaZero. This combination proved to be successful in the
games Stratego and DarkHex. Both games are two-player board games. Perfect information Monte
Carlo is similar to SO-ISMCTS as they both sample perfect information states from the imperfect
information state.

Another successful use of search and reinforcement learning is ReBeL [BBLG20]. ReBeL is

2



a general framework for self-play reinforcement learning. It uses counterfactual regret minimiza-
tion [ZJBP07, GBLS12, BLGS18] to search and also uses a policy and value network. This was
successful in heads-up no-limit Texas hold ’em poker a two-player card game that requires bidding.
Counterfactual regret minimization is a search algorithm used in game theory to find optimal
strategies in imperfect information games. It iteratively updates strategies based on regret values
and aims to minimise the overall regret of actions taken during gameplay. It requires complete
traversal of the game tree making it impractical for games with large state spaces without some
form of abstraction.

In [JLD+19], human expert level is reached for the game Doudizhu, a three-player bidding card
game. This is done using reinforcement learning combined with ISMCTS and using a policy-value
network that approximates the policy and value in each decision node.

There have not yet been many studies done on the game of Klaverjas. In [vRTV18], an exact
approach and a machine learning approach are compared to predict whether or not a combination
of hands is winning. This approach used perfect information, meaning that players could see the
other player’s hands. There have been studies done on other trick-taking games similar to Klaverjas.
For example, in [Gin01] expert-level agents were made for the game Bridge. Bridge is a popular
four-player trick-taking game. In [BLFS09] an expert-level agent was made for the game Skat. Skat
is a three-player trick-taking game. Both of these approaches only used perfect information Monte
Carlo.

2.2 Klaverjas

Klaverjas is a trick-taking card game. It is popular in Dutch-speaking regions and is played by four
players in teams of two. The four players are usually referred to as North, East, South, and West,
with North and South forming one team and East and West forming the other. It is important to
note that players are not allowed to communicate with their partners during gameplay. In Klaverjas,
cards 7 through Ace of the French card deck are used. A game of Klaverjas consists of multiple
rounds. At the beginning of each round, the 32 cards are distributed among the players, giving each
player eight cards. The objective of a round in Klaverjas is to score as many points as possible.

Before a new round begins, the trump suit has to be determined. Trump suit cards have a
special role in Klaverjas as they are worth more points and are stronger than normal cards. At the
start of the rounds, a pre-determined bidding procedure determines the trump suit. This procedure
can vary per game variant and is out of the scope of this thesis. If the declaring team fails to bring
in more than half of all the points all the points of that round will go to the opponent’s team. This
is called “nat”.

Once the trump suit is established, the starting player starts the first trick by playing a card
from their hand. The other players must follow this suit if they have a card of this suit. However, if
they do not have any cards of this suit, they must play a trump card if they have any. If a trump
card must be played and there has already been a trump card played, if possible, a higher trump
card must be played. In “Amsterdams” Klaverjas you do not have to play a trump card if your
partner is winning the trick. This exception does not count for “Rotterdams” Klaverjas. If a player
can’t follow suit nor play a trump card, any card can be played. After a card has been played, it is
the turn of the next player in the clockwise direction.

One trick consists of playing four cards, with each player contributing one card in order of
position. The player who plays the best card of the trick wins this trick and starts in the next one.
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Figure 1: An example of a Klaverjas trick that has 20 meld points for having three cards in a row.1

The best card is the highest trump card, or if no trump card has been played, the highest card of
the leading suit. The leading suit is the suit of the first played card. What cards are the highest,
and thus win over other cards, follows the same ranking as the point value of the cards. The value
and, thus, order of each card can be found in Table 1. The team of the winner of the trick receives
all the points in that trick. These points consist of the points of the cards and the so-called meld
points.

Regular Trump
A 11 J 20
10 10 9 14
K 4 A 11
Q 3 10 10
J 2 K 4
9 0 Q 3
8 0 8 0
7 0 7 0

Table 1: The value and order of cards in Klaverjas.

How meld points are earned will now be discussed. Winning the last trick will give you an
additional 10 points, and if the declaring team wins all eight tricks, they have obtained a so-called
“pit” and get an additional 100 points. Additionally, meld points can be obtained if a trick contains
cards following a specific pattern. For these patterns only the cards that have been played matter,
the order in which they are played does not matter. Tricks with three cards in a row (normal deck
order) are worth 20 extra meld points, tricks with four in a row 50, tricks containing the king and
queen of trump 20 and tricks containing four of the same face value 100. An example of a trick
with three cards in a row and thus 20 meld points can be seen in Figure 1. These extra meld points
make the game more interesting as it is no longer about getting as many valuable cards as possible
but also about winning extra points and not giving away any.

Once all eight tricks have been played, the round comes to an end. The typical goal of Klaverjas
is to as a team reach 1 500 points as quickly as possible or to get the most points after 16 rounds.

1Screenshot from: klaver.live
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To play Klaverjas effectively, players employ various strategies and tactics. Implicit communication
and teamwork between partners are crucial. Partners should develop a system of signalling and
understand each other’s card play to maximise their chances of winning tricks. Second, it is
important to keep track of the cards played so you know what cards are still in the game. Third, it
is important to note when a player is unable to follow suit as this means he can no longer have this
suit. Lastly, players should be mindful of choosing trump suits, as failing to win more than half the
points will result in losing all points.

