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Abstract

The Global Positioning System (GPS) is used for location determination in large-scale
environments. This includes navigation of cars and other mobile vehicles. More recently is
the application of GPS in small-scale environments. In small-scale environments, GPS is, for
example, used in sports, health care, location supportive services, and agriculture. However,
for GPS to be used in these small-scale environments like a sports field, the accuracy has to be
very high, with an accuracy of around 1 meter. This study aims to design an algorithm that
corrects GPS coordinates in small-scaled environments. In the study, data were collected in
four different locations to measure the influence of these environments on the accuracy of GPS.
GPS coordinates are collected using smartwatches. An algorithm computes the corrections for
the GPS coordinates by use of smartwatches as GPS beacons that are located continuously
in a predetermined position. These beacons are identical smartwatches, as the watch that is
moving and needs correction. Because the locations of the beacons are known, we can calculate
the error of each beacon for every moment in time. These errors are used as corrections
applied to the trajectory a moving watch followed to gain a more accurate positioning. In
this study, two different algorithms are developed: the first algorithm calculates the distance
to each beacon between the moving smartwatch. It corrects the followed trajectory based
on the nearest beacon’s error. The second algorithm is a learning algorithm that predicts
the corrected location based on all beacon errors and the GPS coordinates of the moving
smartwatch. This method used an Ultra Wide Band (UWB) system as ground truth. Therefore
it was possible to compare the measured GPS with the UWB and find the best possible
correction. This method led to a low mean average percentage error, and low root mean
squared error computed from a straight-line trajectory between the corrected trajectory of the
moving smartwatch and the ground truth measured with a UWB-tag. We claim carefully that
with a learning algorithm, there is an indication that it is possible to refine the positioning of
moving GPS receivers based on GPS beacons of which the GPS location is precisely known.
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1 Introduction & Background

Over the last decades, the Global Positioning System (GPS) applicability evolved from only space
and military to civilian use such as navigation with smartphones and GPS receivers build in cars.
This broad introduction in different sectors made it low-cost, and lightweight [gps20]. Since a
number of years now, GPS is used for localization and tracking in small-scale environments for
different applications: areas of around 500 m2. One of the many problems in these small areas is
the too low accuracy of GPS, which is usually around 4 to 10 meters.
An application where high accurate GPS is needed can be found in the domain of agriculture. The
so-called satellite farming [far21] is used to compute a very accurate location for the tractor. This
way, the minimum distance between seeds can be calculated, and the number of seeds used in a
field can be maximized.
A second application can be found in sports. In professional sports, every small detail can give you
an advantage compared with your opponent. GPS can give such an advantage. In many outdoor
sports, GPS sensors are used to track motion. GPS is used to determine position, but we can
calculate speed and distance traveled by having the position. Taylor [Tay17] gathered data about
the game intensity of players to make a better estimation for recovery time.
A third application is found in the observation of the ground vegetation in mountain bike trails
[SK17]. Here GPS tracks of smartphones are used to find frequently used bike trails. Small-scale
mapping confirmed that widely used trails, widen the path trail.
The next subsection will explain the factors of current GPS which causes its low accuracy, since we
need to understand how GPS works to improve its accuracy.

1.1 GPS system

This section is divided into two parts: the first part explains how GPS works, and the second part
will talk about the flaws of GPS.
The Global Positioning System, commonly known as GPS, is a satellite-based navigation system
that can determine the position by sending out signals to a receiver. The receiver must be in the
line of sight of at least three or four different satellites before it can compute a position. Three of
these satellites are used for the location, and one is used to correct the receiver’s clock error. The
satellites orbit in an accurate path around the earth.
Several countries launched Global Positioning Systems. The European Union has Galileo, which
went live in 2016. The Chinese government has launched Beidou as their GPS system, and many
more systems are now active. All of these systems have at least 24 satellites. These satellites work
together to establish an exact position on the ground. A basic GPS system contains three elements.
The first element are the satellites. These hover around the globe in an exact orbit. At least three
different satellites are needed to compute a location. Figure 1 shows that these satellites are needed
to calculate three distances to the GPS receiver. Three different colored circles show the three
distances. The area surrounded around the intersections of the circles corresponds to the required
position.
The second element is the Ground Control or Control Segment responsible for monitoring the
satellites, their orbit routine, and their clock. When an error occurs in a satellite clock, Ground
Control will send a time-correction message to the satellite to correct its time.
The third element are the GPS receivers which process GPS signals from several satellites (also
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Figure 1: GPS works with at least three satellites to compute a position [NT09].

from different types of GPS systems). Nowadays, watches, cars, smartphones, and many more are
equipped with these receivers. In this study, the Samsung Gear Fit 2 Pro is used as the receiver,
more on this device in section 3.
Some errors can occur when calculating a position with a GPS. Below are three different types of
errors: atmospheric events, errors in the satellite/ receiver, and the multi-path error.

Atmospheric errors is divided into two effects: the tropospheric effect and the ionospheric effect.
The troposphere is the layer that is closest to earth. The troposphere is refractive for electro-
magnetic wave fields. The refraction of a GPS satellite’s signal is independent to its frequency.
The refraction results in a delay in the arrival of a GPS satellite’s signal. It can also be seen as an
additional distance to the true distance between receiver and the satellite [SD]. The refraction of
the signal is shown in the figure below [MRU22].

Figure 2: GPS signal gets refracted in the troposphere [MRU22]

Next is the ionospheric effect. The ionosphere is the layer above the troposphere. A GPS signal
travels through the ionosphere and gets delayed due to free ions. These ions are created by the
ultraviolet light of the sun. Therefore the density of the ions in the layer changes through time.
Because the density of the ions changes, the delay of the signal traveling through will also change
with time, the peak of error will occur at around 2 PM. Another variable that plays a role in
the delay in the ionospheric layer is the distance that needs to be traveled through. A satellite
above the receiver will have a shorter signal path than a satellite on the horizon. Because the path
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traveled in this example is longer, the signal is more sensitive to distortions [SD].

Satellite errors are not caused by the environment or the layers around the earth. These errors
occur in the satellite clock or the satellite position. First is the satellite clock. The GPS can compile
locations because the time of a sent signal and time of received are compared. The clock in a
satellite is atomic and thus very accurate. However, even this type of clock makes tiny mistakes.
According to [BRLK14] a clock error varying from −0.00014192 to −0.00014194 seconds lead to a
x-coordinate error between 17.02 and −5.939 meters. The errors for y and z were 2.973 to 63.89
and −235.8 to −218.1 meters. Nowadays, these errors are more compensated for. Due to software,
the error has now been reduced to an average of 2 meters [Nov15]. Then there is the orbit error.
This error occurs due to a false estimation of the satellite’s location. Whenever a slight variation in
orbits occurs, the ground control station will send a correction to the satellite. Nowadays, these
errors result in a 2.5 meters position error [Nov15].

