

Master Computer Science

Pre-training World Models to efficiently learn

related tasks

Name: Ken S. Voskuil
Student ID: s2553740

Date: 30/06/2022

Specialisation: Data Science

1st supervisor: prof. dr. Aske Plaat
2nd supervisor: dr. Thomas M. Moerland

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

2

Pre-training World Models to efficiently learn

related tasks

K. S. Voskuil

June 2022

Abstract

Reinforcement Learning problems are often divided into smaller tasks,
and each sub-task is then usually solved by separate instances of the same
method. We ask if we could improve efficiency by applying a method
to sets of sub-tasks. We show that combining a number of sub-tasks
is a simple way to scale the difficulty to match the capacity of a chosen
method. We also find that combining sub-tasks is an effective pre-training
strategy. Even when the combination of sub-tasks is too hard to solve with
a single agent, we see clear efficiency improvements when we fine-tune the
pre-trained agent on individual tasks. On the other hand, we did not find
improved capacity to generalize and transfer experience to other, unseen
sub-tasks.

1 Introduction

Many, if not most practical Reinforcement Learning (RL) problems can be di-
vided into smaller, more specific tasks, or are part of a set of related tasks which
could be composed together into a single, more complex problem. Deciding on
the appropriate problem statement in this regard significantly impacts which so-
lutions can be applied, how well these solutions will perform, and the efficiency
with which the task is accomplished. As an illustration, imagine applying Rein-
forcement Learning to cooking; one approach would be to break cooking up into
fine-grained tasks such as ‘chopping’, ‘stir-frying’ and ‘broiling’, which we could
then try to accomplish by training a separate policy per task. A higher-level
policy would then be needed to stitch these policies together to complete the
bigger task of cooking a meal. A different approach could be to train one policy
end-to-end per recipe. We can even generalise further, and train a single agent
to master the French kitchen or any reasonable recipe.

There are several aspects to consider when choosing the problem scope to
which you apply your RL method;

• Parameterized policy algorithms have a limited capacity – or maximum
policy complexity that can be expressed with any parameterization. A

1

very general task like ‘mastering the French kitchen’ might not be feasible
at all with the chosen method and configuration. By splitting a prob-
lem up and using multiple instances of the method, each with their own
parameterization, we scale the capacity of our solution.

• Learning such a general problem is also often much harder. The credit
assignment problem is one of the core obstacles in RL, and by introducing
sub-problems we can explicitly assign importance (or value) to partial
results, using external domain knowledge. In the example of cooking, it
might take a very long time to learn the importance of correctly dicing an
onion if we only measure the final outcome.

• On the other hand, when we subdivide our problem to an impractical
level, it might become infeasible to learn a new policy from scratch for
each task. You might have hundreds or thousands of recipes you want
to train an agent for, making training an agent from scratch per recipe
quickly too computationally expensive.

• Besides an infeasible number of tasks, this subdividing can also introduce
clear inefficiencies; many recipes will require a diced onion, but if we train
a new policy for each recipe, we would need to learn how to dice an onion
every time. We may try to avoid this by splitting the problem up further,
but there will likely always be some overlap between tasks. In our cooking
example, even seemingly dissimilar tasks like ‘chopping’ and ‘stir-frying’
require an understanding of how to physically control knives and pans.

In general a fundamental understanding of the dynamics of the environ-
ment can usually be applied to and shared between even the most granular
tasks. Neural networks have shown to be very effective in learning fea-
tures and representations automatically[12], but the continuous effort in
transfer learning show that reusing these learned representations is not
straightforward.

The somewhat hypothetical problem of cookery aside, we see these consider-
ations come into play in much of RL research. Many benchmark sets, such as the
Atari 51 benchmark [3], provide a variety of problems with a shared structure
(in the case of Atari 51, the observation structure and action space) which are
usually solved by training a separate policy for each problem instance. While in
benchmarking this serves its own purpose of making it easy to compare a new
method across different scenarios, one may ask what the most efficient way is
to solve multiple Atari games. It might be that we could save training time by
training one policy for multiple games, or even by finding common sub-tasks
between games and training and stitching together partial policies.

Another clear scenario where these considerations can be applied are longer
video games such as Super Mario Bros., or Sonic the Hedgehog. It may not be
feasible to train a single instance of an algorithm to beat the full game, and it
is common practice to take the different levels of such a game as separate tasks.
However, these levels usually build off of each other, by reusing challenges,

2

obstacles and general dynamics seen in previous levels. By learning separate
policies for each level, we would have to relearn the same things multiple times.

Several sub-fields of Reinforcement Learning explore different approaches to
this problem. Most pertinent to our work is Multi-task RL, which studies how
to solve multiple tasks simultaneously. Transfer Learning in RL tries to avoid
the inefficiencies of learning separate tasks with shared components, by trans-
ferring experience learned in one environment to another, and reusing shareable
knowledge instead of relearning it from scratch. Meta Learning shares similar
goals, but instead of trying to directly reuse experience or learned knowledge,
the focus lies on optimizing the learning process itself. These fields are roughly
orthogonal, and methods from one sub-field can often be combined with ideas
from another.

For our work we apply DreamerV2[8], an established world model -base method,
on multiple levels of Super Mario Bros. We find that DreamerV2 is capable of
beating individual Mario levels without special tuning, and that a single agent
can learn an effective policy for multiple of these levels at the same time. With-
out changing the model, we adapt the training procedure to experiment with
pre-training and fine-tuning, which can be considered meta learning methods,
and with transferring learned parameters to unseen levels. We compare a typ-
ical configuration where we train a separate agent for each level, to training
a single agent on multiple levels, fine-tuning pre-trained agents, and transfer-
ring pre-trained agents to new levels. We show that both training on multiple
tasks and fine-tuning on specific tasks can significantly improve the efficiency
compared to learning separate policies for each level.

More specifically, given a set of environments E we investigate the following
research questions;

1. Is it more efficient to train a single DreamerV2 agent on all environments
in this set at once, compared to training a separate agent on each envi-
ronment separately?

2. Can a DreamerV2 agent trained on all environments in E be fine-tuned
further on specific environments E ∈ E?

3. Can a DreamerV2 agent trained on all environments in E effectively trans-
fer information to a new environment E 6∈ E?

2 Background

2.1 Reinforcement Learning

In Reinforcement Learning (RL) the goal is to learn a good policy π by interact-
ing with an environment E. These environments often take the form of games or
(simulations of) physical systems in which some task must be performed. How-
ever, the core framework of definitions that RL concerns itself with is general

3

enough that many other problems can be cast in it. There are several exam-
ples of methods initially developed for games that were successfully applied to
atypical RL problems, such as chemical synthesis planning[17].

