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Abstract

Nonograms, Japanese crosswords, are graphical logic puzzles where cells can be filled or be
left blank according to the provided numbers on the side of the grid, that describe the lengths
of consecutive blocks of filled cells. Solving Nonograms is done by performing two solving
methods; Simple and Probing. Simple tries to solve a Nonogram by solely applying H- and
V-sweeps, that address single rows or columns. When this approach does not succeed in fully
solving the Nonogram, Probing is applied. Here, we try an unknown cell by filling it and
applying Simple again, followed by leaving the cell blank and performing Simple once more.
We can determine the usefulness of each probed cell, and by probing all cells, we get the
probing sequence of a Nonogram.

This thesis analyzes the probing sequences of Nonograms. Using small Nonograms, we try
to determine all sequences leading to uniquely solvable Nonogram, Nonograms with exactly
two solutions and Nonograms with multiple solutions. Any relevant observations will be
described as well.
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1 Introduction

Nonograms, also known as Japanese crosswords, Picross and Hanjie, are graphical logic puzzles.
These puzzles consist of an m × n grid, where all pixels must be colored or be left blank with
respect to a provided description of each line (i.e., row or column). Traditionally, Nonograms are
represented by black and white cells. However, colored Nonograms exist as well. Colored Nonograms
have a description which describes the required color for each of the lines. Being invented in the
1980s, these puzzles are still frequently used in newspapers and other applications. Paint by Number
is a well-known paint technique based upon the same concept. The popularity of the Nonogram
rose due to Nintendo’s implementation for electronic toys. Of course, the Nonograms used in these
games should be solvable by humans. Solving a Nonogram manually could be done by guessing a
cell, logically eliminating values of cells and overlapping all possible solutions of a small part of the
Nonogram.

The goal of the player is to “solve the grid” with respect to all provided line descriptions. The line
description consists of k numbers and denotes k consecutive series of filled cells. These series need
to be separated by at least one blank cell. The order in which these k numbers occur, should be
preserved. All these series must occur in the corresponding row or column. Once solved, one might
obtain a hidden image. Solving Figure 1 results in such a hidden image.
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Figure 1: A Nonogram with its solution.

1.1 Solving a line

The line description “2 3 1” describes a line that should be structured as two colored cells, followed
by at least one blank cell, then three colored cells followed by at least one blank cell, and finally one
colored cell. Optionally, we may have blank cells at the beginning or end of the line. The number of
solutions for the descriptions depends on the length of the line. When “2 3 1” is the line description
with a line length equal to 8, we obtain exactly one solution, see Figure 2.
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132

1 2 3 4 5 6 7 8

Figure 2: A line solution for a line of length 8.

Consider “2 3 1” to be the line description of a partially filled line of length 11, see Figure 3.
Suppose the second cell must be left blank, which is denoted by “·”. When trying to solve this
line further, we obtain multiple solutions, see Figure 4. Considering the fourth cell in each of the
possible solutions, we can see that in all cases this cell has been colored. Because of this, it is
certain that this cell needs to be colored. The first cell of each solution is blank, so it is certain
that this cell should be blank. The third cell of all solutions is not uniformly colored as the latter
solution contains a blank cell where all other solutions have a colored cell. So, as for now, it is not
possible to determine whether this cell should be colored or not. All cells that have a uniformly
colored cell are marked in Figure 4. By combining these four possible solutions, a general partial
solution can be obtained, which can be seen in Figure 5. The cells marked with “x” cannot be
colored or left blank because of the multiple solutions. When considering this line to be part of a
Nonogram, this partial solution might be fully solvable in a later stage of solving.
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Figure 3: Partially filled line.
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Figure 4: Multiple solutions for one line description.
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Figure 5: Partial line solution.

When considering the line description “2 3 1” once more, we have seen that it is possible to have
multiple grid outcomes for the Nonogram as a whole. The Nonogram cannot perhaps be fully
solved. The smallest example of this occurrence, referred to as switching component, can be seen in
Figure 6. When a Nonogram contains a switching component, there are multiple solutions. There is
no unique solution for this Nonogram.
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Figure 6: Switching component.

1.2 Thesis overview

First, this thesis started with an introduction of the puzzle. The basic concepts and characteristics
of the Nonogram are discussed in this section. Relevant related work will then be discussed in
Section 2. Then Section 3.1 will go into the definitions. These definitions will later be used as
a guide to obtain a full solving approach, which will be discussed in Section 3. This section is
structured to consider the different components of this solving approach. Besides the Simple and
Probing solving approach, determining the difficulty of a Nonogram will be considered as well. In
Section 4 the performed experiments are shown and explained. Lastly, a conclusion is given in
Section 5. Here, the obtained findings and future work are discussed.

This research is a bachelor thesis for the Computer Science study program at Leiden University,
supervised by Walter Kosters and Jeannette de Graaf from the Leiden Institute of Advanced
Computer Science (LIACS).

2 Related Work

Several solving approaches have been created before. In A Comparison of a Genetic Algorithm and
a Depth First Search Algorithm Applied to Japanese Nonograms, Wiggers (2004) uses a genetic
algorithm (GA) and depth first search to obtain solutions [WvB04]. The DFS approach used by
Wiggers generates all possible solutions of a given description. All possible solutions for each row
are combined to result in all possible Nonograms. Due to the large number of possible row solutions,
and thus a large number of possible Nonogram solutions, the approach is slow. The GA has a better
performance. However, this faster approach does not guarantee a fully correct solution. The GA
can get stuck in local optima and its population size does not work well for small Nonograms.

Yu et al. (2011) have written An Efficient Algorithm for Solving Nonograms, where it is proposed to
use chronological backtracking (CB) to efficiently solve Nonograms [YLC11]. First, their approach
uses logic rules until these can no longer be applied. After this, the method will use CB to try and
find a solution. This process will be repeated until a solution has been found.

In A Reasoning Framework for Solving Nonograms by Batenburg and Kosters a framework for
solving Nonograms has been proposed [BK08]. This framework uses logic rules to deduce new
information about lines and cells of the Nonogram. Two methods of solving a line are discussed.
One of these uses dynamic programming to obtain new information of a line. Recursively, the
solution is extended based on the partial solutions of part of this line. The other method discussed
uses discrete tomography. Here, the columns and rows are considered to be nodes, between which
arcs can be drawn. Each pair of nodes connected by an arc represent which cells are filled. These
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approaches are then combined by using 2-SAT formulas. In Constructing Simple Nonograms of
Varying Difficulty, Batenburg et. al consider a difficulty measure, based upon the complexity of a
Nonogram and its needed actions to solve it [BHKP09]. This difficulty measure was then used to
experiment with and analyze gray level images on various difficulty levels. Batenburg and Kosters
have used the mentioned difficulty measure to extend their research regarding the different types of
Nonograms [BK12].

The approaches used by Wiggers (2004) to generate all possible Nonograms are either too slow
or are not fully able to provide the correct solution of a Nonogram. The dynamic programming
approach used by Batenburg and Kosters does not have these issues and serves as a solid basis. The
discrete tomography described within this paper and the CB approach used by Yu et. all (2011)
both use logic rules to obtain a solution.

3 Solving a Nonogram

Solving a Nonogram and trying to determine the number of possible solutions for a provided
Nonogram is an NP-hard problem [UN96]. In order to solve a Nonogram, two solving techniques
may be applied.