Multipath distortion occurs when a signal of GPS reflects on any substance. The actual error
results from two different signals that have traveled paths of different lengths [KMP10]. As said
before, GPS calculates the position by combining the lengths of multiple signals sent from the
satellites to the receiver. When a signal reflects on an object, it takes a longer path to the receiver.
This way, the system determines the position with a longer path; thus, a false position will be
given as output. The multipath effect is surrounding dependent, meaning that it will only occur in
situations when the receiver is surrounded by an object reflecting the signal. Below is an image
explaining the multipath effect [KRK13a].

Figure 3: How the multipath effect works [KRK13b].
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Table 1: Overview of errors [KEN18].

Error Error in m
Ionospheric effects 5 m
Troposphere effects 2.5 till 25 m
Satellite clock error 2 m
Ephemeris error(orbit error) 2 m
Multipath error Up to 100 m in worst case

Table 1 summarizes all the previously explained errors and combines the impact they have on
the accuracy of GPS. The table also shows the range of the errors in meters. All errors above
come along when using GPS, except for the multipath error. The multipath error depends on the
environment the receiver resides. While all these errors occur when using GPS, it should be possible
to correct the errors in the same location.

1.2 Research questions and scope

We know that GPS gives an accurate indication of location on larger scales. However, in small-scale
environments, it lacks accuracy. This leads to the following research question: How can GPS
positioning be refined in small-scale environments? This question will be answered by looking at
the following sub-questions:

• Which environment and conditions causes the largest errors?

• How do the created algorithms perform?

• Gives an algorithm based on learning from ground truth data a more accurate prediction of
the true GPS?

• Are moving watches more accurate than watches that lay motionless on the ground?

1.3 Definitions of terms

During this study some terms will frequently be used.

• Beacon - Still laying smartwatch with predetermined location.

• Moving watch - Smartwatch that follows a fixed trajectory.

1.4 Thesis overview

First, previously done academic work will be discussed in Section 2. This contains methods of
correcting GPS in different settings. Then in Section 3 the data and functionality of the developed
algorithms will be described. The information and setup about all the experiments will be found
in Section 3. The results and the limitations of these experiments will be discussed in Section 5.
Section 6 provides a conclusion and will make suggestions for further research.
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2 Related work

In this section, we describe related work for correcting GPS errors. This section is subdivided into
beacon-based, map matching, multipath correction, and Kalman filtering methods.

2.1 Beacon based correction methods

In this section, we describe a number of use cases with beacons. The first and most comparable
case to this study is outdoor correction, and the next is indoor usage of beacon corrections.

2.1.1 Outdoor corrections

Nirupama Bulusu et al. used two radio-frequencies (RF) to conduct outdoor localization. The first
was using the signal strength to compute the location. The second was used to built on connectivity.
This means that a connection will be made with a beacon when the position is in range. A location
is determined based on all connections made. They found out that the connectivity approach has
real potential in determining outdoor positioning. They used beacons which all had an 8.94 m
signal connectivity [BHE00]. Their setup is shown in figure 4.

Figure 4: Setup connectivity experiment [BHE00].

We see four different lines. Each line represents the range of one beacon. By combining these lines,
a grid is formed. In each area enclosed by different lines, there is a connection with all beacons.
This means that when you know which of the beacons you are connected to, you can compute
the area in which you are localized. In this approach, they reached a minimum error of 0 and a
maximum error of 4.12 meters.
Another possible method of determining position is the usage of an Ultra Wide Band (UWB)
system. Beiya Yang et al. deployed a UWB system on Unmanned Aerial Vehicles (UAVs) to get
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the precise location in areas where humans can not reach [YYY21]. They combined the position
from the UWB with camera images to gain maximum accuracy in their position estimation. This
study gained promising results on UWB positioning. They have observed that with this method, a
median of the errors of less than 20 cm could be reached. The maximum error was 100 cm.

2.1.2 Indoor corrections

When indoor positioning is required, GPS is not the solution. GPS receivers must see at least three
satellites to compute a location. Obstacles such as buildings distort the line of sight, and GPS will
not work. However, there are multiple other ways of computing indoor positions. Jan Vascak et al.
used a combination of Bluetooth Low Energy (BLE) devices in combination with Kalman Filtering
(KF) to create a navigation map for indoor robots [VS18]. This method combines the advantages
of BLE devices and tries to overcome the errors by smoothing the trajectory with a KF. This could
also be seen as a radio frequency method. The KF removes noise created by reflected parts and
other signal disturbances. This approach was tested in three different setups, each with different
interference in signals (E1, E2, and E3). The results were promising, the average error in position
was respectively 26.67 cm, 37.52cm and 79.12cm for E1,E2 and E3.
Aigerim Mussina et al. used a combination of a Support Vector Machine with Naive Bayes to
predict a class. There were three possible classes, indoor, outdoor, and vestibule [MA19]. When
these methods are combined, the accuracy of correct predictions was 0.958, which means that the
model could predict the correct location in 95% of all examples.

2.2 Map matching

Map matching is fitting GPS positions with the structure of nearby roads. In [MBHW19] three
different likelihoods are combined with weights to gather a weighted likelihood. Their idea was to
merge three different kinds of already existing map-matching ideas.
The first one is geometric likelihood [NK09]. Here each GPS point is compared with neighboring
paths to find the path closest to the measured GPS position coordinates.
The next likelihood is the topological likelihood. This one takes the entire created trajectory into
account. It compares the total length of the measured path with the lengths of possible real paths.
The third likelihood used is the temporal likelihood. The temporal likelihood computes the proba-
bility of every candidate path by using the velocity the GPS receiver has. The velocity is measured
by taking the distance between two successive GPS points within a one second time interval. If the
maximum velocity in the street is limited to 50 km/h, and the velocity measured is much higher,
the probability that the trajectory is a urban road is low. From all these likelihoods calculated
along the route, a weighted average is estimated.
The final route will be the route with the highest weighted likelihood. In this study, they use the
Dijkstra Algorithm to compute the shortest route between found GPS coordinates. This approach
led to a maximum correct prediction score of 96% and a minimum prediction score of 84%.

2.3 Multipath correction

Mahdi Salarian et al. correct GPS locations based on images of the urban environment. This study
uses the input of GPS and other sensors as a magnetometer to determine the direction and, of
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course, an image of the location to compare with the database [SA15]. The database is filled with
images of the urban environment. Next, it goes through the data set of images and calculates which
images are near the given location. This limited set is then presented to the RANSAC [SA15] tool
to compute the best match for the input image. RANSAC is a tool for comparing images [RR08].
Another way of getting a more accurate position in urban environments was developed by [VD20].
This study introduced 3D mapping-aided correction, which uses over 3850 3D models of buildings
to solve the problem caused by multipath errors. Especially, when the given location is on the wrong
side of the road, this algorithm can determine which building is blocking the signal by looking at
those 3D models. This led to a reduction in wrong-side-of-street occurrences by at least 50%.

