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Abstract

Social capital is a social scientific concept defined as the value found in social structures that
enable a group of people to function effectively. Concretely, this concept has been linked to
numerous outcomes such as better perceived health and lower crime rates. Existing works
using social network data to represent social structures and measure social capital suffer from
three main problems, namely a) a lack of empirical evidence that what is measured actually
is social capital, b) highly specific types of social capital are considered, and c) sampling
problems of the considered social network data. We overcome these issues by examining
the relation between network structure and social capital using a unique social network
of the entire population of the Netherlands. Specifically, we use regression analyses to
determine the direct relations between network measures and a broad range of social capital
outcomes available from open source data. We propose a new network measure called the
ego network growth rate, which captures resources beyond the direct neighborhood. This
measure is shown to relate to node centrality and is therefore used to measure social bridging.
Social bonding is measured using excess closure. We utilize and extend a network analysis
development framework to efficiently compute these measures and perform analyses at the
unprecedented scale of millions of people and hundreds of million of connections. The results
of our analyses shed new empirical light on the relations between network structure and
social capital. Our findings suggest that network structure has a strong relation to social
capital. Social bridging seems positively related to social capital, whereas social bonding has
a negative effect. Overall, this work establishes the value of network-based measurement of
social capital in a population-scale social network.
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Chapter 1

Introduction

Social capital is one of the foundational concepts in modern-day social scientific research. It is roughly de-
fined as the value found in social structures that can facilitate action [Col88, AK02, Linl7, Put01]. Decades
of research have shown this notion to relate to a multitude of interesting and important phenomena. For ex-
ample, higher levels of social capital have been linked to lower violent crime rates [WKK98, P*00], improved
perceived health and happiness [Poo06, SKK02, Put01], and more effective regional governments [LNPO1].
This makes social capital a valuable to help understand and explain societal phenomena.

Given the use of social capital in explaining a wide range of societal and individual outcomes, it is only
natural that its measurement has received a lot of attention from researchers as well. Such measurements
could be used, for example, by governments to target interventions as to combat community decline [Sto01].
As the concept is broad however, there is no single agreed upon way to measure social capital. Most “tra-
ditional” works measure social capital indirectly by looking at aggregated (survey) data from demographic
groups on theoretically expected outcomes of social capital. The assumption is then that if the outcome is
present in empirical data, this indicates that social capital itself must be present as well. This approach is
interesting as it can have direct practical applications. For example, the government can set up programs in
communities with low social capital to give the people a larger say in government institutions, such as the
police and schools, as to help improve their community social capital [War01].

One downside of this approach is that social structure is not taken into account, despite this being an
important aspect of the definition of social capital. Social networks offer a solutions here, as this type
of data directly captures social structures by representing people as nodes and the connections between
them as edges. Networks have been used increasingly to measure social capital in various contexts, see for
example [LLY13, BAGADF15, HA13] where scientific co-authorship networks and Twitter follower networks
are analyzed. However, there are three main problems with existing works. First, they measure social capital
using some network measure which is chosen solely based on theory. There is often no empirical analysis
to verify that these network measures are actually related to social capital. In most networks this is not
possible at all, because little or no information is available about the people besides the network structure.
Second, highly specific kinds of social capital are considered. For example, in a scientific co-authorship
network we might consider the social capital of a researcher to be their citation count. When such a specific
type of social capital is considered, it is unclear how the knowledge translates into different domains or what
it means for general social capital measurement. As a result, such measurements do not have the same
practical implications as exist for traditional measurement techniques. That is, the measurement cannot be
used to directly target interventions as to increase social capital for certain people or communities. Third,
these works often use small-scale sampled data, which can lead to conclusions that are difficult to replicate
or place into a broader context, especially in the face of data quality problems. Because of these issues, the
precise empirical relations between social structures and social capital have remained largely unknown.

In this thesis we consider the measurement of social capital in a network where the results have valuable
real-world applications, and where the measure has been shown to relate to social capital. We determine the
relation between network structure and social capital in a population-scale social network. This new kind



of social network has an enormous scale, containing an entire well-defined population of people, in this case
the population of the Netherlands. Using a statistical approach, we assess the power of network measures
in predicting well-studied social capital outcome measures. Network structural aspects that we consider are
social bonding and social bridging. Social bonding captures the extent to which people form tight-knit social
circles, whereas social bridging relates to the position that people have in a network which allows them to
effectively spread information. Additionally, we consider social capital on a community level. A community
here is a certain group of people that are in some way related to one another, such as people of a certain
demographic group or that live in the same area. Our analyses will give insights into the true value of social
network data in the measurement of social capital.

The unique large-scale network data [VdL22] used in this thesis is made by Statistics Netherlands! (CBS)
and contains various so-called formal ties among the entire Dutch population. These ties are grouped into
layers containing for example colleague or family connections. A total of 17.2 million people are represented
in the network, making it a uniquely large social network. Because of its size, working with this data is
highly computationally demanding and many commonly used network measures are not feasible to compute.
The network also contains additional attributes for each person such as their age and sex, as well as the
geographical neighborhood in which they live. Using this attribute, we can define communities to be people
living in the same neighborhood. This makes it possible to link existing data on various common social
capital outcomes at the neighborhood level that are publicly available. For this we pick four neighborhood-
level outcomes: the percentage of people with good perceived health, the number of reported crimes per one
thousand people, the percentage of people receiving social assistance benefits, and the percentage of people
that do volunteering work. The number of deaths per one thousand people is used as a robustness check.

Our approach is based on interpretable statistical models that estimate the relations between network
measures and social capital outcomes. In each model, the dependent variable is one of the social capital
outcomes, and the independent variables that are used to model the outcome consist of both control variables
and network measures. To measure social bonding we use excess closure [Bok]. This is similar to the clustering
coefficient which measures the portion of triangles (a group of three people that are all linked to each other)
over the total number of triangles that could exist. Excess closure only considers triangles that consist of
at least two different layers. Our other network measure is the ego network growth rate, which looks at
the relative change between the direct ego network size and the size one step further away. This measure
relates to node centrality and thus to social bridging. We also take the average number of connections into
account, which acts as a moderating variable and is needed in order to make sense of the former two network
measures. We compute these network measures for each of the roughly 17.2 million people in the network,
and aggregate these to the community level on which we perform our analysis. This aggregation step is done
by averaging the values from all individuals in the geographical neighborhood. Control variables are derived
from the node attributes and contain, for example, the average age and the percentage of highly educated
adults in the neighborhoods. Using these models, we can interpret the importance of each independent
variable in the prediction of the social capital outcomes. Finally, we can use this knowledge to conclude how
the network structural aspects relate to community social capital.

This research was conducted as part of the POPNET project?. POPNET (POPulation-scale NETwork
analysis) is a research project that aims to advance the methods and applications of population-scale social
network data for solving societally relevant problems. Various sub-projects of POPNET focus on matters
such as network anonymity [DJ], the creation of a platform where other researchers can responsibly use the
network, and various other social scientific research directions. One aim of POPNET is to take initial steps
towards creating network-based official statistics that can be used by policy makers. As we set a first step
towards network measurement of social capital in population-scale data, this thesis contributes to that goal.

The main research question that we will focus on is:

What is the relationship between network structure and social capital?

Thttps://www.cbs.nl/en-gb
*https://www.popnet.io/
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In the remainder of this thesis we propose a methodology and empirically assess its suitability for an-
swering this question. We start by discussing the relevant literature relating to social capital in Chapter 2.
We then provide detailed descriptions of the network data and what parts of it are used, as well as the
social capital outcome data in Chapter 4. Our research design, network measures and regression analysis
are detailed in Chapter 5. We then go on to discuss our experiments and findings in Chapter 6, where we
also provide a discussion on the limitations of our work. Lastly, we finish with a conclusion in Chapter 7.



Chapter 2

Related work

In this chapter we discuss work related to our research. We first go into detail on the topic of social capital,
after which we look at how it is usually measured.