2.3 MCTS

To be able to better understand the MCTS variant we used, we will first have a look at MCTS [Cou06,
KS06]. MCTS is a search algorithm that uses simulations and statistics to make optimal decisions
in decision-making processes or game-playing scenarios. It does this by building a tree structure
(the search tree). The nodes of this tree represent the state of the process and the edges represent
the action that takes you from one state to the next. The MCTS search starts at the root of the
tree, which represents the current state of the process. Subsequently, the following four steps are
repeated: selection, expansion, rollout and backpropagation. In Figure 2, these steps are presented
visually. One series of these four steps is called a simulation. One simulation adds one node to the
tree. These simulations are done until a budget is reached. This can be, for example, a maximum
number of simulations or a time limit.

Figure 2: The four steps of MCTS.2

1. In the selection step, the algorithm starts at the root of the tree. Child nodes are selected
repeatedly based on a particular selection policy usually, the upper confidence bound for trees
formula [KS06, Ros11]. This selection policy balances the exploration of nodes that have not
yet been visited often and the exploitation of nodes that have already received good results.
The selection of child nodes is done until a node is reached that is not yet completed. A node
is completed when all its child nodes are added to the tree.

2. In the expansion step, one of the child nodes not yet added to the tree is created and added
to the tree. If there is more than one child node that can be added, one of them is chosen at
random.

2Source: Wikipedia
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3. In the rollout step, a value estimate is determined for the node added in the expansion step.
To do this, from the added node, one or more paths are explored. The paths are selected
using a random policy or another simple policy. The path ends when a leaf node is reached.
At the end of the path, the value is determined. The value of the added node will be the
average of all the paths explored. The exploration of one of these paths is also called a rollout.

4. In the backpropagation step, the results of the rollout step are propagated back up the
tree. This is done following the path that was followed during the selection phase. For each
node, the statistics that are updated are the number of visits and the total value. The total
value is updated by adding the value of the rollout step.

2.4 SO-ISMCTS

SO-ISMCTS is an imperfect information variant of MCTS [CPW12]. In imperfect information
games, some information is hidden. This makes it impossible to know what exact state we are in.
We do know all the possible ways the hidden information can be filled in. In other words, we do
know all the exact states we can potentially be in. These exact states together make a so-called
information set. An information set is a collection of game states that a player can not differentiate
between. These states are all states the player could be in but because of the hidden information,
he does not know in which he is.

In each simulation, SO-ISMCTS does its version of the four MCTS steps. In addition to this, a
fifth step is done at the start of each simulation. This is the determinization step and this addresses
the problem of imperfect information. Determinization randomly samples one perfect information
state from the information set. This perfect information state will then be used to do the MCTS
steps.

In MCTS a node in the search tree represents a single state of the game or environment. In
SO-ISMCTS, however, nodes represent an information set. Each node can be uniquely identified by
the actions that were taken to get to this node. When traversing the tree, the selection, expansion
and rollout steps will only select nodes that are possible given the current determinization. As a
result of this, in each simulation, nodes can have different child nodes available, making some parts
of the tree inaccessible.

2.5 Reinforcement learning

Reinforcement learning is a form of machine learning in which an agent learns to make decisions by
interacting with an environment. The agent receives feedback in the form of rewards or punishments
for its actions, allowing it to learn through trial and error. It does this to maximise its long-term
cumulative reward. The goal is to find an optimal policy. A schematic representation of a typical
reinforcement learning framework can be seen in Figure 3.
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Figure 3: A typical framework of a reinforcement learning scenario.

The most simple form of reinforcement learning learns a policy or value for each possible
state. For environments with very large state spaces, this becomes problematic as no longer all
states can be stored. This can be solved by using function approximators instead. One of these
function approximators is using a neural network. Neural networks are especially powerful as
they can learn complex representations. The neural network takes the state as input and outputs
the estimated value or policy. Neural networks in combination with reinforcement learning are
called deep reinforcement learning. In deep reinforcement learning neural networks are trained
using techniques such as stochastic gradient descent and backpropagation, where the gradients are
calculated using a reinforcement learning algorithm, such as Q-learning [WD92, MKS+15] or policy
gradients [SMSM99].

2.6 Existing Klaverjas agents

In [Hor22], two agents for Klaverjas were developed. The first agent is rule-based. This agent plays
cards based on some simple rules. These rules can be seen in Figure 4. We will, from now on, refer
to this agent as the rule agent. We tested our agents directly against this agent.
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1: if first turn or second turn then
2: if Has highest card of cards still in the game of suit then
3: Play highest card
4: else
5: Play card with the lowest value
6: end if
7: else if third turn then
8: if Cant follow asked suit then
9: Play lowest card
10: else if Teammate played the highest card left of suit then
11: Play highest card
12: else
13: Play lowest card
14: end if
15: else
16: if Teammate is currently winning trick then
17: Play highest card
18: else if Has card that wins trick then
19: Play this card
20: else
21: Play lowest card
22: end if
23: end if

Figure 4: The pseudocode of the rule-based agent from [Hor22].