2.4 Kalman filtering

Many studies use a variant of the original Kalman filter to improve the accuracy of GPS. Different
Kalman filters exist for different systems: the linear Kalman Filter, the Unscented Kalman Filter,
and the Extended Kalman Filter. The original method was introduced by [Kal60] in 1960. The
method is ideal for correcting dynamic models such as in this study.

Sher Muhammad Nizamani et al. used a Kalman Filter to reduce the error in GPS latitude and
longitude data measured with a smartphone [NLAF18]. The filter uses the input GPS data and
the input velocity to compute a more accurate location. By using this filter, they achieved to
smoothing out the jumps in latitude and longitude. They approximately changed the latitude and
longitude with respectively 0.0000199282 and 0.0000103702 on average. This seems like a tiny
amount. However, looking at small-scale environments, this can mean some meters away from the
actual location.

Another example of a study using a Kalman filter to correct GPS data is found in [DV19]. Here
multiple sensor data is fused with an unscented Kalman filter. The sensors measured acceleration
and rotation, speed of the vehicle and location based on a GPS receiver built inside the vehicle. All
these sensors operated on different data rates. Therefore a multi-rate unscented Kalman filter was
introduced to fuse the sensor data.

2.5 Developed method

The algorithms developed in this study fall in the category of beacon-based correction methods for
outdoor usage and indoor correction methods.
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3 Methodology

This section discusses the data collection, the processing pipeline for this data to come to a
refinement of the GPS location measurement, and two different algorithms are described which are
used in this pipeline. The pipeline is shown in figure 5.

Data filtering 
Data 

preprocessing

Algorithm 1

Algorithm 2 
trainingMerge UWB 

with GPS

Algorithm 2 
prediction

Corrected 
Trajectory

Beacon GPS 
Files 

GPS 
trajectory 

files

UWB files

Train set

Test set

Figure 5: The pipeline from data collection to location refinement: circles are the data components,
squares represent the processes implemented with our software.

It the next paragraphs the data components and process steps are described.

3.1 Materials used

The materials are a smartwatch to measure GPS coordinates, acceleration and rotation. Also we
used a location system based on Ultra Wide Band to get the ground truth.
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3.1.1 GPS data

In this study the Samsung Gearfit 2 Pro was used to gather the GPS data in combination with the
WEARDA software package 1 [vDGvL23] developed at LIACS. The sensors and configured sample
rates used for the experiments of the Samsung smart watch are shown in Table 2.

Table 2: Sensors and data rate set of Samsung Gearfit 2 Pro.

Sensor Data rate
GPS 1 second
Accelerometer 10 ms
Barometer 10 ms
Gyroscope meter 10 ms

On the smartwatch, the Sensor application of the WEARDA package was installed and configured
with a file. When starting the application, three options are given to the user. The first option is to
set a number from 000 to 999. This will be the experiment number merged into the names of the
files which will be created. Then there is a button restart, which will restart collecting data based
on the experiment number as filename.

The GPS data from the smartwatches are saved in CSV formatted files by the WEARDA software
package. The variables in the file are listed below.

• Time, the number of seconds after starting to record.

• Latitude, the measured latitude in GPS degrees.

• Longitude, the measured longitude in GPS degrees.

• Accuracy, the predicted accuracy of the measured GPS point in meters.

Figure 6: Example data of a GPS CVS file produced by the WEARDA software package.

Figure 6 shows the first lines of an example of the GPS CSV file. We see the first line is the header
containing the experiment number, followed by the watch ID, date and time of the measurement.
A second header contains the variable names, and the next lines contains their values.

1https://www.github.com/liacsprojects/wearda/
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Three other identical structured files were created while recording. The first file is for the accelerator
sensor, which measures the acceleration at every moment. The second file was to measure the air
pressure with a barometer. The final file was used for the rotation velocity. We collected this data
as well for enhancing our algorithms but this data is not used in this study.
The beginning of the GPS data records were removed because of startup errors. In the pipeline this
is referred to as GPS filtering.

3.1.2 UWB data

For getting the ground truth we used an Ultra Wide Band localization system with an accuracy of
around 10 cm, recording the time and position simultaneously. We used the Pozyx creator kit 2 and
software implemented by Rodi Laanen, one of our bachelor students to create a file with location
data of all tags. This data contained the following relevant variables for our study:

• Timestamp, to get absolute time

• loc(x), measured x location of the UWB in mm.

• loc(y), measured y location of the UWB in mm.

The UWB system expresses its location in Euclidean coordinates. Therefore the GPS coordinates
were converted to this coordinate system as well with the Haversine software package 3.
In the first data collection trials, video was recorded to get a kind of ground truth. The location
was indicated with numbered traffic pawns put on a predefined route on the ground, which were
recorded as well. When filming, we could determine the time and location of the moving smartwatch.
However, processing the video files were time consuming because the acquisition of the time and
position from the images of the video had to be done by hand since we could not find off-the-shelf
software for this task.
We found that the UWB grid is in a 45 degrees angle with the GPS grid. This turn will be seen
later on when the results of algorithm 2 are discussed. We have to correct for this turn in order to
get the best outcome of the predictive algorithm. In Figure 7 we can see both grids and the turn
between them. ere the white lines are the GPS-lines, latitude and longitude. The black lines show
the grid of the UWB.

3.2 Data processing

The GPS data was pre-processed to get a nice time alignment. This is because every watch was
turned on at a slightly different moment. We took the start of the moving watch as reference time
Toffset and converted the time and position point of the beacons accordingly. We also computed the
time of the GPS positions to seconds counted from the start of the day Tposition. With the following
equation the start time Tstart was calculated:

Tstart = Tposition − Toffset (1)

2http://store.pozyx.io/
3https://pypi.org/project/haversine/
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Figure 7: GPS and UWB grids are turned towards each other (source Google Earth).

Also the start of the GPS data was removed since calibration time took 350 seconds to find satellites
and compute a location. This was only done when turning on the application. Once the application
was calibrated, there was no need for calibration again when restarting with next experiments.
For the first algorithm a Python Pandas data frame was inserted with all possible beacon corrections
and moving watch GPS coordinates per time. This data frame is called corr.
For the second algorithm also a Python Pandas data frame was inserted with all possible beacon
corrections, the ground truth of UWB and the moving watch GPS coordinates. UWB works with
an Euclidean coordinate system with a max x length of 11.8 and a max y length of 16 meters. GPS
works with latitude and longitude degrees geographic coordinates. Therefore the GPS coordinates
and beacon corrections were converted to Euclidean coordinates.

