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Abstract

Automatically testing libraries is a critical task. Libraries offer programmers the
net-benefit of being able to reuse existing code to solve difficult problems faster
and with less bugs; in the off-chance the library contains a security vulnerabil-
ity, however, this code-reuse feature potentially renders every program incor-
porating the library vulnerable as well. For this reason, it is of utmost impor-
tance to verify the correctness of libraries through testing. Automatic testing
techniques allow library authors, as well as programmers incorporating the li-
brary in their own programs, to easily verify the library before shipping any
code; potentially detecting and mitigating problems ahead of time.

Depsite its criticality, automatically testing libraries remains a challenging
task as library functions can expect complex, pointer-rich datastructures as in-
put. Moreover, it might be the case that there are internal dependencies among
library functions, where one function sets some state required for another func-
tion to operate correctly. This thesis presents a novel method for addressing
these challenges by making use of something we call the “batteries included”-
assumption, which states that libraries provide all the prerequisites for valid
use. Additionally, we evaluate the effectiveness of our method on a set of em-
pirical experiments representing real-world code. This is done by evaluating
our method on three libraries of differing sizes, of which two are taken from
open-source code repositories. Based on the results of these experiments we
discuss the strengths and limitations of our method, and compare our method
with the related literature on state-of-the-art automatic testing techniques.
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Chapter 1

Introduction

Software engineering principles like “don’t reinvent the wheel” [1] and “standing
on the shoulders of giants” [2] propagate the use of libraries. These principles pro-
mote the use of libraries in order for a programmer to solvemore complex tasks
faster. According to these principles, failing to incorporate a library will result
in square wheels with time and effort wasted. For this reason, it is considered
good practice to reuse existing solutions as much as possible.

However, reusing code from a library is not without its own risks. If such a
library contains a security vulnerability, this potentially renders all programs
incorporating that library vulnerable as well. Moreover, the severity of the vul-
nerability gets multiplied for every program the library renders vulnerable.
The recent vulnerability [3] in the popular Log4J logging framework is a catas-
trophic example of this happening; with computer security specialists stating
it as one of the most critical vulnerabilities of the decade [4].

Despite the potential criticality of vulnerabilities in libraries, we are still con-
vinced libraries provide a net-benefit to programmers; reinventing the wheel
also leads to security risks, and its better to have one good and secure imple-
mentation, rather than many insecure ones. For this reason, we believe there to
be a need for verifying the correctness of libraries by following the mantra of
testing as much as possible.

Techniques for testing libraries have in the past mostly been limited to the
test suites developed by library authors themselves. With the often repeated
statements of how humans get tired and overlook potential problems, auto-
matic testing techniques such as fuzzing and symbolic execution have been get-
ting much attention. These techniques have proven themselves very capable of
finding bugs in programs over the years [12, 14, 27, 36]. Unfortunately, due to
differences between programs and libraries, these techniques do not automati-
cally carry over to libraries as well.

One of the difficulties inhibiting automatic testing on libraries is that the in-
terface of a library exposes a number of functions, which can be called in how-
ever many ways by a program incorporating it [20]. Contrast this with stan-
dalone programs which have only a single predefined entry point. To make
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matters worse, it is often the case that there are internal dependencies among
functions of the library, where one library function sets some state which is
required for another library function to operate [7, 20]. Testing a given library
fully-automatically, therefore, also requires generating the test drivers which
specify which library functions to call in what order with respect to these inter-
nal dependencies.

Hence the goal of this thesis is to find a way of automatically generating
drivers formaximally covering a given library under test. This thesis contributes
a novel method for automatically testing libraries through the use of constraint
solving. Additionally, we show how automatic testing techniques can in fact
benefit, rather than suffer from, internal dependencies among library functions.

1.1 Thesis overview
Chapter 2 contains background information for reading this thesis; Chapter 3
describes in detail how this research was conducted; Chapter 4 evaluates the
results of the experiments; Chapter 5 discusses the strengths and limitations
of our method; Chapter 6 gives an overview of related work; finally, Chapter 7
concludes this thesis.
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Chapter 2

Background

This chapter contains background information for reading this thesis. In partic-
ular, we desribe symbolic execution; intermediate representations; code cover-
age measures; and, differences between testing programs and libraries.

2.1 Symbolic execution
Symbolic execution is a testing technique for analysing whether certain prop-
erties can be violated by a program [8]. Properties of interest include— among
others—whether a division of zero is ever performed or whethermemorymay
be referenced out-of-bounds. The goal of this technique is to execute as much
paths through the program as possible, so as to say with as much certainty as
possible whether these properties may be violated or not.