2.1.1 Environments

More formally, Reinforcement Learning studies problems that can be modeled
as a (Partially Observable) Markov Decision Problem or MDP, expressed as an
environment:

E = 〈S,A, p, r〉

An environment consists of a state space S, an action space A, a dynamics
function p and a reward function r. S is the set of all reachable states, while A
describes the set of actions our policy is allowed to take. The dynamics function
p(s′, R|s, a) describes the probability distribution of the state transition and
reward, after taking action a ∈ A from the current state s ∈ S. Finally, the
reward function r(s, a) describes the expected reward R after taking action a
from state s.

Given such an environment and a starting state s0 ∈ S, we can generate
trajectories, by choosing an action at at each timestep t, given the current state
st, and observing the next state st+1 ∼ p(s|st, at) and reward Rt+1 ∼ p(R|st, at)
from the environment.

As an example, the Atari game Pong could be expressed in this framework
by using the game screen as the observable state and the state of the different
buttons on the Atari game pad as the action space. While Pong might seem
mostly deterministic, we observe that this MDP environment for Pong is not;
given just one frame, it is not possible to tell which direction the ball is moving,
and p would assign the same probability to each possible direction. Such an
MDP is also called a Partially Observable MDP, as (part of) the state transition
uncertainty is explained by hidden state variables.

In this example, this could either be resolved by changing the MDP (for
example, by making the observable state in the MDP consist of the last two
frames), or by trying to capture or model the hidden state with the agent, for
example by using a RNN-based method.

2.1.2 Optimization

Reinforcement Learning generally tries to optimize the parameters θ of a pa-
rameterized policy function πθ(a|s), to maximize the value, or the expected
accumulated rewards in a trajectory. Given a policy function π, we can define
the value of a state s as the expected accumulated discounted rewards if we
follow π from s:

vπ(st) = E[Rt + γRt+1 + γ2Rt+2 + ...] = E

[∑
k=0

γkRt+k

]

4

The discount factor γ ∈ [0, 1] ensures convergence even for infinite trajecto-
ries, as long as γ < 1 and Rk is bounded. It also allows control over how much
to emphasize short-term rewards over long-term rewards.

Thus, given an environment E, a discount factor γ and a parameterized pol-
icy function πθ, we can formalize the optimization problem that Reinforcement
Learning tries to solve as finding the optimal policy π∗, where

π∗ = max
πθ

vπθ (s), for all s

Reinforcement Learning is an iterative process, where a current parameteri-
zation θt is used to obtain experience from the environment for one or multiple
episodes, which in turn is used (together with previous experience) to optimize
the parameters for θt+1.

2.1.3 Combining MDPs

Besides being able to capture a wide variety of problems, we observe that mul-
tiple MDPs can always be combined into one. For example, if we are given two
environments EA = 〈SA,AA, pA, rA〉 and EB = 〈SB ,AB , pB , rB〉, then we can
construct a new MDP EAB = 〈SAB ,AAB , rAB , pAB〉 that combines EA and EB
with:

SAB = {(0, s)|s ∈ SA} ∪ {(1, s)|s ∈ SB}

AAB = {(0, a)|a ∈ AA} ∪ {(1, a)|a ∈ AB}

pAB((e, s′)|(e, s), (e, a)) =

{
pA((e, s′)|s, a) if e = 0

pB((e, s′)|s, a) if e = 1

rAB((e, s), (e, a)) =

{
rA(s, a) if e = 0

rB(s, a) if e = 1

As a result, methods that apply to general RL problems can also be applied
to a combination of multiple problems. Our work focuses on a special case,
where the state and action spaces are shared between the different environments,
but the state distributions are almost completely disjoint. This is common in
research on multi-task reinforcement learning, which often assumes that the
different environments or tasks also share the dynamics.

Besides multiple tasks in the same environment, our work also applies to
multiple games on the same platform (such as the Atari 51 benchmark) and
multiple levels of the same game. While you could argue that the dynamics in
the latter scenario is shared, the state distributions in these levels are usually
nearly completely disjoint. Effective generalization is thus still needed to be
able to transfer knowledge of the dynamics from one level to the next.

Because we assume the observable state distribution is (close to) disjoint,
we do not explicitly pass which environment an observation comes from to

5

our policy; we use π(s) where s was observed from one of our environments,
instead of π((e, s)) where e would identify which environment this state came
from. This design choice allows us to simplify the implementation of combining
environments. Instead of explicitly creating new reward and dynamics functions,
we choose between the environments at the start of an episode, and use the
corresponding reward and dynamics function within that episode.

As a slight abuse of notation, in the rest of this work we use E = {EA, EB}
not just to refer to a set of environments, but also for the constructed environ-
ment that combines EA and EB as we just described.

2.2 Model-based RL and World Models

Model-based RL encompasses a group of algorithms that use a model of (part
of) the environment while learning a value function or policy. This model can be
exact or approximate and can be learned or given. With MuZero, Schrittwieser
et al. [15] show that a model does not have to correspond to the environment
directly to be beneficial, as long as it is approximately value equivalent over a
relevant set of policies.

Besides variations in the kind of model or how the model is obtained, model-
based algorithms also differ in how the model is applied. For example, the model
can be used in online planning or for generating simulated training data.

Recent successes in model based reinforcement learning show that world
models can be an effective tool to train agents for relatively complex environ-
ments. Coined by Schmidhuber et al.[14], this term is used by some to refer
to learned recurrent models of at least the transition function p, to try to cap-
ture the dynamics of the system – as opposed to non-recurrent or given models,
or models that capture a different component of the environment, such as the
reward function. Such a world model can complement the training data for
learning a policy with ‘imaginary’ observations, or replace the true environment
completely[5].

In addition to modeling the transition function, several recent works[6][7]
also learn a compact latent representation of the state space, which is obtained
through a learned recurrent encoder q(st, ht−1) = ht. In the case of Dreamer[7],
for example, a dynamics model is then trained within this latent space, that
can predict the current latent state ht given the previous latent state ht−1 and
action at−1. Similarly, the policy is also applied to these latent states, instead
of the full observed state.

Aside from learned feature compression, which has been shown to improve
the performance of policies, this also decouples the size of the transition model
and policy network from the observation size in the true environment, which is
usually very big and sparse. As a result, the authors of Dreamer and Dream-
erV2 [7][8] note that they can simulate and learn from ‘thousands’ of parallel
imagined trajectories instead of just a few real trajectories.

6

2.3 DreamerV2

Our work builds on DreamerV2 by Hafner et al.[8], a world model-based method
which replaces the world model of the original Dreamer with a stochastic model
with a (partially) discrete latent representation. The latent state at time step
t is composed of a deterministic vector ht and a stochastic discrete vector zt.
The discrete vector consists of 32 categorical values, each with 32 classes. The
authors provide several hypotheses to motivate the use of a categorical distri-
bution for the latent state, including that this could be a better inductive bias
for non-smooth state changes in video games.