3.1 Definitions

The alphabet of a Nonogram is defined as Σ = {0, 1}, where “0” represents a white cell, referred to
as a blank cell, and “1” a black cell, referred to as a filled cell. We expand Σ to Γ by adding “x” that
represents a cell whose value is unknown. In other words, Γ = {0, 1, x}. A line of a Nonogram can be
a row or column. For each line, a description is provided. A description d of length k > 0 describes
an ordered series of integers > 0. This can be defined as d = (d1, d2, . . . , dk). The description dj
consists of a σj ∈ Σ, aj, bj ∈ N ∪ {∞}, denoted as dj = σj{aj, bj}, where aj and bj represent the
lower and upper bound of the number of occurrences of σj of description dj, 1 ≤ j ≤ k. We put
Aj =

∑j
p=1 ap and Bj =

∑j
p=1 bp. A description may be empty, in which case it is denoted by (0).

Consider Figure 1, where for the eighth row, we have “3 1”, which represents (3, 1) as an ordered
series. The corresponding description is

d = (0{0,∞}, 1{3, 3}, 0{1,∞}, 1{1, 1}, 0{0,∞})

The corresponding regular expression is 0∗1300∗110∗.

An m × n Nonogram, m > 0 and n > 0, has m row descriptions and n column descriptions:
Drows = ⟨r1, r2, . . . , rm⟩ and Dcolumns = ⟨c1, c2, . . . , cn⟩. Row description ri, for i = 1, 2, . . . ,m,
describes the description of ith row of the Nonogram. Column description cj, for j = 1, 2, . . . , n,
describes the description of jth column of the Nonogram. The descriptions of both the rows and
columns are an ordered series. The row descriptions are denoted from top to bottom, and the
column descriptions from left to right. Combining Drows and Dcolumns gives all line descriptions of a
provided Nonogram. Consider Figure 1 once again. This Nonogram has the descriptions

Drows = ⟨(1, 1), (3), (5), (5), (3, 1), (1, 1), (2, 2), (3, 1), (5)⟩
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and
Dcolumns = ⟨(2), (5), (8), (5, 3), (2, 2), (1), (3), (3)⟩

To solve a Nonogram, we start by considering solving lines. As seen in Section 1.1, some lines have
exactly one solution, while others have multiple solutions. For lines with multiple solutions, we
want to overlay all possible solutions to be able to determine whether the cells should be filled or
left blank. To do so, we first discuss how to obtain an individual solution. Then we will combine
those solutions to obtain a partial or full line solution. A line can be solved by the use of dynamic
programming on string s with length ℓ. The solution of the line is based on solutions found for
smaller fragments of this line. Based upon the findings of Batenburg and Kosters [BK08], the
following formula will be used:

Fix (i, j) =

min(i−aj ,Bj−1)∨
p=max(i−bj ,Aj−1,L

σj
i (s))

Fix(p, j − 1)

Here, for each prefix of the provided line s, a solution is built up based upon earlier (partially)
solved prefixes. Fix(i, j) is exactly true if the first i elements of the line s can still adhere with the
first j elements of the description d. This formula holds for i and j where 1 ≤ i ≤ ℓ and 1 ≤ j ≤ k.
The summation parameter i, Aj ≤ i ≤ Bj, of Fix(i, j) represents the length of the line and j
describes the length of the description. Furthermore, L

σj

i (s) represents the largest index h ≤ i for
which sh ̸= σ and sh ≠ “x”. If this cannot occur, L

σj

i (s) becomes 0. Now, Fix(i, j) will build up
until Fix(ℓ, k) is reached.

3.2 Simple

The method of solving a single line can be applied more broadly. Multiple lines (the rows or columns)
are considered at once. The to be considered lines are those that contain recently altered cells or,
in the first step, all lines. By only considering lines with recently altered cells, lines that will not
lead to progress of solving the Nonogram are left out. Performing the line solving method on the
rows, is called a H-sweep. Considering the columns, this will be called a V-sweep. The process of
alternating between applying H- and V-sweeps will be repeated until a fully solved Nonogram has
been found or no more progress is made, and is described in Figure 7. Figure 7 shows a Full Sweep.
As a result, we are left with either a completely solved Nonogram or a partially solved Nonogram.
When a Nonogram can be solved using only H- and V-sweeps, we consider the Nonogram to be
Simple.

The difficulty is determined as well. The difficulty of a Nonogram is determined by the number
of performed sweeps. To obtain a consistent difficulty, the Nonogram is first solved starting with
a horizontal sweep, and later again, starting with a vertical sweep. The ultimate difficulty of a
Nonogram is then the average of the two runs. Figure 8 illustrates an example of why this approach
is useful. It shows that when starting with a H-sweep, the Nonogram can be solved after this one
sweep. Therefore, its difficulty becomes 1. When starting with a V-sweep, no information can be
found. Another sweep needs to be done to obtain the full solution. In total, the run starting with
the V-sweep has a difficulty of 2. Thus, the final difficulty of the provided Nonogram is equal to 1.5.
It should be noted that the difficulty between starting with a H-sweep and V-sweep differs by at
most one.
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switcher ← 0
while ¬solved do

if switcher ≡ 0 (mod 2) then
H-Sweep

else
V-Sweep

end if
switcher ← switcher + 1

end while

Figure 7: Full Sweep
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(c) Partially solved after
applying V-Sweep.

Figure 8: Differences in difficulty.

3.3 Probing

In the previous section, we considered solving Nonograms using a Simple approach. Some Nonograms
cannot be fully solved using only this method. We consider these Nonograms to be Non-Simple.
When Simple has been applied to a Nonogram and the result still contains at least one “x”, the
result is considered to be a partial solution. This partial solution might be further solvable. To see
if this is applicable, we start using a Probing approach.

An example of a Nonogram, where probing needs to be applied, is provided in Figure 9. After
applying the Simple approach, there are two clusters of unknown cells. When probing the marked
cell in Figure 9b by filling in the cell, we get Figure 10a. Filling an unknown cell and performing
Simple on the now new field is known as performing a 1-probe.

After applying Simple to this new field, a fully solved Nonogram is obtained. There is no certainty
that the fully solved Nonogram is the only solution of this Nonogram. After performing a 1-probe,
the probed cell will be left blank and Simple is performed on this now, again, new field. Leaving
the cell blank and performing Simple is known as a 0-probe. Figure 10b shows a 0-probe by leaving
the marked cell blank. Proceeding with this now new field, leads to a contradiction, as can be
seen in Figure 11. After performing the first H-Sweep no contradictions occur. When performing
the V-Sweep, the first column can be solved by filling the bottom left cell. The second column
has already been partially filled due to previous sweeps. Since the column contains two separate
ones, which matches the description, the latter cell must be left blank. The other columns are not
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Figure 9: Progress of probing a Nonogram.
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(b) A 0-probe.

Figure 10: A double probe.

considered, as no progression had been made in this area in the previous sweep. When performing
the second H-sweep, we will only consider the last row. The last row does not match its description
and thus a contradiction is obtained. Because of this, with certainty it can be said that the marked
cell in Figure 10 should be filled.

As seen in Figures 9 and 10, all unknown cells are considered again for the Probing approach. These
are marked and a 1- and 0-probe are tried for each. Performing a 1- and 0-probe on a single cell
is known as a double probe. A singleton probe is a double probe that is applied to one pixel. The
1- and 0-probe are singleton probes. Probing different cells might provide different outcomes. A
probe that results in a fully solved Nonogram is called a solving probe. A uniquely solving probe is
a probe that results in a fully solved Nonogram where it is proven that the provided solution is the
only possible solution. A contradicting probe is a probe that results in a contradicting result. By
obtaining a contradicting probe, information about the cell is obtained with certainty, as we fill this
cell with the opposite of what caused the contradiction. Figure 11 shows such a contradicting probe.
A probe that does not result in a contradiction, is called a compliant probe. The probe may lead to
a correct partial solution of the Nonogram. However, we cannot conclude with certainty that this is
the only solution. With a Set-Probing, multiple cells are double probed at the same time.