Theway this is done is quite distinct from concretely executing the program.
The key distinction made by symbolic execution is the ability to mark program
inputs as symbolic—meaning that it can take on any value. This way, symbolic
execution is able to execute all paths of the program which depend on the in-
puts being set to a particular value. Moreover, by forking the execution state on
each conditional branch— constraining the values of the symbolic inputs in the
resulting states such that the respective true or false branch is taken—multiple
paths through the program can be executed concurrently.

In contrast, a concrete execution can only execute a single path through the
program based on its assigned input values. As such, symbolic execution is also
quite distinct from other testing techniques, most notably fuzzing, which try to
execute as much paths as possible by performing as much concrete executions
as possible.

Symbolic execution is done by feeding the program through a symbolic execu-
tion engine. This symbolic execution engine takes the program— can be in some
high-level language [35], some lower-level intermediate representation [12], or
even lower-level bytecode [37] or binary [14, 36] format — and executes it by
interpreting its statements as can be seen in Figure 2.1.
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The symbolic execution engine maintains for each explored path: the path
conditionswhich satisfy the taken branches along that path; and, a symbolic mem-
ory store which maps program variables to symbolic expressions or values [8,
15]. Encountered assignments update the symbolic memory store, whereas en-
countered conditional branches update the path conditions. By solving the path
conditions — if these are satisfiable given the values in the symbolic memory
store — using a constraint solver, it is possible to generate a concrete set of input
values for traversing that path.

void foo(int a, int b) {
int x = 1, y = 0;
if (a != 0) {

y = 3+x;
if (b == 0)

x = 2*(a + b);
}
assert(x-y != 0);

}

(a) Example function.

(b) Symbolic execution tree with each execution
state labeled with an uppercase letter, the symbolic
memory store 𝜎 , and the path constraints 𝜋.

Figure 2.1: Example function with corresponding symbolic execution tree
(taken from [8]).

2.2 Intermediate representation
Ideally, we would like that modern testing tools are easily applicable to many
different programs. However, these programs are likely written in different lan-
guages, since some languages aremore popular than others, or some languages
aremore suited for the problem a program is trying to solve. Nonetheless, there
are commonalities to be found among various programming languages. For ex-
ample, many programming languages are compiled to the same runtime, be it
native binary code or a virtual machine such as the JVM or BEAM. Moreover,
compilation suites, such as GCC and LLVM, contain front-ends for a large num-
ber of programming languages. Here, one of the first steps these compilers per-
form is translating the high-level language toward an intermediate representa-
tion (IR). Therefore, all the front-ends implemented for the compilation suite,
share the same IR during compilation such that they have a formmore suitable
for optimizations before being used to generate the object or machine code for
a target machine.

For this reason, an IR is usually designed to be as generic as possible; typ-
ically, they tend to be free of specific high-level language features while also
not making assumptions about features of the target machine. This generally
characterizes itself in an IR of simple instructions, each representing one fun-
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damental operation such as a load, store, addition, jump, etc… Figure 2.2 shows
an example of code written in C with corresponding LLVM IR.

The use of such an IR is a common technique exploited by testing tools. The
benefits of using an IR for testing are two-fold. First, IRs are designed to be
shared among languages, therefore testing on this level will generalize to all
languages which share the IR. Second, IRs are easier to analyse by design. The
symbolic execution engine KLEE [12], for example, works at the level of LLVM
bitcode, the IR of the LLVM compiler framework [26].

Another example can be seenwith the symbolic execution engine,Angr [36],
which is implemented on top of VEX, the IR of Valgrind [29]. Valgrind extracts
VEX from binaries; since Angr also works on VEX, it is able to test any program
written in any language as long as it compiles to binary. This way, enabling
symbolic execution of programswithout source code present, while at the same
time not having to deal with difficulties regarding binary analysis.

Evidently, the decision at what level to implement the testing tool is impor-
tant in how well the tool will generalize to other programs. If a tool is tailor-
made for some high-level language it will not generalize to other high-level
languages. However, this is not the only factor in deciding at which level to
implement the testing tool. LLVM IR has mature tooling support and gener-
alizes to a large number of programming languages. But on the flipside, it is
obtained through the compiler and therefore requires the presence of source
code to derive the LLVM IR, making it unable to test proprietary code. For this
reason, projects like SecondWrite [6] lift LLVM IR from binaries, such that they
can be symbolically executed using KLEE. However, due to the complexity of
lifting binaries to LLVM this does not always result in a correct translation.