The second agent is a random forest [Bre01] agent. This agent uses 42 handmade features.
There are features created by evaluating the whole hand, features created by evaluating a single
card and features created by evaluating both. We were unable to test our agents directly against
this agent as we did not have access to the random forest model or all the code used to create it.
We can, however, use the results this agent got against the rule agent to estimate its performance.
The random forest scored on average 13 points more per round than the rule agent.

3 Implementation details

We made three different agents. All three agents use the same basis, the SO-ISMCTS algorithm.
To use this search algorithm we need to be able to play and reason over the game of Klaverjas.
To do this, all the rules and scoring systems of Klaverjas were implemented. In our Klaverjas
implementations, we always used the “Rotterdams” version.

When searching we need to estimate the value of a game state. Each agent does this differently.
The rollout agent uses the same random rollouts as in MCTS. The human-data agent and the
self-play agent both use a neural network that estimates the value of a game state. Both neural
networks have the same architecture but the human-data agent’s neural network is only trained
on data generated by humans while the self-play agent only uses data generated by self-play. To
test the performance of these methods, we set up a testing method. With this method, we can test
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against the rule agent as well as test different agents against each other. The neural network is
explained in Section 3.2 and 3.3, the data generation and training are explained in Section 3.4 and
3.5 and the testing of the agents is explained in Section 3.6.

For all our implementations, we used Python version 3.9.15. All the computational expensive
work was performed using the compute resources from the Academic Leiden Interdisciplinary
Cluster Environment (ALICE) provided by Leiden University.

3.1 SO-ISMCTS implementation

How the five steps of SO-ISMCTS are implemented will now be explained. This will be done from
the perspective of the player searching. The pseudocode of the algorithm we used can be found in
Algorithm 1.

3.1.1 Determinization step

SO-ISMCTS starts with determinization. A determinization is done for each new node added to
the tree. To do this in Klaverjas, a possible card distribution needs to be found for the hands of
the other players. When doing this, the other players need to receive the right amount of cards and
should not receive cards they could not have if they followed the rules. If, for example, a player has
been observed to be unable to follow a suit, this player cannot receive cards of this suit. To keep
track of these constraints, a list of cards is maintained for each player, which contains all the cards
that this player can still have. At the start of a round, this list contains all the cards not in the
hand of the searching player. As the round progresses, cards are removed from this list.

Even with the lists of possible cards finding a determinization is not that easy as every
determinization needs to be a random sample from the possible determinizations. Finding a
determinization in a short amount of time is especially challenging. Since assigning a card to the
wrong player can be hard to notice and doing so can make all subsequent the search unnecessary.
The search time of determinizations is important because one is done in each simulation, making it
directly proportional to the total search time. We developed an algorithm that was able to find this
determinization in a short amount of time. This algorithm can be seen in Algorithm 2.

The input of this algorithm consists of four lists. The first list is hands it contains three sets of
cards, one for each player. This is what we are trying to fill. All hands are empty at the start. The
second list is possible cards this contains the three sets of cards we have kept track of containing
the possible cards each player can still have. The third list is all cards this is a list of tuples. It
has a tuple for each card that still needs to be distributed. The first element of this tuple consists
of the card it represents. The second element is a list with the numbers of all the players that can
have these cards. The all cards list is created from the possible cards before the algorithm is
first called. The fourth list is num cards this contains an integer for each player representing how
many cards his hand still needs. The index of all these lists corresponds directly to their player
numbers. From the perspective of the searching player, player 0 is the player to the left of him,
player 1 is his teammate and player 2 is the player to the right of him.

3.1.2 MCTS steps

After the determinization, we can do normal MCTS steps. Starting with the selection step. In
this step, we keep going deeper into the tree by selecting child nodes using the following upper
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Algorithm 1 Finds the best move by searching the search tree using SO-ISMCTS.

1: function SO-ISMCTS(start state)
2: current state ← start state

3: current node ← new SO-ISMCTS Node()

4: for simulations iterations do
5: // Determination
6: current state.set determinization()

7: // Selection
8: while current state not terminal and current state has no legal moves that are not

in the children of current node do
9: current node ← current node.select child ucb(simulation)

10: current state.do move(current node.move)

11: end while
12: // Expansion
13: if current state not terminal then
14: current node = current node.expand()

15: current state.do move(current node.move)

16: end if
17: // Simulation
18: if current state not terminal then
19: sim score ← 0
20: for rollouts iterations do
21: // Do random moves with current state until round is complete
22: current state ← current state.random moves()

23: // Save the score
24: sim score ← sim score + current state.get score()

25: // Undo the random moves
26: current state ← current state.undo random moves()

27: end for
28: else
29: sim score = current state.get score()

30: end if
31: // Backpropagation
32: while current node.parent has a parent node do
33: current node.visits ← current node.visits + 1
34: current node.score ← current node.score + sim score

35: current node ← current node.parent

36: current state.undo move()

37: end while
38: current node.visits ← current node.visits ← + 1
39: current node.score ← current node.score + sim score

40: end for
41: return the child from current node with the most visits
42: end function
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Algorithm 2 Finds a determinization from all possible determinizations uniformly at random.