For the Nonogram used in Figures 9, 10 and 11, probing any yet unknown cell will result in one
and the same solution. These are all uniquely solving double probes.
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Figure 11: Contradicting probe.

3.4 The usefulness of a probe

Not all probes result in a solution. The gain of each probe can be classified as:

0. No progression

1. Some progression

2. Contradicting

3. Fully solving

Based upon these four categories, there are sixteen possible probes. The probe “3 2” refers to a
1-probe that results in a fully solved Nonogram and a 0-probe that results in a contradiction. The
probes resulting in “2 3” or “3 2” lead to a uniquely solvable Nonogram. Probes with “3 3” indicate
multiple solutions (in fact two) as both a 0-probe and 1-probe lead to a solution. The probe “2 2”
states that both probes result in a contradiction. When this occurs, the Nonogram cannot have a
valid solution. Probes where the 1- or 0-probe leads to 0 do not provide any information about
the final state of the Nonogram. For example, having a probe that results in “0 3” means that the
0-probe leads to a fully solved Nonogram and no progression has been made by applying a 1-probe.
This does not mean that this cell cannot be colored in a later stage, causing multiple solutions to
be correct. So, even though the 1- or 0-probe can fully solve the Nonogram, this does not mean
that this is the only solution. Furthermore, a probe that leads to no progression might be a correct
filling for the cell in a later stage as well. The possible probing combinations are categorized as
shown in Table 1. The category of a probe is determined by applying the Quaternary number
system, using category = 4 · i1 + i0, where i1 represents the usefulness of the 1-probe and i0 the
usefulness of the 0-probe.

0 00 0 11 0 22 0 33

1 04 1 15 1 26 1 37

2 08 2 19 2 210 2 311

3 012 3 113 3 214 3 315

Table 1: The different probing combinations categorized.
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Since Probing is applied to all unknown cells, we can determine the usefulness of each probed
unknown cell. Combined, these form the probing sequence of a Nonogram. The probing sequence
considers the rows of the Nonogram top to bottom. Per row, the unknown cells are considered from
left to right.

As stated earlier, probing any cell of the example used in Figure 9 will lead to a unique solution.
The corresponding probing sequence S with |S| = 8 is:

14 11 11 14 11 14 14 11

Since this probing sequence only consists of category 11 and 14 probes, which are uniquely solving
probes, double probing any cell will lead to the one possible solution.

The earlier mentioned occurrences “2 3” and “3 2” are categorized as 11 and 14, which represent a
uniquely solving probe. Category 15 results in two different solutions. A probing sequence containing
a category 15 and category 11 or 14 cannot occur, as this would lead to a contradicting probing
sequence. The category 15 implies having exactly two solutions, whereas the category 11 and 14
imply having a unique solution. Category 10 indicates that no solution is possible. This category
only occurs when the provided description causes a contradiction for both the 1- and 0-probe, which
cannot happen for a correct/solvable description.

Category 0 leads with both a 1- and 0-probe to no progression. For 4× 4 Nonograms, the possible
line descriptions are (0), (1), (2), (3), (4), (1,1), (1,2) and (2,1). When considering a single line
of such a Nonogram, performing a 1-probe on any of the unknown cells, will always lead to some
new information. We assume a line where no cells have been filled or left blank. The descriptions
(0), (4), (1,2) and (2,1) all lead to a fully solved line. When the description of the line is (3),
applying a 1-probe on any of the cells leads to coloring at least one adjacent cell. A 1-probe for
the line description (2) causes either a fully solved line, when coloring an edge cell, or a cell to be
left blank, and thus some progression. As for descriptions solely consisting of ones, descriptions
(1) and (1,1), coloring any cell of the line, causes the adjacent cells to be left blank. Here, again,
we have some progression. When the line is partially solved, some 1-probes lead to a contradic-
tion. The contradiction itself is new information. All possible descriptions on a 4× 4 Nonogram
lead to some progression using a 1-probe. Since the 1-probe leads to some progression, fully solv-
ing the line or a contradiction, category 0 cannot occur in the probing sequence of a 4×4 Nonogram.

The possible line descriptions on a 5× 5 Nonogram are (0), (1), (2), (3), (4), (5), (1,1), (1,2), (1,3),
(2,1), (2,2), (3,1) and (1,1,1). Here, the same reasoning as for the 4× 4 Nonograms applies. Again,
we assume a line where no cells have been filled or left blank. The descriptions (0), (5), (1,3), (2,2),
(3,1) and (1,1,1) lead to a full solution when performing a 1-probe on any of the cells. For the
description (4), a 1-probe on the edges leads to solving the line. A 1-probe on the other cells leads
to coloring two other cells. Unlike on a 4 × 4 Nonogram, not all descriptions have some sort of
progression when performing a 1-probe. When performing a 1-probe on a line of length 5 with
description (3), the middle cell cannot tell anything about the other cells. Applying a 0-probe on the
middle cell leads to a contradiction, and thus provides us with some information. For descriptions
(1,2) and (2,1) performing a 1-probe does not give new information for all cells. For description
(2,1), performing a 1-probe on the second cell of the line leads to no new information. Due to
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symmetry, for description (1,2) this is the case for the fourth cell. Performing a 0-probe for these
cells, leads to a contradiction. For descriptions (1) and (1,1), the adjacent cells of the 1-probed
cell can be left blank. For description (2), 1-probing an edge cell leads to a line solution. 1-probing
the second or fourth cell leave a cell blank. 1-probing one of the edges leads to a fully solved line.
Lastly, when 1-probing the middle cell, the edges can be left blank. When the line is partially
solved, the probes all provide some progression, full progression or a contradiction. For all possible
descriptions, there will be new information obtained. Therefore, category 0 probes cannot occur on
a 5× 5 Nonogram. The same reasoning applies to singly empty lines of length 6 and 7.

For probing sequences S with |S| ≥ 8, category 0 probes may occur. An example of a single line
where category 0 probes occur can be seen in Figure 12. Here, we have a single line of length 8
with description (1,2). The corresponding probing sequence is

4 4 4 0 0 4 1 4

Probing on the fourth or fifth cell does not provide any progression. Due to symmetry, the description
(2,1) on a line of length 8 will contain category 0 probes as well.

21

1 2 3 4 5 6 7 8

(a) The 1-probe.

21

1 2 3 4 5 6 7 8

·

(b) The 0-probe.

Figure 12: The occurrence of a category 0 probe.

It is important to note, that it is possible to have category 0 probes on non-empty lines of length 6.
So, it is possible to have category 0 probes when considering 6× 6 Nonograms. Figure 13 shows an
example of a non-empty line of length 6 with the corresponding probing sequence

0 4 4 4 4

This line occurs in the Nonogram shown in Figure 14, with a probing sequence equal to

6 5 4 9 9 6 9 6 12 5 4 8 4 5 12 5 8 0 7 8 5 8

Double probing the marked cell in Figure 14 classifies as a category 0 probe.

11

1 2 3 4 5 6

·

(a) The non-empty line.

