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Abstract

Multi-objective optimization solutions hold information, useful to designers, if it could be
extracted from the optimization data. However, there is no straightforward way to apply
existing eXplainable AI (XAI) methods to optimization data. The aim of this thesis is to
find out how existing XAI methods can be applied to multi-objective optimization problems
in design optimization. Classically XAI methods are used to augment prediction models
with nontransparent ’black-box’ machine learning methods. In this thesis the XAI methods
are applied to black box optimization, in order to explain the output of the multi-objective
optimization algorithm, which is an approximation of the Pareto front and the efficient set.
This is accomplished in an indirect way. First an optimization data set is obtained. This data
set is then transformed into a classification data set. The classes are given by certain regions on
the Pareto front or in the objective space and the features are the decision variables. A random
forest classifier is then trained on the classification data set. In the study four different XAI
methods are used to explain the classifier. The tested XAI methods are SHAP, LIME, partial
dependence plots, and permutation feature importance. Two simple multi-objective design
optimization problems serve to demonstrate the usefulness of the approach: a two-objective
welded beam design problem and a two-bar truss design problem. The SHAP method and
partial dependence plots were found to be most informative when looking for decision rules
for the optimization problem. Furthermore, when comparing the results of the different XAI
methods it was found that there is no consensus among the methods in ranking features by
importance, which requires further investigations to be fully understood.
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1 Introduction

Advances in the field of AI have resulted in new and powerful algorithms that can solve complicated
classification, prediction, search, and optimization problems. Because most of the more powerful
AI algorithms lack transparency, the need for eXplainable AI (XAI) algorithms has become more
pressing. Though various methods have been developed for classification and prediction models,
there are few methods for explaining optimization data. There are many different types of opti-
mization problems and there might be differences in the kind of information that is of interest with
regards to such problems. The focus of this thesis is on multi-objective optimization in structural
design problems. In design optimization, XAI methods could be used to find design rules. Design
rules are relationships between variables and objectives that hold true even if the parameters of the
problem changes [1]. A few methods have already been introduced. Deb and Srinivasan et al. [2]
introduced ”innovization” as a method for gaining a better understanding of a problem by using a
multi-objective optimization algorithm and analysing the resulting data. This method was extended
by Bandaru [3] to make it fully automated. Blom [1] used both, box plots, and decision trees, to
learn heuristic rules for a design problem. This was done by taking an optimization data set and
defining different classes. The box plots visualize the distribution of the data for each feature using
a box for each class. The box plots were able to show which features were the most important for
telling apart the different classes. The decision trees were trained on descriptive features that were
predefined by domain experts to classify the data set by learning rules that determine to what
class a solution belongs depending on the predefined features. However, so far, the common XAI
techniques that have been proposed for prediction in the AI literature, have not yet been transferred
to applications of multi-objective optimization. The aim of this thesis is to close this gap and
find out how existing XAI methods meant for augmenting black-box classification and prediction
methods can be used to explain multi-objective optimization results in black-box design optimization.

Running an XAI algorithm on multi-objective optimization data is not straightforward. XAI
methods are meant to explain predictions or classifications made with machine learning models
and usually require an estimator or model to be provided. However, optimization methods are
not estimation models. There are two ways to work around this problem. The first option would
be to somehow use the objective functions instead of the estimator. Since the objective functions
determine how optimal the solutions are, explaining the objective functions would provide the
required information. However, to achieve this a way must be found to pass the objective functions
to the XAI method. The other approach would be to divide the optimized data set into different
classes based on the type of solution (not-optimal, optimal in all objectives, etc.). A classifier is then
trained on the data set. This way it is possible to get an indirect explanation of the optimization
data by explaining the classifier. This last approach is easier to implement and therefore a better
suited to the purposes of this project.

Research questions:

1. How can we transfer XAI from prediction to multi-objective black-box optimization?

2. To what extent do explanations of the different XAI methods agree with one another?

3. Which methods are most informative with regards to understanding the optimization data in
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typical design optimization problems?

