
Opleiding I&E

Interaction to enable a dynamic User Interface frontend

communicating with a backend UML runtime engine

Xue Jun Wang

First supervisor: Dr. Guus Ramackers
Second supervisor: Prof. Dr. Joost Visser

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl dd/mm/yyyy

www.liacs.leidenuniv.nl

Abstract

Unified Modelling Language(UML) is a modeling language used to specify, build and document
the artifacts of a system. The purpose of this language is to align the interpretation of read-
ers of diagrams, so that every reader knows for example the flow of a process, like in a flowchart.

This research and development is part of the ngUML/Prose to Prototype Software De-
velopment Environment project at Leiden Institute of Advanced Computer Science (LIACS).
This thesis attempts to extend the User Interface of the ngUML/Prose to Prototype Software
Development Environment project to make it possible to enable workflow and application flow
between pages. However, these are only static pages where the user enters data. The User
Interface needs to be extended to enable workflow and application flow between pages. This
is achieved by expanding the current frontend and the backend. The frontend is extended
with the functionality to link nodes that are made in the frontend with pages of the backend
and the backend is extended with an engine for prototype execution. The result is a dynamic
display of pages corresponding in the order of the nodes of the created activity diagram.

Even though the frontend and the backend of the ngUML/Prose to Prototype Software
Development Environment project are extended, the application is not ready for business and
individual consumption.

2

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Problem statement . 1
1.3 Approach . 1
1.4 Result . 1
1.5 Thesis overview . 2

2 Background and Related Work 3
2.1 Unified Modelling Language . 3
2.2 Activity Diagram . 3
2.3 Current State . 6
2.4 Desired State . 10
2.5 Related work . 10
2.6 Event-driven applications . 10

2.6.1 Usage of Event-driven applications . 10
2.6.2 Wireframe . 12

3 System Design 15
3.1 Logical Design . 15

3.1.1 Requirements . 15
3.1.2 Overview . 15

3.2 Technical Design . 16

4 Worked Examples 17
4.1 Page creation . 17
4.2 workflow1 . 24

5 Conclusions and Further Research 30

References 32

1 Introduction

1.1 Introduction

Unified Modelling Language (UML) creates visual modeling language for the construction, design
and implementation of complex software systems, both structurally and behaviorally, using a
collection of diagrams. It is similar to the blueprints used in other fields and consists of different
types of diagrams. Broadly speaking, a UML diagram describes the boundary, structure, and
behavior of a system and the objects contained within it.

1.2 Problem statement

Currently, there are static pages in which users are able to enter data. The existing research project
“prose to prototype” has the functionality to interpret UML class metadata for prototype execution.
However, these are only static pages where the user enters data. The User Interface needs to be
extended to enable workflow and application flow between pages. This requires extending the
prototype with controls and making it communicate with background execution. Also, the backend
must be extended to include the new interaction model.

1.3 Approach

This thesis proposes to enable a dynamic user interface communcating with a backend. The final
prototype consists of a User Interface that is able to support workflow and application flow between
pages. Meaning a frontend that support linking pages within an application or workflow. This
requires extending the prototype with controls and making it communicate with background
execution.

1.4 Result

The result is software that will be built within the React framework and is able to perform processes
at runtime. Meaning, that the deliverable is software, consisting of TypeScript-code including
methods and const cooperating based on the metadata extraction as a result of user interaction
with the prototype. So the current frontend needs to be extended.

1

Figure 1: The flowchart

1.5 Thesis overview

Chapter 1 contains the introduction, where the current situation, problem statement, approach
and the result will be discussed and explained; Chapter 2 provides the background of the ngUML
project and the related work will be discussed; Chapter 3 describes the logical and technical design
of the system; Chapter 4 shows and explains two worked example; Chapter 5 discusses challenges
regarding this research and further research.

This bachelor thesis is the final assignment for the bachelor’s study in Computer Science and
Economics at the Leiden Institute of Advanced Computer Science from Leiden University. It is
supervised by Guus Ramackers.

