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Abstract

Super-resolution can be useful to improve the performance of downstream tasks that use remote
sensing images. Remote sensing images are highly diverse as compared to other types of images,
which gives rise to a need for super-resolution methods that can adapt to diverse datasets. Au-
toML could provide a solution, with its ability to create methods specifically for a given situation.
Moreover, it would be valuable to automate and thus accelerate the process of network design.
This could make it easier to create custom end-to-end pipelines for the analysis of remote sensing
images. Therefore, we propose AutoSR-RS, an AutoML method that constructs the best neural
network for a wide variety of datasets, and uses pre-trained weights from remote sensing datasets
for training speedup. The search space is constructed with custom blocks based on state-of-the-art
super-resolution methods. We evaluated our method by comparing the PSNR and SSIM to those
of two state-of-the-art baselines and a simpler AutoML approach. The comparisons were performed
on 3 remote sensing datasets in addition to a new dataset we propose, SENT-NICFI. SENT-NICFI
adds to the small collection of multi-sensor single image super-resolution datasets. Our results show
that AutoSR-RS achieves significantly higher performance than the baselines on 1 dataset, and
comes second on the remaining 3 datasets. Statistical testing ranks it as the first, making it the
most general of the methods considered. Analysis of the search space shows that there is a split
between the datasets in terms of parameter values in the final models found by AutoSR-RS, indicat-
ing that future research on the relationship between these choices and dataset characteristics could
help to further improve the search space. New model blocks and pretrained weights can be added
easily, making it possible to adapt AutoSR-RS to future developments in the field. AutoSR-RS
outperformed the simpler AutoML method every time, emphasizing the merit of a more customized
search space for automated super-resolution of remote sensing images.
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Chapter 1

Introduction

Our Earth is surrounded by satellites that serve different purposes like communication and intel-
ligence. Scientific programs over the years have launched more and more satellites that serve to
study our planet, for example by making measurements of the atmosphere or by taking optical
images of the surface of the planet. The quality of those measurements is always increasing, which
also creates new possibilities for using the data. Some examples include deforestation monitoring,
where the tree cover of vital environments like the Amazon is constantly monitored, or satellites
that measure the carbon-monoxide concentration of the gases emitted by gas flares to determine
whether the combustion is complete.

Though the spatial resolution of satellite images is increasing with technological advancements,
its further development is constrained by factors like bandwidth and hardware limitations and other
factors like the tradeoff between swath width, and spatial and temporal resolution. The images can
also suffer from degradations like noise and blurring.

Nonetheless, there is a need for higher resolution images for tasks like object detection or tree
cover mapping. The spatial resolution of optical satellites is in the range of meters (E.g., 10m
for Sentinel-2, 30m for Landsat-8, 4.77m for PlanetScope), while aerial images are in the range
of centimetres, sometimes as high as 2.5cm (e.g, Houston dataset [4]). Increasing the resolution
by a factor of 2 can make the difference in which types of buildings or plants you can discern.
For example, Goldblatt et al. [14] have found that higher resolution images yield better results for
ecosystem assessment for regions without very dense tree cover.

The resolution of images can be increased by using super-resolution techniques. These are neural
networks that are used to increase the number of pixels in an image, effectively decreasing the size
of each pixel. The effects of super-resolution on object detection have been studied by Shermeyer
and Van Etten [41], who have found that in remote sensing images, object detection performance
decreases with lower resolutions, and that super-resolution can offer a small increase in accuracy.
Super-resolution is used as a preprocessing step for the remote sensing object detection method
proposed by Zou et al. [56], which is competitive or superior to state-of-the-art methods. In a
similar approach, Haris et al. [15] propose a framework containing a task-driven super-resolution
sub-network which is shown to improve object detection results on low-resolution datasets.

Super-resolution methods are crafted by design experts. Though reliable, the careful curation
of neural network architectures by experts is a time-consuming process. Since super-resolution is
only a single part of possible remote sensing pipelines, manually designing these models can form a
bottleneck to creating end-to-end pipelines for analysing remote sensing imagery. It is possible to use
pre-trained super-resolution models, but due to the high visual diversity of remote sensing imagery
and differences between individual datasets, this might not achieve the desired performance.
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Based on state-of-the-art methods, we can automate the process of constructing super-resolution
models for a wide array of datasets. Singular super-resolution models might have high performance
for a subset of available datasets, and instead of manually selecting models for a given task. An
AutoML approach could formalize this process.

Automated machine learning models have been used for object detection in remote sensing
images ([33], [23], [37], [31], [34]), but to the best of our knowledge, no attempt at automating
super-resolution has been done yet.

We propose an automated machine learning approach to single-image super-resolution AutoSR-
RS, which aims to automatically find the best model as well as tune the hyperparameters. The
method is tailored towards remote sensing images by using pre-trained weights from remote sensing
datasets. Furthermore, it could easily be extended by including new state-of-the-art methods or
additional sets of pre-trained weights.

The challenges of this approach are to find the computer vision and super-resolution paradigms
that work well specifically for remote sensing images. Moreover, the approach has to work with
different remote sensing datasets: images consisting of different optical bands and images taken
of various regions can be very different, and might each need a different approach. An automated
machine learning approach could be better able to address these problems than a single hand-crafted
model could.

An additional challenge is that of the benchmarks: many super-resolution methods are evaluated
on synthetic datasets, which are obtained by downsampling high-resolution remote sensing imagery
in order to obtain high-resolution – low-resolution pairs of the same region. The downsampling
procedure is often much more simple than how the loss of resolution occurs when capturing real-
life images, and thus if a model is trained on such a dataset, the resulting performance might be
overestimated compared to using real data [24]. Therefore we also introduce a new dataset from
matching Sentinel-2 [9] and Planet [1] [42] images, called SENT-NICFI. To the best of our knowledge,
at the time of compilation only one other such dataset existed: OLI2MSI [47].

Our contributions are the following:

• We propose a new automated machine learning approach for super-resolution of remote sensing
images, called AutoSR-RS. The method is based on state-of-the-art super-resolution methods
and uses pre-trained weights from remote sensing datasets for training speedup.

• We evaluate our methods in terms of peak signal-to-noise ratio and structural similarity index
on 4 different remote sensing datasets.

• We compare our methods to state-of-the-art super-resolution methods and a simpler auto-
mated machine learning approach. In this comparison, AutoSR-RS beats the baselines on 1
of the 4 datasets and comes second on the remaining 3. However, pairwise statistical tests of
the results per dataset have ranked it highest, indicating that the other methods yield more
inconsistent results. This makes AutoSR-RS the most generally applicable method out of the
ones considered.

• We propose SENT-NICFI, a novel super-resolution dataset consisting of paired images of
Sentinel-2 and Planet. This dataset adds to the small set of multi-sensor super-resolution
datasets for remote sensing, which are not constructed by simply downsampling a set of high-
resolution images.
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• We make available to the public the source code of AutoSR-RS and instructions on construc-
tion of SENT-NICFI, allowing both to be used for future super-resolution research for remote
sensing.

The remainder of this thesis is organized as follows: first, background information on remote
sensing, super-resolution and AutoML will be given in Chapter 2. This is followed by a discussion
of the related work in Chapter 3. Next, the datasets used are described in Chapter 4, after which
Chapter 5 outlines the methods used. Chapter 6 defines the experiments conducted, the results of
which are presented in Chapter 7. The work is concluded with Chapter 8 which covers the conclusion
and future work.



Chapter 2

Background Information

In this chapter, we will provide the reader with background information on the topics of remote
sensing, super-resolution and automated machine learning.

2.1 Remote Sensing Images

Remote sensing (RS) is the measurement of the physical characteristics of an area from a distance.
Different areas can be observed, including other planets. For this work, the scope will be limited to
the Earth in which case it is also referred to as Earth Observation (EO).

There are many different techniques for obtaining remote sensing measurements. For this re-
search, we will focus on simultaneous multi-spectral platforms which can take images of an area in
multiple wavelengths at once. This results in multi-band imagery. The materials and particles in
and on the atmosphere and surface of the Earth transmit, absorb and reflect different types of light.
These types of light, both visible and invisible can be placed on the electromagnetic spectrum, as
shown in Figure 2.1. Different instruments are required to measure different ranges of wavelengths
(i.e., wavelength bands). The wavelength bands used depend on the task, because each band pro-
vides different information. For example, near-infrared (NIR) is used for vegetation mapping due to
its sensitivity to vegetation type [13].

The resolution of an image can be quantified in different ways. In remote sensing images, the
spatial resolution indicates the size of the area described by each pixel, the smaller the area, the
higher the spatial resolution.

Spectral resolution relates to the detail in an image in terms of the spectral characteristics.
Narrower bands (i.e., bands with a smaller wavelength range) have a higher spectral resolution,
allowing to differentiate more between different wavelengths than with wider bands.