Because our work hinges on DreamerV2, we will discuss its design in more
depth.

2.3.1 World model

As mentioned earlier, the dynamics of the environment are modeled by Dream-
erV2 in the latent space, and are learned through autoregression; while the
distribution qφ(z | ht, st) for the latent vector zt is conditioned on the observed
state at timestep t, the model also tries to predict ẑt ∼ pφ(ẑt | ht) from just the
recurrent state ht. These can be taken as the posterior and prior distribution
respectively, and optimized across timesteps as a sequential beta-VAE[10], by
optimizing their KL-divergence.

The latent vector ht is derived recurrently from the last latent state (ht−1, zt−1)
and the last action at−1. DreamerV2 also models the probability distributions
for the observed state st, reward rt and discount factor γt, conditioned on the
latent state. By learning to model these aspects of the environment based on
the latent states, these are optimized to learn a compact representation of the
environment. The parameters for all components of the world model are opti-
mized jointly, according to the loss function given in equation 3. As such, we
represent the parameterization of the whole system with φ. The components
of the world model can be summarized with the following equations, as taken
from [8]:

Recurrent model: ht = fφ(ht−1, zt−1, at−1)

Representation model: zt ∼ qφ(z | ht, st)
Transition predictor: ẑt ∼ pφ(ẑ | ht)
Image predictor: ŝt ∼ pφ(ŝ | ht, zt)
Reward predictor: R̂t ∼ pφ(R̂ | ht, zt)
Discount predictor: γ̂t ∼ pφ(γ̂ | ht, zt).

(1)

2.3.2 Policy

The policy for DreamerV2 is trained using an Actor-Critic algorithm[2], op-
erating on top of the latent state representations from the world model. The
components of the algorithm can be described by the equations

7

Actor: at ∼ pψ(a|zt)

Critic: vξ(zt) ≈ Epφ,pψ

[∑
t′=t+1

γt
′−tRt

]
(2)

The actor and critic are both implemented as an MLP with the same size,
and with ELU activations. Here, each component has its own parameterization
and is optimized separately. The actor is optimized to maximize the critic, while
the critic is trained using TD-learning, with a λ-target, which incorporates the
rewards and value approximations of multiple steps.

2.3.3 Training

Experience is gathered by generating trajectories in the environment using the
current policy, modulated by α-greedy exploration. For each time step, we
record a tuple containing 〈st, Rt, γt, at〉, where γt is 0 for absorbing states, and
1 otherwise. At the end of each episode, this data is added to the replay buffer.
The replay buffer is initially seeded using a random policy for Tinit steps. These
steps are counted towards the training budget T .

Every n steps, DreamerV2 runs the training procedure, which can be divided
in roughly two steps; after collecting a batch of training data, it first trains the
world model, then the policy. Crucially, the training data is only used to train
the world model, while the policy is trained on imaginary trajectories, generated
by the world model. The flow of data during training is displayed in the diagram
in figure 1.

First, training data is sampled from the replay buffer, consisting of m episode
subsequences of length L. The world model is used to obtain the latent repre-
sentations and predicted latent representations for these subsequences. These
are used together with the environment signals recorded in these subsequences
to optimize the world model according to the following loss function:

L(φ; s1:L, R1:L, γ1:L, a1:L) =

Eqφ(z1:L | a1:L,s1:L)
[T∑
t=1

− ln pφ(st | zt, ht)− ln pφ(Rt | zt, ht)− ln pφ(γt | zt, ht)︸ ︷︷ ︸
representation loss

+ βKL[qφ(zt | ht, st) || pφ(ẑt | ht)]︸ ︷︷ ︸
dynamics loss

]
(3)

The representation loss maximizes the log likelihood of the recorded environ-
ment signals, conditioned on the latent state, while the dynamics loss minimizes
the divergence between pφ and qφ, bringing the two distributions closer together.

After optimizing the world model, the built up latent representations of
the trajectories are reused as the starting point for m imaginary trajectories
of length H. This is done by recursively sampling an action from the policy

8

conditioned on the current imagined latent state at ∼ pψ(a|ẑt), to obtain the
next recurrent state ht+1 = fφ(ht, ẑt, at) and predict the next latent state ẑt+1 ∼
pφ(ẑ | ht+1).

(a) Each training step, DreamerV2 samples a batch of subsequences of length L from
m trajectories.

(b) For each subsequence DreamerV2 recurrently builds the prior and posterior latent
state using qφ and pφ respectively. After constructing this latent representation of
the subsequence, the trajectory is continued by applying pφ recurrently to generate
new latent states. For each step in this imaginary trajectory DreamerV2 predicts the
reward and value using the world model and critic. This data is then used to train
the critic.

Figure 1: The flow of data during a training step of DreamerV2.

For each imaginary step t, the world model is used to predict the reward
r̂t ∼ pφ(r̂ | ht, ẑt) and discount value γ̂t ∼ pφ(γ̂ | ht, ẑt). These are then used to
calculated the value targets, to train the critic with. For this, DreamerV2 uses
λ-targets[16]:

9

V λt = R̂t + γ̂t

{
(1− λ)vξ(ẑt+1) + λV λt+1 if t < H,

vξ(ẑH) otherwise.
(4)

The critic is optimized by minimizing the squared error:

L(ξ; ẑ1:H−1, V
λ
1:H−1) = Epφ,pψ

H−1∑
t=1

1

2

(
vξ(ẑt)− sg(V λt)

)2
(5)

Where sg(·) denotes stop gradients. The actor is then optimized using Re-
inforce gradients[19], which maximizes the probability of the chosen actions,
weighed by the centered action value:

L(ψ; a1:H , V
λ
1:H) = Epφ,pψ

H−1∑
t=1

− ln pψ(at|ẑt)sg(V λt − vξ(ẑt)) −ηH[at|ẑt]︸ ︷︷ ︸
entropy regularization

(6)
We observe that while the policy and world model are trained separately,

this training procedure introduces a dependency between the two training steps
by using the latent state produced while training the world model as the starting
point for the imaginary trajectories generated to train the policy. The length
of the subsequences L not only controls how many environment steps the world
model trains on in each training step, but also limits how much historic informa-
tion can be used to generate the imagined trajectories that the policy is trained
on.

The implementation of DreamerV2 is open source, and is available on github1,
including the Atari environments and hyperparameters. We add minor exten-
sions to their implementation; we add an environment wrapper that instantiates
multiple sub-environments and chooses one randomly for each episode, we inte-
grate the gym-mario environment and we extend the main script to help manage
our configurations and experiments. We also implement support to sample past
the horizon of an episode, which is described and motivated further below.