2

2 Background and Related Work

2.1 Unified Modelling Language

Unified Modelling Language(UML) is a modeling language used to specify, build, and document
the artifacts of a system. The purpose of this language is to align the interpretation of readers
of diagrams, so that every reader knows for examples the flow of a process, like in a flowchart. A
flowchart is a schematic representation of a process, in which the process flow is represented by
arrows and symbols[Luc]. A process has a clear start (the ’trigger’) and leads to a predefined result
in several successive steps (the activities).

2.2 Activity Diagram

For this report, the main studies are the component of UML which are Activity Diagrams. Unified
Modeling Language is divided into several subsets of diagrams, including structure diagrams,
interaction diagrams and behavior diagrams[IBMb]. For activity diagrams, an example can be seen
in Figure 2. Along with use case and state machine diagrams, activity diagrams are considered
behavior diagrams because they describe what needs to be done in the system being modeled.

Figure 2: The activity diagram

An activity diagram helps people from the business and development side of an organization come
together to understand the same process and behavior. In other words, a UML activity diagram

3

helps to visualize a particular use case at a more granular level. It is a behavioral diagram that
illustrates the flow of activities through a system. UML activity diagrams can also be used to show
a flow of events in a business process. They can be used to examine business processes to identify
the flow and its requirements.

In an activity diagram, there are different components/nodes which are used to build a diagram[IBMa].
A short description of those nodes is shown in Table 1:

4

Activity diagram nodes

Table 1: The Activity diagram nodes and the description of each node

5

2.3 Current State

The ngUML software extracts metadata and is able to create UML classes from the natural language
requirements text the user provides. Based on the class model, the software can create a demo
application. In order to run the demo application. First, the requirements need to be defined. In
figure 3 the requirements are defined as:’An order is placed by a specific customer. A customer has
a first name, last name, address, and birth date. The order consists of multiple line items. Each
order has an order number, an entry date, a delivery status, and a description. A line item specifies
a particular product, and defines the quantity that is ordered. A product is characterized by a name,
a description, a product number, a price, a location. Restricted products and flammable products
are types of products. Each order is shipped by a delivery company. The delivery company has a
name and an address.’

Figure 3: the requirement text

6

After the requirement text is formulated. The backend will use natural language processing to
transform the requirement text into a UML class model, this will happen when the button “show
metadata” is pressed. When the backend is finished translating, a UML model with classes will be
generated as illustrated in figure 4.

Figure 4: The UML model that is generated based on the requirement text

In the runnable prototype, in the section domain model as depicted in figure 5 the attribute values
and relations between the attributes can be changed and deleted when an attribute is not needed
for the application.

7

Figure 5: The section domain model, where attributes from each class and relation between classes
can be modified

When the modification is done, an application can be created in the section Application model.
From there we provide each class with data as depicted in figure 6

8

Figure 6: In the application model, an application can be created

When all the classes are provided with data an order list can be created with the data as illustrated
in figure 7.

Figure 7: With the provided data an order list can be created

9

2.4 Desired State

In order to add the flow between pages that are part of an application or workflow, a workflow
between pages must be added. Meaning, in the desired state, a page will be shown for each node in
an activity diagram at runtime. For example the activity diagram in Figure 2.

As described above, the software will be built, where for each node, a page will be shown at runtime.
As described in the flowchart of Figure 2, a user places an order. The order will go to a decision
point where the order will be validated. If the order does not need validation the order will be
merged and the stock will be allocated. When the order is for example higher than 10.000 dollars,
an approval is needed. When the approval is finished, the order will be merged and the stock will
be allocated and if the approval is declined the order will be ignored.

2.5 Related work

In this section, some research in this field of study will be shown and discussed. Namely, Event-driven
applications/programming and Wireframe. This section is divided into two parts. The first part,
Event-driven applications/programming, will be explained and other research in this field will be
shown. The second part, Wireframe, will explain the main components behind Wireframes and
other research in this field will be shown. The questions which will be answered to understand
the relevance of this paper are: “why are Event-driven applications/programming and Wireframe
used?”, “What are the benefits of using Event-driven applications/programming and Wireframe”
“What are the drawbacks of using Event-driven applications/programming and Wireframe?”,

2.6 Event-driven applications

2.6.1 Usage of Event-driven applications

“It’s been predicted by Gartner that by 2020 a real-time, event-driven approach will be demanded
for 80% of all digital applications used in business”[Chi], but what is an event-driven application?
An event-driven application is an application that is driven by input and reacts in real-time to that
input with an action. That input is caused by a user for example. The purpose of an event-driven
application or using an event-driven User Interface is to ensure that the end-user has a smooth
experience while using the application or the user interface[CJV15].