3.3 Algorithms

For this study, two algorithms were developed. The first is a basic heuristic algorithm, the second
uses a training set to learn to refine the measured GPS of the moving watch under certain conditions.

3.3.1 Algorithm 1

The idea behind the first algorithm was that a GPS measurement of a moving watch would be
influenced by the errors described in Section 1. However, if we place watches at a predetermined
position, we should be able to see the error the watch is making in that location. The idea is to
correct the moving watch GPS trajectory with use of the error of these GPS watches (we call them
beacons further on) they make with their well known position. Then when a moving watch comes
close to the beacon, we can apply our error to correct the trajectory. Here, we assume that moving
watches around the same beacon position undergo the same error.
The first algorithm needs as input data of the measured trajectory of the moving watch and a list
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with all possible corrections corresponding with the closest beacon. It then calculates the distance
between the measured GPS point (moving watch) and all the beacons with the Python function
greatcircle.Distance4. This function measures the distance between two GPS points on earth, the
units can manually be set on meters. The beacon that is chosen is determined by:

Beacon = argmini((Xw(t)−Xi(t)) (2)

Beacon refers to the beacon with beacon number i, where the distance (Euclidean norm) between
the location of that beacon and the measured point is the smallest. Xw(t) is the measured GPS
point, and Xi(t) is the location of beacon i. Min refers to taking the minimum distance of the
calculated distances.
The corresponding correction is found by taking the nearest beacon.

Xcorr, Xc(t) = Xw(t)−Xi(t) (3)

Here the Xc(t) is the correction vector in time t. We can now calculate the corrected position of
the moving watch Xwcorr(t) with:

Xwcorr(t) = Xw(t) +Xc(t) (4)

3.3.2 Algorithm 2

The second algorithm uses a learning model. This learning model needs the ground truth collected
by the Ultra Wide Band (UWB) system. The UWB produces data of the true location of the
moving watch as a function of time. The learning model takes the beacon correction vectors and
measured location of the moving watch as input and optimizes its output with the true location of
the moving watch measured by the UWB system. The model will weight the influence of every
input feature. This way, the algorithm can learn the best beacon(s) to minimize the error between
the measured path and ground truth.
A Support Vector Regression (SVR) model has been chosen as a learning algorithm. A SVR has
proven to be effective in numerical value estimation [AK15] and because it performs well with small
amounts of data.
The SVR model’s input and output values must be converted with a wrapper since the SVR
only has one output variable. We have used two different wrappers. The first wrapper is the
MultiOutputRegressor 5. This wrapper builds different models for the different outputs [Kum21].
The second wrapper is the RegressorChain. Here also, multiple models are built. However, the
way that the models are built differs from MultiOutputRegressor. RegressorChain builds a model
and uses only dependent variable one to build model 1. This is shown in Figure 8. The difference
with the MultiOutput regressor is that the RegressorChain can learn dependencies between the
dependent variables. The accuracy of both methods will be compared in Section 5.
In Figure 9 we can see the GPS separated coordinate values of the moving watch and the location
the UWB in Euclidean coordinates millimeters as a functon of time. UWB data has been divided

4https://geopy.readthedocs.io/en/stable/module-geopy.distance
5https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
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Figure 8: Example of how RegressorChain wrapper builds a model [Cho20].

Figure 9: Moving watch GPS coordinates W(lat,lon,t) and UWB U(x,y,t) as function of time. UWB
is in millimeters and has been divided by 10,000,000 to align it in range with GPS coordinates.
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by 10,000,000 to get it aligned with the UWB coordinate values.
We followed a straight line of 12 meters long. The coordinates systems have an angle of around 45
degrees, so that explains the ripple on latitude and longitude while only the x-coordinate of the
UWB location is changing.
We can see that the GPS of the moving watch follows the same path as the UWB-tag. Therefore
we think it is possible to correct the GPS trajectory based on a learning algorithm.
We took the first cohort between 70 and 375 seconds to be used as train and test set, and split this
data with several ratios between 0.7 to 0.9.

3.4 Merge UWB and GPS data

For algorithm 2, we needed to merge the data of GPS on the correct position with UWB. Herefore,
we start working on the GPS file of the moving watch. We take out the rows in the file that
correspond with the correct time frame of the UWB file. Next, we go on with the UWB file. Here
we first filter on the moving tag and remove all the rows of the master tag. Then we convert the
time given in hours, minutes, and seconds to a total of seconds. Next, when the time is in seconds,
we search for duplicates and remove them. After this, we fill possible time gaps with its prior values.
The gaps are filled in to get values for every second. After the gaps are filled, we merge the GPS
file with the UWB file. The GPS of the beacons are treated identical. From all the time data, an
interval is selected we feel is good for using it as learning and testset. Then for all beacons, we
calculate the correction vector Xwcorr so the difference between the measured GPS position and
the actual GPS position. This is done with the Haversine formula 6. Now we are ready to merge
all the beacon information with both the UWB and moving watch GPS trajectories and save the
data frame to a CSV file. Figure 10 shows an example of the CSV file created, here we see all the
column names and some example values, the values are cut-off after b4lat.

Figure 10: Example from CSV file as input for algorithm 2.

3.5 Trajectory accuracy scores

The two algorithms make errors which can be quantified with a number of trajectory accuracy
scores. For the algorithms, we cannot measure its accuracy based only on the spatial data [TBS+21].
We need temporal data as well to determine the error distance per time along the true trajectory
and the corrected one.

We measure the average error that the beacons are making with:

AEi =
1

n

n∑
t=0

(Pti(t)− Pmi(t)) (5)

6https://pypi.org/project/haversine/
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Here AEi is the average error in meters, Pti is the true location of beacon i, Pmi is the measured
position of the beacon, and n is the amount of measurements.

The other scores are the Mean Absolute Error (MAE), the Root mean squared error (RMSE), and
the Mean Absolute Percentage Error (MAPE) [SRAA21] . These scores are calculated with the
following equations:

MAE =
1

n

n∑
t=0

||Ptrue(t)− Pc(t)|| (6)

Where Ptrue and Pc are the measured position of UWB (ground truth) and the corrected position
of the moving watch by an algorithm respectively. n is the amount of measured points.

RMSE =

√∑n
t=0 ||Ptrue(t)− Pc(t)||2

n
(7)

MAPE = (
1

n

n∑
t=0

||Ptrue(t)− Pc(t)||
||Ptrue(t)||

) ∗ 100 (8)

The MAPE [KK16] is the normalized version of the MAE. It gives the accuracy of a forecast values
compared with its true value. The best forecast accuracy percentage is 0%, the worst 100%.
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4 Experiments

In this section, the experiments are described. An experiment is mainly a data collection event in a
selected location. The experiments were done in four locations.