1: function find determinization(hands, possible cards, all cards, num cards)
2: if all cards == [] then // Base case if all cards are distributed
3: return True

4: else
5: stop ← False

6: all cards copy ← all cards

7: choose card from all cards copy uniformly at random
8: delete card from all cards copy

9: shuffle card[1]
10: for player in card[1] do // One by one try to give the card to one of the players
11: num cards[player] ← num cards[player] − 1
12: if num cards[player] < 0 then // Check if this player still needs a card
13: num cards[player] ← num cards[player] + 1
14: continue with next iteration in for loop
15: end if
16: for other player in card[1] do // Check if this card is not needed by other players
17: delete card[0] from possible cards[other player]
18: if length(possible cards[other player]) < num cards[other player] then
19: stop ← True

20: break from the for loop
21: end if
22: end for
23: if stop then
24: stop ← False

25: num cards[player] ← num cards[player] + 1
26: for other player in card[1] do
27: add card[0] to possible cards[other player]
28: end for
29: continue with next iteration in for loop
30: end if
31: add card[0] to hands[player]
32: if find determinization(hands, possible cards,

all cards copy, num cards) then
33: return True

34: end if
35: num cards[player] ← num cards[player] + 1
36: for other player in card[1] do
37: add card[0] to possible cards[other player]
38: end for
39: delete card[0] from hands[player]
40: end for
41: return False

42: end if
43: end function
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confidence bound formula:

A = argmaxa

 sa
na

+ C ∗
√
ln(N )

na

 .

Here argmax outputs node A from the set of possible child nodes such that it has the highest
score. A is the child node that will be selected, sa is the total score of node a, na is the number
of visits of node a, N is the number of simulations already done and C is the exploration rate.
This C value balances between the left part of the formula that tells us what we already know
(exploitation) and the right part that tells us the potential the node still has (explorations). In
our implementations, the C value ranges between 3 and 204 800. Selection is done until, given the
current determinization, a node is reached that has a child node that has not yet been added to
the tree or until we reach a terminal node (game complete).

After this, we do the expansion. This is only done if we do not reach a terminal node in the
selection. In the expansion step, we add a child node to the node reached in the selection step.
This node has to represent a move that is not already a child node and is legal given the current
determinization. If there are multiple options, one of these is chosen at random.

In the evaluation step, we need to determine the value of the node that was just added. To
do this, we have two options: we can use a certain number of random rollouts, or we can evaluate
the state of the node using a neural network. What this neural network looks like and how it is
trained is explained in Section 3.2, 3.3, 3.4 and 3.5. When the rollouts reach the end of a round the
difference between the scores of the two teams is used as the value. If multiple rollouts are done the
average of these values is used.

After this, we do the backpropagation step. This is done by adding the value of our expanded
node to all the nodes in our action trace. These are all the nodes we visited to get to the added
node. These five steps are repeated until the search budget is reached. If this is reached, we see
what child node from the root node has the highest visit count and select this node as the best
move.

3.2 Input representation neural network

We have implemented a neural network to evaluate the value of a given state from a specific player’s
perspective. This player we will call the original player. This network will get a state representation
as input and will try to predict the difference between the end scores of the Klaverjas round.

We represent the game state as an array of 299 float16 values. This array consists of two parts,
a part placing every card in a (potential) position and a part giving extra information about the
state. The first part can be seen as a flattened 2D array that has 32 rows and nine columns. Each
row represents a card, and each column a possible card position. An example of this can be seen
in Table 2. Column one represents the player’s hand, columns two, three and four represent the
other players in clockwise order; columns five, six, seven and eight are the centre positions starting
from the player’s position and continuing in clockwise order, and column nine is for cards already
played in a previous trick. The row’s first seven cards are always the trump cards from 7 through
ace, with the other suits coming after that in random order but also going from 7 through ace. The
position of the players is always from the perspective of the original player and the trump cards
are always first because then similar games are not represented differently. The second part of the
array consists of the following 11 values:
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trump 7 0 0 0 0 0 0 0 0 1
trump 8 0 0 0 0 0 0 0 0 1
trump 9 0 0 0 0 0 0 0 0 1
trump 10 0 0 0 0 0 0 0 0 1
trump jack 0 0 0 0 0 0 0 0 1
trump queen 0 0 0 0 0 0 0 0 1
trump king 0 0 0 0 0 0 0 0 1
trump ace 0 0 1 0 0 0 0 0 0
not trump1 7 0 0 0 0 0 0 0 0 1
not trump1 8 0 1

3
1
3

1
3

0 0 0 0 0
not trump1 9 0 1

3
1
3

1
3

0 0 0 0 0
not trump1 10 0 1

3
1
3

1
3

0 0 0 0 0
not trump1 jack 1 0 0 0 0 0 0 0 0
not trump1 queen 0 0 0 0 0 0 0 1 0
not trump1 king 0 0 0 0 0 0 1 0 0
not trump1 ace 0 0 0 0 0 0 0 0 1
not trump2 7 0 1

3
1
3

1
3

0 0 0 0 0
not trump2 8 0 1

3
1
3

1
3

0 0 0 0 0
not trump2 9 0 0 0 0 0 0 0 0 1
not trump2 10 1 0 0 0 0 0 0 0 0
not trump2 jack 0 1