In addition to spatial and spectral resolution, remote sensing images can also be described by
their temporal and radiometric resolution. The temporal resolution refers to the amount of time
between subsequent images of the same region. This is different for each satellite and depends on
the orbit. Radiometric resolution refers to the number of bits per pixel, and thus how detailed the
pixel information can be.

Multi-spectral images can be different from “regular” or natural images that are taken of subjects
like cars, streets and people. Natural images are commonly composed of RGB bands, which represent
the human visual spectrum. However, satellite images can record wavelengths which are not visible
to humans, and visual light can be divided into bands different from RGB bands.

8
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Figure 2.1: The electromagnetic spectrum [39]

2.2 Super-resolution for remote sensing

Super-resolution is the task of increasing the resolution of an image. It is a low-level computer
vision task that is usually not used on its own, but in combination with a downstream task. Super-
resolution could potentially increase the accuracy of tasks like classification or regression. For remote
sensing specifically, super-resolution can support tasks like object detection or change detection,
especially in cases where the features that have to be observed are very small on the original images.
For example, the resolution of Sentinel-2 is 10 m per pixel, at that resolution one cannot always
distinguish features like single trees. However, when detecting deforestation in a region with sparse
vegetation, small patches of trees might matter much more than when detecting deforestation in the
Amazon. Super-resolving the image might not solve the problem entirely, but having a resolution
of 5m or even 2.5m will allow for capturing more information about smaller patches of vegetation.
Super-resolution methods can be split into two categories:

• Single image super-resolution (SISR): one-to-one mapping of a single image to a higher reso-
lution image.

• Multi-image super-resolution (MISR): many-to-one mapping where multiple images are fused
into a higher resolution image. An example scenario is when a satellite passes over the same
region at regular intervals. For instance, the revisit cycle of Sentinel-2 takes 5 days [9]. In
other cases, an instrument might make multiple images of the same location at once, such as
PROBA-V [10].

2.2.1 Datasets for super-resolution

The data necessary for supervised training of super-resolution models consists of pairs of low-
resolution and high-resolution images of the same region (or for the case of MISR: multiple low-
resolution images for 1 high-resolution image) and ideally also very close in time because of changing
weather conditions and human activity. The latter would in theory be easier to achieve for SISR
than for MISR, since fewer images are needed. Two types of super-resolution datasets exist:
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• Synthetic data: low resolution – high-resolution pairs are created by downsampling a high-
resolution image. The problem can then be described as learning the degradation function, to
recover the high-resolution image. However, the performance of such methods can be worse on
real-world data, because the degradation of images in real life cannot always be described by
a simple degradation function [24]. Training and evaluating super-resolution methods exclu-
sively with synthetic data has the disadvantage that the performance of these models can be
overestimated [24]. There also does not appear to be a commonly used protocol for creating
synthetic data for MISR.

• Real data: real-world datasets consist of matched low resolution – high-resolution pairs, with
the images often taken by different instruments. Training and evaluating a model on this
type of data gives a more realistic picture of how well the model would perform in real-life
applications. One of the downsides is that it is not always possible to find matching image pairs
of sufficient regions to train a model on, considering that the time at which the low-resolution
and high-resolution images were taken should be as close as possible. Other challenges include
differences in coverage between sensors, differences in preprocessing between sensors. The
latter requires resampling at least one of the images, with information loss as a result.

Few real datasets exist due to the challenges involved in creating them. Additional considerations
have to be taken into account when obtaining real data for MISR methods:

• Theoretical advantages: The images are often slightly misaligned, which could give more in-
formation about the region because the pixels of the different images all have slightly different
coverage. Theoretically, multiple images of the same scene would provide more information
about a scene than a single image would. Thus, it could inform the super-resolution process.

• Challenges: the time in between subsequent fly-overs of a satellite may be too large depending
on the task the remote sensing images are used for. For example, in monitoring vegetation,
the change of the seasons may have a large effect on the appearance of a region. This issue
makes the method less general, since not every satellite will pass over the same region multiple
times or even often enough. Other challenges include changing cloud coverage and atmospheric
conditions, as well as possible deviations in image brightness. All of these factors combined
can lead to unexpected behaviour at testing time.

Because of the above factors and the low availability of datasets related to the MISR problem,
we shall be addressing the SISR problem in this work. We will use both synthetic datasets and an
existing real dataset, as well as a new, real dataset constructed by us. The goal is to evaluate both
baselines and proposed methods on a variety of datasets.

2.3 Automated Machine Learning & Neural Architecture Search

The field of automated machine learning studies the automatic optimization and configuration of
machine learning models and pipelines. Design choices that have to be made for a typical deep
learning pipeline are data preprocessing, data augmentation, architecture design and training pa-
rameter optimization. Extensive domain knowledge is required to manually design deep learning
architectures and hyperparameters. Smart methods are needed for NAS, because each new layer
expands the search tree further with new parameters. The design of such methods is not trivial, but
important for making deep learning more accessible to non-experts.
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Figure 2.2: Schematic of NAS. Architectures are sampled from search space A by a search strategy.
The performance of sampled architectures is used to select new ones. [18]

An AutoML system consists of three parts. The first is the search space, the set of design choices
to be searched. The second part is the search strategy used to explore the search space. Finally, an
evaluation metric is required to assess the performance.

There are three problems addressed by AutoML: algorithm selection, hyperparameter optimiza-
tion and the combined algorithm selection and hyperparameter optimization problem (CASH)
(Thornton et al. [43]). In this work, we will be addressing joint neural architecture search and
hyperparameter optimization, which is a special case of CASH. Both architectural and training
parameters are optimised.

Neural architecture search (NAS) is the development of neural network architectures by itera-
tively (i) selecting an architecture from the search space, (ii) estimating the architecture performance
and (iii) saving the estimated performance for reference to the search strategy. The results of pre-
viously explored architectures help inform the selection of the next architecture. NAS search spaces
can be divided into two categories: macro-level, micro-level and a combination of the two. Macro-
level search optimizes the whole structure of the network, on a higher level. AutoKeras [20] is an
example of a macro-level AutoML system: the search space consists of hyperparameters like the
number of layers, number of filters, kernel sizes, etc.
NAS typically has a high computational complexity, since each candidate architecture is trained
such that it can be evaluated. For macro search specifically, there is still a large parameter space to
be explored. Micro-level strategies fix the high-level architecture and focus on optimising smaller,
repeated motifs. An example is NASNet [55].



Chapter 3

Related Work

This section will discuss deep learning approaches to single image super-resolution for remote sens-
ing images as well as examples of automated machine learning in remote sensing research.

3.1 Single-image super-resolution

This section will cover super-resolution methods, categorized by the architecture type.

3.1.1 CNN-based models

Convolutional neural networks (CNNs) are suitable for many tasks involving images. Thus, it is not
surprising that many super-resolution techniques are CNN-based. One of the earlier approaches on
which many more recent ones are based, is SRCNN Dong et al. [7], which was applied to remote
sensing by Ducournau and Fablet [8]. It is a simple CNN with only a few convolutional layers.
SRCNN showed improvement over previous CNN architectures, because it was able to capture
features at different scales [28]. Very Deep Super-Resolution (VDSR) [22] consists of many more
convolutional layers than SRCNN and has a skip connection. VDSR is shown to have a significant
advantage compared to SRCNN for natural images, but little improvement with regards to the bicu-
bic interpolation baseline [45]. Enhanced Deep Super-Resolution (EDSR) [27] outperforms VDSR
with residual blocks replacing vanilla convolutional layers, adding more skip connections at different
levels. Residual channel networks (RCAN), proposed by Zhang et al. [51], introduces a channel at-
tention mechanism weighting the image features as well as the concept of residual-in-residuals. The
authors indicate that it has been shown that upscaling the image at the end reduces computational
complexity and achieves higher performance, rather than at the beginning which has been done
with earlier approaches (e.g. SRCNN [7]).

Finally, WDSR [11] outperforms EDSR with similar architecture to EDSR but with wider acti-
vation and weight normalization [40]. Weight normalization is shown to achieve higher performance
than batch normalization or no normalization. The key idea of WDSR as compared with EDSR [27]
is that a wider activation, which means expanding the image features before an activation layer,
allows for preserving more information of the original image. Lim et al. [27] have found that batch
normalization impacts the model performance negatively, and this is also confirmed by Fan et al.
[11].

12
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3.1.2 GAN-based models

In addition to CNN-based models, several super-resolution approaches are based on generative
adversarial networks. One of the first of such approaches is SRGAN [25]: the discriminator is tasked
to differentiate between the original high-resolution image and the super-resolved image, pushing the
generator to approximate the original high-resolution image. An improvement of SRGAN specifically
for remote sensing is proposed by Ma et al. [29]. This approach addresses the frequency domain
rather than the spatial domain and combines the wavelet transform and ResNet [16] to super-
resolve low-resolution input. Edge-enhanced GAN (EEGAN) proposed by Jiang et al. [19] shows
even better performance. This super-resolution approach targeted for remote sensing enhances the
edges of the super-resolved image, which can offer advantages for remote sensing use cases such as
building detection.