3 Related Work

Our work is not the first to explore the idea of (pre-)training on multiple related
tasks. One of the earliest works to try this with Deep RL methods is “Actor-
Mimic Deep Multitask and Transfer Reinforcement Learning” by Parisotto, Ba
and Salakhutdinov[13]. In their work, they modify DQN[12] and show that with
a single model of similar size, they could learn eight Atari games at the same
time, and reach a comparable performance for seven of those games to normal
DQN agents that were trained on each game separately. They also show that
an agent trained like this could learn new, related environments faster.

1https://github.com/danijar/dreamerv2

10

Their multi-task agent is not trained to optimize its task performance di-
rectly, but to mimic aspects of expert agents, a process which is also called
distillation. While their work shows that a single DQN agent has the capacity
to learn multiple complex games, their use of expert networks means that their
method needs strictly more resources than training a separate agent per task.
Similarly, their transfer learning method requires a very high initial cost, with
modest gains in most games. As a result, it would take transferring to many
games before this method becomes more efficient.

More recent work that focuses on the multi-task RL scenario includes Dis-
tral[18], which trains a separate policy per task, but aims to transfer knowledge
between tasks by distilling each task policy into one shared policy, in turn using
this shared policy to regularize the optimization of the task policies. Hessel et
al. extend PopArt[9], which learns a normalized value function, to the muti-task
setting, to learn tasks with very different reward scales. Liu et al.[11] propose
another specialized model architecture for multi-task learning, with a shared
convolutional encoder-decoder network, and task-specific attention networks.
The idea here is that the convolutional network learns global features that can
be shared, while the attention networks can select the features that are relevant
for a specific task.

A common thread through these works is that they introduce a new architec-
ture or modifications to existing models to have both task-specific components
and a shared component. In this regard, our work is simpler; we apply an
existing model to a multi-tasking scenario without modifications, and without
task-specific components. We hope that the world model of DreamerV2 is able
to facilitate transfer learning between tasks by finding efficient representations
for common features. Because we do not modify the model, we can easily switch
from a multi-tasking scenario to single tasks. This leads us naturally to fine-
tuning agents on specific tasks after being trained on N tasks simultaneously.

Besides research from the multi-task learning field, our work also bears sim-
ilarities to MAML, by Finn et al.[4]. Like in our pre-training set-up, in MAML
a model is trained on multiple tasks during a meta-learning phase, and the pa-
rameterization obtained at the end of this phase are then used for initialization
in future tasks. Instead of optimizing the parameters for the tasks in the meta-
learning phase directly, MAML instead optimizes for maximal sensitivity to the
loss functions of the task. In other words, MAML tries to find the parameter-
ization that gives the biggest improvement after one gradient descent step. As
a result, it should be possible to fine-tune this parameterization for a new task
in just a few optimization steps.

Where MAML focuses on few-shot transfer scenario’s to tasks outside of the
meta-learning, we also look at the performance on the pre-training tasks, both
before and after fine-tuning.

11

4 Methods

To investigate the muti-tasking and generalization capabilities of Dreamer, we
propose three experiment set-ups, outlined below.

4.1 Multiple environments

We train a single DreamerV2 agent on a set of environments Epre for T steps.
The performance of this agent will be compared with the performance of N =
|Epre| separate baseline DreamerV2 agents, trained for T steps on each of the
environments. We also compare our performance against the baseline perfor-
mance after T

N steps, as at this point, the baseline agents have used an equivalent
amount of resources (in terms of computation and data) as our agents.

To train an agent on multiple environments, we follow the normal training
procedure of DreamerV2, but during the collection of data, we choose one of
the N environments at the start of each episode, using a uniform distribution.
Trajectory fragments used to train the world model are sampled by first choosing
m episodes from which the fragments are taken. Thus, the agent trains on
each environment approximately as often, even when there are discrepancies in
episode lengths. If DreamerV2 is able to efficiently generalize between the seen
environments, we expect to see our agent reach a similar or better performance
after T steps as what the baseline agents achieve after T

N steps.
The complexity of this task greatly depends on how many environments we

choose for Epre, and which ones specifically. The larger the similarities between
the environments, the easier it should be to generalize between them. To test
the effect of the number of environments, we run our experiments for two sizes
of Epre.

This experimental set-up can be viewed as a pre-training procedure. In
the next two experiment set-ups, we use the parameterizations obtained in this
experiment for initialization. Because of this, we will also refer to this set-up as
the pre-training set-up.

4.2 Fine-tuning on seen environments

In the first of these two set-ups, we use the learned parameters to train M ≤ N
new agents, each on one of the environments E ∈ Ef ⊆ Epre. These agents are
trained for T steps and compared with the M corresponding baseline agents
trained on the same environments. We also compare the results averaged over
the M agents at step t to the averaged returns of the baseline agents at step
t+ T

M , to take the overhead of pre-training into account.
In combination with the previous experiment, these results may show if there

is a bottleneck in the generalization capacity of DreamerV2. For example, if we
find that the fine-tuned agents improve on the baseline results, and that this
improvement is larger than in the previous result, this could be an indication
that some components of DreamerV2 were able to generalize well, while other
components could not.

12

4.3 Transfer learning with new environments

With the last experiment set-up, we investigate if pre-training is useful for trans-
fer learning. This time we train K new agents, initialized using the parameters
obtained during pre-training, on K environments Eτ , with Eτ ∩ Epre = ∅. We
also train K baseline agents on these environments, using the original initializa-
tion scheme of DreamerV2. Both our agents and the baseline agents are trained
for T steps, and their performance are compared directly.

5 Experiments

We ran our experiment on Nintendo’s Super Mario Bros., where we treat each
level as a separate environment. We found during early exploration that Dream-
erV2 learns Mario levels much quicker than most Atari games, which we at-
tribute in part to the dense reward function used for the Mario games. Be-
cause of this, we ran our experiments for T = 10M frames, compared to the
T = 100M frames Hafner et al. used for Atari games. Another factor for choos-
ing Super Mario Bros. is that, compared to the Atari games, different levels
are much more similar to each other, both in terms of visual features and dy-
namics, though there is still enough variation to learn about the generalization
capabilities of our method.

Besides the types and placement of obstacles within each level, there are five
distinct visual themes2: Overworld, Underground, Athletic, Castle and Under-
water, each with their own texture sets. The Overworld and Athletic levels can
also be set either at night (with a black background) or during the day (with
a blue background). Levels are grouped into sets of four, called worlds, with
repeating themes and increasing difficulty between worlds. Levels are referenced
to by their world number and level number within their world. For example,
the seventh level is referenced by 2-3, as it is the third level of the second world.

5.1 Environment details

To run the game, we used the gym-super-mario-bros package3, which is built
on top of the open source NES-py emulator4. By default, this package comes
with several control schemes. The control scheme used for our experiment al-
lows for the following button combinations, as twelve discrete options: ‘None’,
‘Right’, ‘Right, A’, ‘Right, B’, ‘Right, A, B’, ‘A’, ‘Left’, ‘Left, A’,
‘Left, B’, ‘Left, A, B’, ‘Down’, and ‘Up’.