Social capital is an important concept in social scientific research. Roughly speaking, it relates to the
value found in social structures that can facilitate action [Col88, AK02, Lin17, Put01]. It is often considered
at either the individual or the community level. Individual social capital relates to “how a person can leverage
their social ties for personal gain” [Bor98]. This is especially relevant in scenarios where new resources are
sought and obtained [Linl7], and is closely tied to financial and human capital [Bur92]. Commaunity social
capital on the other hand, is considered to be “a property of a group of people that is not only determined
by the network structure, but also by trust and shared norms and values” among the group members [P+00].
Below, we only discuss literature relating to community social capital, as this is the type considered in our
research.

One of the founding works in social capital research [Col88] lays out the theory for a possible connection
between the cultural and network structural aspects of social capital. When two people connected to a
certain person and they are also connected to each other, they can combine forces to sanction that person.
This is called network closure, and when it is missing, it makes norms and trust less likely to arise in the
network.

In another fundamental work [Boul8], it is said that social groups are formed by individuals which invest
in the group for their personal gain. However, all members of a community can benefit from the capital held
in that community, showing how there is inherent value in communities. Furthermore, it is explained how
all forms of capital can essentially be (nearly) reduced to economic capital.

Most significant in the community social capital literature is its measurement through levels of civic
participation [LNP01, PT00]. Here it is said that when civic participation rates are higher, people are more
involved with their community which improves the social capital. Using data on various forms of civic
participation, a convincing case was built that social capital in the United States has decreased drastically
since the 1950s [P100]. On a state level, correlations were found between social capital and many outcome
variables such as child welfare, decreased murder rates, and tolerance [P700].

Community social capital has been linked to various other outcomes, for example: more effective maintain-
ing of law and order [HMB95], lower rates of violent crime [WKK98], better perceived health [Poo06, SKK02],
lower overall mortality rates [KKL97], and even lower rates of suicide [Dur05]. Additionally, high levels of
societal trust are believed to be necessary for large companies to arise [Fuk96].

Most commonly, community social capital is measured by actually measuring outcomes of social capital
as indicators of its existence [Sto01]. Say a certain societal outcome should theoretically arise when social
capital is high, and the outcome is observed to be high in practice, then this must mean that social capital is
high. Indeed there is circular reasoning here, because we let social capital be defined entirely by the outcome.
Therefore saying that social capital is high since the outcome is high, is stating the same twice. It can also
be questioned what the directionality of the relationship is: Does social capital cause the outcome, of does
social capital arise as a result from the outcome being present? Nevertheless, the consensus in social capital



researchers appears to be that this method of measurement is valuable, despite aforementioned issues.

The two main outcomes that are used in this way to measure social capital are to look at civic partic-
ipation, and trust and cooperative norms [SS13, LST17]. These approaches often work with samples of a
population, created using surveys [LKK99, P*00]. Regarding civic participation, surveys often ask whether
or not people are involved with certain organizations such as sports groups or churches. For trust, sur-
veys often ask matters such as how much trust people have in strangers or people in their geographical
neighborhood. Individual answers are then aggregated to represent the social capital of the community.

In networks, social capital can in theory be measured using measures of network cohesion [BJE98, SLO0S].
Examples of this are network density, average path length, and attribute assortativity. Since the clustering
coefficient [WS98| measures the portion of triangles in the network that are closed, this closely relates to the
closure theory [Col88] described before. As the network which we will use has unique properties (described
in Section 4.1.2), many of these measures need to be adjusted to accommodate, for example, the multilayer
aspect of our type of network.

Concludingly, although there is a theoretical link between the aforementioned network measures and social
capital, little work exists that actually measures social capital in network data. One example is in [AWH14])
where a co-authorship network is used to show the relation between the degree and betweenness centrality
of authors and their h-index, which can be seen as a sort of measure for (individual) social capital in that
context. Social capital as measured through questionnaires has also been linked to network measures using
online social network data, for example, in [EVGL14]. The measurement of social capital in population-scale,
real-world networks as we will do in this work is a novel and exciting new avenue of social capital measurement
in network data, that promises to alleviate a number of conceptual and methodological challenges of existing
approaches.



Chapter 3

Preliminaries

This work uses terminology from the field of network science. In this chapter we explain network concepts
that are used throughout this thesis, using a minimal amount of formal notation.

A network or graph is a mathematical structure consisting of a set of nodes (also vertices) and edges (also
links or connections) between the nodes. Nodes usually represent real-world objects such as people, whereas
edges describe the connections between the nodes. When various types of edges are present in a network,
this is called a multilayer network, since every different kind of edge can be seen as a separate layer of the
overall network. We can also consider different edge types to be part of a single layer. The network at hand
(further described in Chapter 4) is such a multilayer network. Here we have various layers such as Close
Family where we find link types such as sibling, child, and parent. The nodes in social networks represent
real people, in our case Dutch citizens.

Formally, the multilayer network that we use can be defined as a graph G = (V, E, L, A), where V is the
set of nodes, E is the set of edges, L is the set of available layers, and A is the set of attributes. As each
layer consist of various link types, we consider L = {L1, Lo, ..., Ly}, where each set L; contains the link types
from that layer. We also consider A = {4y, Ay, ..., Ay |} such that each set A; contains the attribute values
for node v; € V. Edges are defined as triplets (v,w,l) € E, where v € V is the starting node of the edge,
w € V is the receiving node, and [ € L; € L denotes the link type of the edge.

Some additional important network concepts are:

e Degree of a node is defined as the number of edges that are connected to it. In multilayer networks
there can be several edges between people, so we consider the degree to be the total number of nodes
that are connected to a node.

e Paths are sequences of edges such that the ending node of each edge is the starting node of the next
edge.

e Path length is the number of edges in a path.
e Shortest path between two nodes is the path of minimal length which connects them.
e Distance between two nodes is the length of a shortest path between those two nodes.

The formula distance(v, w) denotes the distance between nodes v,w € V. For nodes between which
there is no path, we define distance(v,w) = co. The distance between a node and itself is defined as
distance(v,v) = 0.

e Neighbors of a node at a given distance are all the nodes that are at most at that distance from the
considered node. Here we do not include the node itself. This is also called the open neighborhood.

The neighbors of a node v € V up to distance d are given by: Ny(v) = {w : 0 < distance(v,w) < d}.

e Fgo networks are the networks that are obtained when isolating a node along with its neighbors up to
a given distance from the ego node. This includes all edges among the selected nodes.



The ego network of a node v € V' in a multilayer network for distance d thus contains the set of nodes
V' = Ny(v) U {v} and edges E' = {(v,w,l) : v,w € V' A (v,w,l) € E} for any existing [.

Ego network size is the number of nodes in a ego network.
Connected nodes have a path between them.
Triangles in networks are groups of exactly three nodes that are all connected to one another.

Clustering coefficient measures the portion of existing triangles in an ego network at d = 1 over the
theoretically possible number of triangles given the degree of the ego. This is commonly used to
measure network closure.

Diameter of a network is the length of its longest shortest path.
Complete networks are networks where there exists an edge between every pair of nodes.

Bipartite networks are networks where the nodes can be split up into two sets, such that all edges lie
between these sets and no two nodes within one node set are direct neighbors.

Connected components (CC) are groups of nodes in a network such that each pair of nodes in the
component is connected. In many real-world networks the largest CC contains the vast majority of all
the nodes, and we speak of a giant component (GCC in short).



Chapter 4

Data

In this chapter we discuss the data used in our research. We first discuss the network which is used for
measuring social capital. Here we look at the types of relations to which we have access, as well as the
rationale behind our data selection process, and we provide an interpretation of how the resulting network
is a good reflection a true social network. We then discuss what social capital outcome data we use to see
how our network measures relate to social capital.

4.1 Network data and selection

The network used in this research is created by CBS, the Dutch national statistics office. This is a government
body that operates independently by law, which creates reliable official statistics on the Dutch population.
Recently, CBS created a network of the entire Dutch population [VdL22] where people are connected through
various social connections. We call this the Persons Network, after its Dutch name of “Personennetwerk”.
It was derived using official register data from 2018, and as a result it contains every person registered in
the Netherlands in that year.