2.3 Code coverage measures
It is generally accepted that more rigorous testing is more likely to reveal bugs.
The quality of a test suite can be objectively measured by the amount of code
that has a test covering it. The test coverage survey by Hong Zhu et al. [44] de-
scribes various coverage criteria which have been proposed and studied for this
purpose. In this section we briefly highlight a number of these criteria which
are relevant to this thesis.

Consider the algorithm in Figure 2.2a and the corresponding Control Flow
Graph (CFG) in Figure 2.2b as an example. The line coverage criterion is satisfied
if all nodes of the CFG — and their corresponding instructions — have at least
one test covering them. Full line coverage can be achieved in the example by
calling fib(0) and fib(2).

The branch coverage criterion is satisfied if all edges of the CFG have at least
one test covering them. Branch coverage is stronger than line coverage because
if all edges in the CFG have been covered, all nodes are neccessarily covered as
well. Full branch coverage can in the example also be achieved by calling fib(0)
and fib(2).
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Function coverage is one of the weakest criteria, as it is already satisfied if all
functions have at least one test covering them. In the example this is already
achieved by calling fib(0).

The path coverage criterion is satisfied if all execution paths from the begin
node to the end node of the CFG have at least one test covering them. Although
path coverage is the strongest guarantee, it is too strong to be practically useful
for most programs since there can be an infinite number of different paths in a
program with loops. Full path coverage in the example is practically infeasible,
as this would mean calling fib with every possible value an integer can take.
On a systemwith 32-bit integers this would result in 232 tests in order to achieve
full path coverage.

Multiple condition coverage is a more pragmatic coverage measure, as it is
weaker than path coverage but stronger than branch coverage. Like branch cov-
erage, multiple condition coverage is satisfied if all edges of the CFG have a test
covering them at least once. Additionally, however, all possible combinations
which evaluate the condition to true or false, must have at least one test cover-
ing them. For example, consider the condition if (x || y), multiple condition
coverage is satisfied if there is at least one test covering the case where either x
or y is true; both x and y are true; and, neither of them are true. In the exam-
ple of Figure 2.2a, this criteria would be satisfied by calling fib(0), fib(1) and
fib(2).

Note that within LLVM IR branch coverage and multiple condition cover-
age are effectively the same. During compilation to LLVM IR, conditions such
as if (x || y)where multiple condition coverage must satisfy every possible
combination of x and y, are transformed to independent branch conditions as
shown in Figure 2.2. Here we count in the C code two conditional branches,
namely: if (n == 0 || n == 1) and for ( ; i <= n; ). Whereas, the cor-
responding LLVM IR contains three conditional branches, namely at %1, %10
and %16. Hence by achieving full branch coverage on LLVM IR you get full
multiple condition coverage for free as well.

2.4 Differences between automatically testing pro-
grams and libraries

From a high-level point of view, programs and libraries are somewhat simi-
lar as they are both made up of executable instructions. When looking more
closely, however, it becomes clear that they are different entities. Recent work
has shown that automatic testing techniques have proven themselves very ca-
pable in finding bugs in programs [10–14, 27, 36]. However, because of the dif-
ferences between the two, these same techniques do not easily carry over to
automatically testing libraries as well. This section highlights some of these dif-
ferences between programs and libraries so that it will be more clear how our
method overcomes them in Chapter 3.

The largest difference is in the fact that all paths through a program have
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a single predefined entry point, namely the main function. This main function
accepts — by standard — as input arguments an integer, argc, and an array
of strings, argv. As these inputs are of primitive types, it is clear what kind of
values these inputs can take. Covering paths which are dependent on specific
input values can then be done by generating these values either randomly or
through techniques like constraint solving.

In constrast, a library does not have such a predefined entry point. Each
of the functions a library exposes, is an entry point by themselves. Moreover,
these library functions do not have standardized input arguments, but instead
can expect complex, pointer-rich datastructures as inputs. One of the biggest
challenges for automatically testing libraries, therefore, is in determining what
kind of values to call the library functions with [18,25, 32, 33, 35, 37, 38].

Additionally, it might be the case that the execution of a library function
depends on state being set by some other function in the library. For this reason,
automatic testing of libraries should have some strategy for determining these
internal dependencies among library functions as well.
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int fib(int n) {
if (n == 0 || n == 1)

return n;

int Fn;
int Fn_1 = 1, Fn_2 = 0;

for (int i = 2; i <= n; i++)
{
Fn = Fn_1 + Fn_2;

Fn_2 = Fn_1;
Fn_1 = Fn;

}

return Fn;
}

(a) Bottom-up Fibonacci algorithm.