4.1 Locations

4.1.1 Location 1

For location 1, a location was chosen with the least amount of environmental disturbances. Therefore
an open soccer field was chosen. Another reason for this location was the ability to use the line
work on the field as ground truth. The soccer club which was chosen is soccer club Klein Maar
Dapper in Wateringen. The location is shown in Figure 24. The orange trail path in the figure
shows the trajectory that is followed. The blue circles are the locations of the beacons.

Figure 11: Overview of location 1 (source Google Map).

4.1.2 Location 2

For location 2, a park was chosen to study the effects of surrounding trees on GPS. Hereby, a park
in The Hague at De Uithof, was chosen. Also here we set out a trail path to make it easier to walk
the same route multiple times. The trail path is indicated in orange in Figure 12.

4.1.3 Location 3

Location 3 is located at the Jan Gresshofplatsoen in The Hague. This is a square surrounded by
houses. The square is chosen because, here, the effect of small buildings around a GPS trajectory
could be measured. Also, because the square is lined out, there is a more accurate way of finding
the ground truth. The location overview is shown in Figure 13.
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Figure 12: Overview of location 2 (source Google Map).

Figure 13: Overview of location 3 (source Google Map).
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4.1.4 Location 4

And the final location is expected to give the most amount of environmental disturbances. This
place is located at the Menno ter Braakstraat in The Hague. At the end of the street, two flats are
build. The height of the flats could cause problems with finding enough satellites to compute an
accurate location. The location is shown in Figure 14.

Figure 14: Overview of location 4 (source Google Map).

4.2 Experimental setup

To be able to do the experiments that were necessary to gather enough information for this study,
different trails were set out sometimes using rope and pins to attach the rope to the ground.
For the first location, the lines of the soccer field are ideal to use. This way, the path can easily be
compared to the ground truth. Before beginning to walk, a sketch of the location is made, drawing
in the locations’ figures to ensure the experiment is precise and reproducible. Next, we place all
anchors for the UWB experiments in the correct positions. The same goes for the GPS beacons
for GPS experiments and UWB experiments. When all devices are in place, we can set up the
digital environment of the UWB system. This system calibrates the anchors and the tags. When
the devices are calibrated, we can start the GPS beacons. These need some calibration time as well.
Therefore, we should wait a minimum of 300 seconds in sunny weather before beginning to walk
the trajectories. When the calibration time of the smartwatches is over, we can start walking the
trajectories. Once calibrated, the watches do not need to calibrate again when starting over with a
new ID. This way, multiple runs can be done after calibration.

4.3 Experiments

To gather enough data about the performance of the algorithms, 13 experiments were done. Table
3 shows all the experiments.
Experiments 1 to 9 are needed to answer research sub-question 1 and 4. Experiments 10 to 12 give
insight into questions 2 and 3. When combining all these experiments, we can say something about
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the accuracy in small-scale environments of GPS. In the third column, ’walking a fixed path’ points
at the trajectories drawn in Section 4.1. When ’laying all watches down’ is noted, all the watches
are laid on the ground to see the standard error over time. From experiment 10, there was chosen
to have a different experiment type. This followed from in between results, where trajectories were
more accurate than the beacons. This resulted in wrong corrections. To investigate these errors in
the beacons, an experiment was made that gained insight into the performance of watches over a
more extended period. This is recorded as experiments 10 and 11. While doing the experiment,
different kinds of weather came along. This influenced the accuracy of GPS. If there is a sunny day,
then the accuracy of GPS will probably be higher.

Table 3: Overview of the data collection experiments.

Experiment number Location Description of experiment Conditions
1 1 Walking fixed path sunny
2 1 Walking fixed path cloudy
3 1 Walking fixed path sunny
4 2 Walking fixed path sunny
5 2 Walking fixed path sunny
6 3 Walking fixed path cloudy
7 3 Walking fixed path sunny
8 4 Walking fixed path sunny
9 4 Walking fixed path sunny
10 1 Laying all watches at same point sunny
11 1 Laying all watches at same point sunny
12 1 UWB as ground truth for algorithm 2 sunny

4.3.1 Experiments with UWB

Around May 2022 we got the availability of a Ultra Wide Band location system to measure spatial
and temporal location data of the moving watch. This data can be used as ground truth since the
accuracy is 10 cm and the time interval 5Hz. The UWB system has a limited range of 12-20 meters
so we could not repeat prior experiments to get the ground truth. However, other, smaller trails
were created to make the measurements possible with this UWB system. We only collected data in
location 1 with the UWB system. We followed a number of trajectory shapes.
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5 Results

In this section, the outcomes of the different experiments will shown how the algorithm performs.
Results of the experiments will answer the research questions discussed in Section 1.2.

5.1 RQ1 and RQ4: accuracy analysis locations

To answer research question 1 about how the environment influences the measured location accuracy,
we measured the trajectory compared with the true original trajectory for every location (error).
Further we calculated the accuracy per location as was also measured by the GPS device (accuracy).
This is done by taking the minimum, maximum and average accuracy for every beacon in every
location. We only selected the experiments with sunny weather to keep the circumstances for the
experiments as much as identical.

Table 4: Average errors of the GPS beacons per location.

Location # beacons Avg error (m) Min Avg error (m) Max Avg error (m)
1 5 3.5 0.96 7.0
2 4 34.6 11.24 77.0
3 4 13.0 8.25 20.0
4 3 6.0 2.95 12.0

To understand which environment disturbs the GPS signal most, we look at Table 4. We can
see that for each location, an average error, min average error, and max average error have been
computed. The min average error is the lowest average error of all beacons in that location. The
Max average error is the highest of averages of all beacons.
We see some surprising results. The expectations were that the errors in location 4 were significantly
higher because of the multipath effect. A side note on the result in location 4 is that the lowest error
is found in beacon three, which was the beacon that was farthest away from the flats. However,
we see that location 1 gives the most accurate measurements, followed by location 4, location 3,
and worst is location 2. However, we must say that the average of location 2 is influenced by one
beacon performing poorly, and therefore the average comes out higher.
These results could indicate that if such errors do not influence the trajectory in all places, then
algorithm 1 will not be able to make improvements based on the beacon errors.

Another way to determine the accuracy is to take the accuracy the GPS beacons calculate next
to its GPS coordinates, and we are curious to see if the found ranking with the prior method
corresponds. Table 5 shows the GPS accuracies per location, and the ranking of the accuracy in
decending order seems identical as the prior method.