11

1 2 3 4 5 6

·

(b) The 1-probe.

11

1 2 3 4 5 6

· ·

(c) The 0-probe.

Figure 13: The occurrence of a category 0 probe.
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Figure 14: A 6× 6 Nonogram where a category 0 probe occurs.

When considering a description d of length 1, and thus a description that consists of a single series,
it can be observed that there will always be some sort of progression. Such a description on an
empty line of arbitrary length ℓ, having a description for which d = d1 > ⌊ ℓ2⌋, can be partially or
fully, when the length is equal to ℓ, filled using Simple. These lines will not be empty when Probing
is applied. When applying a 1-probe on any cell of these lines, we can color the cells between the
already filled cell(s) and the probed cell, as the line description consists of only one number. The
1-probe will then lead to a fully solved line, a partially solved line or, when for example the size
does not match the description, a contradiction. Applying a 0-probe allows us to leave the cells
between the probed cell and the edge opposite to the filled cell(s) blank. So, 0-probing an edge cell
causes the adjacent cell on the opposing side of the already filled cell(s) to be filled. For empty
line descriptions, an empty line of arbitrary length, having a description for which d = d1 ≤ ⌊ ℓ2⌋,
Probing needs to be applied. Applying a 1-probe on any of the cells places the filled series around
the probed cell. Cells more than d1 positions away, are left blank. So, 1-probing will give progression.
A 0-probe allows us to leave the cells between the probed cell and the edge opposite to the probed
cell blank. Thus, 0-probing an edge cell may not give any progression. However, 1-probing an edge
will result in either some progression, full progression or a contradiction, so probing edge cells will
lead to progression.

3.5 Probing sequence of a Nonogram

For this section, all 4 × 4 and 5 × 5 Nonograms have been studied. Considering “all” relates to
solvable Nonograms, meaning no category 10 probes will occur in its probing sequence. Due to the
large number of possible 6× 6 Nonograms, not all have been considered. Out of all possible 6× 6
Nonograms, 30, 000, 000, 000 have been classified. For all sizes, we will observe Nonograms that are
Non-Simple. These observations are based on analysis of the performed experiments.

3.5.1 Nonograms of size 4 by 4

For 4× 4 Nonograms, the probing sequence S of a Non-Simple puzzle has a minimal length of 4
and a maximal length of 16, so 4 ≤ |S| ≤ 16. When a probing sequence contains a category 11
and 14 probe, then only categories 6, 8, 9 and 12 can occur. All probing sequences of uniquely
solvable Nonograms contain at least one category 11 and one category 14 probe. The number of
occurrences of category 11 and category 14 probes do not have to be equal. Having a category 15
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probe in the probing sequence leads to exactly two distinctive solutions. The number of occurrences
of category 15 does not influence the number of solutions. For the 4 × 4 Nonograms that have
exactly two solutions, the number of occurrences of the category 15 probes falls between 2 and
16. The probing sequences containing a category 15 probe may contain a combination of probes of
category 6, 8, 9 and 12. Figure 20 shows an example of a Nonogram with such a probing sequence.
The corresponding probing sequence is

8 9 14 14 11 14 11 9 11 6 14

Having four occurrences of category 15 probes, “3 3”, in the probing sequences identifies a switching
component. Applying Probing and other solving methods will not affect the outcome, as there will
be exactly two solutions. For a probing sequence consisting solely of category 15 probes, |S| ≥ 4.
The smallest occurring probing sequence that implies exactly two solutions are those who contain
exactly one switching component, where |S| = 4. Besides the category 15 probes, probings of
category 6, 8, 9 and/or 12 may occur as well.

When the probing sequence consists of all category 4 probes, the Nonogram will have multi-
ple solutions. For example, Figure 15 describes such a case. Here, we have a Nonogram where
all cells are unknown. Probing any cell results in some progress when applying a 1-probe and no
progress when applying a 0-probe. An example of this can be seen in Figure 15b and 15c. Probing
once will not solve this Nonogram. It does have multiple solutions, which can be obtained by
probing four times total. For probing sequences of Nonograms with multiple solutions, 7 ≤ |S| ≤ 16.
Probing sequences of an uneven length may occur. As can be seen in Table 6, probing sequences of
length 7, 9 and 11 occur. These probing sequences may contain probes of categories 4, 5, 6, 7, 8, 9,
12, 13. Categories 0, 1, 2 and 3 do not occur due to the fact that these Nonograms are too small
for no progression to happen.
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(a) A Nonogram after
applying Simple.
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(c) A no progression
0-probe.

Figure 15: Example of a Nonogram with only category 4 probes.

When only categories 5 and 8 occur, Simple and Probing will not solve the Nonogram. An example
of such a Nonogram description is shown in Figure 16. After applying Simple, only the last row
description has given some progression, as the second and third cell can be filled. The corresponding
probing sequence is

8 5 5 8 8 5 5 8 5 5 5 5

Probing does not provide fully solved Nonograms, as probing these cells only leads to contradictions
or partially solved Nonograms. This example could be solved using a Set-Probing approach.
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Figure 16: The solutions of a Nonogram with a probing sequence consisting solely of category 5
and 8 probes.

3.5.2 Nonograms of size 5 by 5

For 5×5 Nonograms, the length of the probing sequences S has a minimal value of 4 and a maximal
value of 25, thus 4 ≤ |S| ≤ 25. For Nonograms with exactly two solutions, the probing sequence has
a minimal length of 4, due to the presence of a switching component. The Nonograms with multiple
solutions have a probing sequence with a minimal length of 6. For all, the maximum length of the
probing sequence is equal to 25.

When a probing sequence contains a category 11 and 14 probe, then categories 1, 2, 3, 4, 5, 6, 7,
8, 9, 12 and 13 can occur. Comparing these occurrences to those of the uniquely solvable 4 × 4
Nonograms, no clear pattern arises. Again, the number of category 11 and 14 probes do not have
to be equal and both occur at least once in the probing sequence. For Nonograms with exactly two
solutions, all probing sequences have at least one occurrence of a category 15 probe and at most 18
occurrences. Besides the category 15 probes, probes of categories 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 and 13
may also occur.

Nonograms that have multiple solutions have 6 ≤ |S| ≤ 25. These Nonograms may have a probing
sequence of uneven length. Just as for the 4×4 Nonograms, having a probing sequence that consists
solely out of category 5 and 8 probes results in multiple solutions which cannot simply be found
using Simple and Probing. Again, probing sequences that contain solely category 4 probes, have
multiple solutions. For 4× 4 Nonograms with multiple solutions, category 0, 1, 2 and 3 did not
occur in any of the corresponding probing sequences. Category 0 probes did not occur. For the
5× 5 Nonograms, categories 1, 2 and 3 may occur. An example of such a Nonogram can be seen in
Figure 17. Here, we have solely category 1 probes. Since all double probes lead to some progression
at best, Nonograms such as seen in Figure 17, cannot be solved by using Simple and Probing.
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Figure 17: A probing sequence for a 5× 5 Nonogram consisting solely of category 1 probes.

3.5.3 Nonograms of size 6 by 6

Of all 6× 6 Nonograms, 30, 000, 000, 000 have been classified. These have been generated starting
with an empty Nonogram followed by all Nonograms with one filled cell, expanding the number of
filled cells. It is to note that the following observations are not based upon all 6× 6 Nonograms,
but just a part of these: in fact, 44% of all 6× 6 Nonograms have been examined.