The package also introduces its own reward function. This function rewards
the agent to move to the right as fast as possible. The reward for a given action
is given by the horizontal movement (positive for moving to the right, negative
for moving to the left) and elapsed time (−1 for each tick of the internal game

2https://www.mariowiki.com/Super Mario Bros.
3https://github.com/Kautenja/gym-super-mario-bros
4https://github.com/Kautenja/nes-py

13

clock), with a negative bonus of −15 when the agent dies. The reward is clipped
to stay between (−15, 15).

5.2 Integration and hyperparameters

To integrate this game into our training set-up, we chose to preprocess the input
and output into the same structure as used by DreamerV2 for Atari games. We
transform the input frames into grayscale, and resize them to a resolution of
64 × 64 pixels. We also repeat each action for 4 frames, and implement sticky
actions, with a probability of 0.2 of repeating the previous action. We reuse all
hyperparameters from the Atari experiments.

In certain Mario levels, bad policies (such as a random policy) lead to very
short episodes. In the original implementation of DreamerV2, episodes shorter
than the training trajectory subsequence length L were ignored during training,
leading to pathological cases where our agent collects very little usable train-
ing data during initialization, and never improves. To combat this, instead of
throwing away short episodes, we allow DreamerV2 to sample past the end of
an episode. For the time steps past the end of the episode, we treat the last
step of the episode as an absorbing state, so that p(st = st+1|st, at) = 1, no
matter the action. To this end, we repeat the last observation, set the reward
and discount targets to 0 and uniformly sample a random action. We do not
expect to generate many of these absorbing states in practice, as policies quickly
improve to generate episodes much longer than L steps.

5.3 Experiment configurations

(a) 2-1 (b) 2-4 (c) 3-1 (d) 3-2 (e) 3-3

(f) 3-4 (g) 4-1 (h) 4-2 (i) 4-3 (j) 4-4

Figure 2: Observed frames from the 10 levels used in the pre-training and fine-
tuning experiments, near the start of a trajectory in each level. For fine-tuning
and for pre-training with the Epre4 configuration, only the levels of world three
are used.

14

We executed two experiment configurations, one with a small set of levels
of |Epre4 | = 4 and one with a larger set |Epre10 | = 10. We excluded all Un-
derwater levels from our experiments, as there are only two, and they have
very different dynamics from the other levels; Mario is less affected by grav-
ity in these levels, but slowed down while walking. Similarly, we excluded
level 2-3, as this level almost exclusively repeats one obstacle, which rarely
appears in other levels. For both experiment configurations, we use the levels
from the first world for transfer learning and levels from the third world for
fine-tuning: Eτ = {1-1, 1-2, 1-3, 1-4, } and Ef = {3-1, 3-2, 3-3, 3-4, }. Both
worlds include an instance of each level theme. For the small experiment, we
set Epre4 = Ef . For the larger experiment we use the first ten levels after world
one; Epre10 = {2-1, 2-4, 3-1, 3-2, 3-3, 3-4, 4-1, 4-2, 4-3, 4-4}.

As with the original Atari experiments, we repeat each configuration (in-
cluding the baselines) with R = 5 different seeds. Summing up, we train our
baseline agents for 5 ∗ (10 + 4) ∗ 1e7 frames, we fine-tune these agents for an-
other 5 ∗ (4 + 4) ∗ 1e7) frames, and retrain them on unseen environments for
5 ∗ (4 + 4) ∗ 1e7 frames, leaving us with a total of 150e7 training frames. We
ran this experiment on multiple machines with RTX 2080s and RTX 2070s. We
found that training one agent for 10M frames took about 36 hours, giving us a
total computation time of about 5400 hours, or 225 days.

6 Results

6.1 Multi-task training

(a) Epre4 (b) Epre10

Figure 3: Train returns collected during pre-training DreamerV2 on N = 4
(left) and N = 10 (right) levels. The dashed lines present the performance
of the N baseline agents, averaged over five runs, while the solid lines show
the performance of the (single) pre-training agent. The cost of training a pre-
training agents for T steps is 1

N the cost of training N baseline agents. The
erratic behavior seen in 4-4 is an artifact of the exploitable reward function.

15

Figure 3 shows the train returns of DreamerV2 applied to Epre4 and Epre10 ,
plotted per level. We also plot the returns of the baseline agents.

When training on four levels at the same time, we see that DreamerV2 is
able to achieve comparable performance to the baseline in three out of the four
levels, even though this agent only sees roughly 1

4 times the data for each level.
For the levels 3-1 and 3-2, we see that DreamerV2 learns a bit slower than the
baseline agents, but they reach a similar performance ceiling, and the difference
in learning rate is not quite four times slower. For 3-3, the baseline and muti-
tasking agent both perform similarly poorly; it seems both agents are not able to
get past an early obstacle. Finally, 3-4 is the only level where the muti-tasking
agent is not able to perform close to the baseline.

Figure 4: The image prediction loss for
ten baseline configurations and two pre-
training configurations.

When training on ten levels, the
results look very different. We first
address the line for level 4-4; both
the baseline and muti-tasking agent
perform very erratically, with large
spikes throughout the training pro-
cess. This is an artifact of the reward
function, which the agent is able to
exploit in this level. As described,
the agent is rewarded (or penalized)
for horizontal movement. This gives
the agent a dense incentive to move
towards the end of the level, which is
always at the right end of the level.
However, in level 4-4, taking a wrong
turn halfway through the level will
transport the player to near the be-
ginning of the level. By taking this turn on purpose, the agent can move to
the right continuously and accumulate rewards until the timer runs out, while
avoiding the hard obstacles at the end of the level. Comparing the baseline
agent in this level with the muti-tasking agent, we do see that the muti-tasking
agent outperforms the baseline significantly. The muti-tasking agent seems to
be able to exploit the reward function much more consistently. However, be-
cause the reward in this level is nearly unbounded with a relatively easy policy
(at least compared to actually completing the level), we see the results for this
level as outliers, and have clipped the peaks out of this graph.

Looking at the results for the other levels, we see that DreamerV2 is unable to
keep up with the baseline results in most levels, or even get close to the baseline
performance at t = T

10 . For seven out of the ten levels, the muti-tasking agent
does not seem to significantly improve over its initial, random policy. In levels
4-1 and 4-2, the agent does improve, but still performs significantly worse than
in the Epre4 configuration. These results show clearly that Dreamer does not
have the capacity to master 10 Super Mario Bros. levels at the same time.