To gain more information about the low accuracy occurring in locations 2 and 3. We decided to
take a closer look at that to see the possible effects of the low accuracy on the corrections done
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Table 5: GPS accuracy measured per GPS beacon per location.

Location Beaconnr Avg accuracy (m) Worst accuracy (m) Best accuracy(m)
1 1 5.2 32.0 1.5
1 2 10.1 48.0 1.5
1 3 12.5 48.0 1.5
1 4 5.0 32.0 1.5
1 5 5.2 16.0 1.0
1 avg 7.6 35.2 1.4
2 1 191.9 400.0 24.0
2 2 27.0 48.0 6.0
2 3 34.5 200.0 12.0
2 4 15.8 24.0 6.0
2 avg 67.3 168.0 12.0
3 1 15.0 128.0 3.0
3 2 17.4 192.0 12.0
3 3 16.1 96.0 12.0
3 4 15.3 96.0 3.0
3 avg 16.0 128.0 7.5
4 1 7.7 16.0 3.0
4 2 4.1 16.0 3.0
4 3 16.0 16.0 16.0
4 avg 9.3 16.0 7.3
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Figure 15: Accuracy’s of beacons over time in location 2.
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Figure 16: Accuracy’s of beacons over time in location 3.

later. Therefore, we created Figures 15 and 16. Here the accuracies of the beacons are plotted
over time to see if the accuracy is lowest in calibration time or if it might spike. In the second
case, where the accuracy drops after the calibration time, algorithm one will correct with low
accuracy and likely get a wrong output. First, we look at location 2. Here we see that beacon 1
does not find the satellites to compute a position in the first 600 seconds. This while the watch
was turned on simultaneously as the other watches. Therefore, the set-up of the calibration time
will not do anything with beacon 1, and false corrections will probably be made. The late start of
beacon 1 is because it is located under a tree, and therefore it is hard to be in sight of at least
three satellites. We see that the accuracy has no big spikes after calibration time for the rest of
the beacons. However, despite having no jumps, we see that the accuracy also does not increase in
time. It stays at 25.0, which means that the corrections made will be done with lower accuracy
than preferred.
Now, we analyze the accuracies of the beacons in location 3. Here we find a little lag in beacon 3,
yet, we do not see major upwards jumps in the accuracies. All the beacons hover on 16.0 with a
few small jumps upwards to 32.0 for beacon 4 and some increases in accuracy in beacon 1. The
accuracies hovering around the same level could mean that we can correct the trajectory if the
trajectory has the same accuracy.
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To answer research question 4, we can compare these accuracies of the beacons with the trajectories’
accuracies. The accuracies of the trajectories are displayed below in Table 6. Now we can compare
the averages of the accuracies of the trajectories with the beacon averages. We see that the beacons
in locations 1 and 4 are more accurate than the trajectories in these locations. For location 2, the
average of beacon 1 is worse, but the average of the other three beacons is around the same as the
trajectory. For location 3, the average of all beacons is the same as for the trajectory. However, we
see that the beacons become more accurate in time, and the trajectory accuracy stays at 16.0. This
means that the beacons become more accurate than the trajectory in time.

Table 6: Accuracies of trajectories.

Location Avg accuracy Best accuracy worst accuracy
1 14.97 3.0 16.0
2 29.76 16.0 32.0
3 16.0 16.0 16.0
4 16.3 16.0 32.0

5.2 RQ2: beacon behavior experiments

Research question 2 is about the behavior of the GPS beacons when they are positioned in the same
location. We expect that all beacons indicate an identical error between the true GPS coordinates
and what they measure. However, these so-called ”still laying experiments”, experiment 10 and 11,
see Table 3 shows:

1) The beacons have a startup time in which they tend to move to a stable position.
2) The beacons behave differently: every beacon measures its GPS position differently, but the
error between true and measured position decreases.

The detailed results are shown in the graphs in Figures 17, 18, 22 and 21. The graphs show the
measured GPS positions in time: the position moves to a stable point. Figure 17 shows us that all
the beacons measure their GPS point around (52.0202, 4.2694). However, we see the true location
of the beacons indicated by a light blue star. This indicates that the assumption that smartwatches
in the same position make the same error is true. Therefore we could use the GPS beacons as
corrections for the moving watch GPS trajectory. Figure 18 also shows that almost every beacon
hovers around the same position. Nevertheless, we also see that the red differs more from the rest.
Therefore, we may think that sometimes a larger error will be applied to correct the GPS trajectory.
However, by looking at Figures 17 and 18, we believe that the beacons can be of use to correct
GPS trajectories measured close to the beacons.
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Figure 17: Still laying beacons experiment 1, lo-
cation 1: light blue star indicates true position
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Figure 18: Still laying beacons experiment 2, lo-
cation 1: light blue star indicates true position

5.3 RQ3: analysis beacon errors

To gain more insight into the errors beacons make, we divided the error into a latitude error and
a longitude error. Figure 21 shows the latitude and longitude errors that were made in location
3, experiment 7. We can compare this with another location to see if there are differences in how
the error per coordinate type behave. Figure 22 shows the latitude and longitude beacon error in
location 1, experiment 3. We see that both latitude and longitude errors are mostly horizontal lines
in time, meaning that they do not change much in time as it seems.
If we compare location 1 with location 3, we see that errors in longitude are higher, almost a factor
3 more compared to location 1:

Table 7: Longitude and latitude errors in location 1 and 3.

Location longitude error latitude error
1 0.000 - 0.0001 = 0.0001 -0.00004-0.00004 = 0.00008
3 -0.00020 - 0.00010 = 0.00030 -0.00010 - 0.00015 = 0.00005

Now we wanted to find out what the effect on the total GPS error was. This is calculated with the
Haversine formula. Figure 23 has been created for this purpose. This figure shows us per beacon that
the overall GPS error is ranging from 1.5 meters (beacon 1 and 2) and 4 meters (beacon 3,4,5) over
a time period of 700 seconds. The beacon errors paddle below a certain upper error boundary in time.

Above observations show that for the beacon behavior:

• an open field location such as location 1 results in smaller longitude GPS error - almost a
factor of 3 less - than urban environments such as in location 3.
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time, location 3
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Figure 20: Applied correction (error) in time,
location 3

• an open field location such as location 1 results in an identical latitude GPS error than urban
environments such as in location 3.

• the longitude coordinate is more sensitive to GPS errors than the latitude error - almost a
factor of 3 higher.

• the beacon errors are beacon dependent.