3.2 Automated Machine Learning in Remote Sensing

Two AutoML frameworks for deep learning include AutoKeras [20] and Auto-PyTorch [54], these
frameworks jointly perform neural architecture search and hyperparameter tuning. Both frameworks
have been used for AutoML in remote sensing. Palacios Salinas et al. [33] have proposed a NAS
system optimized for classifying remote sensing images by using blocks pre-trained on remote sensing
datasets, implemented in AutoKeras. Other works also base their methods on the same AutoKeras
image classifier but with fewer modifications, including Koh et al. [23] who classify plants based on
remote sensing imagery using the classifier, but with blocks pre-trained on ImageNet [5] instead of
remote sensing datasets. Renza et al. [37] classify landslides and Nguyen et al. [31] forecast aerosol
concentrations in the atmosphere, both using the AutoKeras image classifier.

An example of research conducted using Auto-Pytorch, is the work by Polonskaia et al. [34]
proposing an automated evolutionary approach to NAS for designing CNNs for the task of object
recognition in remote sensing images.

All these examples are of classification of satellite images. Neither AutoKeras nor Auto-Pytorch
have functionality for image-to-image approaches like super-resolution: there are many different
blocks, but they lack an image output module which is necessary for super-resolution. The two
frameworks also address the search space differently. AutoKeras’s approach is to morph neural net-
works to varying degrees: adding or removing layers, but also switching out parts of the architecture
for an alternative version. The architecture can be quite complicated. In contrast, Auto-PyTorch
only offers support for simpler architectures. We decided to use AutoKeras based on the options
offered by both frameworks; the level of automation and that more remote sensing examples were
found for AutoKeras than for Auto-Pytorch. Generally, AutoKeras is a macro-level search strategy,
but the possibility to define a custom high-level architecture and blocks makes it possible to perform
micro-search as well and even combine macro- and micro-search.

3.3 Relevance of this work

We construct a neural architecture search specifically for the task of super-resolution of remote
sensing data, which, to the best of our knowledge, has not been researched yet. Previous work shows
that AutoML can be applied successfully to the classification of remote sensing images, indicating
AutoML might provide similar gains to other remote sensing tasks like super-resolution. The aim is
to achieve higher performance than the state-of-the-art to show that automated machine learning
can successfully be applied to the problem of super-resolution. The proposed method is based on
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RCAN and WDSR, which were both based on EDSR but developed independently from each other.
These models are consistently cited as the state-of-the-art in SISR works and are among the best
performing models listed. Since in many cases the results presented in papers are obtained by
training and evaluating models only once, the performance may differ. However, with the available
information, these methods present themselves as suitable work to build upon.



Chapter 4

Data

This chapter is organized by the type of datasets used for super-resolution: synthetic and real data.
Both sections describe the data sources and procedures used to construct the datasets used in the
research.

4.1 Synthetic Data

A set of high-resolution images is needed for the synthetic datasets. Table 4.1 lists the satellite image
datasets used for creating the synthetic data. Originally, these were image classification datasets, but
for this research, only the images and not the labels are needed. To avoid confusion, these datasets
will be referred to as the data sources and the final result containing the pairs of low-resolution and
high-resolution images will be called datasets.
The datasets are made available as TensorFlow datasets at https://universiteitleiden.data.
surfsara.nl/index.php/s/MBZs6OyPOiELRNZ.

4.1.1 Data sources

• UC Merced [50] is a dataset for land use image classification. It contains 21 different classes
including agricultural, buildings, rivers and many other types of terrains in the United States.

• So2Sat [53] is a dataset with images of 42 different cities across different continents and
regions. The RGB-subset of So2Sat consists of Sentinel-2 images.

• Cerrado-Savanna [32] consists of images of the Serra do Cipó region in Brazil. It has a wide
variety in vegetation and high variation between classes, though it only covers vegetation in
a single region.

Table 4.1: Overview of HR datasets. The resolution is given in metres [m] and the image size in
pixels [px]

Dataset Source # Images Resolution [m] HR size [px]

UC Merced [50] USGS (aerial) 590k 0.3 256× 256
So2Sat [53] Sentinel-2 376k 10 32× 32
Cerrado-Savanna [32] RapidEye 27k 5 64× 64
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Table 4.2: Overview of LR-HR pair datasets. The resolution is given in metres [m] and the image
sizes in pixels [p]

Dataset Satellites # Images Resolutions [m] LR size [px] HR size [px]

OLI2MSI [47] Landsat & Sentinel-2 10.65k 30 & 10 160× 160 480× 480
SENT-NICFI Sentinel-2 & Planetscope 2.2k 10 & 5 100× 100 200× 200

4.1.2 Creating synthetic datasets

For each data source described in Table 4.1, all the images are gathered and the images with aberrant
sizes are removed. Then, the low-resolution images are generated by downsampling all the images in
the data source with a factor of 2 with a bicubic kernel. This simple downsampling procedure does
not always accurately reflect the differences between a high- and a low-resolution image in real life.
These differences often occur due to that in practice, different sensors are used to obtain images of
different resolutions. These sensors have different characteristics. The risk of downsampling images
like this, is that the situation will be over-simplified. Real datasets can be used to avoid this problem.

4.2 Real data

This section describes the real datasets used. Real datasets are harder to obtain than synthetic
datasets, due to the limited availability of freely accessible satellite data with different resolutions.
We will discuss two datasets, as well as the strengths and limitations. The first dataset is OLI2MSI
[47], which is an existing dataset. Secondly, we will present the SENT-NICFI dataset which has
been compiled from Sentinel-2 and Planetscope data. Details of these datasets are shown in Table
4.2

4.2.1 OLI2MSI

OLI2MSI is proposed by Wang et al. [47] and consists of low-resolution images taken by Landsat-8
(courtesy of the U.S. Geological Survey) and Sentinel-2 of a region in the southwest of China. Images
with the same production level are taken, with less than an hour of time difference. Final images
are selected based on the cloud cover. The data is available for download on the GitHub page of
the authors 1.
This dataset is compiled into a TensorFlow dataset, like the synthetic data.

4.2.2 SENT-NICFI

SENT-NICFI has been constructed using images from Sentinel-2 and Planetscope, taken in June of
2021. The Planetscope images are part of the NICFI program. The NICFI dataset is part of Nor-
way’s International Climate and Forests Initiative Imagery Program. It contains images of tropical
forests used for tasks like monitoring deforestation and biodiversity. It contains images of forests in
different countries around the equator, covering an area of about 45 million square kilometres. In
addition, images of countries with no or limited forest cover outside of this region are included.
A similar dataset for MISR has been constructed by Razzak et al. [36], who combine Sentinel-2
images and Planetscope images from the SpaceNet-7 challenge [46].
The NICFI dataset consists of basemaps which are averaged over either a month or biannually.

1https://github.com/wjwjww/OLI2MSI
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Therefore, it is not possible to select LR images from a narrow window as with OLI2MSI. Each
basemap consists of so-called quads, which are raster files with a resolution of 4.77 m per pixel. The
visual basemaps are selected (the other option is normalised basemaps).

The dataset is consists of 5 scenes from each of the following ecosystems: cities, desert, forest,
savanna, agriculture and miscellaneous (not falling in any of the previous categories). The images
are split into smaller 200 by 200 pixel training images, yielding 12000 training pairs.

Under the licencing limitations regarding NICFI, we are unable to make the SENT-NICFI
dataset publicly available. However, the dataset can easily be reconstructed by using the code
we have provided. Detailed descriptions on how the dataset was obtained and how it can be recon-
structed, are provided in Appendix A.



Chapter 5

Methods

This chapter will describe the proposed methods used for the super-resolution task. First, we define
the AutoML search space followed by a description of the proposed model for super-resolution of
remote sensing images, AutoSR-RS.

5.1 Search Space

AutoML methods explore a search space to find optimal hyperparameter settings. The search space
consists of tunable hyperparameters and the range these parameters can take. In the context of
neural architecture search, examples of hyperparameters are the number of layers, the layer type,
and the number of nodes in a layer, but also other factors like whether to use dropout or not,
or which optimizer to use. Ideally, one would have an infinitely large search space that doesn’t
exclude any feasible solutions and an algorithm that can find the best hyperparameters for the
problem in a finite amount of time. In practice, this is not feasible. Having a very large search space
increases the probability that the AutoML algorithm will need many iterations to find a good set
of hyperparameters. To reach good results faster, it is important to constrain the search space with
the help of domain knowledge. For instance, by excluding settings that research has found to be
detrimental to the model performance, and including settings that are shown to be beneficial to
model performance.

