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Abstract

Stance detection (SD) determines whether a piece of text is in favor, against, neutral, or
unrelated to a specific target. Recently, SD has been applied in a variety of fields (social
media, news, online debates, etc.) with favorable practical results. In the news domain,
the application of SD assists the news recommendation system in increasing the diversity
of news displayed to the public. Despite the significant progress in SD models, previous
work has mostly concentrated on single semantic model. For instance, BertEmb, the most
advanced model for the STANDER dataset, mainly employs sentence embeddings and
simple neural layers. Therefore, the performance achieved by this model has not been
close to the upper bound. In this thesis, we propose several methods for fusing different
models and a syntactic model to seek better model performance.

Our first model is CLS-transfer BERT, which reuses the CLS token of a BERT model
fine-tuned by another task. In practice, we create two new tasks to yield transferable CLS
tokens. Our second model is CLS-concat BERT, which combines the BertEmb and BERT
by concatenating the CLS embedding of BERT and the embeddings of news sentences. Our
third model, Dependency-Based Graph Convolutional Network (DB-GCN), takes the syn-
tactic structure of sentences into account. Subsequently, we tweak the CLS-concat BERT
slightly and try to concatenate the node embeddings of DB-GCN and CLS embedding for
possible improvements.

We use STANDER as the experiment dataset for evaluating our models. It provides 3,291
pieces of news with expert-annotated stance labels (Favor, Against, Neutral, and Unre-
lated). To evaluate the proposed models, we use the BertEmb and the popular pre-trained
model BERT as two baselines.

According to the average F1 scores of multiple experiments, CLS-transfer BERT does not
improve the performance of BERT. We discover that random CLS embedding still yields
similar results, implying that the CLS token lacks sufficient stance information for further
fine-tuning. Furthermore, we visualize twenty samples that are trained with different CLS
embeddings to identify that this type of transfer is ineffective. On the other hand, our
CLS-concat BERT overperforms BertEmb by 12.7% points and BERT by 1.4% points,
demonstrating that the combination of information at different levels is useful for stance
detection. Furthermore, since only syntactic information is considered, the F1 score of the
DB-GCN model is lower than the baseline (about 4% points lower than BertEmb) and the
concatenation between the node embeddings and the CLS embeddings is shown to provide
no improvement.

Keywords. Stance Detection; Transfer Learning; Transformer models; Dependency Pars-
ing; Graph models
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Chapter 1

Introduction

1.1 Problem Statement

News, as a special type of information with a distinct social function, informs citizens
about what events are important, contested, or issues that should be widely debated by
the public (Bernstein et al., 2020). The diversity of news on social medias is always citical
to meetting the communication needs of individuals and society. It presents a diverse
range of social perspectives to facilitate public debate and deliberation on current events.
However, the explosive growth of news today poses challenges to news diversity, and news
platforms must recommend different news content to users across a wide range of topics.
A recommendation system guides users to find interesting news in a personalized way
based on their historical behaviors and preferences (Shao et al., 2021), but this type of
personalization may reduce the news diversity and thus produce polarization (Reuver et al.,
2021), Filter Bubbles (Pariser, 2011), and Echo Chambers (Jamieson et al., 2008), all of
which have negative effects on the right of citizens to social information (Eskens et al.,
2017). In this case, a more in-depth examination of news articles is cirtical for the diversity
of results produced by news recommendation systems.

According to the deliverative model of democracy, which states that citizens in a demo-
cratic nation must be exposed to a variety of views and arguments (Manin, 1987; Helberger,
2019), many Natural Language Processing (NLP) techniques are proposed to help identify
claims, stances, and argumentation in news articles (Reuver et al., 2021), such as View-
point Detection, Argument Mining (Lawrence et al., 2020) and Stance Detection (Küçük
et al., 2020). These automatic classifications of semantic information in text can assist
to quickly identifying and recommending news with various points of view or stances to
users. These techniques enable recommended systems to recommend various news articles,
thereby protecting democracy to some extent.

In this thesis, we focus on deep-learning based stance detection task in the news domain,
which is a representative argument analytical paradigm for various social and political
democracy. The definition of SD varies depending on the application scenario, while the
most common and basic definition is (Küçük et al., 2020):
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FIGURE 1.1: Definition of Stance Detection

FIGURE 1.2: An example from STANDER dataset

"Automatic classification of the stance of the producer of a text towards a target, into
one of these three classes: Favor, Against, Neither."

In the news domain, producer refers to the writer, editor or reviewer of the news, while
text refers to the title and body of the news. Target are the topics that the general
public is interested in. Stance has many definitions, but the most basic common ground
that stance is the someone’s attitude and judgement towards a proposition (Biber et al.,
1988). In some applications (Conforti et al., 2020a), there are four types of news stance
towards a target. Instead of considering the Neither stance, Neutral and Unrelated are
taken into account. The general news stance detection procedure and an example are
shown in Figure 1.1 and Figure 1.2.

1.2 Research Questions

Conforti et al. (2020a) presented a challenging English dataset STANDER together with
some baselines, with the goal of stance detection and evidence retrieval. Their research,
however, is primarily focused on the dataset rather than on the models. Therefore, they
did not tune the hyperparameters of the models, nor tried other cutting-edge models, such
as pre-trained models and syntactic-based models. As a result, the performance of these
models still has potential for improvement. In this case, we use the STANDER dataset
for our research and address research questions related to five aspects: adjustment of
basic models, application of pre-trained models, transfer ability of models, syntactic-based
models and combinations of different techniques/models. Here we propose the five research
questions listed below:

• BertEmb is the method proposed by Conforti et al. (2020a), that achieves the best
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performance so far on STANDER according to their results. However, as previous
stated, they did not concentrate on the models and the parameters tuning in their
work. Then, from the perspective of adjusting the model, we arrive at the first ques-
tion: (1) Is it possible to improve the performance of the BertEmb method by
identifying better hyperparameters (for example, learning rate and dropout
rate)?

• With the transformer-based pre-trained models achieving cutting-edge performance
on several NLP tasks, we wonder (2) How well the pre-trained model BERT
(Devlin et al., 2019) performs after fine-tuning on the STANDER dataset?

• Because of the difficulties in making expert annotations for datasets, the transfer-
ability of methods, which is also the focus of our research, is becoming increasingly
important. We propose the model CLS-transfer BERT and two new tasks, inspired
by Stance-Bert (Tian et al., 2020), which reuses the CLS tokens of BERT models
fine-tuned by other tasks. Then, we address the question of (3) To what extent
the CLS token of BERT can transfer the stance information across different
tasks? Will the CLS-transfer BERT improve the performance of BERT?

• The lack of grounded supervision calls into the question that how well the BERT-
based representations capture the meaning of sentences (Bender et al., 2020). As
a result, syntactic models are being proposed gradually. In a similar task, senti-
ment analysis, integrating syntactic structure into the deep learning process has al-
ready yielded good results (Žunić et al., 2021). The author proposed a well-designed
Dependency-based Graph Convolutional Network (GCN), so we can ask the fourth
question that (4) Can we achieve a considerable result on the stance detection
task using a dependency-based model?

• Another novel idea is to incorporate information from different level (sentence-level
and document-level). On this basis, we wonder (5) Can the model that combines
the sentence embeddings in BertEmb and the BERT CLS embedding achieve
the state-of-the-art performance and how about the model that combines
the syntactic representation and the CLS embedding?