2 Definitions

2.1 XAI

XAI (eXplainable Artificial Intelligence) refers to methods that enable humans to understand the
decision-making process of AI models. XAI methods can either be model-based or post-hoc. Model-
based XAI refers to AI models that are built to be transparent, such as decision trees. Post-hoc
XAI methods receive a trained and tested AI model and try to explain their inner workings [4].
Model-agnostic methods are a set of post-hoc XAI methods that can be used on any machine
learning method, regardless of its inner workings [5].

2.2 Objective functions

Objective functions are functions that are applied over the features of a problem and evaluate the
solution for a certain criterion [6]. In multi-objective optimization the optimal solutions are found
by maximizing or minimizing the objective functions.

2.3 Constraints

Constraints in optimization are logical conditions that every solution to the optimization problem
must satisfy. Constraints in optimization problems are usually implemented as penalty functions
which penalize solutions that violate these constraints.

2.4 Pareto dominance

A solution u ∈ 1..., n is dominated by v ∈ 1, ..., n if and only if:

∀i ∈ {1, ..., n} : ui ≤ vi ∧ ∃i ∈ {1, ..., n} : ui < vi

[7] In words, a solution is said to dominate another solution when that solution is better than the
other solution for at least one objective and not worse for any other objective [6].

2.5 Pareto front

A pareto front as the set of all dominant solutions.

2.6 Features, decision variables, and data points

Decision variables are the variables in an optimization problem for which an optimal value needs
to be found. Features are the independent variables used by the model. In this case the classifier
is trained on the decision variables, so features and decision variables refer to the same variables.
Data points are the instances of the data set. In optimization data each solution is a data point
that consists of multiple variables.

2



3 Methods

There is a wide range of XAI methods. Because the aim of this thesis is to give a prove of concept,
only a selection of XAI techniques will be run on the test problems. As mentioned before the XAI
methods will be used to explicate a classifier, trained on optimization data. For the experiments
a multi-label random forest algorithm was used. Explaining a random forest requires post-hoc
methods. Post-hoc methods can be divided in three classes. There are methods that try to explain
a model using visualization, methods that use feature relevance, and models that use simplification
[5]. Partial dependence plots, or PDPs are a way of explaining by visualization. PDPs are a good
option to consider for this type of XAI because the partial dependence plot is a method that
is commonly used [8] [9] and are relatively easy to implement. The most well-known technique
that uses feature relevance is SHAP. For the third group LIME is an often-used method. Besides
these three methods which are representative of the three groups in model-agnostic post-hoc XAI
there is another method. This method, permutation feature importance, also explains using feature
relevance but is simple to implement and easy to understand, which makes it an ideal method to
start with.

3.1 Permutation Feature Importance

Permutation Feature Importance (PFI) is one of the easiest ways of ascertaining the relevance of
features. The permutation importance of a feature Xi is determined by calculating the difference in
prediction error of a model for the original data set and a data set where the relation of feature
Xi with target Y is broken by randomly permuting the values of that feature [10]. Permutation
Importance was first introduced by Breiman for the random forest method. [11], and was later
generalized to a model-agnostic method [12]. The algorithm for calculating permutation feature
importance that was implemented for this experiment is based on the paper written by Fisher,
Rudin, and Dominici [10]. The algorithm works as follows. First the prediction error eoriginal for the
original data is calculated. Then, for each feature Xi in the data set, Xi is permuted by randomly
shuffling the values. The estimator is tested on the permuted data set to determine the prediction
error epermuted. Based on eoriginal and epermuted the permutation importance is calculated. The
permutation importance p is given by:

p =
epermuted

eoriginal
(1)

These last three steps are repeated K times for each feature, resulting in K permutation importance
values per feature. The resulting permutation importance values are then visualized using a box
plot. The algorithm uses the mean squared error as a measure of the prediction error. It uses the
mean squared error function from the Sklearn.metrics module which defines it as:

MSE(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)
2 [13] (2)

For the experiments the algorithm used K = 100.
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3.2 Partial Dependence Plots