4.1.1 Formal and informal ties

Generally speaking, the Persons Network contains various so called formal ties. These are ties that can
be derived from government register data and where we are certain that they exist (excluding a negligible
number of errors in the registers themselves). For example, there is a government register where the parents
of each person are stored, and from this information other family relations can be derived such as whether
people are grandparents or cousins. These ties are guaranteed to exist, but that does not mean that they
are always social ties to infer social structure from. Consider for example that people can be disconnected
from their family after a big fight, or that people might not know everyone at their company.

In contrast to the formal ties in the Persons Network, informal ties are not formally registered. A clear
example of this are friendships, which are typically captured by online social networks — though often along
with additional spurious ties. Since these ties are not present in register data, they are not present in the
Persons Network.

4.1.2 Network layers

The specific social ties that are present in the network can be grouped into various layers. Table 4.1 contains
a brief overview of the available layers along with some example links and other properties. In the layers
where the “Complete components” column is ticked, the network can be split up into components that are
all complete networks. These are projections of bipartite networks, with in one node set the people and in
the other the affiliations (workplaces, households, classes).



. . . Complete .
Layer Clarification (Example) connections components Sampling
Family members that likely
Close family form a household or have | Child, sibling, partner
done so in the past.
Extended family Fam.l ly CODHECthI.IS one step Niece, aunt, grandchild
outside close family.
Household P"eople that manage their Housemate Ve
lives together.
Work People working for the same Colleague v v
company.
People in the same educa- . .
Lo . Classmate in primary
tion institute, in the same . .
School . education, classmate in v
program and that started in . .
higher education
the same year.
Neighborhood People that live close by. Neighbor v

Table 4.1: Characteristics of layers available in the Persons Network.

Figure 4.1 shows a visualization of the ego network of a random node in the Persons Network. We can
see how the workplace and school class of the ego create densely connected clusters in the network. The
family connections also form dense regions with relatives that live together also standing out.

E family
= household
neighbors
1 school
E work

Figure 4.1: Visualization of the ego network of a node in the Persons Network.

We will only briefly discuss some of the quality issues and considerations based on which we select what
data to use for this research. An in-depth exploration of each layer and an assessment of the data quality
can be found in [BBHT21].

First, sampling has been used to derive the Neighborhood and Work layer, which causes several artifacts
such as important links being left out. Second, complete layers are problematic for our research purposes.
This is because if people work at a large company or are part of a large study program, then they will have
many hundreds or even thousands of connections. In such cases we can realistically never expect everyone
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to actually know one another. We thus find a large number of spurious ties in the Work and School layers,
that likely do not represent meaningful social ties on which to base a measurement of social structure and
ultimately social capital.

With smaller components however, the latter problem can be overcome. Consider the following: at work
people are often close to, say, ten colleagues. Each of these also have their circle of colleagues to whom they
are close. When the company is sufficiently small, it is quite likely that there is a meaningful link between
everyone in that company, albeit a link that in real life is at a distance of two. Similarly in school, an
individual might have a handful of friends, who all have friends as well, and through their connections they
likely have some connection to classmates given that the class is sufficiently small. Therefore in such small
components, we can be reasonably certain that everyone is connected through a real-life link of either one
or two steps. And thus in our network, such links of distance two are represented as links of distance one.
Such links are still valuable as they do say something about the resources to which a person has access.

In fact, this is similar to selecting both close and extended family. Despite people often being close to
their extended family, we believe that is it still common to access the resources that are present there through
direct family. Thus extended family connections are at a distance of two in real life. But when both layers
are used, such links are shown in our data as being at a distance of one.

4.1.3 Selected layers

Based on these quality considerations, we leave the Neighborhood layer out of our selection. For the Work
and School, we choose to only select components that contain at most a hundred nodes. This cutoff is indeed
largely arbitrary, but it makes it possible to capture a large number of meaningful ties whilst guaranteeing
a certain level of data and interpretational quality. Moreover, it avoid the sampling problems of the Work
layer. Finally, all household and all family links are selected.

After making this selection, we obtain a slice of the Persons Network containing the following layers:

e Close family

Extended family
Household

Work for workplaces of at most 100 workers

School for groups of at most 100 students

4.1.4 Network data descriptives

Table 4.2 shows descriptive statistics of our network (see Chapter 3 for definitions of the statistics).

£ nodes % nodes Avg.

Layer ith a link # edges Density in largest Excess

with a CC closure
All 16,879,254 505,920,731 3.398-107° 97.990 8.517-1073
Close family 16,735,724 79,392,532 5.332:1077 91.820 -
Extended family | 15,819,843 | 234,644,115 | 1.576:10°° 97.614 -
Household 14,054,443 32,666,006 2.194.1077 0.003 -
Work 2,587,661 76,199,234 5.117-1077 0.004 -
School 3,048,956 115,363,963 7.747-1077 0.003 -
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Table 4.2: Descriptive statistics of the slice of the Persons Network that is used in this research.



We observe that the vast majority of all nodes are connected, and that nearly all of these form a giant
component together. Within the Close family, Extended family and Household layers, we also find that
almost all nodes are connected. Giant components are also present for these layers, except for the Household
layers. This is because the household layer consist of complete components, and so the largest CC has a
size equivalent to the largest complete component. The same holds true for the Work and School layers.
Within the Work and School layers we also find a large portion of nodes having some connection, despite
not selecting components of more than a hundred links.

4.1.5 Interpretation of the network structure

In our selection, the Close family, Extended family and Household layers together can be thought of as the
backbone of the network. These layers consist of strong ties and the links form a lot of locally dense regions
in the network. Additionally, almost every node is part of the giant component when we consider these links,
meaning that most people are connected through some path. We thus can view these links as forming the
backbone of the network where nearly everyone is present but there are still great distances between people.
This is alleviated by adding the Work and School layers. Such links are perhaps intuitively less strong, but
they connect different parts of the network that otherwise would appear to be distant. Thus altogether
we have a network where some ties facilitate local clustering whereas others connect different parts of the
network. In this way, the network has structural properties that we would expect in real-world networks,
building further confidence that the network can be used to study the Dutch population.

We believe that the network with the selected links does a good job at mimicking the true (theoretical)
social network of the Netherlands. Although we do not capture informal ties which certainly are important,
the ones that do not overlap with Family, Work and School connections only make up a relatively small
portion of the social ties that people have. And despite leaving out some links, we do capture some of the
most important social ties for either all or most people. The quality and completeness of the ties which we
use is also high, and they are expected to have true importance in the real world in the vast majority of
cases. Because of this, we believe that network measures computed on this network can be used effectively
to relate network structure to community social capital.

4.2 QOutcome data

In order to relate network measures to social capital, we make use of four main neighborhood-level social
capital outcomes, and a fifth outcome that we use as a robustness check. A brief overview of the outcome
data can be found in Table 4.3.

These datasets were selected to both cover a wide range of social capital outcomes and also capture
outcomes that are most strongly supported by the community social capital literature (see Chapter 2).

Whereas the Crime, SAB, and Mortality outcomes are derived from exact register data, the Health and
Volunteer outcomes come from the Gezondheidsmonitor of 2016. This is a large-scale questionnaire which is
performed every four years in the Netherlands by CBS, the Area Health Authority (GGD) and the National
Institute for Public Health and the Environment (RIVM) in order to get an insight into the health of the
Dutch population. Results from these questionnaires are used by government agencies to guide policy, but
are also of interest to scientists as they each gather diverse information on a large scale. The questionnaire
data is used by RIVM to create a model which predicts the answers for the 387,195 people that have filled
in the Gezondheidsmonitor in 2016 based on register data such as age, sex and income [vdKZB*17]. This is
then used to predict outcomes on the neighborhood-level. The models made by RIVM are of high quality,
and they are based on a large number of people — over 2% of the entire Dutch population. This makes it
reasonable to assume that if we find relations between network measures and the outcomes, that these are
representative of the actual relations that we would find if the exact data existed.