1.3 Thesis Overview

Our research thesis is divided into five chapters. In Chapter 2, we provide the background
information and elaborate the relevant datasets and algorithms, particularly deep learning
techniques. In Chapter 3, we conduct an in-depth exploratory analysis of the methods,
including BertEmb, BERT, CLS-transfer BERT, DB-GCN, and CLS-concat BERT. In
Chapter 4, we go over the experiments and their corresponding results. The conclusion on
analysis of results will be given in Chapter 5.
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Chapter 2

Background

This chapter’s scope are the theoretical foundations of NLP-related knowledge and the
related work of stance detection (SD). To begin, in Section 4.3, due to the enormous
amount of knowledge involved in NLP, we focus on the subjects that are frequently used
in our work: attention, transformer, BERT (Bidirectional Encoder Representation from
Transformers), sentence BERT and stance BERT. Following that, we introduced the re-
lated knowledge of dependency parsing and the graph model GCN. Secondly, we introduce
the history of SD in Section 2.4 from four perspectives: early work, competitions, datasets,
and methods. Finally, the evaluation metrics are mentioned in Section 2.5.

2.1 Neural Language Models

2.1.1 Attention

Since the first application on machine translation (Bahdanau et al., 2016), the attention
mechanism (AM) has become a key component in deep learning models. It is widely used
in a wide range of artificial intelligence applications (Chaudhari et al., 2021), including
Natural Language Processing (NLP) (Galassi et al., 2021), Computer Vision (CV) (Wang
et al., 2016) and Speech Recognition (Chorowski et al., 2015). AM is a network architecture
component in charge of managing and quantifying interdependence. It enables models to
dynamically focus only on specific parts of the input, similar to how humans perceive
things. To be more specific, for each word in the input sentences, the AM component in a
network maps the relevant words from the input sentence to it, assigning higher weights
to more relevant words.

2.1.2 Transformer

Transformer is a well-known deep learning architecture that achieves remarkable results
in a variety of domains, particularly in NLP (Lin et al., 2021). Transformer was initially
proposed as a seq2seq model for machine translation (Vaswani et al., 2017). Recently,
transformer-based pre-trained models (PTMs) have propelled NLP into a new era (Qiu
et al., 2020) by achieving state-of-the-art performance on a variety of tasks. Traditional
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loop architectures, such as RNN and LSTM, cannot be parallelized due to their reliance on
sequential processing of inputs. To address this inefficiency, Vaswani et al. (2017) proposed
the Transformer architecture, which has been demonstrated to achieve parallel processing
and higher accuracy for the machine translation task.

The design of Transformer follows the encoder-decoder architecture, each of which is a
stack of blocks. The encoder and decoder blocks are primarily composed of a multi-head
self-attention module, a position-wise feed-forward network (FFN) and residual connec-
tions, followed by layer normalization (ba2016layer).

2.1.3 BERT

The most well-known Transformer-based model is BERT (Devlin et al., 2019). It achieves
cutting-edge resutls on on numerous benchmarks. Fundamentally, BERT is made up of
bidirectional transformer encoder layers that convert the word sequence to a vector and
decoder layers that convert the vector back to a sequence of words. These layers are
composed of multiple self-attention heads.

BERT takes a sequence as input. To properly understand input, BERT employs the special
tokens: [CLS] and [SEP]. [CLS] is a special classification token, and the last hidden layer
of BERT corresponding to this token is always used for classification. The [SEP] token
should be appended at the end of a single input (sentence). When BERT is applied to a
task that requires more than one input, [SEP] enables the model to recognize the end of
one input and the beginning of another input. All Tokens are entered into BERT using
Wordpiece embeddings.

The BERT training procedure consists of two steps: pre-training on unlabeled data and
fine-tuning on labeled data for downstream tasks.

• In the pre-training step, BERT uses two training strategies on large corpora: Masked
Language Modeling (MLM) and Next Sentence Prediction (NSP). Devlin et al.
(2019) trained two versions of BERT: BERT-base 1 with 12 transformer layers and
768-long embeddings (110M parameters) and BERT-large 2 with 24 layers and 1024-
long embeddings (340M parameters). This stage is primarily concerned with learning
general language patterns.

• In the fine-tuning step, the model is simply added with one additional layer after
the final layer of BERT and trained for few epochs. All of the parameters of BERT
are fine-tuned using labeled data in the downstream language tasks, with the goal
of learning language paradigms in specific data.

Following that, we introduce two extensions of the BERT that are frequently used in our
work: Sentence BERT and Stance BERT.

1https://huggingface.co/bert-base-uncased
2https://huggingface.co/bert-large-uncased

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-large-uncased
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FIGURE 2.1: Sentence BERT architecture at inference (Reimers et al.,
2019).

2.1.3.1 Sentence BERT

BERT models have outperformed other NLP models in many tasks, including text simi-
larity computing. However, when computing the similarity, the BERT model must be fed
with two sentences at the same time, resulting in significant computational overhead. For
example, finding the most similar pair in 10,000 sentences, which requires calculations
of 10,000·9,999

2 = 49, 995, 000, will take approximately 65 hours. In order to overcome this
limitation of BERT, Reimers et al. presented Sentence BERT, a variant of BERT that uses
siamese and triplet structures to generate sentence representations which can be compared
using cosine similarity. In this case, Sentence BERT takes only 5 seconds to complete the
same task of finding the most similar pair.

The basic architecture of Sentence BERT consists of two BERT models (The two BERTs
share the parameters), as shown in Figure 2.1.

2.1.3.2 Stance BERT

Stance BERT (Tian et al., 2020) is designed for early rumor detection on Twitter, which
is the idea of our CLS-transfer BERT comes from. It is composed of two BERT models,
as shown in Figure 2.2. The goal of the left BERT is to capture the stance distribution
for a tweet and its comments. The inputs of Stance BERT are pairs of tweets from the
SemEval-16 dataset. After the left BERT has been fine-tuned, its CLS embedding is then
used to replace the original CLS embedding of the right BERT in order to further fine-tune
it for rumor classification.

It is worth noting that the labels of the pairs for left BERT are six combinations of original
stance: Favour-Favour, Favour-Neither, Favour-Against, Against-Against, Against-Neither
and Neither-Neither. In the original paper, it is demonstrated that the CLS token obtained
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FIGURE 2.2: The architecture of our Stance-BERT model

through this fine-tuning task contains stance information, which can significantly improve
the model’s performance in the rumor classification task.

2.1.4 Dependency Parsing

Most language theories place a premium on syntactic structure. The models of syntactic
analysis are relatively complex because they cannot be directly observed and require a
great deal of linguistic knowledge. In linguistics, one of the methods of syntactic structure
analysis is Dependency Parsing (DP), that describes the syntactic structure of a sentence
in terms of binary grammatical relations between words. Chen et al. (2014) provided fast
transition-based parser, which produces dependency parses for Universal Dependencies. As
an example, consider the following sentence from the news article in STANDER, as shown
in Figure 2.3.

In the diagram above, we choose one part to explain. There is a connection between
reviews and antitrust because antitrust alters the meaning of reviews. In this case, reviews
serves as the head, with antitrust as a dependent of the head. The relationship type
between these two words is called amod, which stands for “Adjectival Modifier”. It is a
noun-modifying adjective.

The linguistic knowledge of dependency is fully explained in "Speech and Language Pro-
cessing" by Jurafsky et al. (2021). Our introduction to dependency trees’ relationship with
neural networks will be the focus of this section.

A dependency tree can be represented as a graph G = (V, E), where V is a set of vertices
and E is a set of edges, which are corresponding to the words and arcs respectively in Figure
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FIGURE 2.3: Dependency Tree of a sentence in the STANDER dataset.
det: Determiner, amod: Adjectival modifier, nsubj: Nominal subject,
aux: auxiliaries, xcomp: Open clausal complement, case: Prepositions,
postpositions and other case markers, nmod: Nominal modifier. More

relations are introduced by Marneffe et al. (2014)

FIGURE 2.4: A single layer of a simple GNN

2.3. Importantly, the arcs in edge set E can capture the grammatical relationships between
the words in vertex set V (Jurafsky et al., 2021). The dependency tree is commonly used
as a graph as an input into the models (Graph Neural Networks/Graph Convolutional
Networks) that introduced in the following section.