Besides looking at the returns of our agents, we can also look at the perfor-
mance of the world model. We plot the image loss for both pre-trained agents

16

and the baseline agents in figure 4. We see that the pre-training agents perform
very similarly to the worst performing baseline agent for level 3-1. Since this
level is also part of the pre-training environments, it would be surprising if the
pre-trained agents performed much better than this agent. We would expect
the pre-training image loss to be strictly worse, as we have a much higher di-
versity of data to learn from. Of course, measuring the direct model loss can be
deceptive in model based RL, as two agents might just see different data from
its environment. Still, we believe these results are a signal that the world model
has significant overcapacity for this domain, and that the bottleneck lies in the
policy.

6.2 Fine-tuning

(a) Epre10 (b) Epre10

Figure 5: The train return of our pre-trained agents, after fine-tuning them for
another 1e7 steps on four tasks from the pre-training task set. The solid lines
represent the train return of the pre-trained agents, while the dashed lines show
the train return of the four baseline agents trained on these tasks.

In figure 5 we plot the train returns of fine-tuning the agents obtained in the
previous experiment, on all four levels of world 3.

Looking at the results of the agents pre-trained on Epre4 , we see that fine-
tuning is able to continue improving the agents from where we stopped pre-
training. In fact, if we compare the performance of the fine-tuned models at
t = T − T

4 = 0.25e7, which is the point at which the fine-tuning experiment
has used as many computational resources and samples as the baseline agent,
we see that the fine-tuned models clearly outperform the baseline in every level.
Perhaps surprisingly, we can see very similar behavior for our Epre10 fine-tuning
experiment. Even though our DreamerV2 agent was not able to learn all 10
levels at the same time, it seems that DreamerV2 was still able to gain relevant
information from pre-training.

17

6.3 Transfer learning

(a) Epre4 (b) Epre10

Figure 6: Train returns of our pre-trained agents in four new levels. The solid
lines represent the train return of the pre-trained agents, while the dashed lines
show the train returns of the four baseline agents trained on these levels.

The results of our final experiment configuration are shown in figure 6. Here
we see the results of using the parameters of the pre-trained agents on four levels
from world 1, which were not part of either pre-training environment. In this
scenario, our agents have seen more data than the baseline. We had expected
that this previous experience would translate to learning new levels of the same
game faster. However, the train returns show a mixed result. We do see that
for every level, the pre-trained agent starts off better than the baseline agents.
However, this advantage quickly diminishes for levels 1-1, 1-4 and especially
1-3. Both the agents pre-trained on Epre4 and Epre10 are outperformed by the
baseline agents before t = T

2 = 0.5e7.
While the pre-trained agents do start off better, and seem to perform better

in one of the levels, on average, the performance is similar to the baseline, while
obtaining the initial parameters costed a large amount of data and computation.

7 Discussion and future work

Given a problem divided in several related sub-tasks, instead of applying tabula
rasa learning on each separate sub-task or on the whole problem at once, we
explored a middle road. We trained a single agent on a varying number of these
sub-tasks and fine-tuning the agent on specific sub-tasks both from the pre-
training set and from outside this set. We now discuss our results, relate them
to our original research questions, and point out avenues for future research.

18

7.1 Difficulty scaling

If we compare our pre-training results, we see that without tuning, DreamerV2
is fairly capable of solving four levels with one agent, while ten is clearly too
much. These results answers our first research question; it can be more efficient
to train a single DreamerV2 instance on multiple problems, as we see for Epre4 ,
though this effect breaks down if the set of combined problems is too big or
too difficult. Once this point is reached, we see that DreamerV2 does not just
become less efficient, but might not be able to learn a policy at all for most
problems in the set.

This method introduces a new hyperparameter |E|, for which we chose an
arbitrary small and large value. To apply this in a practical setting, we should
have some strategy for choosing this value. Of course, it is also possible to
dynamically choose sets of sub-problems. For example, by starting with the set
of all N sub-problems, and halving a set if the agent for that set is not learning
after t steps. After splitting a set in two, the process is repeated with a separate
agent on each half. In the worst case, where each set contains just one sub-
problem and you are training N separate agents, the overhead of this process
amounts to t(N2 + N

4 + ...) steps. Taking N to be a power of 2 for simplicity,

this comes out to t
∑log2(N)
i=1

N
2i = t(N − 1).

On the other hand, if we expect that a single agent can solve on average two
of the sub-tasks, we would only need to train N

2 agents, saving T N
2 steps. In

this scenario, the overhead would come out to t
∑log2(N)
i=2

N
2i = tN−22 . Thus, in

this scenario, even if we only checked and dynamically split the task set after T
steps, this method would be more efficient compared to training N agents for T
steps directly. This dynamic algorithm thus can quickly improve the efficiency
of solving a series of sub-tasks, by scaling the difficulty of the problem to the
capacity of the chosen method.

This proposed method is naive, in the sense that it does not use any gained
knowledge about the sub-tasks to group them. If we could group tasks based on
similarity, this would have a large impact on how easy it is to learn a group of
tasks. Recent work in multi-task RL, such as as [1], show that task clustering
can be done unsupervised, and can have a significant positive effect on multi-
task learning efficiency.

Finally, our fine-tuning results show a dramatic improvement in performance
early in their learning curve. Most strikingly, we see these improvements even
when fine-tuning the Epre10 agent. While this agent was not able to improve over
a random policy for levels 3-3 and 3-4 during pre-training, with fine-tuning
we were able to improve from random policy to baseline at t = T in less than
t = 0.2 ∗ T steps. This suggests that even while the agent pre-trained on Epre10

was not able to learn an effective policy for those 10 levels, it did learn useful
information for those levels.

Based on this result, it seems a top-down clustering algorithm that splits
larger task groups up into smaller ones would fit better than bottom-up ap-
proach; in our example, even if we find after t steps that the current set of
sub-tasks is too hard, the agent might still have gained valuable experience.

19

Figure 7: Train returns of our pre-training and fine-tuning configurations, com-
pared to the baseline, averaged over the levels in Ef . The first 1e7 steps of the
solid lines represent the results from pre-training, while the remaining 3e7 steps
represent the results from fine-tuning the agents.

After splitting up the current task set into smaller sets, we can initialize new
agents using the parameterization of the last iteration, to apply to the new
subsets, keeping the relevant experience gained in the previous t steps.

7.2 Efficiency

Our results show that both combining tasks and especially fine-tuning after
pre-training can be more efficient than tabula rasa learning on each task sep-
arately, confirming our second research question. This increase in efficiency is
shown more directly in 7. In this figure we combine the results of our pre-
trained and fine-tuned agents and compare them with the baseline agents after
an equal number of environments steps. We show the train return in levels
Ef = {3-1, 3-2, 3-3, 3-4}. With one agent per level, each trained for T = 1e7
steps, it takes a total of 4 ∗ 1e7 steps to obtain the baseline results. With pre-
training, we only need one agent to train on the four levels. Since we use the
parameters of the pre-trained model directly during fine-tuning, we can extend
the pre-train learning curve with the returns of the four agents fine-tuned on
these levels. We append the learning curve of the first 3

4 ∗1e7 time steps of each
agent, to roughly match the total computation time of the baseline agents.