3
1
3

1
3

0 0 0 0 0
not trump2 queen 1 0 0 0 0 0 0 0 0
not trump2 king 0 1

3
1
3

1
3

0 0 0 0 0
not trump2 ace 1 0 0 0 0 0 0 0 0
not trump3 7 0 1

3
1
3

1
3

0 0 0 0 0
not trump3 8 0 1

3
1
3

1
3

0 0 0 0 0
not trump3 9 0 0 0 0 0 0 0 0 1
not trump3 10 0 0 0 0 0 0 0 0 1
not trump3 jack 0 0 0 0 0 0 0 0 1
not trump3 queen 0 0 0 0 0 0 0 0 1
not trump3 king 0 0 0 0 0 0 0 0 1
not trump3 ace 0 0 0 0 0 0 0 0 1

Table 2: Example of the first part of the array representation we use with our neural network. In
this part all cards in the game are given a probability of being in a certain position.
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• 4 values that represent the one hot encoded starting player,

• 4 values that represent the one hot encoded current player,

• 1 value that represents a Boolean value for whether the original player is in the declaring
team or not,

• 2 values contain the current scores for each team with the first value being the score of the
original player’s team.

The one-hot encoded arrays are from the perspective of the original player. This means the first
value represents himself, the second value represents the player left of him, the third opposite of
him and the fourth right of him.

3.3 Neural network configuration

The neural network itself is a Sequential model from Tenserflow’s Keras. It consists of the following
layers:

1. a dense layer with 1 024 nodes and rectified linear unit as activation function,

2. a dense layer with 512 nodes and rectified linear unit as activation function,

3. a dense layer with 128 nodes and rectified linear unit as activation function,

4. a dense layer with 16 nodes and rectified linear unit as activation function,

5. a dense layer with 1 node and rectified linear unit as activation function.

Adam was used as the optimiser, and the mean squared error was used as the loss metric.

3.4 Self-play agent

The training of the neural network consists generation of the training data using self-play and
the training of the neural network. These two steps (one cycle) are repeated until the neural
network stops improving. The performance of the neural network is tracked by testing it against
the rule-based agent and tracking the score difference. This is done every 20 cycles. We only do
this every 20 cycles to prevent spending too much time measuring the loss. We test the network
using the test described in section 3.6. The two steps will now be explained.

Self-play is the longest of the two steps. Because of this, we did this step in parallel. Each cycle
we did 60 self-play rounds. We divided these rounds between the multiple processes and started doing
self-play with each process. For each round, we initialise a random starting configuration. We choose
a random starting player, suit and declaring team. After this, we let each player determine what
card they want to play and save that player’s perspective of the game to an array representation.
When the game is finished, all array representations get paired with the difference between the final
scores of the two teams. These values then become the training data, with the array representations
being the input and the scores the output. All the training data of all the processes are concatenated
and added to a buffer. This so-called replay buffer contains If the size of this buffer exceeds 43 200
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training pairs, the last added data pairs are removed so the size stays within this maximum. After
this, we are ready for the train step.

In the training step, we train the neural network on a subset of training data in the replay
buffer. The size of this training data is the same as the amount of data generated by one self-play
step. The data is then randomly sampled from the replay buffer. To train the network, we use the
fit function with a learning rate of 0.01. After 50 training cycles, the learning rate was lowered to
0.001. We use 1 epoch and a batch size of 2 048.

3.5 Human-data agent

All the data that was used to train the human-data agent was provided by [Kon]. This is a website
where everyone can play online games of Klaverjas. The data set consisted of 87 218 rounds of
Klaverjas played by humans. These rounds contained all the information needed to know how a
round went. From each of these rounds, we have 33 different game states, one for each card played
and one for the start of the round. For each of these game states, we have four perspectives on the
game, one for each player. This provided us with a total of 87 218 ∗ 33 ∗ 4 = 11 512 776 perspectives.
These perspectives were transformed into the array representation for our neural network. These
array representations together with the score difference of the outcome of the games become the
training data.

With this training data, the same neural network as explained in Section 3.2 and 3.3 was
trained. This was done by first splitting the data in a train and test set, with 10% of the data going
to the test set. When training a batch size of 2 048 was used. The training was stopped once an
epoch had a lower validation loss (loss on the test set) than that of the previous epoch.

3.6 Experimental environment

To benchmark our agents and neural networks, an experimental environment was developed. In
this environment, different agents can play against each other. In all the tests we did, there were
always two agents of the same type in a team. To keep testing more consistent, tests were always
done on the same initial game configuration. In addition to this, all rounds were done twice, once
normal and once with the starting cards and declaring team switched between the teams. This was
done to even out imbalances in the starting configuration. The starting configurations of the rounds
are from the same dataset as the human-data agent was trained on. These starting configurations
contain the starting cards, the declaring team and the These configurations are more realistic than
random ones because humans have chosen if they want their team to be the declaring team by
choosing a trump suit. Most of the tests done were against the rule agent described in Section
2.6. When testing, two metrics were kept track of. The difference between the scores of the two
teams for each round and the time it takes a player to find a move. With the score differences, the
average score difference can be determined, as well as the estimated standard error of this average
se = s/