2.1.5 Graph Convolutional Network

Graph structure has demonstrated good capability in modeling structural information,
because it can fully exploit the structural features of text (Yang et al., 2021). There are
many studies proving that Graph Neural Networks (GNN) perform well in graph-structured
text modeling (Yang et al., 2021). The basic structure of GNN is depicted in Figure 2.4.

Graph Convolutional Networks (GCNs; Kipf et al., 2016), as a member of the GNN family,
also aim at the node classification on graphs. GCNs are similar to convolutions in images
(CNNs) in that the parameters of filters are generally shared over all locations in the
graph. Message passing (Gilmer et al., 2017) is used by GCNs during training: the vertices
exchange information with their neighbors and send specific messages to each other. In
most cases, the message is a word embedding. Specifically, in the work procedure of GCNs,
each node first generates a feature vector (embedding) that represents its key message.
Then the messages are sent to the neighbors, implying that the node will receive one
message from each adjacent node.
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FIGURE 2.5: The architecture of the TWOWINGOS model (Yin et al.,
2018).

Dependency trees containing structural and semantic attributes are used as input graphs
for GNNs, which, after modeling, learn to obtain more efficient representations of nodes
or entire graphs.

2.2 Two-wing Optimization Strategy

Two-wing Optimization Strategy (TwoWingOS) is a component used in BertEmb method.
It is a system that can identify evidence for a claim and determine whether the evidence
supports the claim (Yin et al., 2018). As shown in Figure 2.5, given a set of evidence
sequence S = {s1, ..., sm1, sm} and a decision set Y = {y1, ..., yn} (right), the TwoWingOS
model predicts a binary vector p that represents a subset as evidence, and a one-hot vector
o represents a single decision. Then the learning task becomes optimizing these two vectors
to ground-truth vectors.

Importantly, one of the most significant advantages of TwoWingOS is the inclusion coarse-
grained and fine-grained representations. The coarse-grained representation concatenates
the representations of the sentence si and the claim x. While the fine-grained representation
uses each word in si to create the sentence representation ri. The BertEmb method makes
use of a coarse-grained representation, which is described in detail in Chapter 3.

2.3 Principal Component Analysis

Principal Component Analysis (PCA) is a well-known unsupervised machine learning algo-
rithms which we use for visualizing the embeddings. Hotelling (1933) proposed the modern
instantiation of PCA: It is a mathematically technique for reducing the dimensionality while
retaining as much variance as possible. It looks for linear combinations which holds the
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highest variances, and divides them into principal components to obtain the most impor-
tant information. PCA is used in a wide range of applications, including multidimensional
data visualization, information compression, data denoising and dimensionality reduction.

2.4 Related Work

2.4.1 Early work on stance detection

For a long time, stance detection has been a key component in the analysis of online
debates. Many datasets and methods are proposed to recognize the stance taken by docu-
ments or articles in online debates (Lin et al., 2006; Somasundaran et al., 2009; Murakami
et al., 2010; Walker et al., 2012b). These online debate data were gathered and analyzed
from a variety of websites: such as bitterlemons3 which presents the viewpoints of Israeli
and Palestinian on issues, collaborationjam4 which provides post-event analytic report and
4Forums5 which shows comments from the Internet. Digging deeper into the data, we
discovered that there are many common goals in their data, including topics such as evo-
lution, abortion, healthcare, gun rights and so on. Additionally, it is also worth noting that
stance annotation in early work only considered two stances: Favor and Against. As for the
earlier research methods, they are mainly based on rule-based algorithms (Anand et al.,
2011; Murakami et al., 2010; Walker et al., 2012a), machine learning algorithms such as
Naive Bayes (Anand et al., 2011; Walker et al., 2012a; Hasan et al., 2013; Rajadesingan
et al., 2014), Support vector machine (Thomas et al., 2006; Somasundaran et al., 2010;
Walker et al., 2012b; Hasan et al., 2013), Random Forests (Misra et al., 2013), Conditional
Random Fields (Hasan et al., 2013) and graph algorithms (Murakami et al., 2010; Walker
et al., 2012a).

2.4.2 Competitions and Datasets

With the popularity of social media, there has been a growing research trend to analyze the
public stance towards various social and political issues (AlDayel et al., 2020) by detecting
the stance on social platforms, especially after the International Workshop on Semantic
Evaluation in 2016 (SemEval-20166) and Fake News Challenge in 2017 (FNC-20177).

• SemEval-2016 Task 6: Stance Detection of Tweets. The organizers provided a dataset
with six targets: Atheism, Climate Change is a Real Concern, Feminist Movement,
Hillary Clinton, Legalization of Abortion, and Donald Trump. There are three pos-
sible outcomes: In-Favor, Against, and None.

3http://www.bitterlemons.org
4https://www.collaborationjam.com
5http://www.4forums.com
6https://alt.qcri.org/semeval2016/task6/
7http://www.fakenewschallenge.org/

http://www.bitterlemons.org
https://www.collaborationjam.com
http://www.4forums.com
https://alt.qcri.org/semeval2016/task6/
http://www.fakenewschallenge.org/
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This task is split into two subtasks: A. supervised stance detection and B. weakly
supervised stance detection. For subtask A, the participants were provided with a
training set containing 2,814 tweets and a test set of 1,249 tweets for five targets.
While for subtask B, an unlabeled set of 78,000 tweets and a test set of 707 tweets
were given (Mohammad et al., 2016).

• FNC-2017 Phase 1 Shared Task: Stance Detection. In this competition, stance de-
tection is used as the first step in identifying fake news. It assists people in under-
standing the topics that news publishers are discussing by estimating the stance of
news articles based on their headlines.

The distinction is that this task involves four stances: agree, disagree, neutral, and
irrelevant. The proposed dataset includes 300 topics represented by claims, with 5-20
news articles per topic.

Competitions in other languages (Chinese, Spanish, Catalan and etc.) have also received
a lot of attention, such as NLPCC-ICCPOL-2016 task: Stance Detection in Chinese Mi-
croblogs and IberEval-2017 task: Stance Detection in Spanish and Catalan Tweets. To
summarize, these competitions introduced expert-annotated datasets in multiple languages
and inspired many cutting-edge approaches, greatly facilitating the research on stance de-
tection.

The Semeval-2016 and FNC datasets have become the standard datasets since they were
published. However, aside from the social media datasets mentioned above, significant
effort has also been devoted to the annotation of stance data in other domains. MeTooMA
(Gautam et al., 2019) is a dataset related to the (Me Too) movement that contains
approximately 9,000 tweets annotated with stance. Conforti et al. (2020b) presented two
datasets, one containing approximately 51,000 tweets in the financial domain and the
other, called STANDER, including about 3,000 news articles covering the health industry.
Furthermore, STANDER is adopted as an experimental dataset in our work and the details
of it will be introduced in Chapter 4.

2.4.3 Stance Detection Approaches

According to the survey of Küçük et al. (2020), machine learning (ML) methods are
the mainstream of current research and have achieved optimal results on the majority of
datasets. In this case, we are primarily concerned with machine learning algorithms used for
SD. The ML algorithms for stance detection can be divided into two main types: supervised
learning and unsupervised learning. Supervised learning algorithms are the most common
algorithm in SD task, which is also the focus of our research. We refer to unsupervised
learning as a potential improvement and future work.
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2.4.3.1 Supervised learning

Supervised learning is the most frequently used approach for SD (ALDayel et al., 2021).
As mentioned in Early Work section, many SD studies employ traditional feature-based
supervised ML algorithms. Therefore, we list the following commonly used algorithms:

• Naive Bayes, as the simplest ML algorithm, has been employed in SD for a long
time. In addition to the early studies mentioned in Early Work section, it is still used
as a baseline in some recent studies (Addawood et al., 2017; Simaki et al., 2017).