Focusing on the first 1e7 time steps, we see that a single DreamerV2 agent
performs fairly close, and even slightly better than the baseline agents, while pre-
training on four levels. While the train return curve of the baseline already starts
to flatten at 1e7 time steps, our fine-tuning agents are able to keep improving
for longer, creating a clear gap in the train return.

20

When pre-training on ten levels the results seem a bit worse. Especially
during pre-training, we see that the efficiency is much lower than the baseline
results. Of course, it would be more fair to compare these pre-training results
against ten agents instead of four, but we can see that even in that comparison,
the baseline would likely outperform our pre-training agent. After pre-training,
we see the performance improve dramatically. In just 0.5e7 steps, the fine-tuning
agents have caught up with the baseline agents. A different way to interpret
this result is that with this configuration, the overhead of pre-training on ten
levels for T steps was won back after fine-tuning on four of those ten levels.
Assuming the results are similar for the other six levels, fine-tuning on more
levels would proportionally shrink the pre-training part of the graph, so that it
would display an efficiency advantage over the baseline.

7.3 Overfitting

Besides directly improving the efficiency of solving a large problem, we expected
that learning multiple sub-tasks at the same time would also help against over-
fitting. Though additions such as sticky actions already try to prevent that the
agent optimizes a trajectory directly – instead of learning to react on its inputs,
we find that in practice, overfitting to a specific task is still a big problem. We
demonstrate this with practical examples we observed during our experiments.
Figure 8 shows five frames from the start of a trajectory in level 1-3, and the
reconstruction of those frames by three agents which were not trained on this
level. The figure reveals clear signs of overfitting; all of the reconstructed frames
contain artifacts resembling observations from levels the agent was trained on.

We note that the reconstructions by the baseline agent pretty closely re-
semble full frames that appear in level 4-1, on which the agent is trained. We
hypothesize that the encoder of this agent learns to recognize where in the level
a frame is, which would be enough for the image predictor to predict most of
the features on that frame. If this is the case, we should be able to significantly
reduce the latent state size without impacting the performance much. This be-
havior would clearly be bad for generalization, as in this case, the agent would
not learn to react to different features like obstacles or enemies. In unseen sce-
nario’s, the encoder would be unable to encode much useful information into
the embedding, and in turn, very little of the learned policy would apply.

The reconstructions by the agent pre-trained on Epre4 are the worst. This is
likely due to the big difference between 1-3 and the levels in Epre4 . All four levels
in the pre-training set are set on a black background, which means that at least
half of each frame consists of inputs that the agent has never seen before. We still
see clear evidence of overfitting of the world model. For example, we attribute
the quality of the reconstruction of the level information at the top to overfitting,
instead of an ability to transfer these detailed features from the input onto a
new background. However, the reconstructed frames do not clearly correspond
with specific frames from observed levels. This could be a sign that its latent
space is less dependent on the location within a level, and tries to encode the
appearance and location of features more directly. A generous eye may even see

21

t = 0 t = 50 t = 100 t = 150 t = 200

Truth

Baseline
4-1

Pre-trained
Epre4

Pre-trained
Epre10

Figure 8: Five frames taken from a trajectory in 1-3, and their reconstructions
by agents trained on one level (4-1), 4 levels (Epre4) and 10 levels (Epre10)

the model trying to predict platforms (though not in the right places), a feature
that is not especially frequent in the levels in Epre4 . An alternative explanation
is that the encoded state just looks too different from any seen frame, resulting
in a noisy prediction.

Finally, the frames predicted by the agent pre-trained on Epre10 seem the
most convincing at first sight. The first frame is a very close reconstruction,
though in this case this reconstruction does seem to be recalled from an existing
frame. This is evidenced by the floor gap in the bottom right of the frame –
making it a closer reconstruction of the first frame of level 4-3 from the pre-
training set than the actual observed level. The second frame also seems to
be a recalled from a frame from that level. Interestingly, the gap in the floor
aligns exactly between the observed and predicted frame, hinting that this gap
must be a feature that the agent recognized, and prioritized over (for example)
the position of the clouds. In the last three frames we see prediction quality
drop dramatically. In the third frame we can barely recognize the platform in
the bottom left and the cloud in the top center of the frame, but on the whole
the frame is much noisier than the previous ones. This shows that the agent
was more uncertain identifying this frame. The last two predicted frames do
not clearly correspond to frames of seen levels. We observe that in the last
predicted frame, the agent even becomes uncertain about the background color.

22

This is somewhat surprising, as it would be easy to construct a binary feature
to encode this in the latent state.

Overall, we see clear evidence of overfitting of the world model, both in the
baseline agents and our pre-trained agents. We hoped that the increased input
diversity would make the pre-trained agents more robust against overfitting.
Based on these reconstructions of frames from unseen levels, this seems at best
only slightly so. It is of course possible that DreamerV2 would overfit less much
more data diversity, but we would not expect to see dramatically different results
even with all 32 Super Mario Bros. levels. Increasing the data diversity beyond
that is possible through for example artificial data augmentation, but falls out
of the scope of this work.

Overfitting does not only lead to more fragile policies, but also makes reusing
experience in new situations, through meta learning or transfer learning, much
harder. This may also explain why our agent is not able to effectively transfer its
experience to new levels. This answers our third research question; we cannot
improve the transfer learning capacity of DreamerV2 by pre-training on a range
of related tasks. Even when the number of tasks is too large for DreamerV2
to learn, we see that some components still overfit. Perhaps this would be
different if the capacity of the different components were balanced better, or if
we had used a model with fewer components, and thus fewer possibilities for
bottlenecks.

However, we observe that, since the train returns closely correspond to how
much of a level the agent has seen, we know that the agent pre-trained on
Epre10 only saw a small part of most of the levels in its pre-training set. So
even though the model has seen the starts of levels 3-3 and 3-4, the relatively
good performance during fine-tuning seem to show that our agents were able to
quickly adapt to new parts of these levels.

8 Generalization of results

As discussed, we focused on Super Mario Bros. in our work because of the com-
putational cost of training Atari games, and because Super Mario Bros. levels
are much more similar. We thought this was needed especially in the transfer
learning setting. As we saw, even when the tasks are this closely related, trans-
fer learning is not a straight-forward task. However, for our pre-training/fine-
tuning method, we can still ask how much our results rely on the close relations
between the different levels.

In our initial explorations, we also tried our method on the Atari games, with
four and ten different games from the Atari 51 benchmark. The games we tried
varied much more than the Super Mario Bros. levels. Though our exploration
lacked robustness, our initial results seemed in line with our pre-training and
fine-tuning results in Super Mario Bros.