√
n, where s is the score difference standard deviation and n is the number of rounds. With

this value, the 95% confidence interval can be determined.
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4 Results

In this section, we present the results of our experiments. In Section 4.1 the results of using different
amounts of exploration (C values) and simulations for the rollout agent are presented. In Section
4.2 results of our three agents are compared. To clarify, the number of simulations is the number of
nodes added to the search tree and can be seen as the search budget. The results of using different
amounts of rollouts and simulations on computation time are presented in Section 4.3. In Section
4.4 the results of different amounts of self-play time are presented. In these sections, results are
shown using the score difference. This is the difference in scores between the two teams at the
end of a round. This score difference is always an average over multiple rounds and is from the
perspective of the agent that is tested. Thus a positive score means the agent scores more points
than its opponent.

4.1 Different amounts of exploration and simulations

Figure 5: This figure shows the average score difference of the rollout agent versus the rule agent.
It does this for different exploration rates (C values) and different tree depths (simulations). The
bar around the lines shows the 95% confidence interval of the score averages. The exact C values
that were tested are 3, 10, 50, 200, 800, 3 200, 12 800, 51 200 and 204 800.
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Simulations 10 50 200 800 3 200
Standard error 1.3 1.3 1.3 1.8 2.3

Rounds 10 000 10 000 10 000 5 000 3 000

Table 3: The table shows the details of the data points in Figure 5. It shows the standard error
and the number of rounds done for each simulation amount.

We wanted to find out what the effect of deeper search was on the performance of our rollout agent.
We also wanted to find out what the effect of different exploration rates was so we could use these
values to test the much more computationally expensive agents with neural networks. To do this,
we tested this agent against the rule agent. All the tests were done with one random rollout per
simulation. For each amount of simulation, we tested different exploration rates until we found the
optimum. The result of these tests can be seen in Figure 5. The standard error and the number
of rounds done for each amount of simulations can be seen in Table 3. We found that with ten
simulations, the best exploration rate is around 50, with a best score of 4. With 50 simulations, the
best exploration rate is 800, although 200 also performs well. This setup scores around 29 points.
With 200 simulations, the best exploration rate is around 200, with a score of 45.6. With 800
simulations, the 200, 800, 3 200, and 12 800 are all very close, having a score of around 54.5 points.
With 3 200 simulations, the best exploration rate seems to be 200, although the large confidence
interval makes this less clear. 3 200 simulations get a best score of 61.5. With most of these settings,
the rollout agents outperform the random forest agent 2.6, which got a score of 13 against the
rule agent. Lastly, we can see that an exploration rate of 200 performs well for all numbers of
simulations.
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4.2 Comparing the three agents

Figure 6: This figure shows the effect of more simulations on the average score difference against
the rule agent. The rollout agent has one random rollout per simulation. The bar around the lines
shows the 95% confidence interval of the score averages.

Simulations 10 50 200 800 3 200
Human-data 10 000 - 1.3 10 000 - 1.3 10 000 - 1.3 3 000 - 1.3 1 000 - 2.3
Self-play 10 000 - 1.3 10 000 - 1.3 5 000 - 1.8 3 000 - 2.3 1 000 - 4

Table 4: This table shows details of the data points in Figure 6. It first shows the number of rounds
done and then the standard error for each agent. It does this for different agents and different
numbers of simulations (search budget).

Simulations 10 50 200 800 3 200
C value 50 200 800 3 200 12 800

Table 5: This table shows the C value (exploration rate) for the data points in Figure 6.

To see the individual performance, to compare and to see the effect of a deeper search of the three
different agents we made, we tested them against the rule agent.

The results of these tests can be seen in Figure 6 and the test details can be seen in Table
4. In this figure, we can see that increasing the number of simulations increases the score for all
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the agents. This effect becomes less the more simulations are done. We can also see that with low
amounts of simulation, the agents with neural networks outperform the rollout agent. At higher
amounts of simulations, the rollout agent is better. For the self-play agent, this switch point is at
around 17 simulations. For the human-data agent, this is around 110 simulations. The performance
of the human-data agent and the self-play agent grows at about the same rate, but the human-data
agent outperforms the self-play agent consistently with around 8 points.

To test if these performance differences would hold up in a heads-on competition we tested the
agents directly against each other. We did this using 10 and 200 simulations. Ten thousand rounds
were used for each test giving us a standard error of 1.3 for all of them. The rollout agent used one
random rollout per simulation. The results of these tests can be seen in Table 6.

Agents \ Simulations 10 200
Rollout vs Human-data -3.5 3.9
Rollout vs Self-play -2.9 13.1
Human-data vs Self-play -0.2 5.9

Table 6: This table shows the average score difference when our three agents play directly against
each other. The score is from the perspective of the first agent, meaning that positive values are in
its favour and vice versa. The rollout agent uses one random rollout per simulation (search budget).

We can look at the difference in score difference against the rule agent and see if they are
similar to the heads on score differences. To do this we have put the difference in score difference
from Figure 6 in Table 7. The difference between Table 6 and 7 is thus that the first table shows the
direct score difference while the second table shows the difference in score difference when playing
against the rule agent.