Partial Dependence Plots or PDPs depict the target response of a model over the range of possible
input values for a certain feature. [14]. The target response of the model is given by the partial
dependence value. Let xs be the set of features of interest and xc the complement of xs, then f is
given by:

fxs = Exc [f(xs, xc)] =
∫
f(xs, xc)dP (xc) [13] (3)

where f(xs, xc) is the predict function and dP (xc) is the marginal distribution of xc. Each subset
of features in S has its own partial dependence function f which gives the average value of function
f for the fixed subset of features of xs when xc is varied over dP (xc). The Sklearn.inspection
module provides a function for plotting independence plots [13]. It approximates the function f by
averaging over the different values of xc for a fixed subset of xs.

f̂s =
1

N

N∑
i=1

f̂(xs, xci) (4)

Where f̂ is the estimate of the true model. For multi-class classification it is necessary to plot a
line for each different class, showing how the prediction probability changes when the feature xs is
varied.

3.3 SHAP

SHAP or SHapley Additive Explanations is an explaining method that uses shapley values. Shapley
values are a part of game theory [15]. Shapley values were a mathematically fair way to divide
the payoff of a game among the players based on how much each player contributed. A shapley
value is constructed by estimating the marginal contribution of one player to a subset of the other
players in the game. The shapley value is the weighted aggregate of the marginal contributions of
the player for all possible subsets of players [16]. The SHAP algorithm uses these shapley values to
explain machine learning methods where they reflect the contribution of a particular feature to the
resulting prediction or classification. The SHAP package for python provides the TreeExplainer
module [17] which was used in this experiment. The SHAP TreeExplainer method can be used
to find local as well as global explanations. The TreeExplainer combines many local explanations
to create global explanations of a model. In this way the explanations can remain locally faithful
whilst at the same time showing larger global patterns [17]. The SHAP library offers different
ways to visualize model explanations. For this experiment only summary plots which give global
explanations were used. SHAP summary plots display the shapley value for each instance in the
data set as a point. This is done separately for each feature. The value of the data point via a color
scale. This way the impact of a feature on the model does not need to be condensed to a single
value [17]. SHAP summary plots can show the importance of the separate features, the relationship
between the value of the feature and its impact on the model and the distribution of feature-values,
all in one plot. Force plots explain a single prediction. These plots show for each feature how much
it contributed to the final decision.
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3.4 LIME

LIME or Local Interpretable Model-Agnostic Explanation explicates a model by fitting an inter-
pretable model to the model that needs to be explained. If the model that needs to be explained is
complicated, it becomes very difficult to fit an interpretable model globally. The LIME method
solves this by considering a single data point and fit a simple linear model that can give a local
explanation of the model at that point [18]. Let the model to be explained be denoted as f and the
explanation as g ∈ G, where g is an interpretable model and G is the set of all possible interpretable
explanation models. The LIME method tries to find a model g ∈ G such that it is both locally
faithful to f and not too complicated. The complexity of the model is given by Ω(g) and the
unfaithfulness of g to f is defined as L(f, g, πx) where πx is a measure of the proximity around
instance x, the instance to be explained. LIME tries to find a minimum for the sun of Ω(g) and
L(f, g, πx) [19]. The LIME method first transforms x to a more interpretable representation x

′
.

This can be useful if the way the data is represented to the AI model is not easy to understand.
Next LIME creates new data points z

′
around the instance x

′
weighted by πx (instances nearer x

get a higher weight). Each instance z
′
is then transformed back to the original representation z and

labelled by using the original model f(z). This creates a new data set Z containing the labelled
points z. Using the new labelled data LIME fits a linear function g using a weighted loss function:

L(f, g, πx) =
∑

z,z′∈Z

πx(f(z)− g(z
′
))2 (5)

This way g is trained on the more interpretable representation z
′
. By weighting the loss function,

the instances closer to instance x are considered more important [19]. The output of the LIME
method consists of three parts: the prediction probabilities, the feature probabilities, and the feature
values [20]. The prediction probabilities tables show (in the case of a multi-class classifier) the
decision probability for each class. The feature probabilities show how much each feature contributed
to the decision [20]. For a multi-class classifier, the feature probabilities are visualized per class.
The feature values table displays the actual values of the instance that has been explained.