• Logistic Regression is another commonly used classifier that has been shown to
perform well in related studies (Ferreira et al., 2016; Kucher et al., 2018; Zhang
et al., 2018).

• Support Vector Machine (SVM) is the most common baseline in related studies
and is the best performing ML model for many tasks. In SemEval-2016, SVM is used
as a baseline, outperforming many other proposed approaches (Mohammad et al.,
2016). Other works also tend to conclude SVM as a baseline (Gadek et al., 2017;
Sen et al., 2018; Siddiqua et al., 2018; Conforti et al., 2020a).

• Other popular traditional ML algorithms that appear in recent studies are Decision
Tree (Addawood et al., 2017; Simaki et al., 2017), maximum entropy (Xu et al.,
2016), kmeans clustering (Simaki et al., 2017).

It is worth noting that the aforementioned algorithms employ a wide range of features,
including lexical features, sentiment/argumentation features, word vectors, topic modeling
features and features based on part of speech tags/named entities.

Nowadays, neural models, as the most popular ML models, have been widely applied
in classification problems, such as Recurrent Neutral Network (RNN; Cho et al., 2014),
Long short-term memory (LSTM; Hochreiter et al., 1997), Graph Neural Network (GNN;
Zhou et al., 2020) and the most popular transfer learning model: Bidirectional Encoder
Representation from Transformers (BERT; Devlin et al., 2019).

• RNN & LSTM have been commonly used in the NLP domain. Basic RNN has
already demonstrated good performance in SD (Sobhani et al., 2017; Benton et al.,
2018; Rajendran et al., 2018).As a variant RNN model, LSTM also achieves excellent
results on a variety of datasets: In SemEval-2016, a model was proposed that used
bidirectional LSTM with a fasttext embedding layer for the SD task (Siddiqua et al.,
2019). Another multitask learning model on this task used a bidirectional gate that
to detect the stance based on sentiment (Li et al., 2019). In FNC-2017, Hanselowski
et al. proposed a feature-rich stacked LSTM model which performs on par with the
best system (Hanselowski et al., 2018).

• Transfer Learning (TL) methods are conducted to solve the issue of insufficient
labeled data. In transfer, the relevant knowledge gained by an algorithm from one
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task is transferred to another similar task. For example, in the task of stance detec-
tion, the idea of transfer is applied to detect different objects. By maximizing the
value of the available data, TL becomes a high-performance technology for SD.

For the transfer learning on SD, several studies have introduced techniques to enrich
texts and targets representation. Mitre et al. (the winner of SemEval-2016 SD task)
proposed the RNN initialized with features learned by distant supervision on unla-
beled data (Zarrella et al., 2016). Ghosh et al. used the BERT model to achieve the
most effective performance on the SemEval-2016 SD dataset and online news articles
(Sen et al., 2018; Ghosh et al., 2019). Giorgioni et al. trained a specific UmBERTo
based sentence classifier from three tasks: sentiment, irony and hate-speech (Gior-
gioni et al., 2020). Kawintiranon et al. presented a novel BERT-based fine-tuning
method that enhances knowledge by training the transformer with masked language
modeling (Kawintiranon et al., 2021) and they also obtained promising results.

• GNN is currently not used for SD tasks. However, in a similar study, aspect-based
sentiment analysis, Žunić et al. achieved remarkable results (Žunić et al., 2021). The
authors classified the sentiment of a given aspect through sentence-dependent parse
trees and graph convolutional networks.

2.4.3.2 Unsupervised learning

Recently, researchers have also begun to investigate unsupervised stance detection models,
where clustering techniques are widely used in stance detection. Trabelsi et al. proposed a
purely unsupervised model for viewpoint identification using a clustering model at the dis-
course level. The model takes the text as input and assigns a viewpoint to the text. Then
the model gives a viewpoint label to each occurrence of the unigram words (Trabelsi et
al., 2018). Another work presents a highly effective unsupervised framework for detecting
stance on the controversial Twitter topics (Darwish et al., 2019). The authors used dimen-
sion reduction to project users into a low-dimensional space to find core users representing
different stances. They discovered that including retweets as a feature would benefit the
clustering algorithm, and it even outperformed other supervised methods (FastText/SVM).

2.5 Evaluation Methods

The evaluation phase is one of the fundamental parts of any project and is the follow-up
to the modeling step. This section presents various mainstream approaches to evaluate
the performance of deep learning methods on classification tasks.

To get an overview of the performance of a specific algorithm, accuracy, recall, precision,
and F score are good choices and can be determined for a classification problem.
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FIGURE 2.6: (a) Confusion Matrix for Binary Classification (b) Confu-
sion Matrix for Multi-Class Classification

Confusion Matrix, as shown in Figure 2.6, is a tabular representation of the performance
of a classification model. Each entry in a confusion matrix represents the number of
predictions made by the model in which the classes are correctly or incorrectly classified.

Accuracy is determined by dividing the sum of the diagonals by the total number of
entries in the confusion matrix.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Recall is a measure that computes the percentage of relevant instances chosen by the
algorithm. Thus, it evaluates how many True Positives (True Postive) are present in a
given class.

Recall =
TP

TP + FN
(2.2)

Precision is another measure for evaluation. It calculates the percentage of True Positives
(TPs) in the set where the model has classified all instances as positive.

Precision =
TP

TP + FP
(2.3)

F-measure represents a harmonic mean between recall and precision. The weighting can
be adjusted by the parameter β. This makes Fβ adoptable to different data mining tasks,
for example, in a search engine, where recall could be more important than precision. In
our work, we keep β as 1.

Fβ =
(1 + β2) ∗ precision ∗ recall

β2 ∗ (precision + recall)
(2.4)
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Chapter 3

Methodology

The following chapter presents the models we use for news stance detection. First, we
employ the general architecture of BertEmb proposed by Conforti et al. (2020a) as the
first baseline model and elaborate on the details based on of our understanding. We
also use the pre-trained BERT as the second baseline model. Then, in order to verify
the transferability of the CLS token, we introduce the CLS-transfer BERT and devise
two distinct tasks to obtain transferable CLS tokens. We then introduce the CLS-concat
BERT, which concatenates the sentence embeddings with the CLS embeddings. Finally,
we go over the model details of DB-GCN and how it solves the problem of multi-sentence
input.

3.1 Baseline1: BertEmb

Conforti et al. proposed the BertEmb model, a language model based on Sentence BERT
with TwoWingOS (Yin et al., 2018). BertEmb is reported to have the best results compared
to other baselines on the STANDER dataset (Conforti et al., 2020a). Because the model
architectures are not the focus of their research, some model details are omitted. We
therefore elaborate on BertEmb in detail as follows.

BertEmb uses Sentence BERT as the encoder to generate embeddings of sentences, while
using a simplified TwoWingOS and linear layers as the decoder. The architecture of the
entire model is depicted in Figure 3.1.

FIGURE 3.1: The architecture of BertEmb
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Input & Output The model receives a raw sentence sequence S = {t, s1, s2, ..., sn},
where t represents the target and si represents a sentence from the article or its title. The
output is a class label from {0, 1, 2, 3}, representing four different stances (Favor, Against,
Neutral, Unrelated) of these sentences towards the target t.

Encoder & Decoder Sentences in S are transformed to fixed length vectors V={ht, hs1 , hs2 ,
..., hsn} by a pre-trained Sentence BERT model. To combine sentences with the target, each
sentence embedding hsi is concatenated with the target embedding ht, which generates
an article-target representation sequence H={h1, h2, ..., hn}. The TwoWingOS receives H
and calculates a score αi ∈ (0, 1) for each sentence, as formulated in Equation 3.1:

αi = sigmoid(v · hi) (3.1)

In matrix form, we have:
A = sigmoid(v · HT) (3.2)

where v is parameter vector with the same dimensionality as hi and is learned from training;
A = {α1, α2, ..., α3} is the set of scores. Combining the score αi with the embedding hi

generates a combination representation as e:

e =
n

∑
i=1

αi · hi = A · H (3.3)

e is transformed into a class number by fully connected layers and a softmax layer, as
described in Equation 3.4.