2.6.1.1 Relation to ngUML

In an event-driven program there are 2 components:

• The scheduler

• The event handler

The scheduler is the central point of the application that receives events and passes them down to
the corresponding event handler[JM6]. At runtime, the scheduler remains active until it encounters

10

an end-event that terminates the application. Each event is identified by an ID of the object affected
by the event. An example may be the name of a button the user clicks. Additionally, events are
generated not only by a user during the execution of a program, but also by messages from the
operating system or from an interruption by a device or by system hardware. When the events are
generated and received by a scheduler, the scheduler checks the event for the type of the event for
example. After it is checked, the scheduler calls for the event handler to deal with it. The handler
takes the necessary actions in the form of a visual response or changing the system’s state. An
event handler can trigger another event that will cause a second handler to deal with the event. A
global view of how an event-driven program works is shown in Figure 8.

Figure 8: How a simple event-driven program works

The approach for the ngUML software is also based on event-driven applications where the software
is able to interpret process specifications at runtime in order to add pages which are part of an
application or workflow. As a result, pages must be shown at runtime for each node in an activity
diagram. In short, in an event-driven application, there is a main loop that waits for events. When
an event is detected, a call-back function (event handler) is triggered. As a result, the flow of the
application is determined by actions/events like mouse clicks or signals from other programs.

2.6.1.2 Rationale behind Event-driven applications

As quoted above by Raspal Chima, Gartner predicted that by 2020, 80% of all applications which
are used in business are required to be event-driven. Provost et al.[ATL16] has done research
on why an event-driven approach is demanded for businesses in this era. Industry 4.0 is char-
acterized by the combination and integration of systems and new technologies and one of those
new technologies is the Internet of Things (IoT). The Internet of Things is actually simply a
name for the ever-increasing integration of various digital systems on the internet and the con-
nection to exchange data between these systems. As quoted in the journal by Lan et al. [LLS14]:
“IoT (Internet of Things) bridges the physical world and information space. IoT services are envi-
ronment sensitive and event-driven. The new IoT service architecture should adapt to these features.”

11

A business with an event-driven approach in architecture is more flexible. As such, tougher and
constantly changing market demands can be withstood. To move along as a company with regard
to Industry 4.0, businesses are required to be flexible when integrating new systems and managing
big data. As described in the journal from Provost et al.[ATL16], an event-driven architecture
enables a firm to integrate new systems and manage big data.

The journal by Provost et al. presents The Line Information System Architecture (LISA). The
intent of LISA is to use LISA to tackle the tougher and constantly changing market demands.
Moreover, LISA is described by the authors as “an event-driven architecture featuring loose coupling,
a prototype oriented information model and formalised transformation services. LISA is designed to
enable flexible factory integration and data utilisation. The focus of LISA is on integration of devices
and services on all levels, simplifying hardware changes and integration of new smart services as
well as supporting continuous improvements on information visualisation and control”[ATL16].

Another reason why event-driven applications are used is described in the paper by Dabek et
al.[FDM02]. Namely, an event-driven program is more robust than a thread program. Events
are a better means of managing I/O concurrency in server software than threads. Meaning, an
event-driven application can run multiple events sequentially while thread programs cannot. This
is because events help avoid bugs that occur by the unnecessary CPU concurrency. Furthermore,
under heavy load event-driven programs perform more stable than threaded programs.

Also, the Web is constantly changing. As described in the paper of Yuan et al., the Web is
becoming a medium for providing a wide array of e-commerce and other information, where services
are based solely on distributed software interactions for collaborative work[YL09]. Event-driven
architecture is the solution for building such information systems based on software interactions
due to their characteristics of modularity, loose couplings, and flexibility.