For 6× 6 Non-Simple Nonograms, the length of the probing sequences S has a minimal value of 4
and a maximal value of 36, thus 4 ≤ |S| ≤ 36. Just like for probing sequences of 4× 4 and 5× 5
Nonograms, uniquely solvable probing sequences of 6× 6 Nonograms have a minimal length of 8.
Again, because of the switching component, the probing sequence of Nonograms with exactly two
solutions have a minimal length of 4. Just like probing sequences of 5× 5 puzzles, Nonograms with
multiple solutions have probing sequences with a minimal length of 6.

Just as for the 5× 5 Nonograms, for probing sequences that contain a category 11 and 14 probe,
the categories 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 and 13 may occur. Again, the numbers of category 11 and
14 probes do not have to be equal and both categories occur at least once in the probing sequence.
There are uniquely solvable 6× 6 Nonograms where probing sequences contain a category 0 probe.
An example of such a Nonogram with a probing sequence contain a category 0 probe, can be seen in
Figure 18, where the category 0 probe cell is marked green. The corresponding probing sequence is:

14 8 11 14 14 11 14 14 11 11 14 11 11 11 14 14 11 14 14 8 8 8 11 8 7 8 4 4 0

For Nonograms with exactly two solutions, all probing sequences have at least one occurrence
of a category 15 probe. Probes of categories 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 and 13 may also occur.
Nonograms that have multiple solutions have 6 ≤ |S| ≤ 36. Again, these Nonograms may have a
probing sequence of uneven length. Just as for the 4× 4 and 5× 5 Nonograms, probes of categories
1, 2, 3, 4, 5, 6, 7, 8, 9, 12 and 13 may occur. Different from 4× 4 and 5× 5 Nonograms, there are
probing sequences where category 0 probes occur, as we have seen in Figure 14. Again, probing
sequences that contain solely category 4 probes, have multiple solutions.
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Figure 18: A uniquely solvable Nonogram with a probing sequence containing a category 0 probe.

3.6 Difficulty

The difficulty of a Nonogram partly determines how hard a Nonogram is to solve. The difficulty of
the Nonograms can mostly be classified as Simple or Difficult, see [BK12]. The difficulty of simple
Nonograms is based on the number of switches between performing H- and V-Sweeps, which is
classified to have a 1-star difficulty, as can be seen in Table 2.

Table 2 shows an overview of the difficulty categories. When a Nonogram is not solvable using only
Simple, we apply Probing. The switching of strategy and performing a more costly approach causes
the difficulty of the Nonogram to increase. Probing may lead to uniquely solvable Nonograms,
Nonograms with exactly two solutions or Nonograms with multiple solutions (> 2). When Probing
leads to one of those cases, Probing once is enough to determine its difficulty. Nonograms that
need to be solved by applying both Simple and Probing are classified to have a 2-star difficulty. Its
difficulty may be determined by the number of unknown cells on which we need to apply Probing.
Probing one cell might provide more progression than the other, so usefulness of probes should
also be taken into account. Nonograms for which only partial solutions can be obtained may be
unsolvable, not unique or have multiple solutions. While solving most of the uniquely solvable
Nonograms using solely Simple and Probing, a number of Nonograms need a Set-Probing approach
to be solved. This approach would be more costly than applying Simple and Probing, and thus
would have a higher difficulty. When Simple and Probing leaves a Nonogram unsolved, then the
difficulty is categorized as a 3-star difficulty, see Table 2.

Difficulty Solved by Specific difficulty
⋆ Simple Number of switches between performing

H- and V-Sweeps
⋆⋆ Simple & Probing Number of unknown cells & usefulness

of the probes
⋆ ⋆ ⋆ Simple & Probing, Unsolved Number of unknown cells & usefulness

of the probes & Set-Probing

Table 2: Difficulty classification.
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4 Experiments

Most Nonograms can be mirrored and rotated. When a Nonogram can be mirrored and rotated,
there are eight similar Nonograms in total. Figure 19a shows an example of a Nonogram where
the rotations and mirroring result in 8 different Nonograms. However, this does not hold for all
Nonograms. Not all Nonograms differ from their rotations or mirroring, see Figure 19b. Here, we
see a Nonogram where rotating and mirroring lead to the same two possible Nonograms. It is also
possible to have only one possible Nonogram, as can be seen in Figure 19c.
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····
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(a) 8 similar Nonograms
in total.

2
2
2
2

2 2 2 2

··
··
··

··

(b) 2 similar Nonograms
in total.

4
4
4
4

4 4 4 4

(c) Only one possible
Nonogram.

Figure 19: Rotations and mirroring Nonograms.

The following experiments have been performed on all 4 × 4, 5 × 5 and 6 × 6 Nonograms. For
a 4 × 4 Nonogram, we have a total number of 16 cells. Each of these cells can be filled or be
left blank, meaning we have two options for each cell. In total, there are 216 = 65, 536 possible
Nonograms of size 4× 4. For a 5× 5 Nonogram, there are 225 = 33, 554, 432 possible Nonograms
and for 6× 6 Nonograms this comes down to 236 = 68, 719, 476, 736 possible Nonograms. These
Nonograms have been classified according to their probing sequences. The classification can be seen
in Table 3. As can be seen in Table 3, 30, 000, 000, 000 out of 68, 719, 476, 736 6× 6 Nonograms have
been classified. The provided percentages are relative to the classified 30, 000, 000, 000. The ratio
of Simple and Probing is shown in Table 3. Here, Probing is split into three categories: probing
that leads to a uniquely solved Nonogram, probing that leads to exactly two solutions and the
remaining Nonograms. The remaining category contains Nonograms with multiple solutions and
unsolved uniquely solvable Nonograms. The uniquely solvable Nonograms can be distinguished by
checking whether their description is unique.

4.1 Experiments on 4 by 4 Nonograms

Tables 4, 5 and 6 describe the probing sequences S on all 4 × 4 Non-Simple Nonograms. These
tables describe the probing sequence after applying Probing once. Simple did not fully solve these
Nonograms. The Nonograms that were fully solved using Simple are thus not shown in these tables.
The probing sequences in Tables 4, 5 and 6 are sorted in lexicographic order. The actual probing
sequences may vary in order.

For 4× 4 Nonograms, a uniquely solvable Nonogram contains at least three category 11 probes
and four category 14 probes, see Table 4. When considering the possible probing sequences for
uniquely solvable Nonograms, it might seem that only categories 6, 8, 9 and 12 occur, besides the
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Probing Probing Probing
Size Simple Unique Exactly Two Rest Total
4× 4 51,234 1,128 10,100 3,074 65,536

(78.18%) (1.72%) (15.41%) (4.69%)
5× 5 24,976,511 330,602 5,526,788 2,720,531 33,554,432

(74.44%) (0.99%) (16.47%) (8.11%)
6× 6 21,590,009,602 507,898,588 3.208.556.453 4,693,535,357 30,000,000,000 of

(71,97%) (1,69%) (10,70%) (15,65%) 68,719,476,736

Table 3: Probing classification for different sizes.