If our method indeed shows to improve efficiency in Atari, this would indicate
that our method does not heavily rely on generalizing between the different
environments. Most Atari games share only very coarse features. An alternative

23

explanation that fits with our intuition, is that the effectiveness of fine-tuning
stems from a mismatch in model capacity; the world model seems to have a much
larger capacity to learn different environments than the actor-critic network
does. This may not be entirely surprising, as the individual components such as
the image predictor have proven themselves in problem domains with a much
higher data variety than games like Super Mario Bros.

Following this intuition, we suggest another extension to methods like Dream-
erV2 in settings with multiple tasks that share an MDP structure; instead of
training one agent on ten tasks, we could also modify DreamerV2 to have one
world model shared between ten actor/critic networks. This would be a rela-
tively minor change to the implementation of DreamerV2, and we could use a
similar training method as used in this work. Since the world model makes up
the largest part of DreamerV2, we expect that this should still lead to significant
performance improvements over training ten full DreamerV2 agents.

9 Conclusion

In our work we looked at RL problems which can be divided in clear, adjacent
sub-problems. Instead of solving the whole problem end-to-end, or training
a separate agent per sub-problem, we explored if grouping tasks can improve
efficiency, and reduce overfitting for better generalization and transfer learning.
Because our sub-problems are episodic and share the same state space structure
and action space, we can combine sub-problems together easily, by randomly
choosing one of the sub-problems at the start of each episode.

We found that a single DreamerV2 agent can keep up with four separate
agents when trained on four Super Mario Bros. levels in this fashion, while
ten levels was clearly beyond the capacity of the method we used. This is an
indication that grouping problems like this can be used to scale the complexity
of a problem to most effectively use the capacity of a method.

Secondly, we found that grouping sub-problems together is an effective basis
for pre-training an agent. Even when pre-trained on ten levels, which was
too much to learn directly, we see a clear increase in performance and data
efficiency when fine tuning. These results are directly applicable to many real
world scenario’s.

Finally, we found that this pre-training strategy does not directly help in
unseen adjacent sub-problems. A closer look shows that even after pre-training
we still see clear signs of overfitting, both of the world model and the policy.

Compared to other multi-task RL literature, our work shows that even with-
out multi-task-specific modifications, it can be fruitful to group sub-tasks and
learn tasks simultaneously. The pre-training and fine-tuning scheme is easy
to implement in practice, can be used with any method, and can significantly
improve efficiency over training separate instances for multiple tasks.

24

References

[1] Johannes Ackermann, Oliver Richter, and Roger Wattenhofer. “Unsuper-
vised Task Clustering for Multi-task Reinforcement Learning”. In: Ma-
chine Learning and Knowledge Discovery in Databases. Research Track.
Ed. by Nuria Oliver et al. Cham: Springer International Publishing, 2021,
pp. 222–237. isbn: 978-3-030-86486-6.

[2] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. “Neu-
ronlike adaptive elements that can solve difficult learning control prob-
lems”. In: IEEE Transactions on Systems, Man, and Cybernetics SMC-
13.5 (1983), pp. 834–846. doi: 10.1109/TSMC.1983.6313077.

[3] Marc G. Bellemare et al. “The Arcade Learning Environment: An Evalua-
tion Platform for General Agents”. In: J. Artif. Int. Res. 47.1 (May 2013),
pp. 253–279. issn: 1076-9757.

[4] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks”. In: Proceedings of the
34th International Conference on Machine Learning. Ed. by Doina Precup
and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.
PMLR, June 2017, pp. 1126–1135. url: https://proceedings.mlr.

press/v70/finn17a.html.

[5] C. Daniel Freeman, Luke Metz, and David Ha. “Learning to Predict
Without Looking Ahead: World Models Without Forward Prediction”.
In: NeurIPS. 2019.

[6] David Ha and Jürgen Schmidhuber. “World Models”. In: (2018). doi:
10.5281/ZENODO.1207631. url: https://zenodo.org/record/1207631.

[7] Danijar Hafner et al. “Dream to Control: Learning Behaviors by Latent
Imagination”. In: arXiv preprint arXiv:1912.01603 (2019).

[8] Danijar Hafner et al. “Mastering Atari with Discrete World Models”. In:
arXiv preprint arXiv:2010.02193 (2020).

[9] Matteo Hessel et al. “Multi-task Deep Reinforcement Learning with PopArt”.
In: AAAI. 2019.

[10] Irina Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework”. In: ICLR. 2017.

[11] Shikun Liu, Edward Johns, and Andrew J. Davison. “End-To-End Multi-
Task Learning With Attention”. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2019), pp. 1871–1880.

[12] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518 (2015), pp. 529–533.

[13] Emilio Parisotto, Jimmy Ba, and Ruslan Salakhutdinov. “Actor-Mimic:
Deep Multitask and Transfer Reinforcement Learning”. In: ICLR. 2016.

25

https://doi.org/10.1109/TSMC.1983.6313077
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.5281/ZENODO.1207631
https://zenodo.org/record/1207631

[14] J. Schmidhuber. “An On-Line Algorithm for Dynamic Reinforcement Learn-
ing and Planning in Reactive Environments”. In: Proc. IEEE/INNS Inter-
national Joint Conference on Neural Networks, San Diego. Vol. 2. 1990,
pp. 253–258.

[15] Julian Schrittwieser et al. “Mastering Atari, Go, chess and shogi by plan-
ning with a learned model”. In: Nature 588.7839 (Dec. 2020), pp. 604–609.
doi: 10.1038/s41586-020-03051-4. url: https://doi.org/10.1038/
s41586-020-03051-4.

[16] John Schulman et al. “High-Dimensional Continuous Control Using Gen-
eralized Advantage Estimation”. In: CoRR abs/1506.02438 (2016).

[17] Marwin HS Segler, Mike Preuss, and Mark P Waller. “Planning chem-
ical syntheses with deep neural networks and symbolic AI”. In: Nature
555.7698 (2018), pp. 604–610.

[18] Yee Whye Teh et al. “Distral: Robust multitask reinforcement learning”.
In: ArXiv abs/1707.04175 (2017).

[19] Ronald J. Williams. “Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning”. In: Machine Learning 8 (2004),
pp. 229–256.

26

https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4

	Introduction
	Background
	Reinforcement Learning
	Environments
	Optimization
	Combining MDPs

	Model-based RL and World Models
	DreamerV2
	World model
	Policy
	Training

	Related Work
	Methods
	Multiple environments
	Fine-tuning on seen environments
	Transfer learning with new environments

	Experiments
	Environment details
	Integration and hyperparameters
	Experiment configurations

	Results
	Multi-task training
	Fine-tuning
	Transfer learning

	Discussion and future work
	Difficulty scaling
	Efficiency
	Overfitting

	Generalization of results
	Conclusion