On the other hand, there are drawbacks to event-driven architecture. An example of this is de-
scribed in the paper by McClurg et al. [JM6]. In the paper, the authors mention a few drawbacks
when using an event-driven architecture. When applications using an event-driven approach in the
architecture need a maintenance break, it may be difficult to keep the application running as before
the update was implemented. Due to the high degree of concurrency in networks, implementing
updates properly is difficult.

Furthermore, a drawback of Event-driven application is the adaptability of Event-driven architecture[YL09].
The paper of Yuan et al. presents a new Event-driven architecture of adaptive integration of Event-
driven architecture and discussed why the old Event-driven architecture is no longer up to date. The
main reason is the dynamic behavior of the users. Given the rapid changes in the web environment,
Event-driven architecture is not able to empower those changes and adapt to those behaviours.

2.6.2 Wireframe

A Wireframe is a visual tool to develop a website or an application. It is like a construction drawing,
where an overview is given of the different parts that will be present on a website. With a Wireframe,

12

the structure of a website and how pages are connected to each other are illustrated. The main
components of a Wireframe are usability and user-friendliness. Namely, the following elements are
key aspects of Wireframes:

• Structure: coherence between different parts.

• Layout: arrangement between parts.

• Navigation: deals with the menu and links. Meaning, how the menu on the website should
look like and what each link should refer to.

• Functionality: elements that determine interaction, ease of use and efficiency of the website.

2.6.2.1 Usage of Wireframes

First, previous research has determined the usage of wireframe. In the first paper presented by
Roth et al., the authors describe the potential of wireframe by creating a prototype [RHMQ17].
In order to test the contribution of wireframe to the end product, a wireframe was introduced
for a project (the National Oceanic Atmospheric administration’s (NOAA) Lake Level Viewer) to
improve the user experience. Eighteen participants were selected to use the wireframes. At the end
of the participation, for each participant their recommendations were asked for the end product
and those recommendations were applied to the end product. As a result, the usage of wireframes
leads to an improvement in the end product, which would be unattainable had the experiment
never been partaken.

The second paper discussing the usage of wireframe described that wireframe are useful when
creating prototypes [SRMSCV13]. Especially in the start phase where a team is united to design
and create the first prototype, wireframe are of particular interest. As a result of using Wireframe,
developers are able to spend less time and money creating several prototypes when a high proportion
of prototypes is discarded. Furthermore, the usage of wireframe saves time with regards to under-
standing what a prototype should look like. Gutierrez et al. proposed a solution for the common
high costs and long development times during the development phase[GLS21]. The solution is the
implementation of an algorithm that generates static web pages from hand-drawn drawings. The
usage of the wireframe algorithm reduces the cost and time of developing web pages by automating
the process of creating Html and CSS code.

The third paper extends the second paper which discussed the usage of wireframe [Bra]. Namely, the
paper by Brajnik states that wireframe helps with accessibility assessments. In the conceptual design
phase, wireframe carried out usability and accessibility investigations. Because of the wireframe,
the developers get a better mapping of the requirements. This leads to a quicker transition from
the abstract level of design to a concrete level of design.

The fourth paper covering the why-question reviews the relevance of using visual representations to
communicate design ideas between different stakeholders [BKLHI01]. In this paper, Bryan-Kinns
et al. studied large multinational companies that are specialised in creating, designing and build-
ing e-commerce websites. To discover the importance of visual representations, a range of visual
representations was shown to participants. The different forms of visual representations used were

13

hand-drawn sketches, wireframes, prototypes, digital sketches and other digital prototypes. In order
to obtain data, data was collected through interviews and surveys. Bryan-Kinns et al. found that,
in order to create, design and build potential e-commerce websites, several different components
working together are needed to develop websites. For example, usability engineering, graphic design,
coding and management consulting are key factors. As such, communication between components
is necessary to discover early problems in the process of designing an e-commerce website and
make it easier and cheaper to correct mistakes and make changes. In order to achieve that, visual
representations are necessary. They show the navigation structure and the content of the designing
process.