In the next section, we will describe the proposed AutoSR-RS model and define the search space
in more detail.

5.2 AutoSR-RS architecture

The architecture of AutoSR-RS can be abstracted in terms of smaller units that make up the
complete model. We will refer to these units as blocks. A block is a module of the neural network,
it can be a single layer or even a complete model like ResNet [16].

During each trial, a different model is built from the available blocks, and these blocks can also
be mutated. These mutations can include changing existing layers, e.g., changing the kernel size, or
adding/removing layers or adding/removing blocks of layers like a set of convolutional layers or an
LSTM block [17].

In the case of AutoSR-RS, the available blocks are implemented based on super-resolution meth-
ods. AutoKeras [20] (see Sections 2.3 & 3.2), the library AutoSR-RS is implemented in, has a wide
array of available blocks, but none of them are specifically suited for super-resolution. This is also
true for other NAS frameworks like Auto-Pytorch [54]. For instance, AutoKeras offers a ResNet [16]
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Table 5.1: Parameters and possible values in the search space of AutoSR-RS. There are two different
ranges for the numbers of residual blocks: these numbers are based on the numbers of residual blocks
in the original RCAN and WDSR methods.

Parameter Values
RCAN WDSR

Method (RCAN,WDSR)
pre-trained weights (Cerrado, UC Merced, So2Sat, OLI2MSI)1

Number of residual blocks [10, 20] [4, 40]

block. ResNet is used for classification, but Liu et al. [28] have shown that it does not perform well
for super-resolution when adapted directly. Additionally, there often are options to use pre-trained
weights, but these pre-trained weights are usually from more general datasets like ImageNet [5].
To address this problem, we propose AutoSR-RS, an automated machine learning model with a
search space tailored to super-resolution for remote sensing by using pre-trained weights from re-
mote sensing datasets. One of the challenges is to choose the size of the search space such that it is
large enough to be able to offer good solutions, but not so large that it would take a prohibitively
long time to find them. Moreover, some methods from super-resolution of natural images may not
be well-suited to remote sensing imagery, and vice versa. The following section will describe the
composition of the search space.

5.2.1 Search space parameters

We introduce a search space specifically crafted for super-resolution of remote sensing images.
AutoSR-RS is based on state-of-the-art SISR methods: RCAN [51] and WDSR [11]. The latter
is the winner of the NTIRE 2018 Challenge on Single Image Super-resolution on all three realis-
tic tracks. Both of these methods achieve high performance on super-resolution tasks with natural
images. These methods are extensions of earlier work like EDSR [27], and reflect the shift towards
using increasingly deep residual networks for super-resolution. We selected these two methods as
the basis of AutoSR-RS, because of the representative nature of these methods in the domain of
non-GAN SISR methods. With these two methods as the base of AutoSR-RS, we aim to test the
merit of the approach and whether this is an avenue worth exploring by adding more methods in
the future.
A schematic of AutoSR-RS is shown in Figure 5.1: the global structure is that the search algorithm
can choose between WDSR and RCAN as a base, then can choose the number of residual blocks and
thus the depth, and finally choose from a set of pre-trained weights from different remote sensing
datasets. This makes this method specifically tailored towards remote sensing images and can help
speed up training as opposed to not using pre-trained weights or using pre-trained weights from a
non-remote sensing dataset like ImageNet [5]. The search space parameters are also shown in Table
5.1. Our dataset, SENT-NICFI, is not included in the set of pretrained weights, because it was not
yet completed at the time of obtaining the sets of pre-trained weights. We will now go into more
detail about the underlying methods of AutoSR-RS: RCAN and WDSR (both of which have also
been briefly discussed in Section 3.1.1).

RCAN RCAN, which stands for Residual Channel Attention Network, introduces channel atten-
tion. Channel attention modules give more weight to informative features instead of considering all
features to be equal. The network consists of stacked residual groups, with an upscaling module at
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weights

AutoSR-RS

weights
RCAN

xn_res
N

r
WDSR

r

N Image normalization to [0,1]

D Image denormalization to [0,255]

r Residual block

Pixel shuffle/ upscaling unit

Pre-trained weights coverage

D

xn_res

n_res Number of residual blocks: integer

Automatically tuned parameter

weights Which set of pretrained weights to use.
Choice of:
- Cerrado
- UC Merced
- So2Sat
- OLI2MSI

Figure 5.1: The architecture of AutoSR-RS.
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the end of the residual stack.

WDSR WDSR’s 2 main branch also exists of residual blocks like RCAN, but does not have the
residual-in-residual structure. Moreover, the residual blocks do not contain the channel attention
mechanism. The convolutional layers in the whole model are replaced by convolutions with weight
normalization.

Differences between RCAN & WDSR There are some differences between the high-level
architectures of the models. For example, the skip branch of RCAN first passes through an activation
layer (which is the first convolutional layer), which Fan et al. [11] have chosen to omit. Additionally,
the upscaled image produced by RCAN’s upscale module is decoded using a convolutional layer,
whilst in WDSR, the two branches are simply added together and no decoding is taking place.
Finally, an important difference is that RCAN is much deeper than WDSR, due to the residual-in-
residual structure.

5.2.2 Super-resolution blocks

We implement blocks for the task of super-resolution of remote sensing images. These blocks are
used by the NAS framework to build candidate networks. To the best of our knowledge, current NAS
frameworks do not offer such blocks. We propose a model with a search space built upon RCAN [51]
and WDSR [11]. The optimizer can choose between these two models, and modify them by changing
the number of residual blocks in each model. We observed that RCAN has many more trainable
parameters, and can take up to 10 times as long to train. However, RCAN does not outperform
WDSR in all cases. Preliminary experiments with a shallower version of RCAN, with just 1 residual
group instead of 10, showed that this setting of RCAN (which we refer to as RCAN_U, for undeep
RCAN) can achieve good results on the Cerrado dataset even with much fewer parameters than
the original proposed by Zhang et al. [51]. These results, along with the number of parameters of
various models can be found in Appendix B. The resulting model still has more parameters than
WDSR, but is more comparable, and trains faster than the full-size RCAN.

In addition to modifying the number of residual blocks, another parameter that can be tuned by
the AutoML search algorithm is which set of pre-trained weights to use. These weights are obtained
by training WDSR and RCAN on the datasets presented in Chapter 4. The dataset on which the
model is trained during a particular experiment will be excluded from the choices. This is done by
removing the name of the current training data from the list of available pre-trained weights for the
experiment.

2The acronym appears to be inspired by its predecessors VDSR [22] and EDSR [27], the paper is titled “Wide
Activation for Efficient and Accurate Image Super-Resolution”
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Experiments

The sections in this chapter will describe the experiments we defined to answer our research ques-
tions:

Q1 : Can AutoSR-RS achieve better performance on remote sensing datasets than the
state-of-the-art models?
Q2 : Which blocks (RCAN or WDSR) and block hyperparameters (i.e., number of resid-
ual blocks, set of pre-trained weights) are used the most in well-performing models found
by AutoSR-RS?

Since baseline methods are included in the search space, it is expected that the model should
be able to perform better than the baselines. By answering Q1, we do not just want to answer
which method achieves the highest scores, but which one performs the most consistently on all the
datasets, since we are looking for a method that can be applied to diverse datasets. Answering Q2
could give insight into how to improve the search space of AutoSR-RS.

Before going into the details of the experiments, we will first describe the baseline methods in
Section 6.1. Section 6.2 outlines hyperparameter choices of AutoSR-RS, followed by an outline of
the evaluation methods in Section 6.3.

6.1 Baselines

We use the following baseline methods:

• WDSR [11], (described in Sections 3.1.1 & 5.2.1), consists of a skip branch and a main branch
with a block consisting of smaller residual blocks. Instead of standard convolutional layers,
weight normalization is used [40] for faster convergence and higher accuracy. We used the
Keras code for the WDSR model released by Martin Krasser1. The network is trained with
the same parameters as WDSR-B in the original paper: 32 residual blocks, Adam optimizer
with piecewise constant decay of the learning rate.

• RCAN [51], also described in Sections 3.1.1 & 5.2.1, consists of a skip branch and a main
branch with residual blocks. The residual blocks are organized in residual groups, with skip
connections from group to group as well. The residual blocks have a channel attention unit,

1Single Image Super-Resolution with EDSR, WDSR and SRGAN (2020) https://github.com/krasserm/
super-resolution
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which weights features according to their importance. The implementation of RCAN in Keras
that we used is made available by Hieubkset2. The parameter settings maintained from the
original paper are: 10 residual groups with 20 residual blocks each, using the Adam optimizer
with an initial learning rate of 1 · 10−4, with a learning rate decay of 0.5 and decaying every
10 and 15 steps.