4 Experiments

The first step is to generate the data set that is to be explained. This is done by running an
optimization algorithm on an implementation of a multi-objective optimization problem. The
implementation was done in python using the DESDEO package [21]. The package also offers a
solver (solve pareto front representation) which returns a pareto front optimized according to the
specified constraints and objective functions. The resulting data set contains both the feature values
and the objective values. Because the pareto front contains no non-optimal solutions, these need
to be generated separately. This is done by generating several solutions with random values for
each feature within the upper and lower bounds of each variable. The objective values are obtained
using the objective functions. The resulting feature values and objective values are then appended
to the optimization data set.
The second step is transforming the data set into a classification data set. For a problem with
two objectives, like the welded beam problem, there are four classes: the knee point area (KP )
with solution optimal for all objectives, the optimal points for the first objective (F1), the optimal
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points for the second objective (F2) and the non-optimal or bad solutions (BD). The classification
data set is obtained by selecting a group of solutions for each class based on the objective values.
Next, a classifier is trained on the classification data set. Since the optimization data sets used
for the experiments are relatively small (less then 100 instances in the case of the welded beam
data set), a type of classifier is needed that is not easily influenced by outliers. The classifier must
also be robust against overfitting since the classifier needs to find general rules about solutions to
the optimization problem. Random forest seems to be a good choice for such a problem. Random
forest classifiers base the classification on the outputs of a group of decision trees. Each tree is
trained on a bootstrap sample of the training data [22]. Random forest classifiers are robust to
outliers and not prone to overfitting [11]. The SKLEARN package [13] provides a random forest
classifier for python. The classifier has several parameters. For most parameters the default settings
were used. Only for n estimators (the number of trees) and max depth (the maximal depth of the
decision trees) a grid search was preformed to find the optimal settings. The parameter grid had
three settings for each parameter. max depth had a default value of 100. Beside this default values,
also a smaller depth (50), and a greater depth (150) where tried. For max depth the default setting
was none, so a few different selections of parameter setting where tried. After 2000 there was no
significant effect on the score, so the grid for the grid search used the setting 50, 100 and 150 for
n estimators and 100,1000 and 2000 for max depth.
Based on the results of the grid search, n estimators was set to 100 and max depth to 1000.
Lastly, the four XAI methods where run on the test data to explain the fitted random forest
classifier.

4.1 Welded beam problem

Figure 1: Visualization of the welded beam problem

Figure 4.1 shows a visualization of the welded beam problem. The welded beam problem tries
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to optimize the design of a beam that is fixed on one end and has a concentrated load P at the
opposite end. The parameter L gives the length of beam that sticks out. The problem is to find
a beam design that is strong enough whilst minimizing the material costs. The problem has four
variables: the height and breadth of the welding material (x1, x2) and the height and breath of the
beam (x3, x4) and two objectives to be minimized. These two objectives, Vweld (the volume of the
welding material) and Vbar (the volume of the beam) are given by:

Vweld = x1
2 ∗ x2 (6)

Vbar = x3 ∗ x4 ∗ (L+ x2) (7)

which are both related to material cost.

4.2 Results

4.2.1 Feature Permutation Importance

Figure 2: Box plot of the feature permutation importance for each feature of the welded beam
problem.

Figure 2 shows the feature permutation importance for each feature in the welded beam data set.
For each feature the permutation importance has been averaged over 100 repetitions. Because the
permutation importance is calculated by dividing the error of the permuted data set by the original
error (see definition 1), an importance value of 1.0 would mean that the estimator preformed equally
well for the permuted data set. Any value higher then 1.0 would mean that the estimator preformed
worse. The highest mean importance value is about 6.0 for feature x4. All features have a mean
feature permutation importance of more the 2.0. However, the importance values of features x3

and x4 are significantly higher than the importance values of x1 and x2.
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4.2.2 Partial Dependence Plot

Figure 3: Shows the partial dependence for each feature, for classes KP , F1, F2.