2.6.2.2 Drawbacks of wireframes

Yet, there are drawbacks when using wireframes. A study done by Sutipitakwong et al. describes
their findings on the analysis of the effectiveness of team communication [SJ20]. In the analysis,
two wireframes were used. That is, a tangible wireframe and a digital wireframe were used in order
to test the team communication through three main aspects: Design, Features, and Layout. The
outcome of the analysis showed that tangible Wireframes are easy to work with which leads to
a clearer view of a product’s design. The effectiveness of team communication not only depends
on the kind of Wireframe that is used, but also depends on the user experience of team members,
understanding of goals and the intermediate achievements and the ability to select the right tools
that are suitable for the Wireframes to achieve those goals and intermediate achievements. The
analysis concluded was that most companies procure the newest Wireframe to improve teamwork,
but the quality of the team communication not only depends on the kind of Wireframe that is used,
but depends on many factors.

14

3 System Design

This section describes the design of the system created to enable a dynamic user interface commu-
nicating with a backend. This section is divided into two subjects. First, the logical design will
be reviewed. Secondly, the technical design will be discussed. In the section of logical design, an
analysis and an explanation will be given for the design of the system. In the technical design
section, a high-level overview explanation of the system will be given.

3.1 Logical Design

3.1.1 Requirements

For this project, the purpose is to extend the User Interface to make it possible to enable workflow
and application flow between pages. This requires extending the prototype with controls and making
it communicate with background execution. The project consists of a frontend (the ngUML class
modeler) and a backend (the ngUML Django backend). The language of the frontend is Typescript
and the framework that is used is REACT. The backend is made with the language Python and
the framework that is used is Django.

To achieve the goal to extend the prototype with controls and make it communicate with the
backend, the frontend needs to deliver the required data and code to make it possible for the
backend to do automatic execution at runtime for processes. Thus, the following requirements must
be met:

• For every activity node that is created in the frontend it has to be stored in the backend, but
also the data of the activity node must be stored in the backend.

• For every activity node, it needs to be linked with a page to be able to execute the prototype
in the backend. As a result, the backend must know in which order to show the pages.

3.1.2 Overview

View the activity diagram given in Figure 2. A user manually creates the activity diagram from
Figure 2 in the frontend and gives each of those nodes a pagename, except the initial node. For
example, the Enter Order node gets the pagename “EnterOrder”, the decision node gets the
pagename “Decision”, the approve order node gets the pagename“Approve” and the allocate stock
node gets the pagename “Allocate stock”. When the user is done with providing each node with a
pagename. The user goes to the backend to create manually pages. Depending on the number of
pagename the user assign, the user will create four pages for this example. The user assigns page 1
to the Enter Order node, page 2 to the decision node, page 3 to the approve order node and page 4
to the allocate stock node. After each activity node is assigned to a page, the backend is provided
with the necessary data to execute the prototype.

15

3.2 Technical Design

To make it possible to enable workflow between pages based on an activity diagram one major
thing needs to be accomplished. That is, the connection between an activity node and a page (that
can be created in the backend) must be added. The activity diagram will be made in the frontend,
so when a node is made by a user the user has the ability to give the node that will be created a
pagename. So, the following implementation needs to be done:

• The frontend has the functionality to give a node a pagename.

• The frontend needs to store the user’s input and send it to the backend.

• A feature needs to be implemented where the user can connect the nodes of an activity
diagram with a page.

Firstly, to create a function where the user can place a page name for a node that is made, an
input box is created in the ActivityMenu. The input box is made with the package blueprintjs/core.
Secondly, the input box takes the user input and gives that input to the property “pagename”.
The property “pagename” is created by adding the pagename property in the object (INode) and
passing that property to the function addnode. Thirdly, this function ensures that the data is stored
for each node that is created as a copy of the node.