ŷ = So f tmax(Wė + b) (3.4)

where W and b are the weights and bias, respectively, and ŷ is the class number.

3.2 Baseline2: BERT

As described in section 2, we apply the BERT model to this SD task. The architecture of
BERT for news stance detection is shown in Figure 3.2.

Input & Output We fine tune the BERT model on the STANDER dataset. BERT re-
ceives the raw text t of the article, title, and target of each sample, where the article is
concatenated with its title. Then the raw text t is tokenized using the built-in wordpiece
tokenizer. The model produces the same results as BertEmb: four class numbers from
{0, 1, 2, 3} to represent the stance.

Pooler Output & Feed Forward Network The pooler output, which is the CLS embed-
ding of the final layer of the BERT model, is always used to solve classification problems.
Therefore, we feed the CLS embedding to the linear and softmax layers.
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FIGURE 3.2: Architecture of BERT in news stance detection. We use
the BERT-base model, where the length of the word/token embed-

ding is 768d

FIGURE 3.3: Architecture of CLS-transfer BERT

3.3 CLS-transfer BERT

We design the CLS-transfer BERT, as shown in Figure 3.3, in response to the Stance
BERT model introduced in Section 2, which demonstrates that CLS embedding can be
a carrier of stance knowledge. The CLS-transfer BERT is made up of two independent
BERT models: BERT A, which is fine-tuned on two auxiliary tasks and BERT B, which
is fine-tuned on the stance detection task. The embedding of the CLS token in BERT
A is expected to contain stance information after fine-tuning. To transfer prior stance
knowledge, we use it to replace the original CLS embedding in BERT B.

Two auxiliary tasks. We created two new tasks based on the STANDER dataset. In this
case, they can also be viewed as two methods for expanding the dataset.

• Task 1. We construct pairs of articles from the STANDER dataset and label them
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Article 1 Article 2 A1 to A2 Article 1 Article 2 A1 to A2
Favor Favor Favor Neutral Favor Neutral
Favor Against Against Neutral Against Against
Favor Neutral Against Neutral Neutral Favor
Favor Unrelated Unrelated Neutral Unrelated Unrelated

Against Favor Against Unrelated Favor Unrelated
Against Against Favor Unrelated Against Unrelated
Against Neutral Against Unrelated Neutral Unrelated
Against Unrelated Unrelated Unrelated Unrelated Unrelated

TABLE 3.1: Parallel table for the types of stance between two articles

on the relationship between stances towards a target. For example, if article 1 has
a favor stance towards a target, and article 2 also holds the same stance, we define
that article 1 is in favor of Article 2. If article 1 holds the favor stance towards a
target, but article 2 holds the against stance, we define that article 1 is Against
Article 2. Similarly, to define the stance of one article toward another on the same
target, we create the parallel table shown in Table 3.1.

• Task 2. The input is also made up of pairs of articles constructed from the STANDER
dataset. What distinguishes task 2 from task 1 is the label. Task 2 is less concerned
with the relationship between two articles and more concerned with the combina-
tions. For example, if article 1 holds Favor stance towards a target while article 2 also
holds Favor stance for the same target, then they are labeled as Favor-Favor(F-F).
Similarly, if article 3 has Favor stance to a target but article 4 has Against stance to
this target, then we generate an instance (article 3, article 4) with the label Favour-
Against(F-A). In the STANDER dataset, there are four stances, which means there
are ten label combinations of article paris: Favour-Favour(F-F), Favour-Against(F-
A), Favour-Neutral(F-N), Favour-Unrelated(F-U), Against-Against(A-A), Against-
Neutral(A-N), Against-Unrelated(A-U), Neutral-Neutral(N-N), Neutral-Unrelated (N-
U) and Unrelated-Un- related(U-U).

Feed Forward Network. The linear and softmax layers of BERT A and B are similar
to those described in Section 3.2. The only difference is that the label count of BERT A
varies depending on the tasks. For the large number of parameters in BERT that require
fine-tuning, we only connect the pooler output with one linear layer and a softmax layer
to reduce the number of variable parameters.

CLS transfer. The usability of the CLS-transfer BERT can be evaluated in two ways. The
first and most obvious method is to compare the performance with BERT. Furthermore,
we generate a random vector with the same size as the CLS embedding and transfer it
to BERT B. In this case, this model is called as CLS-random BERT. This enables us to
investigate the significance of the auxiliary training (part A) of the CLS embeddings in the
architecture. In addition, to make the results more visual, we present an analysis based
on PCA. We select 20 samples at random to observe their pooler outputs with different
CLS embeddings. Because the outputs are in 768 dimensions (BERT base), we apply PCA
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FIGURE 3.4: Dependency-based GCN system for stance detection in
news

on these outputs to reduce the dimension to 2D and visualize them. By comparing the
distribution of these samples before and after fine-tuning, we can indirectly observe the
difference.

3.4 DB-GCN

Dependency-based GCN is a syntactic model which is inspired by the aspect-based senti-
ment analysis with GCN taking precedence over syntactic dependency (Žunić et al., 2021).
The model is made up of two components: dependency parser and GCN model. Figure 3.4
depicts the overall system architecture.

First, the input data is processed by a dependency parser (Marneffe et al., 2014), which
converts a single sentence into a dependency graph. Words in sentences, i.e. vertices in the
dependency graph, are mapped to embeddings. We use GLOVE (Pennington et al., 2014)
to obtain word embeddings. As a result, each input sentence is represented as a sequence
S = (w1, w2, ..., wn), where w is of dimensionality d of the word embedding, that is, this
representation yields a nḋ matrix.

In our task, each news article contains multiple sentences. Therefore, we need to establish
the relationship of the dependency graph of each sentence. As illustrated in the paragraph
dependency tree in Figure 3.4, we connect the roots of each sentence, so that the sentences
will affect each other when the passing information in GCN.

3.5 CLS-concat BERT

The fusion of various levels of knowledge has gained widespread attention (Wang et al.,
2020). Following this line of thought, we see that BertEmb is a sentence-level model. It
focuses more on the representations of sentences in articles and targets while ignoring the
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FIGURE 3.5: The architecture of the CLS-concat BERT: the combina-
tion of BertEmb and BERT

relationships between sentences. However, BERT can be used to capture the stance of the
entire article towards a target in the document level. In this case, combining the sentence-
level information in BertEmb with document-level information in BERT is a potentially
useful solution. We call this combined model as CLS-concat BERT, the architecture of
which is depicted in Figure 3.5.

We also experiment with the combination of DB-GCN and BERT. We concatenate the
average of target node embedding obtained from GCN convolution with CLS embedding
of BERT and feed them into linear and softmax layers, as shown in Figure 3.6.

FIGURE 3.6: The architecture of the CLS-concat BERT: the combina-
tion of DB-GCN and BERT
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Chapter 4

Experimental Results

This chapter is devoted to the dataset, the experiments for the models mentioned in chap-
ter 3 and the results. First, we introduce the STANDER dataset and analyze it statistically.
Then we sketch the experiments which we conduct for answering the research questions.
The performance of these models is also organized and provided for further comparison
and analysis. Our code is available now1.

4.1 Dataset

STANDER (STANCE Detection & Evidence Retrieval) (Conforti et al., 2020a) is an expert-
annotated dataset for detecting news stances and retrieving evidence. Because of the high
quality of the news content and expert annotation, the dataset has the potential to become
a standard for stance detection in the news domain. The data content and statistics are
provided in the subsections that follow.