A partial dependence plot denotes the change in the estimated prediction value for a target when a
feature is varied over its marginal distribution [14]. Thus, partial dependence plots differ significantly
from feature permutation importance plots which show the impact of features on the performance
of the entire model. Figure 3 shows the partial dependence for classes KP , F1 and F2. For class
F2, there seems to be and inverse relationship with regards to variables x1 and x2 and a positive
dependence for x3 and x4. For class KP there is an inverse relationship for all four of the variables.
There is a non-linear relationship between feature x1 and class F1 and also between x2 and class
F1. For feature x3 and X4 the dependence seems to be inverse. When the value of x1 becomes
higher then x1 ≈ 0.2 it stops having a large impact on the partial dependence for classes KP and
F2. Feature x2 stops having an impact on the partial dependence value of any class when x2 > 2.
For values higher than 3 features x3 and x4 do not have an impact anymore.

4.2.3 SHAP

SHAP values reflect the contribution of each feature to the final prediction of an estimator. Figure
4 shows the mean of the absolute impact of each feature on the model output. For almost all classes
x1 seems to be the most important feature. Only for class BD is x4 the feature that contributes the
most not x1. Table 1 shows the ranking of features based on relevance. The ranking is not entirely

PFI SHAP
x4 x1

x3 x4

x1 x3

x2 x2

Table 1: Shows the ranking of features based on there relevance, for both the PFI method (figure 2
and the average absolute shap value (figure 4)
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Figure 4: The mean impact on the magnitude of the model output.

the same. The most relevant feature according to the permutation importance is x4, whereas x1

has the highest absolute average SHAP value. Both methods consider x4 more relevant then x3.
They also agree that x2 is the least relevant feature. Figure 5 shows the SHAP values for each class
separately. Contrary to figure 4, these summary plots show not only the magnitude, but also the
direction and concentration of the effect of each feature on the model [17]. As already shown in
figure 4, feature x1 is the most important feature for predicting class KP . Figure 5(a) shows that
the impact on the model output is negative for high values of x1. A low value for x1 seems to have
often a large positive impact but not always. x3 and x4 also have a negative impact on the model
output for high values. For x2 high values seem to have almost no impact, whereas low values have
either a slight positive or slight negative impact on the model. For class F1 the most important
feature is also x1 as can be seen in figure 5(b). x1 has the opposite effect on class F1 compared to
class KP (fig. 5(a)). Higher values have a positive impact on the classifier. The same is true for
x3 and x4 though on a smaller scale. High values of x2 have a higher, decidedly negative impact
compared with its impact on class KP , though still relatively small. Figure 5(c) shows the SHAP
values for class F2. For feature x1 high values have almost no impact and medium values have
a slight negative impact. For low values it is hard to say in what way they effect the model. For
x4 high values have a negative impact on the model and most instances with lower values have a
positive impact. x2 is the only feature that positively impact the model output for class F2 for all
others high values have a negative impact. Figure 5(d) shows that for class BD feature x4 is most
important. For x1 high values have a negative impact and for x3 a positive impact. x2 only makes
a very small contribution. For high values the impact is on average slightly negative.
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Figure 5: Shows the SHAP values of all instances for class KP .

Figure 6: The LIME output for one instance in the welded beam data set. The top-left figure shows
the prediction values and top-right figure the actual values of the instance. At the bottom are the
feature probabilities denoting the feature importance for each class.
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4.2.4 LIME

The output of the LIME method as shown in figure 6 explains an instance in the optimization data
set. 6(a) shows the prediction probabilities for this instance. The model predicted class BD. The
feature values (fig. 6(b)) show that the values for each feature are low. For class KP the low values
all had a positive impact on the classification. This seems to correspond with the general trend
shown in the SHAP summary plot for class KP (fig. 5(a)). For class F1 (fig. 6(e)) only x1 has a
negative impact on the classification. The SHAP summary plot (fig. 5(b)) shows that x1 also has a
negative impact on the model globally. For feature x2 the SHAP plot shows that low values have
generally a negative impact, which seems to contradict the LIME explanation. However not all
instances with low values follow the global trend for x2 meaning that sometimes a low value for x2

can have a positive impact. For the other classes the LIME and SHAP plots seem to agree.