• AutoSRCNN: a simple autoML super-resolution approach. The method is inspired by SR-
CNN [7]. AutoSRCNN is a CNN built from convolutional layers exclusively, without residual
connections, pre-trained weights or specialized blocks. The only parameters are the number
of layers, the kernel size of each layer and the number of filters of each layer. The model
consists of an upsampling layer which scales the input image to the required output size using
interpolation, followed by a ConvBlock (parameters in Table 6.1). Details on the blocks we
added to the original AutoKeras code to implement AutoSRCNN and AutoSR-RS are found
in Appendix D. The search space of this method is much smaller compared to AutoSR-RS.
Thus, this method serves as a control to make sure that a larger search space is indeed nec-
essary to solve the problem of SISR for remote sensing images. AutoSRCNN in general finds
networks comparable to SRCNN, which are much simpler than the current state-of-the-art.
The search space is also smaller, allowing AutoSRCNN to traverse more of its search space in
the same number of trials than AutoSR-RS could. As a result, training is fast and pre-trained
weights are not needed to speed up the weights.

We selected WDSR and RCAN among the methods described in Chapter 3, because we were
limited to using Keras [2] in order to keep the environment consistent for all considered methods,
and it was not possible in all cases to find a Keras implementation. Other methods like EDSR [27]
were also available, however, RCAN and WDSR both outperform this approach [51][11]. Thus, it
would not help answer the question whether AutoSR-RS is better than the state-of-the-art.

Experimental settings such as the number of epochs and batch sizes for different datasets are
determined by considering factors like validation loss, memory and time limits on the usage of
computational cluster. All of the experiments are run with an early stopping callback, which halts
the training if the validation loss has not decreased for 10 epochs. The details on these experimental
settings can be found in Appendix C.

The number of epochs for WDSR and RCAN (equal for both) was determined per dataset by
considering the decrease of the validation loss and computational resources (the larger datasets
like So2Sat need more time to train, and training time was limited by available resources). Both
AutoSRCNN and AutoKeras are run for 20 trials, with the number of epochs set at a maximum of
100 (AutoKeras might cut the training of before that number of epochs is reached if no improvement
is expected).

6.2 Hyperparameter tuning

The search space can be narrowed down by considering choices made in state-of-the-art papers. We
list settings that have been taken from Fan et al. [11] and Zhang et al. [51] in Table 6.2.

Batch normalization and dropout are rarely used in super-resolution methods. These measures
are often used to prevent overfitting. However, overfitting is rare for super-resolution [11], and batch
normalization can cause artefacts to occur in the super-resolved images [48]. L1 loss or MAE is
chosen over L2. Both loss functions are popular choices for image-related tasks. However, L1 loss

2Hieubkset. Single Image Super-resolution, EDSR, SRGAN, SRFeat, RCAN, ESRGAN and ERCA (ours) bench-
mark comparison (2020) https://github.com/hieubkset/Keras-Image-Super-Resolution
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Table 6.1: Settings of AutoSRCNN

Parameter Value

Pooling False
Dropout 0
Padding same
Filters 64

Kernel size [3, 5, 7, 9]

Table 6.2: Hyperparameter settings from
[11][51]

Setting Value

Batch Normalization None
Dropout 0
Loss function L1

yields better results for super-resolution than L2 loss [52]. A possible explanation could be that
L2 is a squared loss function, which might penalise faulty pixels very strongly. These pixel errors
naturally occur in remote sensing images, and can result in high losses through no fault of the
model. The L1 loss would not give as much weight to these faulty pixels because it is a linear loss.
L1 loss is given by:

L1 =

N∑
i=1

|I(i)− Î(i)| (6.1)

where I is the ground-truth image, Î is the super-resolved image, and N is the number of pixels
in the image.

AutoKeras offers multiple optimisers to tune the hyperparameters. We chose to use the default
optimiser, which is a combination of random search and greedy search. We use this optimiser for
both AutoSRCNN and AutoSR-RS for a fair comparison.

6.3 Evaluation

In super-resolution research, two common evaluation metrics are peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM). Both are widely used. ([28],[38],[26],[44])

• PSNR is related to the MSE between images. It evaluates the image exclusively at pixel-level.
Because it does not take visual perception into account, it can be a poor metric of super-
resolution quality. It is popular due to the lack of better alternative metrics for comparing
methods [49]. The PSNR is defined as follows [49]:

PSNR = 10 · log10
L2

1
N

∑
i=1N(I(i)− Î(i))2

(6.2)

Where I is the ground-truth image, Î is the super-resolved image, L is the maximum pixel
value, which in this case is 255, and N is the number of pixels.

• SSIM computes the similarity of two images based on the luminance, contrast and structure
that are calculated from the RGB pixel values [49]. The SSIM is given by [26]:

SSIM =
(2µIµÎ + c1)(2σIÎ + c2)

(µ2
I + µ2

Î
+ c1)(σ2

I + σ2
Î
+ c2)

(6.3)

where Î is the super-resolved image, I ground-truth image, µ is the average luminance and σ
the standard deviation of the luminance and c1 and c2 are constants.
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6.4 Experimental setup

We have designed the following experiments to answer the research questions presented at the
beginning of this chapter. We will train and evaluate AutoSR-RS, as proposed in Chapter 5, on the
datasets described in Chapter 4. The test set is created by taking 20% of the dataset, the remaining
data is split with 80% for training and 20% for validation. The same splits are maintained for all
experiments.

The experiments are run on the ALICE cluster3, with two GeForce RTX 2080TI GPUs and
10GB of CPU RAM. Each experiment is repeated 5 times, for every dataset. The running time
ranges from 30 minutes to 5 days, depending on the number of parameters of the model and the
number of images and image sizes of the dataset. The results of the experiments are compared by
first bootstrapping the results with 1000 samples of size 3 followed by a Wilcoxon signed-rank test
[3] for non-normally distributed samples.

A version of AutoKeras which was adapted to include image output and custom metrics is
available at https://github.com/JuliaWasala/autokeras (release 1.0.16.post1) and the code
at https://github.com/JuliaWasala/autoSR-RS_SENT-NICFI. The code repository provides a de-
tailed description of the environment and required software and packages. The pre-trained weights
necessary to run the code, can be downloaded from https://universiteitleiden.data.surfsara.
nl/index.php/s/i9oF0o8R36ZXZ5X.

3https://www.universiteitleiden.nl/en/research/research-facilities/alice-leiden-computer-cluster



Chapter 7

Results

This chapter shows the results of our experiments. The results will be discussed per research question,
as presented in Chapter 6. The chapter is concluded with a discussion of the results of the SENT-
NICFI dataset.

7.1 Q1: Can AutoSR-RS outperform the state-of-the-art?

Tables 7.1 and 7.2 list the average results from training and evaluating each method–dataset com-
bination 5 times. The significantly highest scores are in boldface 1. From these tables, we can read
that AutoSR-RS outperforms all baselines on the SENT-NICFI dataset, and comes in as a close
second on the other datasets. The results of the SENT-NICFI dataset are especially interesting. The
high variety of images, including 5 types of ecosystems, makes it a challenging dataset to model by
a neural network. The fact that AutoSR-RS scores the highest on this dataset, means that it is best
able to handle highly diverse datasets. It is not clear from these results why AutoSR-RS does not
outperform all of the baselines on the other datasets.

Figures 7.1 and 7.2 show how the PSNR and SSIM scores are distributed across a sample of
100 random images of the test set of each dataset. These distributions can show how consistently
the models super-resolve images from different datasets. The narrower the distribution, the more
consistent the results.

In Figure 7.1 we can see that the most outliers occur in the Cerrado dataset results. In most
cases, the prediction consistencies are comparable, except for SENT-NICFI, where WDSR has the
narrowest distribution. In Figure 7.2, we can see that for Cerrado, RCAN and AutoSR-RS have
perfectly recovered a HR ground truth image, achieving a score of 1.0. We can also see that there
is more difference in consistency of prediction between the methods than with the PSNR score:
for example, AutoSRCNN has a wider distribution for the UC Merced dataset than the other
methods, meaning that the prediction scores are less consistent than for other methods. Additionally,
AutoSRCNN and WDSR have the widest distributions for the OLI2MSI datasets.

Now, focusing on the AutoSR-RS scores specifically, there is not much difference in terms of
consistency of PSNR scores. However, the SSIM scores obtained by AutoSR-RS on the Cerrado and
OLI2MSI datasets have narrower distributions and thus are more consistent than the other methods.
To conclude, from these figures we can not see that any method yields much more consistent scores
than any other, in terms of spread of PSNR and SSIM scores of the sample of test images.

1The results of the So2Sat dataset are excluded: due to excessive resource use, AutoSR-RS could not be evaluated
on this dataset.

26



CHAPTER 7. RESULTS 27

Table 7.1: PSNR results of all methods, each experiment has been run 5 times. The significantly
best results are in boldface.