Length Probing sequence Occurrences

8 11 11 11 11 14 14 14 14 348
10 11 11 11 11 11 14 14 14 14 14 8
11 6 8 9 9 11 11 11 14 14 14 14 8
12 8 11 11 11 11 11 11 14 14 14 14 14 36
12 11 11 11 11 11 11 14 14 14 14 14 14 48
16 6 6 6 8 9 9 9 9 9 11 11 11 14 14 14 14 32
16 6 8 9 9 11 11 11 11 11 11 14 14 14 14 14 14 128
16 6 9 9 11 11 11 11 11 11 11 12 14 14 14 14 14 32
16 8 8 8 8 11 11 11 11 11 11 14 14 14 14 14 14 128
16 8 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 288
16 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 14 72

1,128

Table 4: Probing sequences of all uniquely solvable Non-Simple 4× 4 Nonograms after Probing.

distinguishable categories 11 and 14. However, this pattern disappears when considering larger
Nonograms. Besides the required categories 11 and 14, 5 × 5 Nonograms may contain probes
of category 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 and/or 13. For uniquely solvable 5 × 5 Nonograms, the
probing sequences have at least one category 11 probe and at least one category 14 probe. Larger
Nonograms may thus contain fewer category 11 and category 14 probes. Something similar holds
for Nonograms with multiple or exactly two solutions, as the patterns disappear when considering
larger Nonograms. Nonograms with exactly two solutions have probing sequences that require at
least one category 15 probe and do not contain any probe of category 0, 10, 11 or 14.

Table 4 shows that there are uniquely solvable Non-Simple Nonograms with probing sequences of
length 11. This sequence occurs eight times in total. An example of such a Nonogram can be seen
in Figure 20. Figure 20a shows the partially solved Nonogram for which Figure 20b is the unique
solution. The remaining seven uniquely solvable Non-Simple Nonograms with a probing sequence
of length 11 are rotations and mirrorings of the provided example. When looking at the number of
occurrences of each probing sequence in Tables 4, 5 and 6, we see that most of these sequences
occur a multiple of eight times. As described earlier, Nonograms can be mirrored and rotated in
such a way that there are eight similar, yet distinctively different, Nonograms in total.
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Figure 20: A uniquely solvable Nonogram with a probing sequence of uneven length.

Length Probing sequence Occurrences

4 15 15 15 15 8,296
6 15 15 15 15 15 15 120
8 15 15 15 15 15 15 15 15 696
10 6 6 9 9 15 15 15 15 15 15 8
10 8 8 15 15 15 15 15 15 15 15 48
10 15 15 15 15 15 15 15 15 15 15 8
11 8 15 15 15 15 15 15 15 15 15 15 8
12 6 6 6 6 9 9 9 9 15 15 15 15 16
12 6 6 6 8 9 9 9 9 15 15 15 15 32
12 6 6 6 9 9 9 15 15 15 15 15 15 8
12 6 8 9 9 15 15 15 15 15 15 15 15 48
12 15 15 15 15 15 15 15 15 15 15 15 15 72
16 6 8 9 9 15 15 15 15 15 15 15 15 15 15 15 15 32
16 6 6 6 6 6 8 9 9 9 9 9 9 15 15 15 15 128
16 6 6 6 6 6 9 9 9 9 9 9 9 12 15 15 15 32
16 6 6 6 6 8 8 8 8 9 9 9 9 15 15 15 15 96
16 6 6 6 6 8 8 8 9 9 9 9 9 12 15 15 15 64
16 6 6 6 6 8 8 9 9 9 9 9 9 12 12 15 15 128
16 6 6 6 8 8 8 9 9 9 9 12 15 15 15 15 15 32
16 6 6 8 8 9 9 9 9 12 12 15 15 15 15 15 15 32
16 6 6 8 9 9 9 15 15 15 15 15 15 15 15 15 15 32
16 8 8 8 8 15 15 15 15 15 15 15 15 15 15 15 15 152
16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 12

10,100

Table 5: Probing sequences with two solutions for all 4× 4 Nonograms.

In Table 5, a probing sequence S containing sixteen category 15 probes can be observed. This
probing sequence has a maximal length for the 4× 4 Nonogram. Probing any cell results in two
solutions. Since the descriptions of probing sequences that contain a category 15 lead to exactly
two solutions, one description leads to two different Nonograms. The twelve Nonograms represented
in Table 5 by the probing sequence of length 16 that consists solely of category 15 probes, have in
total six different descriptions, which are:
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• Drows = ⟨(2), (2), (2), (2)⟩ and Dcolumns = ⟨(2), (2), (2), (2)⟩

• Drows = ⟨(2), (1, 1), (1, 1), (2)⟩ and Dcolumns = ⟨(1, 1), (2), (2), (1, 1)⟩

• Drows = ⟨(2), (2), (2), (2)⟩ and Dcolumns = ⟨(1, 1), (1, 1), (1, 1), (1, 1)⟩

• Drows = ⟨(1, 1), (2), (2), (1, 1)⟩ and Dcolumns = ⟨(2), (1, 1), (1, 1), (2)⟩

• Drows = ⟨(1, 1), (1, 1), (1, 1), (1, 1)⟩ and Dcolumns = ⟨(2), (2), (2), (2)⟩

Length Probing sequence Occurrences

7 7 7 12 13 13 13 13 276
8 5 5 5 5 12 12 12 12 208
8 7 7 7 7 13 13 13 13 72
9 4 4 4 4 4 4 4 4 4 96
10 5 5 7 7 12 12 13 13 13 13 96
10 6 7 7 9 9 12 12 13 13 13 288
10 7 7 7 7 8 8 13 13 13 13 288
10 7 7 7 12 13 13 13 13 13 13 16
11 4 7 7 7 7 13 13 13 13 13 13 16
11 5 5 5 5 7 12 12 12 12 13 13 20
12 4 4 4 4 5 5 5 5 12 12 12 12 288
12 5 5 5 5 5 5 5 5 8 8 8 8 36
12 6 6 7 7 9 9 9 12 13 13 13 13 48
12 6 7 7 7 7 8 9 9 13 13 13 13 96
12 6 7 7 7 9 9 12 13 13 13 13 13 48
12 7 7 7 7 12 13 13 13 13 13 13 13 16
16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 24
16 4 4 4 4 4 4 5 5 5 5 7 12 12 12 13 13 144
16 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 32
16 4 4 4 5 5 5 5 5 7 8 8 12 12 12 12 13 192
16 4 4 6 6 7 7 9 9 9 9 12 12 13 13 13 13 64
16 4 5 5 5 5 5 5 5 8 8 12 12 12 12 12 12 96
16 4 5 5 5 5 6 7 7 8 8 9 9 12 13 13 13 128
16 4 6 6 6 7 9 9 9 9 9 9 12 12 12 13 13 48
16 4 6 6 7 7 7 7 9 9 9 13 13 13 13 13 13 64
16 4 6 7 7 7 7 8 8 9 9 12 13 13 13 13 13 128
16 5 5 5 5 5 5 7 7 8 8 12 12 13 13 13 13 64
16 5 5 5 5 6 6 7 9 9 9 12 12 12 12 13 13 80
16 6 6 6 7 7 7 9 9 9 9 12 13 13 13 13 13 48
16 6 6 6 7 7 8 8 8 9 9 9 12 13 13 13 13 48
16 7 7 7 7 7 7 7 7 13 13 13 13 13 13 13 13 6

3,074

Table 6: Probing sequences with multiple solutions for all 4× 4 Nonograms.
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Figure 21: Another probing sequence of uneven length for a Nonogram with exactly two solutions.
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Figure 22: Three Nonograms that represent all 4× 4 Nonograms with a probing sequence of length
9 leading to multiple solutions.