4.3 Two-bar truss problem

Figure 7: Visualization of the two-bar truss problem

The two-bar truss problem was originally introduced by Fox [23]. It has six variables that need
to be optimized and four objectives. The variables are height (H), diameter (d), thickness (t),
separation distance (B), modulus of elasticity (E), and material density (p). The objectives are
weight, stress and buckling stress, calculated by the following formulas.

weight = p ∗ 2 ∗ π ∗ d ∗ t
√(

B

2

)2

+H2 (8)

stress =
p ∗

√(
B
2

)2
+H2

2 ∗ t ∗ π ∗ d ∗H
(9)
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bucklingstress =
π2E(d2 + t2)

8[
(
B
2

)2
+H2]

(10)

The fourth objective, deflection was not used for this experiment. The two-bar truss problem is a
bit more complicated than the welded beam problem, having six variables and three objectives.
This means that the classification problem has now eight classes instead of four (KP , F1, F2, F3,
F12, F13, F23).

4.4 Results

4.4.1 Feature Permutation Importance

Figure 8: The permutation importance for each variable of the two-bar truss problem

When looking at figure 8 it is apparent that the three variables p, t, and d have a significantly
higher importance than the other three features. Features E and B are the least important with
importance values of less than two.

4.4.2 Partial Dependence Plot

Figure 9 shows that there is a monotonic inverse relationship between H and class KP . The
relationship between H and F3 is also inverse, though not monotonic. For the other two classes,
H seems to have a slight linear dependence, until H > 5000. There is a polynomial relationship
between feature d and class F1. Feature t has a non-linear relationship with regards to class F1
and F3 and an inverse relationship for F2 and KP . There is a positive relationship between feature
B and class F1 and F2. There is an inverse linear relationship between feature B and classes KP
and F3. E has virtually no influence on any class for E > 45000. For p both class KP and F3
have an inverse polynomial relationship with that feature. The relationship between F1 and p is
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Figure 9: Partial dependence for each feature of the two-bar truss problem. Only the partial
dependence of classes KP , F1, F2, and F3 are shown

non-linear and inverse, except for very low values of p. Between F2 and p there is also a non-linear
relationship.

4.4.3 SHAP

Figure 10: The mean impact on the magnitude of the model output of the welded beam problem
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According to the summary plot in figure 10 t is the most important variable when considering all
classes together. For class KP the feature t is still the most influential, followed by d and p. For
F1 features t and H are the most important. F2 is impacted the most by features d and t, F3 by
feature p and t. Feature B is the least influencing feature overall, followed by E. Only for class BD
does feature E make a major contribution to the model output. Table 2 compares the ranking of

PFI SHAP
d t
p p
t d
H H
B E
E B

Table 2: Shows the ranking of features based on there relevance, for both the PFI method (figure 8
and the average absolute shap value (figure 10)

feature based on relevance for the SHAP method (figure 10) and the PFI method (figure 8. Though
the ranking is different, the three most important features are p, d, and t. PFI and SHAP agree on
the ranking of p and H. Comparing the figure 11 with the global summary plot in figure 10 reveals
that E has indeed only a big influence for class BD where it has a positive impact. For all other
classes E has a small negative impact. The SHAP values for class KP in figure 11(a) do not all
agree with the partial dependence plots in figure 9. Feature H has a positive impact according to
the SHAP summary plot but has a negative influence according to the partial dependence plot.
Also figure 11(b) shows that all features have a negative impact on the classifier with regards to
class F1. The partial dependence plots seem to suggest the opposite for feature t and d (fig. 9). For
class F2 feature d has a positive impact. This is also true for E though the impact is relatively
small. For most features the high and low values are not clearly separated, making it hard to say
which way the feature influences the model classification. For class F3 (fig. 11(d)) the high and low
values or more clearly separated. p, B and H have a positive influence and t, d and E a negative
one. Because the partial dependence plot in figure 9 only shows the partial dependence for classes
KP , F1, F2, F3, the other plots (fig. 11(e-h)) cannot be compared to the partial dependence.
Features t and p have the biggest impact for classes F12, F23, and F13. For classes F12 and F13
feature H has more importance than d. For class F23 it is the other way around. This is interesting
because H is the second most important feature with regards to class F1 and less important for
classes F2 and F3.