Method Cerrado UC Merced OLI2MSI SENT-NICFI

WDSR 40.96± 0.39 28.00± 11.55 43.89± 0.04 28.17± 1.20
RCAN 38.48± 0.38 33.77± 0.02 44.45± 0.01 30.12± 0.02
AutoSRCNN 38.80± 0.89 30.82± 1.44 43.13± 0.68 28.85± 0.22
AutoSR-RS 40.61± 1.91 33.57± 0.23 44.42± 0.68 30.20± 0.42

Table 7.2: SSIM results of all methods, each experiment has been run 5 times. Best results are in
boldface.

Method Cerrado UC Merced OLI2MSI SENT-NICFI

WDSR 0.9729± 0.0016 0.7414± 0.3956 0.9719± 0.0002 0.7843± 0.0525
RCAN 0.9544± 0.0067 0.9252± 0.0002 0.9749± 0.0000 0.8537± 0.0007
AutoSRCNN 0.9507± 0.0083 0.8825± 0.0269 0.9680± 0.0045 0.8223± 0.0009
AutoSR-RS 0.9645± 0.0191 0.9238± 0.0024 0.9741± 0.0090 0.8550± 0.0097

Table 7.3: Ranking of the methods, show-
ing the number of times a method has
a significantly higher score on a dataset
than another method. The experimental
results are bootstrapped and then pairwise
wilcoxon signed-rank tests are performed.
The average ranking is calculated across
the 4 datasets, with 1 being the highest.

Model # outperformed Average ranking
Based on Based on
PSNR SSIM PSNR SSIM

AutoSR-RS 9 9 1.75 1.75
RCAN 8 9 2.00 1.75
WDSR 4 4 3.00 3.00
AutoSRCNN 3 2 3.25 3.50

Table 7.4: Results of longer experiments with AutoSR-RS. Each experiment has been run 5 times.

Trials Dataset PSNR SSIM

100 Cerrado 42.10± 0.83 0.9763± 0.0031
50 SENT-NICFI 30.45± 0.26 0.8612± 0.0124
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The complete test results (shown in Tables 7.1 and 7.2) have been analysed by first bootstrapping
the results by selecting 3 measurements 1000 times. Then, pairwise Wilcoxon [3] tests are conducted,
counting the number of times it has achieved a significantly higher result than other methods for
each dataset. The Wilcoxon test is chosen, because the data points are not normally distributed.
The methods are then ranked according to these counts. There were no ties in these comparisons:
all results are statistically significant. The results are shown in Table 7.2. According to this ranking,
AutoSR-RS ranks first in terms of the PSNR score, and shares the first place with RCAN in terms
of SSIM. This table also shows the average ranking, calculated across the 4 datasets. Because of the
small number of datasets, any statistical tests regarding the ranking of methods across all datasets
(as opposed to comparing results of the methods per dataset), such as CD diagrams, would not be
very meaningful. Thus, no CD diagrams can be presented.

From the rankings we can also see that AutoSRCNN consistently ranks last: this shows that a
simple automated machine learning method is not enough for the problem of super-resolution of
remote sensing images. This justifies the use of methods with more carefully crafted search spaces
like AutoSR-RS.

7.1.1 Additional experiments with higher numbers of trials

Additional experiments have been conducted with Cerrado for 100 trials, and SENT-NICFI for 50
trials. The goal of these experiments was to find whether there is more room for improvement of
AutoSR-RS results. The results are shown in Table 7.4. These results are significantly better than
the results for 20 trials shown in Tables 7.1 and 7.2 and also outperform the baselines. Mainly,
running AutoSR-RS yields high results more consistently, as can be read from the difference in
standard deviations of the results between 20 trials and longer. Running AutoSR-RS for more trials
makes it more likely to find a good result. To illustrate this, Figure 7.3 plots the highest PSNR
achieved on the validation set so far at each trial. The runs stop at different trials, ranging from
around 30 to 75 (for Cerrado) or 45 (for SENT-NICFI), because AutoKeras might terminate training
before the maximum number of trials is achieved. This mechanism is similar to how AutoKeras can
terminate training of candidate networks before the epoch budget is depleted. It helps to reduce use
of resources when no improvement is expected to be found by the optimizer.

The improvement of validation scores, steep at first, starts to flatten around 20 trials, which is
equal to the number of trials in the experiments shown in Tables 7.1 and 7.2. Better results can be
obtained, though at a decreased rate of improvement. By giving AutoSR-RS more trials, it can in
some cases help escape local minima. The result of this is that more runs achieve high results, with
a higher average PSNR and SSIM and lower standard deviations.

In summary, AutoSR-RS either has the highest or second-highest performance when run for 20
trials. AutoSR-RS ranks first on statistical tests of the PSNR score, and has no significant difference
with RCAN with regards to SSIM. Running AutoSR-RS for more trials achieves better results, also
outperforming a baseline that was not beaten within 20 trials, though at the cost of additional
iterations with a decreased rate of improvement. The ranking based on the PSNR score suggests
that even though AutoSR-RS does not achieve the highest score in each dataset, it is more general
than the baselines. As a first AutoML approach to super-resolution of remote sensing images, this
is promising. Future improvements to the method could yield even better results. For instance,
AutoSR-RS might be better able to find networks suited to specific situations by including more
model blocks and sets of pre-trained weights. However, a downside of AutoSR-RS compared to the
baselines is the computational complexity. 20 networks are trained instead of just 1 (in the case of
RCAN and WDSR). The implication is that it requires much more machine time to train, though
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it may not necessarily be 20 times as long, because AutoSR-RS can terminate the training of a
network if it does not expect to find improvement.
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Figure 7.1: Boxplots of the PSNR scores of 100 random test images.
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Figure 7.2: Boxplots of the SSIM scores of 100 random test images.
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dataset Cerrado and a maximum of 100 trials (left) and dataset SENT-NICFI and a maximum of
50 trials (right). Each point shows the mean of the best score achieved in each run up until that
trial. The error bands show show the region between the lower and upper quantile.
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7.2 Q2: Which hyperparameters values are selected by AutoSR-
RS?

In this section, we analyze the hyperparameter values selected by AutoSR-RS: these are the hyper-
parameters of the best model returned by AutoSR-RS after each training. The hyperparameters are
described in Section 5.2.1. Analyzing these results can help inform us how the search space can be
improved.

A global overview of the selected values is shown in Figure 7.4. RCAN is chosen more than
twice as often as WDSR as the model block. Considering that RCAN scores significantly higher
than WDSR in our experiments, it raises the question of whether AutoSR-RS could perform better
with just the RCAN block. However, this picture is nuanced by the left plot in Figure 7.5 shows
which model blocks are chosen as a function of the training dataset. It shows that there is a strong
preference for RCAN when AutoSR-RS is trained on UC Merced or SENT-NICFI. When trained
on Cerrado and OLI2MSI, the difference is not so large. Thus, it might not be beneficial to the
performance of AutoSR-RS to discard the WDSR block: there are still 2 datasets that select it
almost half of the time, and this could also be true or even more for other datasets AutoSR-RS
might be used for.

The center plot in Figure 7.4 shows the selected number of residual blocks, N_res. The most
selected number is around the middle of the possible range, at 20 blocks, which coincides with the
maximum number of residual blocks possible for the RCAN block. Thus, it could make sense to
increase this maximum to a higher number. Finally, the right plot in Figure 7.4 shows that the sets
of pre-trained weights that are chosen the most are UC Merced and Cerrado, while So2Sat and
OLI2MSI are chosen slightly less often. Interestingly, the only weights obtained from a real dataset
(OLI2MSI) are chosen the least often.

Figure 7.5 shows which set of pre-trained weights is selected as a function of the training dataset.
The right plot in Figure 7.5 shows that the choice of pre-trained weights is split between Cerrado
and OLI2MSI on the one hand, and UC Merced and SENT-NICFI on the other hand, as with
the model blocks. Models trained on Cerrado exclusively select weights from UC Merced in the
final model, while models trained on OLI2MSI select both weights from UC Merced and from
Cerrado. Models trained on UC Merced or SENT-NICFI select weights from Cerrado, So2Sat or
OLI2MSI without a strong preference for any of the three. These results show that different sets
of pre-trained weights can benefit different scenarios to varying degrees. It could improve AutoSR-
RS to provide a wider variety of pre-trained weights, so an appropriate set can be found for these
varying scenarios. However, more research is needed to determine the cause of this split in results
depending on the training dataset. Understanding better why specific values are chosen based on
dataset characteristics could yield valuable insights in how to improve the search space.

Finally, Figure 7.6 shows the numbers of residual blocks for each dataset. These plots once again
show that there is a peak at 20 residual blocks, indicating that the RCAN block could potentially
perform better if higher numbers of residual blocks were possible.