When the data is stored for each node as a copy. The WriteData function will send the data to the
backend and in the backend the data of the node will then be stored in the database.
Lastly, to link the node with the page that is created in the backend the function page link is made
to connect the activity node with the page in the backend. The function checks whether the request
it obtained from the Html was get or post. If the request was get, the function page link shows
the corresponding page. Namely, a web page with a drop-down button where the user can choose
from the following pagename, as seen in Figure 22 and Figure 23 is shown. If the request was post,
the user has clicked the save button. As a result, the id of the pagename connected to the activity
node will be linked with the id of the page, where the page currently is located. The linking of the
ids will be then visible in the database. To make the functionality to store the two connected ids, a
ManyToMany relationship was added to the tables of Page and ActivityNode.That means that
Page can have multiple ActivityNode objects and ActivityNode can have multiple Page objects.
Meaning, that multiple pages that are created in the backend can be connected with multiple
activity nodes and multiple activity nodes can be linked with multiple pages.

16

4 Worked Examples

In this section, two worked examples will be shown to illustrate how the system works. First, a
worked example of Bram van Aggelen of the creation of a page will be shown. Second, an illustration
of the workflow will be illustrated.

4.1 Page creation

To start the worked example of the creation of pages, the user starts by defining a requirement
text. When the requirement text is defined, the user enters the requirement text into the backend
metadata extractor (see Figure 3) and presses the “Show metadata” button. By pressing the “Show
metadata” button, the backend uses NLP processing to start finding classes, their attributes and
the relation between the classes. When the processing in the backend is finished, a class diagram is
generated in the ngUML editor as illustrated in Figure 4. Next, some changes need to be made to
the class diagram to let it work in the way it is supposed to. So the following changes need to be
made:

• order – customer (1)

• order – deliverycompany (1)

• lineitem – product (1)

These changes need to be made because some relations that are modeled as many to many need
to be modeled as many to one due to the lack of implementation of many to many relationships,
where the (1) in the changes indicates the 1 in the relationships.

Next, go back to the backend and go to “Runnable prototype” and then to “Domain model”, where
the classes and the relation between them can be viewed and edited as depicted in Figure 5. When
everything is modified correctly, the other part will be used, namely “Application model”. In the
“Application model” two applications will be created, called Client and Business (see Figure 9).
“Client” refers to the client side and “Business” refers to the business side.

Figure 9: The Business and the Client applications

17

Following, for each application the corresponding classifiers will be added. In the Business applica-
tion under “Category”, a new category is created, called “Creation”. In “Creation” two pages will
be created, named Product and Delivery company (see Figure 10).

Figure 10: Category with the pages Product and Delivery company

Next is setting up each page. That is possible in the query tab (see Figure 11). From there the
main model can be chosen, the toggle for“page for data insert” can be checked and if wanted a user
can specify a query to narrow down the results (see Figure 12).

18

Figure 11: Categroy with the pages Product and Delivery company

Figure 12: Page for data insert

Following, select “Product” and choose the page creation option. After that has happened, select
all of the properties linked to the “Product” classifier as illustrated in Figure 13.

19

Figure 13: Properties of “Product”

Next, the Html structure will be created through the tab “Edit” (see Figure 11). In “Edit” (see
Figure 14) there is the ability to use features. The features are: insert data, insert data table, insert
input field, insert input model and insert submit button.

Figure 14: The custom Html editor

20

For this example, choose under the tab “insert”, “insert input” (see Figure 15). This will show a
table where the data of “Product” can be entered, as illustrated in Figure 16.

Figure 15: Inserting data in the Html page editor

Figure 16: Table where the data of Product can be entered

21

After the data is entered, a save button will be added to save the page and this will result in the
following page (see Figure 17). As seen in Figure 17 there is the ability to add more data with the
button “Add more”.

Figure 17: The page that is generated after the data is entered and saved with the save button

This process will also be done for the Delivery company afterward. Next, a new category will be
created, named “overview” as seen in Figure 18.

Figure 18: The creation of the category “Overview”

22

In “overview”, the page “order-overview” will be created. The main model of the “order-overview”
page is “Order”, so the following properties will be selected:

• All of Order

• Name of Customer

• Quantity from LineItem

• Name, price and product number from Product

• All of Delivery Company

This will generate the page as seen in Figure 19. Finally, the “Client” application will be opened
and the Order, Customer, LineItem and Product classifiers were added. After that is done, the
category “Order” will be created for “product” in Figure 10. Following, in the category “Order”
a page called “create-order ” will be made. For the main model, choose “Order” and insert it as
data page. After that link all the possible properties and the final page will be created as seen in
Figure 10.