Agents \ Simulations 10 200
Rollout vs Human-data -1.3 1.2
Rollout vs Self-play -4.9 9.1
Human-data vs Self-play 5.4 7.9

Table 7: This table shows the score difference of the average score difference of each agent against
the rule agent. The scores are from the perspective of the first agent, meaning that positive values
are in its favour and vice versa.

When comparing these two tables, we can see that they match quite well. What can be noticed
is that with ten simulations, the performance of the two neural network agents is identical when
playing against each other, but the human-data agents score more points than the self-play agent
against the rule agent. This effect can, however, not be seen in 200 simulations.
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4.3 Time efficiency

Figure 7: This figure shows the time efficiency of different agents and agent settings. The score is
the average score difference against the rule agent. The numbers on the line represent either the
number of simulations (blue, orange and green lines) or the number of random rollouts (red line).
The bar around the lines shows the 95% confidence interval of the score averages.

To see the effect of increasing the number of simulations and using neural networks on the time it
takes to come up with a move, we measured how long different agent configurations took to come
up with a move while testing against the rule agent. When the rollout agent is tested with different
simulations, one random rollout is used, and when its random rollouts are tested, ten simulations
are used. The result of this can be seen in Figure 7. We found that using extra random rollouts
does increase performance but not as much as increasing the number of simulations. We also found
that using the neural network made finding a move take around eight times longer. This can be
seen in Figure 7 because for the same number of simulations, the points of the neural network
agents lie about eight times to the right of those of the rollout agent.
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4.4 Training the self-play agent

Figure 8: This figure shows the learning curve of the self-play agent when training on self-play
data. The score is the average score difference against the rule agent, with each agent having ten
simulations (search budget) per move. The bar around the lines shows the 95% confidence interval
of the score averages.

To see the effect of the training times of the self-play agent on its performance, we tested this agent
while training. This was again done against the rule agent with 10 000 rounds per test, resulting in
a standard error of 1.3. The result of these tests can be seen in Figure 8. We found that at the start
of the training, the score increased very fast. After this, the score levels off and even decreases.

5 Discussion

The number of simulations that are done is the number of nodes that are added to the search tree
using the 5 steps of SO-ISMCTS. This can be seen as the search budget. We have seen that more
of these simulations increase the score against the rule agents in a much more time-efficient manner
than increasing the number of random rollouts. This can be explained by the fact that each node
that is added with an extra simulation will also do extra random rollouts. This rollout will, however,
be in an unexplored node and a different determinization, thus providing more new information.

We also found that more simulations allow for more exploration to be done, although the
optimal exploration rate seems to stay around a C value of 200. This is expected as extra simulation
allows for more time to find interesting nodes, thus reducing the need to exploit the current best.
Although an optimal upper confidence bound C value of 200 seems high compared to optima found
in other situations, the scoring system of Klaverjas needs to be taken into account. In Klaverjas,
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the outcome of a game is not just 1, 0 or -1 for a win, draw or loss but a score that can go up to
300. The left side of the upper confidence bound formula uses the score and is thus much larger
than the right side which uses the visit count. Thus the C value needs to be large to compensate
for this. We can undo this meaningless increase of the C value by normalising it. This is done by
dividing the C value of 200 with a typical maximum score of 162. This results in a C value of 1.25.
This comes close to the typical default C value of 1.41. Thus supporting the fact that 1.41 is a
good default value.

We also found that with low amounts of simulations, the rollout agent performs the worst,
followed by the self-play agent and then the human-data agent. At high amounts of simulation, the
random rollouts outperform the neural networks. We think this is the case because search, in this
case, random search, is less effective when faced with large search trees compared to estimates of
neural networks. This is because, in larger trees, leaf nodes are less correlated to the root node.
Because the probability that a leaf node is a node that will eventually be reached is smaller. More
simulations would result in smaller trees because more simulations result in deeper search trees.
Thus reaching further into to total tree, making the search tree left for the random rollouts closer
to the end and thus smaller. This finding that, search is less effective when faced with large search
trees compared to estimates of neural networks, supports the finding that hard-to-search (large
search tree) instances of Klaverjas are the instances on which a machine learning approach (neural
network) classified correctly [vRTV18].

In terms of performance, we found that all three agents were able to beat the rule agent with a
large score difference. Especially, our rollout agent performed beyond our expectations. We thought
it might be able to score a similar amount of points as the random forest, but it turned out it could
do far better than that, reaching a score of 61.5, even doing this in a time-efficient manner. This
score of 61.5 is very high, especially when compared to the random forest agent. This suggests that
our agent is a large step forward compared to the previous best agent, the random forest agent. It
might also perform well against some better opponents, such as humans.

We did not expect the rollout agent to perform so much better than the self-play agent and
the human-data agent. We knew that finding the right setup for training a neural network using
reinforcement learning could be tricky, but we did expect it to beat one random rollout if it had
enough simulations and exploration.