%1

T F

%13

%10

T F

%31

%15

%16

T F

%20 %29

%26

%1:
 %2 = alloca i32, align 4
 %3 = alloca i32, align 4
 %4 = alloca i32, align 4
 %5 = alloca i32, align 4
 %6 = alloca i32, align 4
 %7 = alloca i32, align 4
 store i32 %0, i32* %3, align 4
 %8 = load i32, i32* %3, align 4
 %9 = icmp eq i32 %8, 0
 br i1 %9, label %13, label %10

T F

(b) CFG with instructions abstracted.

Figure 2.2: Bottom-up Fibonacci algorithm with corresponding CFG. For
brevity, the LLVM IR instructions making up the nodes of the CFG have been
abstracted as depicted by the dotted edge.

9



Chapter 3

Method

As mentioned in Chapter 1, the goal of this project is to automatically cover a
given library under test. This chapter describes in detail our iterative approach
to building the neccessary preconditions required for symbolically executing
specific paths through the library.

3.1 Limitations of current methods
Before describing our method for testing libraries in detail, we would first like
to provide a general note on testing libraries in the context of two previous ap-
proaches. This section highlights the methods of DART [18] and UC-KLEE [32,
33] in the context of specific library examples, to make a clear distinction where
our work intends to contribute.

Both methods test individual library functions using constraint solving in
order to maximally cover the paths through the function. Conditional branches
provide a constraint on the path taken through the function. For example, when
we encounter a conditional branch, such as an if-statement: if (i < 5), for
input i < 5 the then branch will be taken, and for input i >= 5 the else branch
will be taken. Such a constraint on the control-flow within a program is known
as a path constraint. Hence, by solving the path constraints of a program, we can
direct test execution along untaken paths, leading to greater test coverage.

Where DART and UC-KLEE differ is in the following. Initially, DART per-
forms a concrete execution with random inputs. During this random execution,
the encountered path constraints are collected, and solved, to form the new in-
puts for the next concrete execution. Contrast this with UC-KLEE, which uses
symbolic execution [9] to make an interpretation of the program with symbolic
inputs, i.e. inputs can take on any value. UC-KLEE uses the popular symbolic
execution engine, KLEE [12], to mark the function input as symbolic, and then
solves the constraints in order to maximally cover the paths symbolically.

Now consider as an initial working example the linked list implementation
in Figure 3.1. If we were to test this implementation using DART, then on the
first concrete executionwith n == NULL it encounters the constraint n != NULL,
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struct node {
int val;
struct node *next;

};

int list_sum(struct node *n) {
int sum = 0;

while (n != NULL) {
sum += n->val;
n = n->next;

}

return sum;
}

Figure 3.1: Example linked list implementation (taken from [33]).

which is not taken since n == NULL. On the next execution, DART intends to
cover the yet untaken branch. Therefore, solving the constraint n != NULL, will
result in some random address other than NULL. Now a subsequent execution
with the random address will probably crash, since it is most likely not a valid
memory location. As a result, DART will mark this input as a crashing input.
However, this is a false positive, since this library implicitly assumes only point-
ers to valid memory locations will be passed.

In contrast, UC-KLEE solves this problem using lazy initialization [22, 40].
Figure 3.2 shows the path exploration when applying symbolic execution with
lazy initialization to the example linked list implementation. The gist of this
technique is as follows. In order to explore paths with a path constraint con-
taining a pointer, such as n != NULL, an instance of the pointee is allocated
symbolically as if it was there all along. This process repeats infinitely with ev-
ery iteration of the loop. In order to limit the number of allocations, 𝑘-bounding
is used [16].

Figure 3.2: Example linked list implementation, analyzed by UC-KLEE using
lazy initialization (taken from [33]).

UC-KLEE is able to generate complex, pointer-rich data structures using
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lazy initialization. However, as addressed by the authors it may cause false pos-
itives. For example, consider the circular doubly linked list implementation in
Figure 3.3. The defining property of a circular list is that the previous field of the
first node refers to the last node; and in reverse, the next field of the last node
refers to the first node. Without this property, the list would not be circular, and
the function would not work correctly. Hence the assertions to check whether
this property holds.

struct node {
int val;
struct node *next;
struct node *prev;

};

struct dlist {
struct node *bgn;
struct node *end;
size_t length;

};

int dlist_sum(struct dlist *dl) {
int sum = 0;

if (dl->length == 0) {
return sum;

}

/* Two properties that must hold,
* for a valid circular doubly
* linked list.
*/

assert(dl->bgn == dl->end->next);
assert(dl->bgn->prev == dl->end);

struct node *n = dl->bgn;

do {
sum += n->val;
n = n->next;

} while (n != dl->bgn);

return sum;
}

Figure 3.3: Example circular doubly linked list implementation.