12



Name Description Ages | Source Year Related social capital
outcome
The percentage of people with Gezondheidsmonitor!
Health good or very good perceived | 19+ 2016 | Improved health
GGD, RIVM, CBS
health.
Volunteer The percentage of peop%e that do 19+ Gezondheidsmonitor 2016 Inc?eased civic partici-
some form of volunteering work. GGD. RIVM. CBS pation
The number of reported violent Geregistreerde crimi- . .
. . . . o Lower violent crime
Crime crimes per one thousand resi- - naliteit 2018 rates
dents. CBS
The. percer.ltlage .Of peoplie t}fliat Bijstandsuitkeringen- I q .
SAB receive social assistance benefits 154 | statistiek® 9018 | mproved socio-econo-
(SAB) from the Dutch govern- mic position
ment. CBS
. The number of deaths per one Kerncijfers Wijken
M 1 . - 201 I health
ortality thousand residents. en Buurten* 018 mproved healt
CBS

Table 4.3: The used datasets of neighborhood-level social capital outcomes.

An additional problem is that the model made by RIVM makes use of the household composition, and
this also is reflected in our network structure. In turn, the household size will have an impact on the network
measures which we compute. As a result, some of the information that is used in the RIVM model also
effects the network measures. This biases our results for the Volunteer and Health outcomes to a certain
extent. For Health we can perform a robustness check of the results by using an additional health-related
outcome which is based on register data. To this aim we make use of the Mortality outcome. The exact rela-
tions between network measures and Health might be different from those obtained with Mortality, because
mortality rates are much more age dependent than perceived health. Nevertheless, if we also find network
measures to be important for Mortality, then we can say with greater certainty that network measures have
an effect on health outcomes. For Volunteer there sadly is, to the best of our knowledge, not another related
dataset available on a neighborhood level which we could use in the same way.

We only use neighborhoods where all of the outcome data is available. This leaves us with data on
2,772 out of the in total 3,086 neighborhoods (in Dutch “wijken”) in the Netherlands as per December 2018,
covering roughly 90% of all neighborhoods. In terms of inhabitants, we cover 16,468,685 out of 17,257,207
people that were registered in the Netherlands in 2018, which is approximately 95% of the population.

Figure 4.2 shows the distribution of the four social capital outcome measures over the Netherlands. The
colors correspond to the quartiles, so the lowest 25% of values are assigned to ‘very low’, the next 25% are
considered ‘low’, and so on. The upper two outcomes positively relate to social capital, whereas the bottom
three associate negatively. Blank spots are caused by the neighborhood being dropped due to missing data.

As the east of the country is more rural, we see a clear link between urbanization and the Volunteer
outcome. We also observe that many neighborhoods fall into different bins than adjacent neighborhoods,
showing that the urbanization level likely is not the sole contributing factor to varying levels in the outcomes.

Ihttps://statline.rivm.nl/portal.html?_la=nl&_catalog=RIVM&tableId=50089NED&_theme=85

%https://wuw.cbs.nl/nl-NL/onze-diensten/methoden/onderzoeksomschrijvingen/korte-onderzoeksbeschrijvingen/
geregistreerde-criminaliteit/

Shttps://www.cbs.nl/nl-nl/onze-diensten/methoden/onderzoeksomschrijvingen/korte-onderzoeksbeschrijvingen/
bijstandsuitkeringenstatistiek--bus--

*https://www.cbs.nl/nl-nl/onze-diensten/methoden/onderzoeksomschrijvingen/korte-onderzoeksbeschrijvingen/
kerncijfers-wijken-en-buurten
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Figure 4.2: Distributions of social capital outcomes over the Netherlands.
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Chapter 5

Methodology

In this chapter we describe the methodology of our research. First we describe the overall goal of our analysis
and how we designed our research to achieve that goal. We then explain the network measures which we
have considered. And lastly, we discuss how we examine the relations of these network measures to the social
capital outcomes.

5.1 Research design

The ultimate goal of our analysis is to be able to draw conclusions about the relation between network
structure and social capital. We achieve this indirectly through the examination of the relations that different
network measures have with social capital outcomes.

An overview of the general design of our research can be found in Figure 5.1. This diagram shows
that we first compute the network measures and control variables on an individual level (green box), which
form the independent variables in our analyses. Each of these roughly 16.5 million data points are then
aggregated to the community level (red box) by averaging over all people in the neighborhood. Data on
social capital outcomes are gathered (in blue) and do not need to be processed further as they already exist
on the neighborhood level. These outcomes are used as dependent variables. With all data being on the same
unit of analysis, we can analyze the relations between the independent and dependent variables (blue box).
These analyses are set up such that we can determine how the network measures relate to the social capital
outcomes. This knowledge is then used to make more broad conclusions on the overarching relationship
between network structure and social capital (in purple).

5.1.1 Network measure selection and computation

As we seek to relate network structure to social capital, we focus on use network measures that capture
important and diverse aspects of network structure. Moreover, since the outcome data is on the community
level, we also need the network measure data to be on the community level. For that we could use network
measures that consider the subnetwork of just the people in a community and the connections among them.
However this is problematic since we lose a considerable amount of information by discarding links from
people within the community to people outside it. Instead we choose to use network measures that are
computed for each individual in the entire network, which we then aggregate to the community level. This
way we view the community as the sum of its parts and consider all resources to which individuals have
access. In a way, this also allows us to say something about the average individual-level social capital of the
individuals. We thus compute the network measures for each of the 16,468,685 individuals which are covered
by our outcome data.

We specifically focus on two network measures that we believe capture two important aspect of social
structure. Fzcess closure is a measure of social bonding, whereas the ego network growth rate measures
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Figure 5.1: Research design overview.

social bridging. Both are moderated by a third network measure, the degree. Further explanations of the
network measures are provided in Section 5.2.

5.1.2 Community choice and aggregation

Whereas we compute the independent variables on the individual level, our analyses are performed on the
community level since we focus on community social capital. We consider communities to be people living
in the same geographical neighborhood. There are three reasons for this decisions.

First, it allows us to use high-quality open data on social capital outcomes. There are many open
datasets available on the Dutch population which are aggregated to the neighborhood level, some of which
relate directly to community social capital. Thus by considering neighborhoods to be communities, we can
make use of these datasets to examine how our network measures relate to these aspects of social capital.

Second, other possible choices of communities would be problematic. When using a non-spatial-based
unit of analysis it would be difficult if not impossible to find relevant social capital outcome data. This is
because such data does not exist for all sorts of demographic groups — certainly not on a population scale.
Survey data is also difficult to use as the network data is pseudonymized and quality issues of the network
data are more problematic on the individual level.

Third, we believe that neighborhoods can be considered as natural communities in this context. Within
neighborhoods there is likely a certain level of connectivity, caused by the connections between people being
largely bounded by geographical distance. Additionally, there must be some level of homophily within
neighborhoods, as many statistics about the Dutch population vary substantially between neighborhoods,
even when they are adjacent (see for example Figure 4.2). For example, if the average education level
is higher in a certain neighborhood than in the adjacent neighborhood, then the former has more highly
educated people and in that way people are (at least on average) similar.

As the independent variables are computed on the individual level, they must be aggregated to a single
number for each neighborhood before the final analyses. This is achieved by averaging the individual values
over all people in each neighborhood. The outcome data which we selected are described in Section 4.2.
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These data are already available on the neighborhood level, and thus no aggregation is necessary.

5.1.3 Analysis of network measure impact

We perform a set of analyses to see how network measures impact the social capital outcomes. Linear
regression models are used that take the network measures along with control variables as independent
variables and predict the social capital outcomes. We set these models up so that the coefficients of each
independent variable can easily be interpreted, making it possible to determine how each network measure
relates to the social capital outcomes. A detailed explanation of the statistical models can be found in
Section 5.3.

5.2 Network measures

We consider two network measures of social capital. These are believed to capture different aspects of
network structure. A third network measure is used as a moderating variable, which is simply the average
degree. As our social capital outcome data covers roughly 16.5 million people, the computation of these
measures is a computationally demanding task. For each network measure we explain how it works and how
it captures the respective network structural aspects.