From the results discussed in this section, we can conclude that the range of residual blocks
can be restricted. Even though the WDSR block seems to be less relevant at first view, Figure 7.5
suggests that the WDSR block can be relevant to some datasets. Thus, it would make sense to keep
the WDSR block for generality of AutoSR-RS. Finally, all of the available sets of pre-trained weights
are used similarly, thus this set of choices is not to be restricted. Adding more model blocks and
sets of pre-trained weights could allow AutoSR-RS to find models even better suited to a varying
array of scenarios. Extending AutoSR-RS with new state-of-the-art methods is straightforward,
thus the method could be adapted to discoveries in the field. Additional research is needed to better



CHAPTER 7. RESULTS 33

understand how dataset characteristics influence the choice of parameter values, so that the search
space can be improved in a targeted way.

7.3 SENT-NICFI

Tables 7.1 and 7.2 list the results of different datasets. The scores vary a lot per dataset, with high
scores achieved by all methods on OLI2MSI and much lower scores for SENT-NICFI. A possible
explanation could be that the OLI2MSI images are more similar to each other, displaying a lot
of tree cover. Examples of these images can be found in Appendix E. A similar statement can be
made about the Cerrado images, which are all also very similar in colour. The UC Merced and
SENT-NICFI datasets contain images of more varied scenes in terms of colours and features, which
could make these datasets more challenging to model by a neural network. In general, RCAN and
AutoSR-RS seem to be better able to adapt to these varied datasets.

This property of SENT-NICFI potentially makes it an interesting dataset to evaluate models
on their ability to model more complex datasets. SENT-NICFI has the added benefit that it can
be partitioned per land cover type, enabling the training of models for specific use cases. However,
multi-sensor datasets like SENT-NICFI have the caveat that, in addition to “translating” between
resolutions, the model will also need to learn to convert from one sensor to another. To reduce this
effect, the colours of the NICFI images are matched to the Sentinel images. Another approach is
taken by Razzak et al. [36], who propose a colour matching module as an addition to the super-
resolution model to address this problem.
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Figure 7.4: This figure shows the hyperparameter values chosen in the best networks returned by
AutoSR-RS in each experiment. The plot on the left shows whether the WDSR or RCAN block is
chosen. The middle plot shows which numbers of residual blocks (N_res) are chosen. The plot on
the right shows how many times each set of pre-trained weights is selected.
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of the training dataset. The counts indicate how many times out of the 5 repetitions with each
training dataset, a parameter value is chosen for the final architecture. The plot on the left shows
which model block is selected, the plot on the right shows which set of pre-trained weights is selected.
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Figure 7.7: This figure shows examples from each training dataset of predicted test images produced
by different methods. The OLI2MSI images have been brightened, because it would otherwise display
as almost black in Python (but normal in QGIS [35].) The OLI2MSI images have also been cropped
to a region of 60 by 60 pixels (for LR, 120 by 120 for the HR images) in the top left corner to show
the resolution improvements more clearly.



Chapter 8

Conclusion & Future Work

In this chapter, we will summarize the results discussed in the previous Chapter. Finally, ideas for
future research are presented.

8.1 Conclusions

In this thesis, we investigated an autoML approach to the problem of super-resolution in remote
sensing, called AutoSR-RS. We sought to answer the question of whether this method can outperform
the state-of-the-art and which model hyperparameters are found most in the models returned by
AutoSR-RS.

We showed that automated machine learning can be used to super-resolve remote sensing images
and achieve similar or better results than state-of-the-art methods. We used datasets with images
from different sources, including different satellites and aerial imagery. We included both synthetic
data as well as real data, and proposed a new real dataset for single image super-resolution called
SENT-NICFI. SENT-NICFI adds to the small set of real datasets for SISR. It consists of many
images of different types of land cover, and can be partitioned per land cover type for specific
purposes.

AutoSR-RS is an automated machine learning approach with the search space constructed with
findings from state-of-the-art methods like WDSR and RCAN, and uses pre-trained weights from
remote sensing datasets to speed up the training. We compared the performance of AutoSR-RS
to WDSR, RCAN and a simpler automated machine learning approach to super-resolution, called
AutoSRCNN. We showed that the carefully crafted search space of AutoSR-RS outperforms Au-
toSRCNN on every dataset, motivating the use of a more intricate, specialized search space instead
of a simple and more general one. Though AutoSR-RS does not have higher performance than
RCAN on each dataset (AutoSR-RS outperforms all baselines on 1 of the 4 datasets, and comes
second on the remaining 3), statistical testing has ranked the method higher. Thus, AutoSR-RS
performs more consistently on various datasets than the baseline methods, achieving the goal of
AutoML to be consistently better on all datasets than a single, non-automated method would.

We found that running AutoSR-RS for more trials, further increases the performance, though
at the cost of longer running times and a decreased rate of improvement.

Furthermore, from analysing the hyperparameters chosen by AutoSR-RS, we have found that
all sets of pre-trained weights and model blocks are used. The RCAN model block is used the most,
which is to be expected from the experimental results that show that RCAN outperforms WDSR in
3 out of the 4 datasets (as shown in Tables 7.1 and 7.2 in Chapter 7). The results of parameter values
appear to be split between training datasets: Cerrado and OLI2MSI have more similar results, and

37
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UC Merced and SENT-NICFI are more alike. These differences could be explained by Cerrado and
OLI2MSI containing more visually similar images, while the UC Merced and SENT-NICFI datasets
contain more varying scenes. More research is needed to find why these differences in the chosen
values occur.

AutoSR-RS could be further improved by expanding the possibilities for these hyperparameters,
though results have shown that the maximum number of residual blocks could be increased.

AutoSR-RS is the first automated machine learning method for super-resolution of remote sens-
ing images. It achieves high performance across different remote sensing datasets with the use of
pre-trained weights. We hope the method can further be improved in the future, with the addition
of more findings from super-resolution research.

8.2 Future research

In future work, AutoSR-RS could be improved by learning how the characterstics of different
datasets influence the final model produced by AutoSR-RS, with the goal to improve the search
space.

Alternatively, we would like to extend AutoSR-RS to MISR. MISR methods are gaining in
popularity, in part because of the theoretical advantage of having more information when using
multiple images to super-resolve an image. AutoSR-RS could be expanded to MISR, for example in
a similar way as in the work by Kawulok et al. [21], HighResNet [6] or DeepSUM [30]. The latter
two are both participants of the ESA PROBA-V Super-Resolution Competition [10]. These methods
process each of the LR images independently and then merge them at some point in the model.
This type of approach would require additional computational resources.

A different research avenue could be to focus on the loss function. Super-resolution is only a
low-level task and usually not the end-goal by itself. Therefore, the goal should be to increase
performance on the target task instead of approaching the original high-resolution image as much
as possible. A loss function that takes the results of an application task like object detection into
account could help boost the performance of remote sensing tasks.

Finally, an interesting direction would be to address the search space differently. Much like
NASnet [55], the high-level architecture could be fixed and only the repeating residual blocks would
be optimised. This approach would reduce the size of the search space and could offer a reduction
in computational complexity. On a high level, many SR methods are quite similar. Thus, it could
make sense to focus on the smaller units making up these models. The neural architecture search
could also be split into two phases, where in one phase the high-level architecture is optimised and
in the second phase the residual blocks are optimised.
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Appendix A

SENT-NICFI

This section describes how SENT-NICFI is constructed. First, the procedure for selecting the HR
images is described, followed by the procedure of obtaining the matching LR images, as well as a
short discussion of the dataset.

A.1 Selecting HR data

Locations have been selected manually using the Planet basemap explorer 1. The selection cri-
teria were to find diverse regions, including vegetation, desert habitation. Only complete quads
were downloaded, excluding quads at the edges of regions covered by the NICFI study that have
transparent pixels. The selected quad names are listed in Table A.1.

A.2 Obtain LR images

To complete the dataset, Sentinel-2 images corresponding to the Planet images have to be selected.
The sentinelloader library2 provides functionality to find Sentinel images based on criteria like the
date, the desired bands, the region and cloud cover.

The GDAL library [12] makes it possible to extract the coordinates as well as the coordinate
system from a GeoTiff image. In this case, both Sentinel-2 and PlanetScope use the same coordinate
system for the images: WSG84, or EPSG 4326, thus the coordinates do not need to be converted. An
area polygon is created with the extracted coordinates, and this polygon is passed to sentinelloader.

A narrow range of cloud coverage of 0%–10% is chosen, because the selected NICFI images do
not have any clouds.

The sentinelloader package will then return images cropped to the specified region. For older
images it is possible that they are still in the long term archive and not available for immediate
download. Those files have to be requested and can be downloaded within 24 hours. It is likely that
multiple images will be found for each HR image. The image with the least cloud cover is selected
as the final LR image.