Ifwewere now to test dlist_sum, assuming a lazily initialized struct dlist
*dl pointer is passed, the first path is taken where dl->length == 0. The next
path taken will be the one where dl->length != 0, which will result in an as-
sertion failure, since UC-KLEE does not by default assign the circular property
to the lazily initialized object. Therefore, this test result will be a false positive.

In all likelihood, since this test concerns a datastructure implementation,
there will be a function present within the library such as dlist_add_node,
which increments dl->length to a value != 0 while respecting the circular
property of the list. Herein lies the crux of this thesis. When considering a
single function there is little information about what properties should be re-
spected within the library. Therefore, we propose to use as much as possible
the functions exposed by the library itself, in order to solve the required path
constraints. For example, a test for the constraint dl->length != 0would then
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be satisfied through calling dlist_add_node before calling dlist_sum. We hy-
pothesize, this approach leads to fewer false positives.

This approach is based on the following assumption about libraries. Namely,
we assume all libraries are “batteries included” in the sense that they provide
the prerequisites for valid use.

3.2 Method overview
In this section, we give a general overview of our method. The subsequent sec-
tions hereafter explain specific aspects of our method in more detail.

Previously we have described difficulties regarding automatically testing li-
braries. One of the difficulties is that the interface of a library exposes a num-
ber of functions, which can be called in however many ways by a program
incorporating it. Moreover, it’s often the case that there are internal depen-
dencies among functions of the library, where one library functions sets some
state which is required for another library function to operate. This state can be
passed around the library functions through complex, pointer-rich datastruc-
tures residing in memory.

Key to understanding our method is our “batteries included”-assumption,
which states that libraries provide all prerequisites for valid use. We assume
that library authors abstract implementation-specific details behind these datas-
tructures with good reason. If we were to tamper with these datastructures —
for example by setting certain values within through the use of constraint solv-
ing — it is likely that this will result in a violation of implicit state contracts.
Any bugs resulting from such a state violation will be deemed a false positive,
as these are not possible through valid use.

Note that library functions are aware of these implicit state contracts, how-
ever. When there are internal dependencies among library functions, there is
at least one library function which sets the state required for another library
function to operate. By specifically exploiting these internal dependencies it is
thus possible to bootstrap an initial state into another state, with which we can
subsequently test the dependent parts of the library more thoroughly.

Therefore, we propose a bottom-up, dynamic programming approach in-
stead. Our method starts out with a single valid state. Using copies of the initial
state, we iteratively call the library functions to build up the subsequent states
through function side-effects. With these subsequent states, we can then repeat
this process. This way, we can continue bootstrapping states for as long as this
results in new states.

3.3 Resolving state depencies
Given this general overview of our method, we propose the following bottom-
up, dynamic programming approach for concretely resolvingdependencies among
library functions.
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Consider a library as a set of functions, ℱ , and a set of global variables, 𝒢 .
Each function has a list of parameters with a declared type. There are a number
of paths which the function can take, depending on the input arguments in
combination with the library state. We define state as the values in memory
as well as the values of global variables at any moment of time. The values in
these locations outlive a single function call and can thus influence subsequent
function calls.

It is difficult to statically analyze what kind of values memory and global
variables can hold at any moment of time, as this is inherently abstract. How-
ever, following our “batteries included”-assumption there should be functions
in the library which set the required state. Therefore, we propose to emulate
calls to library functions, such that we can keep careful track of side-effects to
state.

3.3.1 Function emulation
Emulating library function calls is done as follows. Initially, for every parameter
of every function in the library, we allocate a zero-initialized value in memory
based on its declared type. Parameters with a pointer type are special in the
sense that they can either point to NULL or to a valid underlying object. There-
fore, in that case we allocate two pointer values; one pointing to NULL, and the
other pointing to a valid underlying object. Together with the declared initial
values of global variables this forms the initial state for emulation.