5.2.1 Excess closure

The closure or local clustering coefficient of a node is defined as the portion of closed triangles over the
total number of triangles that could exist given the degree of the node. FEzcess closure can be seen as
closure for multilayer networks, where only triangles are considered that consist of links from at least two
different layers. Figure 5.2 shows excess triangles (highlighted in pink) in a toy ego-network where link type
is represented by edge style. The red ego node has 2 excess triangles, as there are just two triangles where
several types of edges are present. A detailed description of this measure can be found in [Bok].

LR ]
-"--- ..."-
"

P

Figure 5.2: Example of excess triangles in a multilayer network.

Only considering triangles that span multiple layers is necessary in the population-scale social network
that is considered in this thesis. When we consider all triangles, as is done using the clustering coefficient,
we will obtain deceptively large values, since a lot of triangles will always be closed as per the nature of
the network data. Namely in the layers that consist of complete components (see Section 4.1.2), all existing
triangles are a result of this completeness. Such triangles might be accurate in representing real-world
triangles, but they do not provide us with valuable information.

If we have a triangle that spans multiple layers, this signals the presence of more important “triangle
closing” ties. Thus when the excess closure of a node is higher, their ego network will be more tightly knit.
As a result, excess closure can be seen as a measure of social bonding.
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5.2.2 Ego network growth rate

The most common network measure of social bridging is betweenness centrality [Fre77], since it directly
measures the extent to which a node bridges densely connected regions of the network. However this measure,
as well as other similar centrality measures, are highly computationally expensive and cannot feasibly be
computed on our data. Therefore, we require a custom measure that is relatively computationally inexpensive
but still has a clear relation to social bridging.

For this we introduce the ego network growth rate (ENGR) which we define to be the relative change
between the ego network size at a distance of 1 and a chosen distance of d. This is given by the following

formula:
[Na(v) U{v}| = [Ni(v) U{o}] _ [Na(v)| = [N1(v)]
[N1(v) U{v}| [N1(v) +1
Here v is the node which we are looking at and d > 1 is the distance that we are interested in. Figure 5.3
shows the ENGR in a toy multilayer network using d = 2. The red node is the ego, blue nodes are at a
distance of 1 from the ego and purple nodes are at a distance of 2. Line style represents the edge type. The
10-6 _

ego network size at d = 1 here is 6, and at d = 2 it is 10. Thus the ego network growth rate for v is == g.

ENGR4(v) =

Figure 5.3: Example of the ego network growth rate in a multilayer network.

This measure can be seen as the size of the ego network at distance d normalized to the number of neigh-
bors. As we only need to compute these two values, this measure is perhaps the simplest possible measure
of social bridging. This makes it relatively cheap to compute, making it feasible to compute on networks
with several hundred millions edges and millions of nodes.

The ENGR relates to social bridging as it considers the rate at which the ego network grows when we
look d steps away from the ego. When d is small, high values indicate that the node has a bridging position
in the network that allows it to reach a large number of nodes in a small number of steps. Low values indicate
that few nodes can be reached outside of the direct ego network in a small number of steps. In this way, the
ENGR is an indication of how well the ego network of a person allows them to obtain novel information,
which other network measures of social bridging also measure.

Conceptually, the ENGR also relates directly to betweenness centrality. That is, when nodes form bridges
between densely connected regions of a network, they will have a large ENGR since they can reach people
in all the regions which they connect. Nodes that are central within a more dense regions will also have a
high ENGR as they can reach all other nodes in this region in a few steps. In both cases, the betweenness
centrality will also be higher. Nodes that are less central will have a low ENGR as their network position
does not allow their ego network to grow as fast.

We further examine the relation of ENGR to node centrality in Figure 5.4, which shows correlations
between two centrality measures and ENGR for various values of d using random networks. Different values
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for d and the number of nodes n in the network are used, and the correlation coefficients are averaged over
25 random graphs for each network model and parameter set. Random network models that are used are
the Erdos-Rényi model [ER'60], the Watts-Strogatz model [WS98], and Barabdsi-Albert model [AB02].
Centrality measures which we use are betweenness centrality and closeness centrality [Bav50]. The random
network models that are used here have different properties than our data, and the latter is much larger.
However, this figure does show that we can say at least with some certainty that there is indeed a posi-
tive correlation between node centrality and ENGR for small values of d, as we see consistently that the
correlations here become larger as the network size is increased.

Betweenness centrality
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o o o
3 -0.75 3 -0.75 3 -0.75
-0.50 -0.50 -0.50
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S 0.25 ] 0.25 S 0.25
z 0.00 z 0.00 z 0.00
o (=3 o
S -0.25 S -0.25 S -0.25
w 0 wn
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8 8 8
‘8 -0.75 g -0.75 g -0.75
-1.00 -1.00 -1.00
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d d
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Figure 5.4: Pearson correlation coefficients between ENGR and node centrality.

To choose the value of d that we use in our analyses, we only consider values of d = 2 and d = 3, as
larger values pose several problems. First, it is unlikely that people in the real world can indirectly access
others that are more then a few steps away from them in the social network. This is made worse by some
links that are of distance two in the real world being represented as distance one links in our network (see
Section 4.1.2), because distances can appear larger than they are. Second, using a high value of d might be
misleading, as when a node is not central, their ego network size at d will still be large, and if their degree
is also low this can lead to a greatly inflated ENGR. Third, as d is increased, the ENGR becomes more
computationally complex. Thus considering small values keeps the computation feasible.

Our choice of d is based on the correlations of the measure to the other measures, in order to ensure
that we capture as little redundant information as possible. There will expectedly be a strong correlation
between the ENGR and the node degree, since degree tends to relate to network centrality measures, since
higher degree nodes tend to be more central. Moreover, if the degree of a node is high it is less likely in
practice to have a closed ego network, and so the ENGR is expected to be higher.

Figure 5.5 shows the correlations between the aggregated network measures on our data, which confirms
that the degree and ENGR are highly correlated. Correlations to excess closure are moderate. We observe
that both the correlations are lower when d is smaller, and for that reason we use the ENGR with d = 2 in
our analyses.
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Figure 5.5: Pearson correlations between the network measures, usingd =2 and d = 3
for ENGR.

Despite the high correlation between the ENGR and the degree, it still makes sense to use the ENGR,
as a measure of social bridging. First, many network centrality measures correlate highly to each other, but
they are still considered to be different as they have a different interpretation, and the correlation is not
perfect. This is the case here as well. Second, whereas degree only considers direct resources, the ENGR at
d = 2 focuses on resources that are one more step away. Such connections can be highly valuable and thus
it is important to use a measure that considers them, especially as we use the measure to represent social
bridging.

5.3 Statistical models

In order to examine what relations exist between network structure and social capital, we perform regression
analyses. We take an approach similar to the one described in Chapter 2, where social capital is measured
by looking at expected outcomes. We use four outcomes that are well known to relate to community social
capital. An overview of the data which we selected for this can be found in Section 4.2. Relations between
these outcomes and the network measures are estimated using linear models, created using ridge regression.
We set these models up in such a way that that the coefficients of each variable can intuitively be interpreted,
allowing us to conclude how the network measures impact the social capital outcomes.

5.3.1 Multicollinearity

Simply using ordinary least squares estimators would be problematic here as there is multicollinearity,
meaning that some independent variables are highly correlated, as can be seen in Figure 5.5. Since the
variables are not independent from one another, a change in one will cause a change in the correlated variables
as well. This gives outlier data points more influence as they have a great impact on many variables at once.
When ordinary least squares is used, coefficients are chosen to optimally fit the data, and so this large impact
of individual data points can cause the model to overfit. Alternatively, we can say that the model has high
variance as its performance will be highly different if the data is slightly perturbed or if small changes are
made to the model itself. Since the model is unstable, we cannot fully trust the coeflicients that are found
for the correlated variables.

The solution to this is to introduce more bias into the model. Having more bias will cause the model
to be less susceptible to small changes, which reduces variance and thus alleviates the problem of unreliable
coefficients. Often this can also improve the overall quality of the model, because the reduction in variance
is greater than the increase in bias.
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5.3.2 Ridge regression

A common way to achieve this is by using ridge regression [HK70] to estimate the coefficients of a linear
model. Like ordinary least squares, ridge regression gives an interpretable model that we can use to answer
our questions. The difference between these methods is that an ridge regression uses an additional penalty
term. Specifically L2 regularization is used to pull the coefficients towards zero. This keeps the model more
simple and thus increases bias, which in turn decreases variance. Therefore we can use ridge regression in
the face of multicollinearity to obtain more reliable estimates of the coeflicients.