• the beacon errors vary slowly (low frequency of 10-30 around minutes) between certain values
in a range of 1.5 meters, others in a range of 4 meters, in a short time frame of around 10
minutes.
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Figure 21: Latitude and longitude beacon error as function of time, location 3
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Figure 22: Latitude and longitude beacon error as function of time, location 1

Figure 23: Beacon error in meters as a function of time, location 1, experiment 3
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Figure 24: Correction result algorithm 1 in loca-
tion 1
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Figure 25: Correction result algorithm 1 in loca-
tion 2

5.4 RQ4: corrections with algorithm 1

To analyze algorithm one, we need to look at the corrected trajectories in every location. This is
done by plotting the ground truth together with the original and corrected trajectory. For every
location, one graph is shown.
For every location, we see corrections that shifted the measured coordinates closer to the ground
truth, as well as corrections that negatively changed the measured points. A possible explanation for
the false corrections is the estimation of the position of beacons. Though we know that the location
of a beacon is fixed, we cannot compute this position’s GPS coordinates with 100% certainty. This
may cause unexpected jumps in the corrected trajectory.
In Figure 25, we see some strange things happen. We see big jumps in the GPS trajectory. This
is the result of high errors which are made in the beacons. We can look up the errors in Table 4
and see that the maximum error in this location is actually over 70 meters. This will result in false
corrections, as seen in Figure 25. When we go into the data file of this beacon, we actually see that
in most lines, the predicted accuracy is lower than 400 meters, meaning that it is really inaccurate.
This beacon lies around tree. Therefore it will probably be out of the line of sight and unable to
compute an accurate position.
In two out of four example paths, we see that some big jumps appear in the corrected trajectory.
We can analyze this by taking a closer look at what the errors of the chosen beacons were.

For location 3, Figures 19 and 20 show the chosen beacon number and the error which was applied
to the trajectory for every moment in time. This experiment (7) was done on a sunny day. We can
see that beacon 1 has a small error for which it is correcting. Beacons 2 and 3 are actually far off.
The errors which are applied are almost 18 meters in beacon 2 and close to 14 meters in beacon 3.
This is a case where the trajectory is actually more accurate than the beacons! Therefore algorithm
1 is not able to refine the GPS coordinates.

We see that the assumption we made about correcting high errors with beacon errors is true.
Algorithm 1 is however not able to handle such large beacon errors. We see that locations 1 and 4
have conditions which let algorithm 1 perform better because of the smaller beacon errors. These
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Figure 26: Correction result algorithm 1 in loca-
tion 3
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Figure 27: Correction result algorithm 1 in loca-
tion 4

are also the locations with the smallest average error and the smallest min and max average errors.
Therefore we can conclude that algorithm 1 is not able to work with high errors measured by the
beacons.

5.5 RQ5: corrections with learning algorithm 2.

The performance of algorithm 2 is measured using the accuracy metrics and the train set composi-
tion for the straight line ground truth as described in Section 3.

The beacon error were expressed in the numerical part of the GPS coordinates and in meters.

Best results were achieved with a SVR with the RegressorChain wrapper when the beacon errors
were expressed in fractions of the GPS coordinates. The MAPE was 20% with a train/test ratio of
0.2. This result can be found in Table 8.

Best results were achieved with a SVR with the multi output regressor wrapper when the beacon
errors were expressed in meters by converting the fractions of the GPS coordinates with the
Haversine package. The MAPE was 16% with a train/test ratio of 0.3.

More details follow now.
To see how algorithm 2 is performing, we need to check the UWB data. Therefore Figure 28 has
been created to display the straight line trajectory. We see that y does not change significantly and
that x is periodic. This corresponds with the x and y of walking a straight line. Because, when
walking a straight line, only 1 of the coordinates should change.
After we checked the UWB data, we can plot the corresponding GPS data. Figure 29 shows the
raw GPS data plotted. The background is an indication of what scale we are talking about. This
area is 16 by 12 meters, and is the same area described in Section 3. Now we can compare this
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Figure 28: UWB straight line trajectory

with the UWB data and the predicted positions of algorithm 2. The line that has been walked
here was almost 12 meters long. This is the same trajectory as from Figure 28. Comparing the
two figures gives us insight into the accuracy of GPS in small-scale environments. We see that
UWB can provide a more precise position. GPS gives a less accurate indication. We here see the
trajectory measured with GPS. We see a difference between the x and y values of the grid. This
means that the measured points are off in two dimensions. Here algorithm 2 will try to correct this.

Figure 29: Raw GPS trajectory on straight. line
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Now we can take a look at how the second algorithm is performing. We divided the results into
two different Tables. The first table gives insight into the performance of the RegressorChain as a
wrapper, these results are in Table 8. The second table shows the results of the MultiOutputRegressor
as a wrapper, these can be found in Table 9. In both tables, there are multiple variables that differ,
which are the test size and the wrapper. However, to compare both tables, we tested each variable
with both wrappers. Note that a random state has been used. Therefore outcomes may differ when
run again.

Table 8: Accuracy scores of algorithm 2 with RegressorChain with beacon errors in GPS degrees.

Trajectory Wrapper test size MAE MSE RMSE MAPE
Straight line RegressorChain 0.05 0.00013 3.533exp-08 0.000188 25.74
Straight line RegressorChain 0.1 0.00022 1.165exp-07 0.00034 28.900
Straight line RegressorChain 0.2 0.000126 4.651exp-08 0.000216 20.535
Straight line RegressorChain 0.4 0.000257 1.13exp-07 0.000337 32.726

Table 9: Accuracy scores of algorithm 2 with MultiOutputRegressor with beacon errors in GPS
degrees.

Trajectory Wrapper test size MAE MSE RMSE MAPE
Straight line MultiOutputRegressor 0.05 0.000234 1.38exp-07 0.000371 34.863
Straight line MultiOutputRegressor 0.1 0.000242 1.34exp-07 0.000366 31.673
Straight line MultiOutputRegressor 0.2 0.0003297 1.64exp-07 0.000405 39.761
Straight line MultiOutputRegressor 0.4 0.000159 6.23exp-08 0.000250 38.017

These numbers are generated with a randomstate = 40, meaning that they could differ when
another seed is used. Based on this, we could take the average of all MAPE scores to filter out
coincidence. The average MAPE of RegressorChain is then 26.98. Against 36.08 from MultiOutpu-
tRegressor. For this seed, we may say that the RegressorChain is performing slightly better than
the MultiOutputRegressor.

To show what the algorithm is able to do, we plot the UWB data with the predicted positions.
Examples of these predictions can be found in Figures 30 and 31.

We also made a change in the input of algorithm 2. As explained before, we also calculate the
latitude and longitude as a combined difference expressed in meters. These results are now discussed.
Here we did more runs with the algorithm to validate its accuracy. The test size is now fixed on 0.1.
This means that 10 percent of the data set is used for testing. Which eventually will be one time
forth and one time back on the straight line because the line is 11 meters long. If we go 1 meter
per second, we will take 11 seconds to go on the line. If we also go back, it will result in 22 seconds.
10 percent of 296 measurements conclude in 30 measurements.
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Table 10: Accuracy scores of algorithm 2 with MultiOutputRegressor and beacon errors in meters.