Figure 19: The creation of the page “order-overview”

23

Figure 20: The final page

4.2 workflow1

All of the steps of the workflow example will be shown and explained in this section. For these
worked examples two applications are involved Namely, the ngUML editor and the ngUML Django
backend. From here on ngUML editor will be referred to as frontend and the ngUML Django
backend referred to as the backend. To start the workflow example, users start by creating an
activity diagram. For example the activity diagram in Figure 21.

Figure 21: The activity diagram for the worked example

24

After the activity diagram is created, the user has the ability to assign for each node a page name
(see Figure 22 and Figure 23).

Figure 22: The menu that will pop up when the user clicked on node1 to assign a pagename

Figure 23: The menu that will pop up when the user clicked on node2 to assign a pagename

25

So, node1 gets the pagename “pagename1” and node2 gets the pagename “pagename2”, as illustrated
in Figure 22 and Figure 23). When that is done, the user presses the “Push to Backend” button to
push the node data to the backend. When all the data is sent, the user goes to the backend, then
to “Runnable prototype” and to “Application model”. In the “Application model” an application
will be created, called “OrderApplication” (see Figure 24).

Figure 24: The application for the activity diagram

Following, in the application under “Category”, a new category is created called “cat1”(see
Figure 25). In “cat1” two pages are created, namely page1 and page2, as illustrated in Figure 26.

Figure 25: The category for the activity diagram

26

Figure 26: The 2 pages that are created in “cat1”

Next, by pressing the button “link to” a web page will be generated where the user can link the
page with a pagename, where the pagename is connected with a node from the frontend. Page1
and page2 were linked to pagename1 and pagename2 as illustrated in Figure 27 and Figure 28).

Figure 27: Page1 linked with pagename1

27

Figure 28: Page2 linked with pagename2

When all the preparations have been made, the backend is ready to run the workflow. In order to
run the prototype, the “run prototype” button (see Figure 25) must be clicked. This leads the user
to the following page, as seen in Figure 30.

Figure 29: Page to start the prototype execution

28

After the “run” button is pressed, the first page will be shown. That page is linked to the first
action node after the initial node. Since action node1 was linked to pagename1 and pagename1 to
page 1, page 1 will be shown for action node1 (Figure 29). When the next button is clicked, the
page of next action node that is connected with the previous action node will be displayed, so in
this case action node2. Since both the pages for action node1 and 2 are empty, the pages will look
like in Figure 29. But the id of the page is still different for both nodes.

Figure 30: Page that is generated for action node1, this page will also be shown for action node2,
because the pages are empty

29

5 Conclusions and Further Research

This thesis is part of ngUML at Leiden Institute of Advanced Computer Science and presented an
approach to automatically perform prototypes at runtime by adding behavioural aspects to static
pages in a UML interpreter. This project is built on a current existing project by the ngUML team
and was produced in collaboration with Spruijt’s work focused on the automatic execution of the
flow of pages for an activity diagram.

This paper adds to the previous research about wireframe and event-driven application by creating
a runtime prototype executor from metadata obtained by user requirements. This is achieved by
extending frontend functionalities. In the frontend, an input box is implemented where the user
can give a node a pagename. When all the created nodes are assigned a pagename, the data will be
sent to the backend. When the data is sent, the user can connect the page in the backend to the
created pagename with a dropdown button. In this button, the user can choose from all pagenames
where each pagename comes from all activity nodes in an activity diagram.

Nevertheless, the prototype execution is not ready for real-life or business use. Namely, the
currently created feature for the frontend to assign a pagename for a node is only possible for the
Action Node and Decision Node. As such, future research should focus on expanding this feature
for all other nodes. Another limitation of this project is that in the frontend, that it is not possible
to create more than one activity diagram. Meaning, it is not possible to use two initial nodes in the
same editor. It is possible to place two initial nodes, but the two initial nodes will not be stored in
the backend. So, future research should focus on making it possible to use more initial nodes in the
same editor, so more advanced activity diagrams can be made.