In ridge regression there is one parameter to tune: A, which determines the strength of the penalty term.
The higher A, the greater the regularization and the simpler our model. We use cross-validation to tune this
parameter, where we additionally apply the One Standard Error Rule [BFOS17, HTFF09]. This is a rule of
thumb that is used to select the simplest yet most accurate model, and is further explained in Section 6.1.

Moreover, before performing ridge regression we must standardize the data by subtracting the mean and
dividing by the standard deviation, so that the data has a mean of zero and a standard deviation of one.
This is needed as the range of the variables impacts the size of the coefficients that are obtained, and thus
this might cause too much or too little regularization to be applied.

5.3.3 Interpretation of the coefficients

Coefficients found with ridge regression can be interpreted in the same way as for standard linear models.
By preprocessing the data, we obtain coefficients that are intuitive to interpret and compare to each other.
For that we apply log-transformations to the independent and the dependent variables. After that we can
interpret a coefficient S as the percentage change. That is, if the corresponding independent variable is
increased by percent, then in our model the dependent variable will increase by S percent. Furthermore,
log-transformations make linear regression models better at handling skewed data.

5.3.4 Control variables

Control variables are used to take factors other than network structure into account and ensure that we can
analyze the effects of the network measures in our regression analyses. We selected a broad range of control
variables that would be expected to have an effect on the social capital outcomes. Since the data has to be
available on the community level, we used information from the available node attributes to compute the
control variables. The list of potential control variables, along with a brief explanation on how they might
effect social capital, is as follows:

e Size: This measures the number of people living in the neighborhood to which individual results are
aggregated. Larger neighborhoods might be less close-knit and thus have less social capital.

e Awverage age: Younger neighborhoods might experience less social capital as the inhabitants are yet to
build it up.

e Urbanization: The urbanization level of the neighborhood on a 5-point scale, where higher means more
urban. More urbanized areas might experience less social capital as people are less dependent on each
other.

e Median household income: More affluent areas likely have more social capital, since social capital is
linked to financial success.

e Percentage native Dutch: The percentage of people that are ethnically native Dutch. This measure says
something about the segregation of the neighborhood, and we expect more segregated communities to
have less social capital.

e Percentage highly educated adults: As education level is related to socioeconomic status, having a
higher portion of highly educated adults could affect social capital.
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e Percentage of people with a partner: When more people have registered partners, this might indicate
stronger family values within the neighborhood, in turn improving social capital.

To keep the regression model simple and interpretable, we eliminate control variables that highly correlate
to one another. Figure 5.6 shows a correlation matrix of these variables.

Median household income - m 0.06 ‘ 0.33 -0.36 0.41 0.50 0.6
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Figure 5.6: Pearson correlation coefficients between control variables.

Most variables are only moderately correlated, meaning that they capture different aspects of society.
However, there are a few strong correlations between the Percentage native Dutch, Urbanization, and Per-
centage of people with a partner variables. We also see that these have nearly identical correlation patterns
to the other variables. Therefore it seems that these controls capture more or less the same information.
We choose to keep the Urbanization level, as we expect this to be the driving force that influences the other
two variables, and not the other way around. This is because cities attract more migrants and people with
families might prefer to live away from cities.

Thus we make use of five control variables. Table 5.1 shows the outputs of the regression models where
only the control variables are considered for modeling the five outcome variables in Section 4.2. For most
social capital outcomes we can already achieve good performance without using network measures, explaining
up to 70% of variance for the SAB outcome.
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Dependent variable:

crime SAB health volunteer mortality
(1) 2) 3) (4) ()
med_income -1.11 -2.02 0.18 0.34 -0.41
size -0.06 0.10 -0.01 0.00 0.15
urbanization 0.40 0.24 -0.03 -0.21 0.03
average_age -0.43 -0.05 -0.18 -0.10 2.69
highly_educated -0.10 -0.02 0.03 0.01 -0.10
Constant 14.85 20.96 3.17 0.46 -4.76
R? 0.23 0.70 0.58 0.57 0.38
A 0.29 0.17 0.02 0.03 0.16

Table 5.1: Ridge regression results when using all control variables at once.
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Chapter 6

Experiments

In this chapter we describe and discuss the experiments which we have performed. First we explain the
experimental setup such that our methods can be reproduced. We then present and interpret our findings,
after we finish with some discussion on the limitations of our research.

6.1 Experimental setup

In order to compute network measures on our data, we use the popnet mln library'. This is a library
developed by the POPNET team specifically for this purpose, though it can work with any multilayer
network. It is written in Python[VRDJ95] and makes extensive use of pandas [pdt20], NumPy [HMvdW*20]
and SciPy [VGO™20], all of which were also used in this work to extend the library and work with the data
gathered through popnet_mln.

We store the individual-level network measures in a SQLite? database. This way we can easily process
the data and export it to a CSV file so that we can import it for the regression analysis.

Here we make use of the R programming language [R C22]. We use the ridge regression implementation
of the glmnet package®. This package implements linear models that use Elastic-Net regularization [ZHO05].
Here a combination of LASSO [Tib96] (which uses L1 regularization) and ridge regression can be made.
Using the a parameter, we can control the amount of each type of regularization that is used. We set o to 0
such that only ridge regression is used. Furthermore, using glmnet we can easily find optimal A values using
cross-validation and the One Standard Error Rule.

We specifically use 10-fold cross-validation, as is recommended in [HTFF09]. In order to apply the One
Standard Error Rule, we evaluate the predictive performance, measured as mean squared error (MSE), and
the standard error over the different folds for various values of A. Based on this, we determine which setting
of X\ has the lowest MSE. The A which we ultimately choose is the highest A where the MSE is within one
standard error of the MSE of the best model. This allows us to find a model with performance highly similar
to the best one but which is (possibly) much simpler, which is especially important to avoid problems caused
by multicollinearity.

Our analyses are set up such that we can determine the relations between the network measures and the
social capital outcomes. For each social capital outcome (the dependent variable in the regression models),
we run ridge regression using various configurations of independent variables. The names of the models, the
independent variables that are used and what we use the model for are:

e (1): ENGR and average degree.
This provides insight into the isolated role of the ENGR.

Thttps://github.com/bokae/popnet_mln
%https://wuw.sqlite.org/index.html
Shttps://cran.r-project.org/web/packages/glmnet/glmnet . pdf
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(2): Excess closure and average degree.
This provides insight into the isolated role of the excess closure.

e (3): All network measures: excess closure, ENGR and average degree.
With this we can observe the combined performance of the network measures without control variables.

e (4) through (7): All network measures, adding control variables in steps.
Here we observe how the coefficients of the network measures change as we control for more variables.

e final: All independent variables.
Using this model we draw determine the relations between network measures and the social capital
outcomes while controlling for all control variables.

e controls: All the control variables.
This model allows us to compare how well the models perform when network measures are added.

6.2 Results

The results from our experiments consist of the presentation of the regression results for each social capital
outcome along with an interpretation of the coeflicients. We then plot the data to get additional insights into
the relations between the network measures and the social capital outcomes. An overview of the outcome
variables which are examined can be found in Section 4.2. The network measures are described in Section 5.2,
and a description of the control variables can be found in Section 5.3.4.

6.2.1 Violent crime rates

Table 6.1 presents the results of the analysis for the Crime outcome, where we look at the number of reported
violent crimes in neighborhoods per one thousand people.

Overall we observe that the performance of this model is satisfactory, with the final model explaining
30% of variance in the data. Up to nearly half of this can be achieved using only network measures. In the
final model, we find that the most influential control variables are the average age and the median income.
When these are independently raised by one percent, we respectively expect a drop of 1.11% and 0.86% in
the crime rate per one thousand people. That is, older and more wealthy neighborhoods see lower crime
rates, which is to be expected.