Trajectory Wrapper test size MAE MSE RMSE MAPE
Straight line MultiOutputRegressor 0.1 0.0001606 6.66exp-08 0.000258 36.116
Straight line MultiOutputRegressor 0.1 0.000141 4.91exp-08 0.0002215 31.075
Straight line MultiOutputRegressor 0.1 0.0001411 4.57exp-08 0.000214 30.505
Straight line MultiOutputRegressor 0.1 0.000115 3.997exp-08 0.000199 15.956
Straight line MultiOutputRegressor 0.1 0.000132 5.102exp-08 0.000226 18.054

Table 11: Accuracy scores of algorithm 2 with RegressorChain and beacon errors in meters.

Trajectory Wrapper test size MAE MSE RMSE MAPE
Straight line RegressorChain 0.1 0.000112 3.04exp-08 0.000174 22.410
Straight line RegressorChain 0.1 0.0001116 2.84exp-08 0.000169 19.459
Straight line RegressorChain 0.1 0.000152 5.09exp-08 0.000225 32.189
Straight line RegressorChain 0.1 0.000105 3.029exp-08 0.000174 17.035
Straight line RegressorChain 0.1 0.000141 4.44exp-08 0.000211 29.869

The average of the MAPE with the MultiOutputRegressor is 26.341 and the average of the
RegressorChain is 24.192. Meaning that the RegressorChain wrapper seems to perform slightly
better then the MultiOutputRegressor. We see that the maximum RMSE of the RegressorChain is
lower then with the MultiOutputRegressor. Therefore, we can say that the RegressorChain makes
smaller mistakes in the prediction compared to the MultiOutputRegressor.

5.6 RQ6: corrections with learning algorithm 2 without beacon data

In the previous paragraph the performance of learning algorithm 2 was described where the beacon
errors were part of the input feature set. The question came up what the performance would be
without beacon errors as input feature to investigate what its influence would be on the performance.
This analysis is done with experiment 12.

It appears that the SVR model with the multi output regressor wrapper and with beacons per-
formed with a MAPE of 17%, while the same model with regressor chain wrapper without beacons
performed with a MAPE of 17% as well.

The details will follow now.

We constructed a baseline method of predicting the position to see if there is an improvement. We
used the same method (SVR) to predict a position again. However, we do not give the beacon-errors
as input to the learning algorithm this time. This will predict a position only based on the GPS
input. Suppose the accuracy of this prediction is worse than the accuracy of algorithm 2. In that
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case, we can carefully say that algorithm 2 is possibly able to predict a position based on the errors
of beacons and raw trajectory input. We chose test size of 0.1 again, while this resulted in one
complete path from left to right and back. This resulted in Tables 12 and 13.

Table 12: Accuracy scores of multi output regressor with and without beacons.

Trajectory Beacons test size MAE MSE RMSE MAPE
Straight line beacons errors 0.1 0.00013 4.96exp-08 0.00022 17.25
Straight line no beacons errors 0.1 0.000279 1.69exp-07 0.000411 41.62

Table 13: Accuracy scores of regressor chain with and without beacons.

Trajectory Beacons test size MAE MSE RMSE MAPE
Straight line beacon errors 0.1 0.00017 7.19exp-08 0.00027 37.78
Straight line no beacon errors 0.1 0.00011 3.58exp-08 0.00019 16.57

These tables show that we do not see a significant performance difference between the baseline and
the extended methods.

In Table 12, the baseline is performing worse, but in Table 13, the extended method is performing
worse.
However, looking at Figures 30 and 31, we can see that the actual predicted path is turned towards
the UWB trajectory with a vector shift. This could mean that the predictive model can predict the
positions better after rotation and offset correction. As explained before, the grids of UWB and
GPS are turned. This may cause the turn we see in the figures. However, the figures are zoomed in
to make the graphs fit. This zoom causes a difference in scale for the x- and y-axis, and therefore a
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different look. If we zoom out on these figures we see that the predicted point come closer to a
straight line on the measured UWB.
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6 Conclusions and Further Research

6.1 Conclusion

We can carefully claim that a learning algorithm can refine the position of a moving GPS receiver
based on data from a set of location-fixed GPS beacons. On a small data set, our learning algorithm
shows a number of more refined position points, but we do not see a convincing improvement
between the baseline algorithm developed and the learning algorithm. This indicates that we can
predict an accurate position based on a learning algorithm, but not explicitly caused by the data
from the location-fixed GPS beacons (the beacon errors). The MAPE trajectory accuracy metric
went from 39% to 16%, and so indicates that the learning model can predict a better position based
on the location-fixed GPS beacons.
Further, the learning algorithm output gives a trajectory that better maps with the ground truth if
the plot in this area is zoomed out and shifted to the right side. For the baseline algorithm, we saw
that it could not handle inaccuracies in the beacon files. The trajectory was more accurate without
the use of the location-fixed GPS beacon data, and when used the algorithm made the position
accuracy worse.
Other findings from the accuracy analysis are that trees influence GPS accuracy of receivers
negatively and that the longitude error was almost a factor 3 larger in an urban location (location
3) than in an open location (location 1). Additionally, we noticed that the beacon errors fluctuate
between certain boundaries during the day.

6.2 Further research

Further research for the learning algorithm approach to refine positions with location-fixed GPS
beacons is to enlarge the amount of the data combined with automated annotation with the UWB
position system. It appears that the position error measured by the location-fixed GPS beacons
varies during the day. The error is not drifting away but fluctuates within certain boundaries.
Interesting could be to investigate the existence of generally applicable trends, applied to correct
GPS position measures within shorter intervals.
Another improvement would be to extend the learning algorithm with data such as the orientation
and velocity of the moving GPS receivers. When these variables are implemented, a Kalman filter
could be used to compare both results and even refine the position further without feeding it to the
learning model.
Another possibility for additional research is the use of the difference in latitude and longitude
error. In this study, we observed a larger error in longitude compared to latitude. One could study
these differences and make position predictions based on only one coordinate axis, to see what is
best to compute an accurate position.
In Figure 27, we saw that the measured trajectory has a fixed vector different from the ground
truth position grid. This could mean that a shift of the whole measured trajectory could lead to a
trajectory closer to the ground truth. A study could examine this rotation and shift, and search for
examples for which this method would work.
Finally, we have also found that beacons around trees tend to have significant inaccuracies in their
measurements. Further research could investigate the relationship between environment and GPS
accuracy.
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