4.1.1 Data Content

The news in STANDER is about four mergers of six companies (Buyer and Target) in
the healthcare industry in the United States, as shown in Table 4.1. These four merges
were crawled, processed and annotated from newspapers, journals and magazines by the
authors, and they were hot topics of widespread concern.

In the dataset, each news article includes the body and title of the article, as well as the
target. The target is the merger event described in the newspaper article. It can take one
of four possible stances towards the target: Support, Refute, Comment and Unrelated.

1https://github.com/LastDance500/StanceDetection

Merger Buyer Target Company Target
AET_HUM Aetna Humana Aetna (AET) will merge with Humana (HUM).
ANTM_CI Anthem Cigna Anthem (ANTM) will merge with Cigna (CI).
CI_ESRX Cigna Express Scripts Cigna (CI) will merge with Express Script (ESRX).
CVS_AET CVS Aetna CVS (CVS) will merge with Aetna (AET).

TABLE 4.1: Four mergers in STANDER (Conforti et al., 2020a).

https://github.com/LastDance500/StanceDetection
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Stance refute
Target Aetna (AET) will merge with Humana (HUM)
Title Financial Post Investing U.S. officials target health

mega-mergers; Deals would see top five insurers
reduced to three

Body U.S. antitrust officials on Thursday moved to block
an unprecedented consolidation of the national
health insurance market,filing suit against
Anthem Inc.’s proposed purchase of Cigna Corp. and
Aetna Inc.’s planned acquisition of Humana Inc.[...]

Stance support
Target Anthem (ANTM) will merge with Cigna (CI)
Title Anthem Seals Deal With Cigna Amid Industry Shake-Up
Body Anthem Inc. agreed to buy Cigna Corp. for $48 billion,

capping months of merger frenzy among top U.S. health
insurers that is set to reshape the industry.[...]

Stance comment
Target Cigna (CI) will merge with Express Script (ESRX)
Title Extra Cigna eyes ’sustainable healthcare system’ with

Express Scripts deal
Body The need to create a "more sustainable healthcare

system" was one of the key drivers that led Cigna Corp.
to agree to combine with pharmacy benefit manager
Express Scripts Holding Co. in a massive $67 billion
transaction, according to Cigna President and CEO
David Cordani.[...]

Stance unrelated
Target CVS (CVS) will merge with Aetna (AET)
Title Financial Post Walmart reportedly eyes deal with insurer

Humana
Body Walmart Inc. is in talks with health insurer Humana Inc.

for a closer partnership to provide health care
to consumers at home and prevent illness, according to
a person familiar with the matter.[...]

TABLE 4.2: Four samples in STANDER: A refuting, a supporting, a
commenting, and a unrelated sample.

These stances are only named differently than the previous introduced ones: Support =
favor, refute = against, comment = neutral, and unrelated is the same. In Table 4.2,
we provide four examples, each with its own body, title, target, and stance. To be more
comprehensive, we choose samples from four different kinds of stance and four different
mergers. For the sake of the illustration, we only include the first sentence of the body of
each article in Table 4.2. As input for our models we use the complete articles.

4.1.2 Data Statistics

In Table 4.3, we provide the distribution of the stances and mergers. STANDER contains
3291 labeled news. Among the samples, for the merger, the number of ANTM_CI is the
greatest, while CI_ESRX has the fewest examples. For the stance, support has the most
diverse samples, far more than unrelated stance.
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Merger support refute comment unrelated Total
AET_HUM 463 313 197 5 978
ANTM_CI 367 537 248 14 1166
CI_ESRX 207 64 70 5 346
CVS_AET 372 104 294 31 801
Total 1409 1018 809 55 3291

TABLE 4.3: Stance distribution for stances and mergers (Conforti et
al., 2020a). The blue numbers are corrections of the original paper.

According to the distribution of stance, we notice that there is an imbalance in the data.
The Unrelated stance has far fewer instances than the other three stances, which may lead
to insufficient prediction ability of the models for the Unrelated label.

4.2 Experiments

4.2.1 Environment

All experiments are conducted on the duranium server provided by the Leiden Institute of
Advanced Computer Science. In order to make the experiment more efficient, we run mul-
tiple experiments on 6 NVIDIA GTX 980 Ti and 2 NVIDIA Titanium GPUs simultaneously
in most of time.

The programming language is Python 3.8 and the deep learning framework is PyTorch
1.11. The evaluation metrics are implemented by scikit-learn2. We only employ two pre-
trained models, BERT base3 and Sentence BERT4, in our experiments. All pre-trained
models are provided by HuggingFace.

4.2.2 Experiment setup & Results

For comparison, we keep the majority of the experimental setup used by Conforti et al.
(2020a). For each training, we train the model on three of these mergers while testing on
the fourth. For instance, we train the models on AET_HUM, ANTM_CI and CI_ESRX
mergers and test on the CVS_AET merger. Differently with original paper, we set batch
size to 8 and epochs to 10 rather than 32 and 70. This is due to the limitations of GPU
device. We also employ early stopping with patience of 10. For each experiment, we repeat
it five times and calculate the average precision, recall, and f1 score.

4.2.2.1 Exp 1: Hyperparameters of BertEmb

There are two main hyperparameters that affect the performance of BertEmb: learning
rate and dropout rate. In our experiments, we use 10% of test set as the validation set to

2https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
3https://huggingface.co/bert-base-uncased
4https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens

https://scikit-learn.org/stable/modules/classes.html##module-sklearn.metrics
https://huggingface.co/bert-base-uncased
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
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FIGURE 4.1: The fluctuation of f1 score with two hyperparameters:
learning rate and dropout rate

find the best configurations of BertEmb.

Learning rate. Learning rate (lr) is a parameter in an optimization algorithm. It determines
the step size while moving to a minimum of the loss function. There is a trade-off between
the convergence and overshooting when setting the rate. A rate that is too low may cause
the model become stuck in an local minimum while too high rate may cause the model to
skip over the global minimum. In our experiments, we test the learning rate for BertEmb
in (5−2, 10−3, 5−3, 10−4, 5−4, 10−5), as plotted in Figure 4.1a.

Dropout rate. Large neural networks trained on relatively small datasets may suffer
the overfitting problem. Therefore, dropout is proposed as a regularization method that
randomly selects neurons and ignores them during training (Srivastava et al., 2014). In our
experiments, we tested the dropout rate for BertEmb in (0, 0.1, 0.2, 0.3, 0.4) increments,
as plotted in Figure 4.1b.

In Table 4.4, we list the performance of original BertEmb (first row) and the performance
after tuning the hyperparameters (second row).

4.2.2.2 Exp 2: BERT

As a second baseline, we use the pre-trained BERT-base model and fine-tune it on the
train set. For the hyperparameters of BERT, we set the learning rate to 10−5 and dropout
rate to 0.3. We use a lower learning rate here because the BERT model has far more
parameters than BertEmb model. And for the large amount of parameters, we only add
one single linear layer and softmax layer to process the CLS embedding. The result of the
BERT model on the test set is shown in the third row of Table 4.4.

4.2.2.3 Exp 3: CLS-transfer BERT

In this experiment, we train three models: CLS-random BERT and two CLS-transfer BERTs
which are the models for tasks 1 and 2, as described in Section 3.3. We save the CLS
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FIGURE 4.2: PCA results of four embeddings: original CLS, CLS
based on task 1, CLS based on task 2 and random CLS

embeddings of these models and use PCA to visualize them, as shown in Figure 4.2. Then
we transfer these four embeddings to BERT B and use PCA to reduce the 768-d pooler
outputs to 2-d with PCA, as shown in Figure 4.3. For all models, we fine-tune them on
train set and test on test set, just as we do with the BERT model. The performance of
these three models is shown in the third to fifth rows of the Table 4.4.