We also find the network measures to have a strong impact. In comparison to the model which uses
only the control variables, we find that network measures help explain an additional 7 percentage points of
variance. The importance of network measures is also evident in the coefficients. If the average degree is
increased by one percent, this leads to a drop of 1.31% in crime rates per one thousand people. The ENGR
and excess closure also have strong effects. We see that when excess closure is increased, this lowers the crime
rate considerably, as this is in fact the most important variable in the final model. Surprisingly, the ENGR
has a positive coefficient, suggesting that improved social bridging relates to higher crime rates. It is also
interesting how the directionality of excess closure flips when the neighborhood size is taken into account.

6.2.2 Social Assistance Benefits

We present the results for the regression analysis for SAB outcome in Table 6.2. With this social capital
outcome we consider the percentage of people in a neighborhood that receive social assistance benefits from
the Dutch government.
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Dependent variable:

crime
(1) (2) (3) (4) (5) (6) (7) final  controls
avg_degree -1.76 -0.84 -1.36 -0.90 -1.22 -1.17 -1.21 -1.31
engr 1.91 1.26  0.52 1.03 1.05 0.73 0.64
excess_closure 0.69 057 040 -0.04 -1.42 -1.10 -1.47
med_income -1.11 -1.27  -1.11  -1.05 -0.86 -1.13
size 0.01 -0.07 -0.07 -0.06 -0.06
urbanization 0.41 0.35  0.39 0.41
average_age -0.93 -1.11 -0.44
highly_educated -0.18 -0.10
Constant 1.93 396 2.19 14.22 15.56 14.67 18.52 18.42 15.10
R? 0.14 0.09 0.12 017 0.19 028 029 0.30 0.23
A 0.16 058 028 046 024 018 0.22 0.20 0.26
Table 6.1: Ridge regression results for social capital outcome Crime.
Dependent variable:
SAB
(1) (2) (3) (4) (5) (6) (7)  final  controls
avg_degree -0.60 -041 -0.38 -0.10 -0.20 -0.10 -0.13 -0.15
engr -0.30 -0.15 -045 -0.38 -0.48 -0.58 -0.62
excess_closure 231 219 2.50 1.67 1.10 1.14 1.08
med_income -2.54 204 -197 -200 -1.94 -2.06
size 0.13 0.10 0.10 0.10 0.10
urbanization 0.21 0.19 0.20 0.25
average_age -0.39 -0.43 -0.04
highly_educated -0.05 -0.02
Constant 381 1.32 1.69 2748 21.74 21.39 23.55 23.46 21.32
R? 0.09 0.13 012 059 068 071 072 0.72 0.70
A 0.48 059 065 016 021 0.19 017 0.17 0.16

Table 6.2: Ridge regression results for social capital outcome SAB.
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Overall the quality here is high, our final model being able to explain 72% of variance. A large part of
this is due to the median income variable. This is to be expected, because there is clearly a direct relation
between this and the outcome variable. Nevertheless, we also find that network structure has a strong
influence. This time it is excess closure where we find unexpected results. As excess closure is increased by
one percent, this leads to a 1.08% increase in the number of people that receive social assistance benefits.
We would have expected social bonding to decrease SAB levels, since people with social bonding can get
more assistance from their social contacts, decreasing the need for government assistance. The ENGR does
behave as expected, it having a large and negative coefficient. We also observe that the models with network
measures allow us to explain 2 percentage points more variance.

6.2.3 Perceived health and mortality rates

The results for the regression analysis for the Health outcome can be found in Table 6.2. Here we considered
the percentage of people that perceive their health as being good or very good, as determined by the RIVM
model which is built using the Gezondheidsmonitor (see Section 4.2).

Dependent variable:

health
(1) (2) (3) (4) (5) (6) (7)  final controls
avg_degree 0.09 0.08 0.06 0.05 005 0.05 0.03 0.04
engr 0.10 0.06 0.09 0.08 0.09 0.06 0.08
excess_closure -043 -0.36 -043 -0.37 -040 -0.39 -0.32
med_income 0.21 018 020 020 0.15 0.18
size 0.00 0.00 0.00 -0.01 -0.01
urbanization -0.01 -0.01 -0.01 -0.03
average_age -0.13  -0.09 -0.18
highly_educated 0.04 0.03
Constant 3.78 426 410 2.00 233 211 271 286 3.17
R? 021 032 030 060 058 060 064 0.67 0.58
A 0.07 005 0.07 0.02 003 0.02 002 0.03 0.02

Table 6.3: Ridge regression results for social capital outcome Health.

Again we observe that high R? scores are obtained, although now we also see that the network measures
by themselves can explain a large percentage of variance. We also note that here coefficients are relatively
low compared to the other models. Still, we find that the coefficients of the network measures are fairly
high in comparison to most control variables, with excess closure being the most influential variable overall.
However, we do observe again that excess closure negatively effects the social capital outcome. This effect
is also consistent in models with control variables. Again we also observe that the final model is improved
by adding network measures, with the explained variance increasing by 9 percentage points. These findings
suggest that network structure has a strong relation to health outcomes.
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As the Health data is made using a model and not register data (see Section 4.2), we additionally consider
the Mortality outcome as a robustness check, to see if network measures play an important role here as well.
The Mortality data comes from registers and results here thus are not dependent on any external models.
The results of this analysis are shown in Table 6.4.

Dependent variable:

mortality
(1) (2) (3) (4) (5) (6) (7)  final controls
avg_degree 0.00 -0.08 0.00 -0.14 -0.20 -0.30 -0.05 -0.07
engr -0.01 -0.01 -0.16 -0.18 -0.11 0.64 0.61
excess_closure 0.37 0.02 0.65 081 103 087 0.77
med_income -0.23 -0.28 -0.36 -0.48 -0.40 -0.40
size 0.06 0.10 0.14 0.15 0.13
urbanization -0.04 0.00 0.01 0.04
average_age 2.79  2.78 2.45
highly_educated -0.08 -0.10
Constant 2.11 2.21 2.11 5.10 535 593 -6.62 -7.14 -3.84
R? 0.00 0.02 0.00 005 013 016 038 0.39 0.37
A 136.65 4.82 137.30 198 0.89 035 0.16 0.15 0.23

Table 6.4: Ridge regression results for social capital outcome Mortality.

For this social capital outcome we find quite different patterns than for the Health outcome. Here the
average age in the neighborhood clearly has the largest impact on the mortality rate, as is expected given
the nature of the outcome. We observe that the ENGR by itself has no value, and only once the average
age is considered does it become important. Excess closure also has a high coefficient in the final model.
This time we surprisingly find that both network measures negatively impact the outcome. In spite of these
effects being different from what we saw for the Health outcome, we still observe that network structure
overall has a strong effect for this health-related outcome. This shows that the exact relation between health
and network structure is perhaps difficult to predict, but that the relation exists nonetheless.

6.2.4 Volunteer

Lastly we look at the results for the Volunteer outcome, where we consider the percentage of people which
do some form of volunteering work. Like the Health data, this is comes from a model by the RIVM that was
made using the Gezondheidsmonitor data. In this case we do not have additional data for a robustness check,
but we nevertheless believe our results to be accurate. We present the results for the Volunteer outcome in
Table 6.5.
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Dependent variable:

volunteer
(1) (2) (3) (4) (5) (6) (7)  final controls
avg_degree 049 037 030 026 026 023 027 0.30
engr 0.40 033 041 040 049 055 0.64
excess_closure -1.39 -1.26 -1.17 -1.00 -0.65 -0.70 -0.56
med_income 040 032 029 027 0.21 0.34
size -0.03 -0.01 -0.01 -0.01 0.00
urbanization -0.15 -0.13 -0.15 -0.21
average_age 0.32 0.40 -0.10
highly_educated 0.06 0.01
Constant 0.63 2.80 204 -2.17 -1.14 -1.19 -257 -2.82 0.46
R2 034 039 038 049 054 071 073 0.74 0.57
A 0.06 0.10 0.12 0.10 0.11 0.05 0.05 0.03 0.03

Table 6.5: Ridge regression results for social capital outcome Volunteer.