• Drows = ⟨(1, 1), (1, 1), (1, 1), (1, 1)⟩ and Dcolumns = ⟨(1, 1), (1, 1), (1, 1), (1, 1)⟩

Just like the uniquely solvable Non-Simple 4 × 4 Nonograms, Table 5 shows Nonograms with
probing sequences where |S| = 11. There are in total eight Nonograms with this uneven length. Two
of these are shown in Figure 21b and 21c, where Figure 21a shows the partially solved Nonogram
after applying Simple with its descriptions. There are in total four different descriptions, as each
description leads to exactly two possible solutions. The remaining Nonograms, for which |S| = 11
and exactly two solutions exist, are rotations of the provided example.

Different from the uniquely solvable Non-Simple Nonograms and Nonograms that have exactly
two solutions, the remaining Nonograms, with probing sequences of uneven length, cannot simply
be rotated or mirrored into other Nonograms. Table 6 shows that there are numerous Nonograms
with |S| = 7, |S| = 9 and |S| = 11. A probing sequence of length 9 only occurs when the probing
sequence consists of solely category 4 probes, which happens 98 times. Figure 22 shows three
Nonograms that represent all possible Nonograms with a probing sequence of length 9 that consist
solely of category 4 probes. The Nonograms in Figure 22a and 22b each represent four Nonograms
in total, due to rotations. Each of these rotations has six possible solutions. Figure 22c represents
eight Nonograms with each six solutions. In total, 4 × 6 + 4 × 4 + 8 × 6 = 96 solutions with a
probing sequence of length 9 solely consist of category 4 probes, which is supported by the results
in Table 6.

Table 6 shows all remaining Nonograms. Due to the manner of classification, it is possible that
this category contains some uniquely solvable Nonograms. When considering 4 × 4 Nonograms,
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we only have Nonograms with more than two solutions within this category. Multiple Nonograms
lead to the same description, meaning that the description leads to multiple solutions as well. All
3,074 Nonograms of this category have more than two solutions, and thus no uniquely solvable
Nonograms are being found by applying Simple and Probing.

4.2 Experiments on 5 by 5 Nonograms

The probing sequences of uniquely solvable Nonograms have a minimal length of 8. As can be seen
in Table 3, there are 330,602 uniquely solvable 5× 5 Nonograms that can be found after applying
Probing. These 330,602 Nonograms lead to 3,665 different probing sequences. We will consider pure
probing sequences, which are probing sequences that consist solely of the characterizing categories.
Within this category of uniquely solvable Nonograms, pure probing sequences consist solely of
category 11 and category 14 probes. In total, 13 out of the 3,665 different probing sequences are
pure probing sequences, see Table 7. These pure probing sequences make up 35.8% of all probing
sequences within this category. Probing any unknown cell of these Nonograms solves the Nonogram
completely. Thus, these pure probing sequences indicate that all double probes are uniquely solving
double probes. The other Nonograms of this category contain more varying probing sequences. An
example is given in Figure 23, with a probing sequence of

6 9 11 14 14 11 7 13 11 14 2 6 8 11

Length Probing sequence Occurrences

8 11 11 11 11 14 14 14 14 71,824
10 11 11 11 11 11 14 14 14 14 14 8,080
11 11 11 11 11 11 11 14 14 14 14 14 48
12 11 11 11 11 11 11 14 14 14 14 14 14 18,640
13 11 11 11 11 11 11 11 14 14 14 14 14 14 968
14 11 11 11 11 11 11 11 14 14 14 14 14 14 14 4,716
15 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 4,716
16 11 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 16
16 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 14 8,334
17 11 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 14 672
18 11 11 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 14 152
19 11 11 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 14 14 72
20 11 11 11 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 14 14 24

118,262

Table 7: Pure probing sequences for uniquely solvable 5× 5 Nonograms.

Considering the pure probing sequences for the category with exactly two solutions, we will consider
probing sequences consisting solely of category 15 probes to be pure. Table 8 shows the pure probing
sequences for this category. This category contains, in total, 3,583 different probing sequences. The
16 probing sequences of Table 8 make up 91.0% of all probing sequences within this category. An
example of a Nonogram with the probing sequence

15 15 15 15

21



11
11
3
11
12

1
1

4 1
1

2 1
1

·

·

·
·

·
·

(a) A partially solved
Nonogram after applying
Simple and Probing.

11
11
3
11
12

1
1

4 1
1

2 1
1

·
·
·
·

·
·

·

·

·
·

·
·

·

(b) The uniquely solvable
Nonogram.

Figure 23: A uniquely solvable 5× 5 Nonogram.

which can also be seen in Table 8, is shown in Figure 24. The probing sequences indicate a switching
component, which is marked in Figures 24b and 24c.

Length Probing sequence Occurrences

4 15 15 15 15 4,363,030
6 15 15 15 15 15 15 189,940
8 15 15 15 15 15 15 15 15 407,528
10 15 15 15 15 15 15 15 15 15 15 13,328
12 15 15 15 15 15 15 15 15 15 15 15 15 43,340
14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 808
16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 10,678

5,028,652

Table 8: Pure probing sequences for category 15 5× 5 Nonograms.
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(b) A corresponding
Nonogram.
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(c) Another correspond-
ing Nonogram.

Figure 24: A 5× 5 Nonogram with exactly two solutions.

For 5× 5 Nonograms, the remaining category does contain uniquely solvable Nonograms. Uniquely
solvable Nonograms within this remaining category can not be found solely using Simple and
Probing. The 2,720,531 Nonograms of the remaining category make up 15,586 different probing
sequences. There are 2,462 uniquely solvable Nonograms in the remaining category, which make up

22



282 different probing sequences. Out of these 282 different probing sequences, there are 40 probing
sequences that represent both uniquely solvable Nonograms and Nonograms with two or more
solutions. The other probing sequences will only result in a uniquely solvable Nonogram, classified
in the remaining category. Table 9 shows the 40 probing sequences of the 2,462 uniquely solvable
Nonograms which have not been classified as such. The occurrence of each probing sequence for the
uniquely solvable Nonograms are shown against the total number of occurrences of each probing
sequence within the remaining category. In total, there are 340 uniquely solvable Nonograms which
an ambiguous probing sequence. The total number of Nonograms that have an ambiguous probing
sequence is 2,380. An example of a uniquely solvable Nonogram categorized in the remaining
category is shown in Figure 25 with a probing sequence of

6 9 6 9 9 6 9 6 9 6 9 6 6 9 6 9
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(a) A partially solved Nono-
gram after applying Simple
and Probing.
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(b) The uniquely solvable
Nonogram.

Figure 25: A uniquely solvable Nonogram out of the remaining category.