Furthermore, future research should focus on making the pagenames editable. For example, when
the user has entered a pagename in the input box and pressed enter to submit the pagename, the
pagename can no longer be changed. Another problem with the current software for the ngUML
editor is that it is only able to handle linear processes. For example, if an activity diagram consists
of a parallel process it is still possible to give the nodes a pagename, but the processing of the data
of those nodes will not be possible. In the backend, those nodes are stored with an incorrect name
and pagename. Future research should extend the current choice of activity process and make it
possible to store those nodes as they should be in the database of the backend. The last limitation
is the lack of response when an activity diagram is incomplete. For example, currently, it is possible
in the frontend to make an activity diagram and push it to the backend, without an initial node or
an end activity node. Future research should return a notification to warn the user that the created
activity diagram is incomplete.

30

References

[ATL16] J. Provost M. Lieder C. Johnsson T. Lundholm A. Theorin, K. Bengtsson and
B. Lennartson. An event-driven manufacturing information system architecture for
industry 4.0. International Journal of Production Research, 55:1297–1311, 2016.

[BKLHI01] Nick Bryan-Kinns, Magnus Lif, Fraser Hamilton, and Ismail Ismail. Prototypes in
Web-Site Design — Representations with Political Agenda, pages 92–105. Springer
London, London, 2001.

[Bra] Giorgio Brajnik. Is the uml appropriate for interaction design?

[Chi] Raspal Chima. Event-driven applications in software development.

[CJV15] V. Raychev D. Dimitrov C.S. Jensen, A. Møller and M. Vechev. Stateless model
checking of event-driven applications. ACM SIGPLAN Notices, 50:57–73, 2015.

[FDM02] F. Kaashoek D. Mazières F. Dabek, N. Zeldovich and R. Morris. Event-driven
programming for robust software. Proceedings of the 10th workshop on ACM SIGOPS
European workshop: beyond the PC - EW10, 2002.

[GLS21] Cesar Enrique Estrada Gutierrez, Rodrigo D. Lara, and Daniel Subauste. Cloud
application for the generation of static websites through the recognition of wireframes
using artificial intelligence. 2021.

[IBMa] IBM. Control nodes in activity diagrams.

[IBMb] IBM. Uml activity diagrams.

[JM6] N. Foster J. McClurg, H. Hojjat and P. Černý. Event-driven network programming.
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, page 369–385, 2016.

[LLS14] B. Wang L. Zhang L. Lan, F. Li and R. Shi. An event-driven service-oriented archi-
tecture for the internet of things. 2014 Asia-Pacific Services Computing Conference,
2014.

[Luc] Lucidchart. Why use a uml diagram?

[RHMQ17] Robert E. Roth, David Hart, Rashauna Mead, and Chloë Quinn. Wireframing for
interactive & web-based geographic visualization: designing the noaa lake level viewer.
Cartography and Geographic Information Science, 44(4):338–357, 2017.

[SJ20] Sutipong Sutipitakwong and Pornsuree Jamsri. Pros and cons of tangible and digital
wireframes. In 2020 IEEE Frontiers in Education Conference (FIE), pages 1–5, 2020.

[SRMSCV13] Óscar Sánchez Ramón, Jesús Molina, Jesús Sánchez Cuadrado, and Jean Vanderdon-
ckt. Gui generation from wireframes. 09 2013.

31

[YL09] Soe-Tsyr Yuan and Mei-Rung Lu. An value-centric event driven model and architec-
ture: A case study of adaptive complement of soa for distributed care service delivery.
Expert Systems with Applications, 36(2, Part 2):3671–3694, 2009.

32

	Introduction
	Introduction
	Problem statement
	Approach
	Result
	Thesis overview

	Background and Related Work
	Unified Modelling Language
	Activity Diagram
	Current State
	Desired State
	Related work
	Event-driven applications
	Usage of Event-driven applications
	Wireframe

	System Design
	Logical Design
	Requirements
	Overview

	Technical Design

	Worked Examples
	Page creation
	workflow1

	Conclusions and Further Research
	References