4.4.4 LIME

Figure 12(b) shows the actual feature values. Comparing these values to the marginal distributions
of the features (fig. 9) shows that d, p, t and E have low feature values and H and B have high
feature values. When comparing the feature probabilities for classes KP , F1, F2, F3 in figure
12(a,d,j,k), the top three features that are in the LIME feature probability graphs correspond to the
top three features in the SHAP summary plots (fig. 11(a,b,c,d)). Because the LIME explanation is
a local explanation it is not to be expected that the feature probabilities correspond to the global
trends shown in the SHAP plots in figure 11. However, because all instances are represented as
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Figure 11: The SHAP values of all instances for each feature of the two-bar truss problem, visualized
for each separate class
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Figure 12: The LIME output for one instance in the two-bar truss data set. The top-left figure
shows the prediction values and top-right figure the actual values of the instance. At the bottom
are the feature probabilities denoting the feature importance for each class.
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dots with a color denoting whether they have a high or a low value, it is possible to see whether
any feature probabilities seem to contradict the global SHAP explanation. This does not seem to
be the case, though the local LIME explanation does not always correspond to the global trend,
shown by the SHAP summary plot(for example, compare figure 11(f) and figure 12(e)).

5 Conclusions and Further Research

As mentioned before the purpose of XAI for multi-objective design optimization is not only to
provide a motivation for the solutions the optimization method comes up with. XAI can also be
used to discover decision rules. These rules can then be used to create near optimal solutions
without having to go through an optimization process again.
On the question of how to transfer XAI from prediction to multi-objective black-box optimization,
the indirect approach that was taken seems to provide relevant explanations about the two
optimization problems.
By transforming the data into a classification data set and training a classifier on it, there is no
need to modify existing XAI methods or to find a way to pass something other than a predictor or
classifier to the XAI method. Also, this approach means that any model-agnostic XAI method can
be used to explicate the classifier.
The disadvantage of this indirect approach is that no classifier is totally accurate. Because of this
there is a chance that not all decision rules derived from the XAI results are actual decision rules
for the design problem in general.
For most methods it is not easy to say whether the methods do agree with one another. PFI, PDP,
SHAP and LIME methods do not explain the classifier model in the same way. Because of this
a one-to-one comparison of all methods is not possible. Still, it is possible to ascertain whether
different explanations contradict each other. This is the case for the PFI plots (fig.2,8) and the SHAP
global summary plots (fig. 4, 10). Both feature permutation importance and the average absolute
SHAP value show which features have the most impact on the model. For both experiments the
two methods have contradicting results. This might be due to the fact that each method measures
importance in a different way. The PFI method defines importance as the difference in prediction
error, whereas the global summary plot of the SHAP method measures the contribution each feature
makes to the prediction of the model using the SHAP values.
For both experiments the LIME and SHAP outputs do not contradict each other. However only a
small part of the output of the LIME and SHAP algorithms can be compared, since the LIME
output is local and the SHAP output is global. It is only possible to check for each feature and
class in the SHAP plots (fig. 5, 11), whether instances can be found that have a similar impact on
the model as the single instance seems to have according to the feature probabilities in the LIME
output.
Not all methods are equally informative with regards to understanding the optimization data
in typical design optimization problems. Permutation feature importance values only show the
relative importance of a feature and not in what way it influences the model. SHAP plots are more
informative, showing not only the type of influence, but also the distribution of the impact for
all instances in the data set. The LIME method finds local explanations. This is not useful when
trying to find decision rules that hold true for the design problem in general. In this regard, it is
less informative then PFI or SHAP. However, the method is very informative when the aim is to
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explain why a certain solution is optimal. Whether PDPs are more or less informative the SHAP or
PFI is hard to say because PDPs do not explain based on feature relevance. Which XAI methods
are most informative dependents on the kind of information that is wanted.
Since the aim of this thesis was to give a prove of concept many areas are left unexplored. There are,
for example, various other XAI methods that were not investigated. Also, not all design optimization
data have features that can easily be interpreted by humans. In such cases it might be necessary to
generate meta-features that are more reflective of the properties of the solution instead of showing
the features used by the model. Lastly, research needs to be done to find out how reliable this
method is.
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