The probing sequence

6 6 6 6 6 7 8 8 8 8 8 9 9 9 9 9 9 12 13 13

occurs 24 times within the remaining category and covers 8 different uniquely solvable Nonograms.
The descriptions of these 8 different Nonograms are:

• Drows = ⟨(2), (3), (1, 1), (1), (2)⟩ and Dcolumns = ⟨((2), (2, 1), (2), (2), (1)⟩

• Drows = ⟨(1), (2), (2), (1, 2), (2)⟩ and Dcolumns = ⟨((2), (1), (1, 1), (3), (2)⟩

• Drows = ⟨(2), (2, 1), (2), (2), (1)⟩ and Dcolumns = ⟨((2), (3), (1, 1), (1), (2)⟩

• Drows = ⟨(2), (1, 2), (2), (2), (1)⟩ and Dcolumns = ⟨((2), (1), (1, 1), (3), (2)⟩

• Drows = ⟨(2), (1), (1, 1), (3), (2)⟩ and Dcolumns = ⟨((1), (2), (2), (1, 2), (2)⟩

• Drows = ⟨(2), (1), (1, 1), (3), (2)⟩ and Dcolumns = ⟨((2), (1, 2), (2), (2), (1)⟩

• Drows = ⟨(2), (3), (1, 1), (1), (2)⟩ and Dcolumns = ⟨((1), (2), (2), (2, 1), (2)⟩

• Drows = ⟨(1), (2), (2), (2, 1), (2)⟩ and Dcolumns = ⟨((2), (3), (1, 1), (1), (2)⟩
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Length Probing sequence Occurrences
20 4 4 6 6 6 6 7 8 8 8 8 9 9 9 9 9 9 12 13 13 8/24
20 6 6 6 6 6 7 8 8 8 8 8 8 9 9 9 9 9 12 12 13 8/184
20 6 6 6 6 6 7 8 8 8 8 8 9 9 9 9 9 9 12 13 13 8/24
20 4 4 6 6 7 7 7 8 8 8 8 8 8 9 9 12 13 13 13 13 8/32
21 6 6 6 6 6 7 8 8 8 8 8 8 9 9 9 9 9 9 12 12 13 8/24
21 4 6 6 6 6 7 7 8 8 8 8 9 9 9 9 9 12 12 13 13 13 8/32
22 4 4 5 5 6 6 6 6 8 8 8 8 8 8 9 9 9 9 9 9 12 12 8/104
22 5 5 6 6 6 6 6 6 8 8 8 8 8 9 9 9 9 9 9 9 12 12 8/24
22 4 5 5 6 6 6 6 8 8 8 8 8 8 8 8 9 9 9 9 9 12 12 8/168
22 4 4 4 4 4 6 6 7 8 8 8 8 8 8 8 9 9 9 9 12 13 13 8/32
22 4 4 5 5 6 6 6 7 8 8 8 8 8 8 8 9 9 9 9 12 13 13 8/24
22 4 4 6 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9 9 12 13 13 8/24
22 4 4 6 6 6 6 7 8 8 8 8 8 8 8 9 9 9 9 9 12 13 13 8/40
22 4 6 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9 9 9 12 12 13 8/200
22 4 6 6 6 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 12 12 13 8/24
22 4 4 4 4 5 5 5 5 6 6 7 8 8 8 8 9 9 9 12 12 12 13 8/24
22 4 4 6 6 6 7 7 7 8 8 8 8 8 8 9 9 9 9 12 13 13 13 8/32
22 4 4 6 6 6 7 7 8 8 8 8 8 8 8 9 9 9 9 12 13 13 13 8/32
23 4 4 6 6 6 6 6 6 8 8 8 8 8 8 8 9 9 9 9 9 9 12 12 16/80
23 4 4 4 4 4 4 4 4 5 5 5 5 6 6 8 8 8 8 8 9 9 12 12 8/208
23 4 4 4 4 6 6 6 6 7 8 8 8 8 8 8 9 9 9 9 9 12 12 13 8/32
23 4 4 4 4 4 6 6 6 7 8 8 8 8 8 8 8 9 9 9 12 12 12 13 8/32
24 4 4 5 5 5 5 6 6 6 6 8 8 8 8 8 8 8 9 9 9 9 9 12 12 8/24
24 4 4 4 4 6 6 6 7 8 8 8 8 8 8 8 8 8 9 9 9 9 12 12 13 8/24
24 4 4 4 5 5 5 5 6 6 8 8 8 8 8 8 8 8 8 9 9 9 12 12 12 8/32
24 4 4 6 6 6 6 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 12 12 13 8/56
24 4 4 6 6 6 6 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 12 12 13 8/56
24 4 6 6 6 6 6 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 12 12 13 8/104
24 4 6 6 6 6 6 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 12 12 13 8/40
24 4 4 4 6 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9 9 12 12 12 13 8/32
24 4 4 6 6 6 6 7 7 8 8 8 8 8 8 8 9 9 9 9 9 12 12 13 13 8/56
25 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 8 8 8 8 8 8 12 16/144
25 4 4 4 4 4 4 4 4 4 4 6 6 6 8 8 8 8 8 8 8 9 9 9 9 12 8/24
25 4 4 4 4 6 6 6 6 6 8 8 8 8 8 8 8 8 9 9 9 9 9 9 12 12 16/32
25 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 8 8 8 8 8 8 12 12 4/36
25 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 6 8 8 8 8 8 8 9 12 12 8/64
25 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 8 8 8 8 8 8 8 12 12 8/152
25 4 4 4 4 4 4 4 4 4 6 6 6 8 8 8 8 8 8 8 9 9 9 9 12 12 8/56
25 4 4 4 4 4 4 4 4 5 5 5 5 6 8 8 8 8 8 8 8 8 9 12 12 12 8/24
25 4 4 4 4 4 4 6 6 6 6 8 8 8 8 8 8 9 9 9 9 9 12 12 12 12 8/24

340/ 2,380

Table 9: Probing sequences of 5 × 5 Nonograms of the remaining category which are uniquely
solvable.
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The other occurrences of this probing sequences result in 16 different descriptions which lead to
more than one solution.

Nonograms of size n×n, with n ≤ 4, are too small for Simple and Probing not to solve the provided
description. However, considering larger Nonograms, there are uniquely solvable Nonograms which
are not going to be classified correspondingly with the current solvers. By applying a Set-Probing
approach, these Nonograms might be classified as uniquely solvable rather than having two or more
solutions.

5 Conclusions and Further Research

Japanese puzzles, Nonograms, have a description which is used to try to find a solution. To solve
Nonograms Simple and Probing, as described in Section 3, have been used. Simple tries to solve
Nonograms by only considering H- and V-sweeps. The H- and V-sweeps try to solve complete
lines. To solve a line, dynamic programming is used as a basis. Ultimately, if this method does
not lead to a uniquely solved Nonogram, Probing is applied, where cells are tried as a filled cell
followed by leaving the cell blank. The result of the probed cells is stored in the probing sequence
of the Nonogram. There are four classifications regarding the usefulness of a probe: no progression,
some progression, a contradiction and fully solving. The usefulness of each double probe is then
determined by applying the Quaternary number system. There are sixteen categories, 0 to 15,
regarding the usefulness of the double probe.

Some of the defined probe categories indicate a classification. A category 10 probe indicates that
neither a 0-probe nor a 1-probe leads to any progression. Category 15 probes indicate that there are
exactly two solutions. Probing sequences that consist solely of category 4 probes seem to indicate
multiple solutions. Category 11 and 14 probes result in a uniquely solvable Nonogram. By the use
of the stated categories, the Nonograms can be divided into different categories. We differentiate
Nonograms that can be solved by solely using Simple and those where Probing is needed. Those
where Probing is applied are then divided into those that have a unique solution found after probing,
those that have exactly two solutions and a remaining category where most have more than two
solutions. Apart from the earlier mentioned categories, no clear patterns occur when trying to
determine the number of possible solutions with respect to a provided description.

As briefly mentioned in Section 4, there might be some uniquely solvable Nonograms in the
remaining category of Probing. For future work, these could be extracted from this category. By
applying an alternative Probing approach using multiple double probes at the same time, known
as a Set-Probing approach, these uniquely solvable Nonograms might be found. The Set-Probing
approach may be analyzed in a similar manner as described in Section 3.4 and Section 4. By doing
so, we will get another difficulty classification, due to its extended approach. The experiments could
be extended by considering larger n× n Nonograms to see how the probing sequences behave.
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