4.2.2.4 Exp 4: DB-GCN

The parser we use for dependency parsing is Stanford CoreNLP (Chen et al., 2014), which
returns the dependency tree of each sentences. The edges between roots are added to
the edge set E to connect sentences. As a result, the trees of multiple sentences are
combined into a tree of paragraph. This dependency tree is fed into GCN, with each
vertex corresponds to a 300-d glove vector. After two layers of convolution, we take the
average of the vertices corresponding to the target and feed it into the linear layer and
softmax layer. In addition, GCN is consistent with BERT for all other hyperparameters.

4.2.2.5 Exp 5: CLS-concat BERT

In this experiment, we compare two combined models that combine CLS embedding with
other kinds of embeddings. The first is that we combine the BertEmb model and the BERT
model and concatenate the CLS embedding with the sentence embeddings, as described in
the Section 3.5. We keep the hyperparameters of the BertEmb and BERT model and apply
the same training paradigm as BERT: fine-tune the model on the training set and test on
the test set. The second model is basically the same as the first, in that we combine the
GCN and BERT model by concatenating the CLS embedding with the average embedding
of the target nodes. The results of the CLS-concat BERT models can be seen in the last
two rows of the Table 4.4.
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FIGURE 4.3: PCA results of 20 samples by four different CLS embed-
dings

4.3 Overall Performance and Analysis

The overall performance is shown in Table 4.4 and Figure 4.4.

For the hyperparameter tuning of the BertEmb model, we discover that a learning rate
of 10−4 and a dropout rate of 0.3 are optimal. This result matches our expectations,
as mentioned in Section 4.2, moderate learning rate and dropout rate help in model
convergence. Applying this set of hyperparameters to the BertEmb model, we obtain
better results (avgF1: 43.2) than the original paper (avgF1: 43.2).

The BERT model shows further improvement on this task, as shown in the third row of
table 4.4. Compared to BertEmb (avgF1: 43.2), the BERT model (avgF1: 68.2) achieves
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F1 for the mergers Avergae
Model CVS_AET CI_ESRX ANTM_CI AET_HUM avgP avgR avgF1

BertEmb(Ori.) 42.5 33.2 46.4 43.9 50.5 45.6 43.2
BertEmb(Opt.) 53.7 59.4 57.2 57.0 58.0 57.6 56.8

BERT 69.9 73.8 64.3 64.7 69.0 69.4 68.2
CLS-random BERT 70.3 73.4 63.9 64.3 68.5 69.0 67.9
CLS-transfer BERT1 71.7 72.4 64.4 64.4 69.3 69.2 68.2
CLS-transfer BERT2 69.4 74.7 64.2 63.9 68.4 69.6 67.9

DB-GCN 36.3 37.3 31.0 42.5 39.3 37.7 36.7
CLS-concat(BertEmb) 72.4 76.4 64.4 64.9 69.2 71.2 69.5

CLS-concat(GCN) 71.4 72.2 63.9 60.7 68.3 69.7 67.0

TABLE 4.4: Results of experiments on stance detection on STANDER.
The bold numbers indicate that the corresponding models achieved

the best results

FIGURE 4.4: Bar graph representation of experimental results
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more than 10% point improvement. Investigating the reasons for this enhancement, we
contend that, as described in Section , the transformer used by BERT is a more advanced
architecture, and pre-training enables BERT to contain rich semantic information and
to capture the context of words. Furthermore, the pre-training corpus of BERT model
includes BookCorpus5 and English Wikipedia6, which contains a large number of formal
and regular sentences, similar to sentences in the news.

As for CLS-transfer BERTs, we discover that they do not improve the BERT model.
Our experiments in Section 4.2 also support this observation. As shown in the figure,
the CLS embeddings based on tasks 1 and 2 are very similar to the original embeddings,
while the random CLS embedding is completely different and further away from the other
three embeddings. Due to the randomness of CLS-random BERT, its performance should
be relatively low. However, as we can see in Figure 4.3, the distributions of outputs of
CLS-transfer BERTs, CLS-random BERT and BERT are nearly identical. That’s why they
perform similarly (avgF1: 68.2, 67.9, 68.2, 67.9) in the Table 4.4. These four similar
f1 scores indicate that the CLS token does not bring useful stance information to the
second BERT model. In this case, we think transferring the CLS tokens is not valid, which
contradicts what the author of stance-BERT (Tian et al., 2020) stated. We believe this is
because, in a large number of parameters and multi-layer transformers, only changing the
CLS embedding (768 parameters) before fine-tuning will not have a significant impact on
the fine-tuning result (that is, the CLS embedding of the last layer).

DB-GCN (avgF1: 36.7) fails to meet expectations of performance, performing significantly
worse than BERT and even worse than the first baseline BertEmb(avgF1: 56.8). As a result,
we believe that relying mainly on sentence syntactic structure information is insufficient for
classification tasks, at least the SD task. In DB-GCN, we only use the dependencies between
words, ignoring information such as part of speech. At the same time, our method of
connecting different sentences is straightforward, and there is no syntactic theoretical basis
to demonstrate that the relationship between sentence roots can represent the relationship
between different sentences. All of the aforementioned reasons could account for the lower
result.

The CLS-concat BERT model, which combines sentence embeddings and CLS embed-
dings, produces the best results of all the models we discussed. The model can better
predict news stances by combining sentence-level and document-level embeddings. How-
ever, concatenating the embeddings obtained by GCN does not achieve an improvement
and even degrade the performance of the BERT model. We attribute the difference be-
tween the results of these two CLS-concat BERTs (avgF1: 69.5, 67.0) to the comparability
of the concatenated embeddings. To begin with, each GLOVE embedding is a vector of a
single word, and their average is quite different from the paragraph meaning contained in
the CLS embedding form BERT. Furthermore, the lengths, training methods, and train-
ing models of CLS embedding and Glove embedding are not the same. In contrast, the
sentence embeddings in the first CLS-concat model are from Sentence BERT, which is

5https://yknzhu.wixsite.com/mbweb
6https://en.wikipedia.org/wiki/English_Wikipedia

https://yknzhu.wixsite.com/mbweb
https://en.wikipedia.org/wiki/English_Wikipedia
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structurally similar to BERT, indicating that fusion between two similar models may yield
good results, but models that are too different do not.
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Chapter 5

Conclusions and Future work

In this chapter, we give our answers to the research questions and summarize our work.
Subsequently, we present some potential improvements as future work at the end of this
chapter, which also serves as the end of the thesis.

5.1 Answers to Research Questions

The main findings of our work can be summarized by the answers to the five research
questions introduced in Section 1.2. The answers are elaborated as follows:

Q1. Is it possible to improve the performance of the BertEmb method by identifying better
hyperparameters (for example, learning rate and dropout rate)?

A1: Yes. We show that moderate learning and dropout rates can effectively im-
prove the performance of the BertEmb model by more than 10% points (compared
to the original paper (Conforti et al., 2020a)) through experiments on learning
rate and dropout rate.

Q2. How well does the pre-trained model BERT perform on STANDER dataset?

A2: The result of BERT is as expected. We fine-tune the pre-trained model BERT
to this stance detection task. The results of experiments show that BERT model
has achieved well performance as expected, which is about 12% points higher
than BertEmb after hyperparameter tuning.

Q3. How far can the CLS token of BERT transfer the stance information across different
tasks? Will the CLS-transfer BERT improve the performance of BERT?

A3: Our experiments with the CLS-transfer BERT prove that the CLS token
cannot transfer the information of the stance. The results of random-generated
CLS token further prove that changing the CLS token alone has little effect on
the fine-tuning.