1https://www.planet.com/products/basemap/
2https://github.com/flaviostutz/sentinelloader
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A.3 Resampling and splitting into tiles

The original PlanetScope images do not have an exact resolution of 5m, but rather 4.77m. However,
an integer upsampling factor is required for this research. Thus, the HR images are downsampled
to 5m using the GDAL library and bicubic downsampling algorithm.
The Sentinel-2 images obtained using the sentinelloader have a slightly lower resolution than 10m,
so these have to be upsampled in order to reach the desired resolution. Once again, GDAL is used
with the bicubic algorithm.

Next, because the original images are large, they are divided into smaller tiles to limit the
memory usage of the super resolution model. The HR images are split into tiles of 200× 200 pixels,
the LR images into tiles of 100 × 100 pixels. The sizes of both images are not perfect multiples of
these tile sizes, so the incomplete tiles at the edges of the images are discarded.

The final step is to bring the NICFI images closer to the Sentinel-2 images: these two image
sources have different processing levels, and thus the colours appear differently. The processing of
Sentinel-2 images is known to be helpful for analysis of the images. Thus, we aim to correct the
colours of the NICFI images to more closely resemble the Sentinel-2 images. The simplest way to
do this is by way of histogram matching, this is the manipulating of pixel values of an image such
that the colour distribution histogram more closely matches the histogram of another image. This
in effect will shift the colours of the image to be more similar to the reference image.

A.4 How to obtain the dataset

Due to the Terms of Use of the NICFI data, we cannot provide the full SENT-NICFI dataset.
After applying for (free) access to the program at https://www.planet.com/nicfi/, the im-
ages used in this research can be downloaded using the script that is available at the reposi-
tory at https://github.com/JuliaWasala/autoSR-RS_SENT-NICFI. The corresponding sentinel
images can be downloaded from https://universiteitleiden.data.surfsara.nl/index.php/s/
dIrAZuB4PjcdUD2. When all the images are obtained, one can use the code available at the repository
to compile the images into a Tensorflow Dataset, or use as is.
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Table A.1: The ids of the NICFI quads used for SENT-NICFI

Ecosystem Country Quad id

Cities South Africa 1183− 869
Djibouti 1269− 1090
Zimbabwe 1200− 920
Mali 978− 1096
Angola 1137− 956

Desert Niger 1075− 1128
Somalia 1304− 1079
Namibia 1110− 882
Sudan 1110− 882
Niger 1032− 1107

Forest Congo 1134− 1020
Gabon 1102− 1028
Ghana 1013− 1053
Madagascar 1304− 935
Congo 1176− 1016

Agriculture Mozambique 1253− 938
Senegal 943− 1098
Nigeria 1056− 1076
Zambia 1171− 946
Somalia 1282− 1037

Miscellaneous Kenya 1235− 1016
Tanzania 1203− 977
Madagascar 1288− 931
Eritrea 1245− 1109
Angola 1128− 953

Savanna Central African Republic 1149− 1085
Burkina Faso 1019− 1090
Mali 982− 1096
Botswana 1188− 895
Burkina Faso 1005− 1089



Appendix B

Preliminary experiments: RCAN_U

Table B.1: Number of parameters per
model. The number of parameters of the
AutoML models is the average over all ex-
periments.

Model Parameters

WDSR 601, 975
RCAN 15.467, 971
RCAN_U 2, 641, 795
AutoSRCNN ≈ 35, 371
AutoSR-RS ≈ 1, 255, 938

In this chapter we provide additional information on
the preliminary experiments limiting with RCAN_U.

B.1 Experiment

Table B.1 shows the number of trainable parameters of
the baselines and AutoSR-RS. The numbers for WDSR
and RCAN are obtained from a model with an upscaling
factor of 2. The numbers for both AutoSRCNN and
AutoSR-RS are approximate. They represent the means
of the numbers of parameters of the models returned by
AutoSR-RS in the experiments performed in Chapter 6.
The number of parameters can vary significantly between runs.

Due to the large difference in numbers of parameters between WDSR and RCAN, we have
performed a set of experiments on a single dataset with an undeep variant of RCAN with a single
residual group and 20 residual blocks. We refer to this model als RCAN_U. The motivation for this
experiment is that RCAN is much deeper than WDSR, and has a much longer running time. As
shown in Chapter 7, RCAN mostly outperforms WDSR, but the performance gap between the two
methods was not that large, that the question arose whether similar results could not be obtained
with a simplified version of RCAN that would train much faster.
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B.2 Results

The results of 5 runs of RCAN_U with dataset Cerrado are a PSNR of 39.51 ± 0.32 and SSIM of
0.9692 ± 0.0012, which is significantly better than the results of RCAN with the same dataset (as
shown in Tables 7.1 & 7.2 in Chapter 7) following the Wilcoxon signed rank test[3].



Appendix C

Experimental settings

Table C.1: The settings of the baseline ex-
periments. Time is the maximum running
time.

Baseline Dataset Epochs Time

RCAN [51] Cerrado 60 2h
UC Merced 100 24h
So2Sat 18 120h
OLI2MSI 50 24h
SENT-NICFI 50 24h

WDSR [11] Cerrado 60 2h
UC Merced 100 24h
So2Sat 18 120h
OLI2MSI 50 24h
SENT-NICFI 50 24h

Baseline Dataset Trials Time

AutoSRCNN Cerrado 10 2h
UC Merced 10 24h
So2Sat 10 48h
OLI2MSI 10 48h
SENT-NICFI 10 24h

AutoSR-RS Cerrado 20 5h
UC Merced 20 48h
OLI2MSI 20 100h
SENT-NICFI 20 48h

This chapter contains the details necessary to repro-
duce the experiments presented. Note that the running
times are generally taken generously. RCAN runs about
10 times as slow as WDSR, but the same maximum
running times were kept for simplicity.
The maximum running times for the AutoML methods
were set to be generous, due to the variance in running
times of trials. More successful trials will run for longer
than less successful ones that will be stopped early by
AutoKeras. Individual runs (consisting of multiple tri-
als) can take much longer or shorter than others.
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Modifications to AutoKeras

This section gives an overview of the modifications made to AutoKeras for this research. This
information is limited to the changes made to the autokeras source code, as made available at https:
//www.github.com/JuliaWasala/autokeras. The implementations of AutoSR-RS and associated
custom blocks are found at https://www.github.com/JuliaWasala/AutoSR-RS_SENT-NICFI.

D.1 Image output

Output blocks in AutoKeras are called heads, and can be found in the same folder as the imple-
mentation of the blocks. Specifically for this research an ImageHead is implemented, which is a
convolutional layer with the default number of filters set to 3. The number of filters must be equal
to the required number of channels in the output image. The kernel size is set to 1, such that it just
passes along the information to the optimizer.

The loss function is set to L1, or mean absolute error.

D.2 Custom metrics

Super resolution performance is commonly measured in PSNR and SSIM (see Section 6). These
metrics are not integrated in AutoKeras, but are implemented in tensorflow12. As per the AutoKeras
documentation, it should be possible to pass custom metrics3. Unfortunately, in the AutoKeras
version used for this research (1.0.16.post1). Thus, some changes have been made to the source
code in order to make this possible.

The open GitHub issue can be found at https://github.com/keras-team/autokeras/issues/
1400. The changes mostly involve passing a custom_objects dictionary to Keras save and load
functions. These changes have been made at the following locations:

• autokeras.AutoModel.predict

• autokeras.AutoModel.tuner.get_best_model

• autokeras.AutoModel.export_model

• autokeras.AutoModel.evaluate

1https://www.tensorflow.org/api_docs/python/tf/image/psnr
2https://www.tensorflow.org/api_docs/python/tf/image/ssim
3https://autokeras.com/tutorial/faq/#how-to-use-customized-metrics-to-select-the-best-model
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Sample predicted images

This appendix contains image samples from Cerrado [32], UC Merced [50], OLI2MSI [47] and SENT-
NICFI, as well as predictions from WDSR [11], RCAN [51], AutoSRCNN and AutoSR-RS.
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Figure E.1: Examples of the test set of the Cerrado dataset. Original images from the dataset are
shown, as well as images predicted by WDSR, RCAN, AutoSRCNN and AutoSR-RS.

Original LR Original HR WDSR RCAN AutoSRCNN AutoSR-RS
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Figure E.2: Examples of the test set of the UC Merced dataset. Original images from the dataset
are shown, as well as images predicted by WDSR, RCAN, AutoSRCNN and AutoSR-RS.

Original LR Original HR WDSR RCAN AutoSRCNN AutoSR-RS
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Figure E.3: Examples of the test set of the OLI2MSI dataset. Original images from the dataset are
shown, as well as images predicted by WDSR, RCAN, AutoSRCNN and AutoSR-RS.

Original LR Original HR WDSR RCAN AutoSRCNN AutoSR-RS