We see here that both network measures by themselves, along with the average degree, are able to explain
over a third of all variance in the data. The quality of the final model is also excellent at an R? of 0.74.
Compared to the model with just the control variables, we see a great improvement in the overall quality.
Specifically, an additional 17 percentage points of variance in the data can be explained by adding network
measures. The importance of network measures is further seen in their coefficients. This is quite remarkable
as none of these variables were present in the model which was used to create the data. Again the excess
closure has an unexpected directionality, relating to decreased levels of people doing volunteering work. The
ENGR does behave as expected, and it has the largest overall coefficient in the model.

6.2.5 Data visualization

To help further understand these results, we plot the relations between the network measures and social
capital outcomes using scatter plots. This gives us additional insights into how the network measures relate
to the outcomes.

Figure 6.1 shows these scatter plots, with on the horizontal axis the social capital outcomes and on the
vertical axis the network measures. Overall this figure shows similar relations to those that were found in the
regression analyses. There are clear correlations between the network measures and social capital outcomes,
and the directionality of the relations is also conform with the regression results. However, this figure does
show us that the relations are not always linear. For example the relation between the ENGR and Health
appears to have an exponential nature. We also find that there are outliers in the outcome data, especially
for Crime and Mortality. These outliers might be problematic for the regression models, although this effect
should be minimized by using ridge regression to estimate the coefficients.
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Figure 6.1: Visualization of the relations between network measures and social capital outcomes.

6.3 Discussion

Overall we find that network measures consistently improve the accuracy of the models. Network measures
additionally often have higher coefficients than most if not all control variables. These findings suggest that
network structure is strongly related to social capital.

Table 6.6 shows a brief summary of the results from the final models of our analyses. The plus signs
indicate that there was a positive relation between the network measure and the outcome variable, whereas
the minus sign indicates a negative relation.

Outcome Excess ENGR
closure
Crime - +
SAB + -
Health - +
Mortality + +
Volunteer - +

Table 6.6: Summary of the relations between network measures and the social capital outcomes.

In most cases we found excess closure to be the most influential network measure, and often it was
among the most important predictors overall. However, in nearly all cases we find that excess closure has
a relationship in the opposite direction from what we expect, since increased excess closure generally was
found to relate to the worsening of the social capital outcome. As excess closure considers only ties of
multiple different types, it appears that when the social circles of a person greatly overlap, that this is bad
for social capital. One likely explanation is that this overlap indicates a lack of diverse resources, which can
trap people in low-opportunity social bubbles. It thus seems that having a more varied social network is
important in terms of access to social capital. In this way, social bonding can have a negative influence. Yet,
the negative relation to crime does suggest that social bonding can have a positive effect as well.

The results for the ENGR were in line with our expectations, as increased values here related to substantial
improvements in most of the social capital outcomes. This suggests that increased social bridging relates
positively to social capital.
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6.4 Limitations

One of the limitations of this work is that two of our social capital outcomes are based on data created by
a model. It would be preferred to use the raw data that was used to train the model, since this should still
give accurate estimations for a large number of neighborhoods. Alternatively, register-based data would be
ideal, but this is not available for all outcomes.

Our results are also limited by the choice of model. More complex models for example, might help to
improve the estimation of the relations between the network measures and social capital outcomes. However,
this would come at a cost of interpretability. On the other hand simpler models can have advantages as well.
For example when using ordinary least squares to train a linear model we would be able to estimate p-values
of each coefficient. This would allow us to ascertain if the effects of the network measures were statistically
significant. However due to the multicollinearity problem we opted to rather use ridge regression and focus
on the coefficients themselves to draw conclusions. Another reason for this is that the use of p-values in
this context is somewhat controversial. It can be argued that in population data p-values are meaningless
as coefficients are not estimates but precise values, although it is also argued that the population is part of
a greater superpopulation. By focusing on the coefficients we avoid this discussion and we can still draw
meaningful conclusions. However, not being able to speak of significance is a limiting factor.

Further limitations include the small selection of network measures. A virtually endless number of
network measures can be created that might capture some aspect of social capital. We only focused on two
for which there is a clear theoretical reasoning as to what they say about network structure and how this
relates to social capital. However it is certainly possible that better choices exist. Additionally, a broader
range of network measures could be considered, either to have several measures for one network structural
aspect, or to cover a wider range of network structural aspects altogether.

Of course our findings are highly dependent on the network that we used. As discussed in Section 4.1.1,
the network only contains formal ties, missing some highly valuable connections between people. And as we
did not select large classrooms and workplaces, this also makes us miss out on a fair number of important
formal ties. More experimentation using different selections of links could lead to better results. Moreover,
our data in its current state is just a snapshot of the Dutch population in 2018. Having snapshots of different
years could be valuable to test the robustness of these results.

Lastly we have limited the scope of this work to community social capital, but similar analyses using our
data can also be performed on an individual level. Here too, it would be highly valuable to have longitudinal
data. Another approach could be to link individuals to their outcomes from large-scale surveys such as the
Gezondheidsmonitor.

31



Chapter 7

Conclusion

In this thesis we have made initial steps towards the validated measurement of social capital using network
data. For this we have indirectly analyzed the relation between network structure and social capital. We
achieved this by, for the first time, bringing traditional and network-based measurement techniques of social
capital together. This is achieved by analyzing the connection between two network measures and a wide
range of well-studied social capital outcomes on the geographical neighborhood level.

Ridge regression was used to estimate coefficients of linear models, using the network measures along
with several control variables as independent variables, and the social capitals as dependent variables. The
network measures were chosen to capture various aspects of network structure. Excess closure measures
the level of social bonding in a community, whereas the ego network growth rate (ENGR) relates to social
bridging. With this analyses we were able to draw conclusions on the relations between network structure
and social capital.

Our contribution overcomes the following three problems with existing literature that measures social
capital in networks: a) often no empirical evidence is provided that the used network measures actually re-
late to social capital, b) works that do not have this problem measure highly specific types of social capital,
and c¢) small sample sizes can lead to weaker and less broad conclusions. By finding the relation to network
measures and a broad range of social capital outcomes, we overcome the first two issues, and the third is
overcome by analyzing a population-scale social network. Additionally, we have proposed a new network
measure that can efficiently be computed at a large scale, and we have shown it to relate to network centrality.

Overall we find that network structure has a strong relation to social capital. The network measures are
consistently among the most important predictors, and the regression models are always improved by adding
the network measures, in some cases by a great amount. Excess closure often related to decreased levels of
social capital. This suggests that social bonding can constrain people in their access to opportunities. How-
ever, we also find that it can be beneficial to a community because it relates to lower crime rates. The results
for the ENGR were in line with our expectations, as increased values related to substantial improvements in
most of the social capital outcomes. This suggests that increased social bridging relates positively to social
capital and comes with opportunities for people.

Our research question has been: What is the relationship between network structure and social capital?
Altogether our findings show a strong relation between network measures and social capital outcomes, and
thus between network structure and social capital. We find that social bonding can constrain people to
low-opportunity social networks, although it can also be beneficial to a community. Social bridging has a
positive relation to social capital, relating to improvements for nearly all social capital outcomes.

Some ways to extend the work presented here are to make use of more social capital outcome data and

consider a wider array of network measures. This can improve the robustness of the results or reveal new
insights altogether. Specifically the usage of the raw data from the Gezondheidsmonitor has the potential
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to reveal additional and more robust insights on the connection between network structure and health.
Many other extensions are also possible, such as the addition of more control variables to improve the
robustness. Further analyses on the behavior of excess closure and why its effect is negative could also be
valuable. Another possibility is to dive deeper into the results and for example see what neighborhoods are
problematic to predict for our models.

Future work could also focus on individual-level social capital. There, survey data can be used to relate
network measures to the outcomes found in the surveys. The income of people can also be used as a proxy
for their social capital. Lastly, this work could be extended to form the first network-driven official statistic.
This statistic could capture network structure with either a single or a combination of network measures to
say something about, for example, the total social resources available to people in a neighborhood.
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