Q4. Can we achieve a considerable result on the stance detection task using a dependency-
based model?
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A4: The result demonstrates that dependency-based GCN can be used for SD
task. However, the result of DB-GCN is below that of the simpler models. We
have discussed the following possible reasons in Section 4.2: lack of semantic
information and linguistic basis of connecting sentences.

Q5. Can the model that combines the sentence embeddings in BertEmb and the BERT
CLS embedding achieve the state-of-the-art performance and how about the model that
combines the syntactic representation and the CLS embedding?

A5: Yes, concatenating the sentence embeddings and the CLS embedding im-
proves the results by approximately 1.4% points. Concatenating the syntactic
representation with CLS embedding, on the other hand, yields no benefits. For
the difference in these two results, we give an explanation of the comparability
between the representations in Section 4.2, arguing that concatenation requires
similar representations, which means that these representations should preferably
come from the same or similar model architectures.

5.2 Contributions

In this thesis, we test multiple deep learning models, especially BERT-based models, on
the STANDER dataset. Our main contributions can be summed up as:

• We used BertEmb and improved on the results of the original paper (Conforti et al.,
2020a) by selecting a moderate learning rate and dropout rate.

• We fine-tuned the pre-trained model BERT and discovered that it outperforms
BertEmb by about 12.7% points.

• We devised two distinct tasks to obtain the transferable CLS tokens for further
fine-tuning. Through experiments with various CLS embeddings, we proved that
CLS-transfer BERT cannot improve the performance of BERT, indicating that the
CLS token is not capable of containing transferable stance-related information.

• We applied the dependency-based system proposed by Žunić et al. (2021). However,
we employed an ingenious technique to connect the dependency graph of target and
the sentences in news articles, thereby eliminating the issue that different sentences
(particularly the target and the articles) do not affect each other in convolution.
This system is functional, but it is no better than the baseline.

• We proposed CLS-concat BERT, which combines sentence embeddings and CLS em-
bedding. When compared to other methods, CLS-concat BERT successfully achieves
the best f1 score, demonstrating that the combination of information at different
levels is useful for stance detection. Simultaneously, combining the node embeddings
with CLS embedding does not improve the performance of BERT, indicating that
embeddings from models that are too different are not comparable.
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5.3 Limitation & Future work

In our work, there are two key aspects where we can improve: the dataset and the model.

We only test our model on STANDER for the dataset. As a result, the following issues
may have an impact:

• Single data type. It means that we only conduct experiments in the news domain.
However, other types of data, such as tweets, are not involved in our work. As a
result, this may cause our model to only work on specific datasets.

• Small amount of data. STANDER only contains 3,291 pieces of news, and for
each merger, the number is even lower. An insufficient amount of data may cause
our models to be less robust, which is undesirable for future use.

• Imbalance of data. In Section 4.1, we mention that there is an imbalance in
STANDER. In subsequent experiments, we also discover that the model rarely pre-
dicts unrelated labels, owing to the fact that there are far fewer samples of unrelated
labels than of the other labels.

We concentrate on BERT and its associated improvements for the model. For other kinds
of models, we only use dependency parsing and the GCN model. This may lead us to simply
modify BERT rather than starting from theory in order to develop a widely applicable
model.

Given the aforementioned issues, we believe that some improvements can be made in the
following areas:

• Add multiple datasets. As we mentioned in the Section 2.4, many datasets related
to stance detection have been proposed and applied, such as: semeval-16 and FNC.
Experiments on these datasets can verify the robustness and practicality of our
models.

• Try different methods. We can further analyze DS-GCN using different syntactic
analysis methods to obtain graph representations, such as: Abstract Meaning Rep-
resentations (Flanigan et al., 2016) and Discourse Representation Structures (Basile
et al., 2011). It is worth noting that the processing object of DRS can be multiple
sentences, implying that it has a high potential for solving the problem of plurality
input sentences.
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Appendix A

Details of Experiments

learning rate 1e-5 5e-5 1e-4 5e-4 1e-3 5e-3
CVS_AET 0.476 0.389 0.457 0.537 0.217 0.217

AET_HUM 0.456 0.558 0.571 0.543 0.215 0.215
ANTM_CI 0.509 0.532 0.571 0.509 0.334 0.161
CI_ESRX 0.351 0.566 0.593 0.582 0.251 0.251

TABLE A.1: The F1 scores of different learning rates on four mergers

dropout rate 0 0.1 0.2 0.3 0.4 0.5
CVS_AET 0.499 0.491 0.488 0.503 0.484 0.505

AET_HUM 0.565 0.558 0.562 0.565 0.548 0.563
ANTM_CI 0.522 0.539 0.528 0.546 0.540 0.529
CI_ESRX 0.575 0.558 0.564 0.552 0.551 0.568

TABLE A.2: The F1 scores of different dropout rates on four mergers

Experiments Exp1 Exp2 Exp3 Exp4 Exp5
CVS_AET 0.687 0.664 0.721 0.730 0.699

AET_HUM 0.645 0.639 0.657 0.625 0.646
ANTM_CI 0.630 0.648 0.644 0.649 0.633
CI_ESRX 0.725 0.739 0.754 0.750 0.726

TABLE A.3: The F1 scores of five repeated experiments on four merg-
ers by BERT
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Experiments Exp1 Exp2 Exp3 Exp4 Exp5
CVS_AET 0.687 0.664 0.720 0.730 0.698

AET_HUM 0.652 0.640 0.651 0.636 0.634
ANTM_CI 0.647 0.642 0.626 0.638 0.645
CI_ESRX 0.749 0.766 0.725 0.746 0.684

TABLE A.4: The F1 scores of five repeated experiments on four merg-
ers by CLS-random BERT

Experiments Exp1 Exp2 Exp3 Exp4 Exp5
CVS_AET 0.733 0.735 0.726 0.714 0.726

AET_HUM 0.632 0.649 0.652 0.638 0.649
ANTM_CI 0.637 0.647 0.636 0.657 0.647
CI_ESRX 0.733 0.725 0.718 0.739 0.706

TABLE A.5: The F1 scores of five repeated experiments on four merg-
ers by CLS-transfer BERT1

Experiments Exp1 Exp2 Exp3 Exp4 Exp5
CVS_AET 0.690 0.727 0.617 0.719 0.714

AET_HUM 0.630 0.647 0.634 0.638 0.647
ANTM_CI 0.628 0.647 0.624 0.646 0.665
CI_ESRX 0.764 0.749 0.731 0.753 0.737

TABLE A.6: The F1 scores of five repeated experiments on four merg-
ers by CLS-transfer BERT2

Experiments Exp1 Exp2 Exp3 Exp4 Exp5
CVS_AET 0.382 0.368 0.357 0.350 0.372

AET_HUM 0.405 0.411 0.423 0.445 0.439
ANTM_CI 0.300 0.322 0.299 0.319 0.312
CI_ESRX 0.373 0.382 0.396 0.357 0.369

TABLE A.7: The F1 scores of five repeated experiments on four merg-
ers by DB-GCN

Experiments Exp1 Exp2 Exp3 Exp4 Exp5
CVS_AET 0.725 0.746 0.702 0.728 0.721

AET_HUM 0.643 0.649 0.671 0.643 0.648
ANTM_CI 0.644 0.657 0.637 0.625 0.646
CI_ESRX 0.768 0.764 0.766 0.756 0.763

TABLE A.8: The F1 scores of five repeated experiments on four merg-
ers by CLS-concat BERT(BertEmb)

Experiments Exp1 Exp2 Exp3 Exp4 Exp5
CVS_AET 0.712 0.722 0.709 0.706 0.713

AET_HUM 0.616 0.609 0.599 0.611 0.604
ANTM_CI 0.640 0.639 0.632 0.637 0.640
CI_ESRX 0.729 0.718 0.727 0.712 0.727

TABLE A.9: The F1 scores of five repeated experiments on four merg-
ers by CLS-concat BERT(GCN)
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