The fact that the human-data agent outperformed the self-play agent is also interesting and
surprising. This is surprising because AlphaZero uses pure self-play while AlphaGo also uses
human-play data but, AlphaZero is stronger than AlphaGo. Furthermore, we can learn that the
limited performance of our self-play agent was not caused by reaching the maximum performance
of our state representation or neural network. It was caused by the quality of the self-play data
since the training and the neural network were the same. To improve the quality of the data we
tried more exploration in the search, more simulations, regularization in the neural networks, added
randomness when doing moves, bigger neural networks, longer training and using data from rollout
agents playing each other. However, these things did not increase performance by much or at
all. For the data to be of high quality it needs to have a large variation of game states and the
games must be played by as strong as possible players so it has the most accurate y value. The
reason our self-play approach did not perform as well as the human-data approach is that we were
unable to make both of these things better than in the human-data approach. Since when we added
randomness to the moves the quality of the moves got lower.

Our findings imply that search is still very important when solving imperfect information
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games. And although the results from the neural network value function instead of the rollouts are
promising, they were unable to live up to the expectations.

6 Limitations and future work

We will now list some limitations of our work and suggest ways to continue in future work.

• To see how our agents perform, it is not enough to only test them against a simple rule-based
agent. It is a good indicator of performance, but beating it with a large score difference does
not mean that it is a strong agent. In future work, this can be improved by not only testing
against the rule agent but also against humans or other strong opponents.

• In our testing, we did not incorporate the bidding process that is part of Klaverjas. This is,
however, not an insignificant part of the game, as being able to pick a trump suit at the right
time will increase your chances of winning.

• In Klaverjas, knowing the strategy of your opponent or even teammate is valuable information.
If you know in what situations a player would play a move, you can gather information about
cards they have or do not have. This information can then be used to optimise your strategy.
AlphaZero does take this into account by using a policy network. We however were unable to
implement this as our state representation does not take the current determinization into
account. Making a network policy network not feasible. In future work policy network or
another technique can be used to solve this issue. By doing this the search can be directed
to actions the opponent is most likely to play. Another way this issue can be avoided is by
implementing an upgraded version of SO-ISMCTS called Multiple Observers Information Set
Monte Carlo Tree Search [CPW12]. This technique does not only search over a tree from the
player’s perspective but also trees from the perspective of the other players. Another variant of
ISMCTS that takes into account the strategy of the other players is Semi-Determinized Monte
Carlo Tree Search [BK17]. This approach utilises a predictive model of the unobservable
portion of the opponent’s actions.

• After we have done MCTS, the search tree is thrown away. Although at the next turn, only a
small portion of this tree could be reused, it would still increase the speed of finding a move.

• As our self-play agent did not reach the same performance as the human-data agent, more
ways can be tried to improve it. Hyperparameters can be further optimised, new training
techniques can be implemented, or longer training times can be tested.

• In future work some completely other techniques can be tried to create an even stronger
Klaverjas agent. Let’s take a look at some of the most promising techniques. First, the most
promising technique is counterfactual regret. This technique has proven to be highly effective
in imperfect information games, such as poker [ZJBP07, BBJT17]. Counterfactual regret tries
to minimise regret by iterating over an abstracted game tree. With this, it can find a Nash
equilibrium for very large game instances. Another technique is the use of perfect information
Monte Carlo. This has proven successful in the games Stratego and DarkHex [BCK23].
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7 Conclusion

We have developed a Klaverjas agent using SO-ISMCTS as the search algorithm. We combined
this with three different state value estimators, i.e., a random rollout approach, a neural network
approach trained on human-generated data and a neural network approach trained on self-play
data. The agents were tested against a rule-based agent. All agents were able to beat this agent
with the random rollouts agent performing the best and the self-play agent performing the worst.

We have shown that the techniques used in AlphaZero can successfully be applied to imperfect
information games. We found that applying these techniques results in a good Klaverjas agent
that can outperform a rule-based agent. It does this better than a previously developed agent. We
also found that SO-ISMCTS with random rollouts was very successful while using neural networks
is less effective. Furthermore, we found that neural networks are better than random rollouts at
predicting state values in states far from the end. While in states close to the end random rollouts
are better. With these findings, progress is made in developing a good Klaverjas agent. Progress is
also made in the development of techniques used for solving imperfect information games. These
techniques can in turn be used for solving real-world problems.
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Appendix

Link to the code base: https://github.com/Bart-Aaldering/Thesis

Usage of ChatGPT

In the writing of this thesis, ChatGPT was used in the following ways.

• ChatGPT was used to create a better understanding of certain topics by asking it to explain
them. If I did not find the answers useful or believable I looked for the information I needed
somewhere else. I used the information I learned to write about the topics.

• I also used ChatGPT to find flaws in the text I wrote or ideas I had. For example flaws
in, grammar, the accuracy of facts, and completeness of a topic or flow. I asked it what it
thought of sentences or paragraphs I had written, and used the feedback it gave to correct
things where I saw fit.

• I used ChatGPT to rewrite drafts of paragraphs I made in Dutch to English. These formed
the first draft of a paragraph. In many iterations, these paragraphs were then adjusted to fit
in with the changing text around them and convey the meaning I intended using my own
words. This way of using ChatGPT was only used on a few occasions at the start of the
writing process.

Although ChatGPT proved useful in some areas, it was not used in the vast majority of the writing
process.
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