Nowwe emulate each functionwith every possible input argument inmem-
ory. Emulating a function is done by interpreting the statements making up the
function with the input arguments from memory. This way, a function call is
dynamically executed, through interpretation, so that we can record the side-
effects to the state — if there are any. For every changed state we repeat this
process (see Algorithm 1 for a pseudocode implementation of this algorithm).

Figure 3.4, shows this approach on a concrete example. Here we first emu-
late function func with x = NULL, which results in a crash. Therefore, we give
up on this input argument. Next, we evaluate with x = &object, which succes-
fully covers a path through the function and changes the statewith object = 7.
Emulation with the newly changed state covers the second path through the
function, but does not result in a new state; therefore, the algorithm is now fin-
ished.

We want to explicitly stress that our approach does not try to generate or
solve the values making up the state. Instead, this approach zero-initializes the
state in order to have a starting point from which we concretely transform the
state only through emulating the instructions of the library functions. This is
done such that our test cases do not violate any implicit state contracts, limiting
the possibility of false positives.
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Algorithm 1 Function emulation algorithm
1: newpath ← true
2: for 𝑖 < iterations do
3: for 𝑠 ∈ states do
4: for 𝑓 ∈ ℱ do
5: args ← s.possibleArgs(f)
6:
7: for 𝑎 ∈ args do
8: copy ← State(𝑠)
9: copy.addHistory(f, a)

10:
11: ▷ Check if we have already evaluated this state.
12: if alreadyEvaluated(copy) then
13: continue
14: end if
15: ▷ Emulate function call by executing LLVM IR.
16: emulateFunc(f, copy)
17: states.add(copy)
18: end for
19: end for
20: end for
21: end for

3.4 Generating test inputs through constraint solv-
ing

Note that there are also functions which do not solely depend on state, but also
on the supplied input arguments. As an example, consider the function in Fig-
ure 3.5 for calculating the 𝑛-th Fibonacci number. The path taken through the
function depends on the supplied input argument 𝑛. Since this argument is of
a primitive type—which is not stateful —we can easily generate inputs for the
function using constraint solving. In our case, we use Z3 [5] to solve these kind
of constraints.

Again we take a similar approach as described in Section 3.3. First, we em-
ulate the function with a zero-initialized input argument: 𝑛 = 0. However,
since this input argument is of a primitive type, we additionally mark it as sym-
bolic. During the emulation we encounter the conditional branch if (n == 0),
which we take since 𝑛 = 0.

Now in order to cover other paths we query the constraint solver for a value
𝑛 ≠ 0, which possibly results in 𝑛 = 1. Then we repeat the emulation for 𝑛 = 1,
encounter the conditional branch if (n == 1), and generate a new argument
by querying the solver for a value 𝑛 ≠ 0, 𝑛 ≠ 1.

Likewise, in order to cover the path where we perform one iteration of the
for-loop, we query the solver for a value 𝑛 ≠ 0, 𝑛 ≠ 1, 𝑖 = 1, 𝑖 < 𝑛. Again we
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// Current state of memory:
// { x_1 = NULL,
// x_2 = &object,
// object = 0
// }

// x_1
// _
// |
// |
// |
// v
void func(int *x) {

if (*x == 7) {
;

}
else {

*x = 7;
}

}
// _
// |
// |
// v
// CRASH!
// null pointer dereference

// Current state of memory:
// { x_1 = NULL,
// x_2 = &object,
// object = 0
// }

// x_2
// _
// |
// +<----------+
// | |
// v |
void func(int *x) { // |

if (*x == 7) { // |
; // |

} // |
else { // |

*x = 7; // |
} // |

} // |
// |
// | |
// | |
// +-----------+
// SUCCESS!
// repeat with changed state

Figure 3.4: Example how dependencies between two function calls can be re-
solved by keeping careful track of side-effects to state.

keep repeating this process for as long as there are new paths being covered.
Usually, path constraints are not solely dependent on state or symbolic input

arguments; more often, it is some mixture of the two. When this is the case, we
substitute the concrete values of the current state into the query passed to the
solver. For example, when the stateful value state->x holds a concrete value—
say 5 — and this value is constrained to be smaller than symbolic value 𝑠, then
we solve by querying 5 < 𝑠.

3.5 Differences with symbolic execution
At this point, there is a need for clarifying the difference between symbolic ex-
ecution — as described in Section 2.1 — and our method. Both methods make
use of interpretation for executing the program — or in our case library —
statements, and both methods use constraint solving for generating test inputs.
There are a few minor differences between the two methods, however. These
differences are briefly highlighted in this section for completeness, but for the
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int fib(int n) {
if (n == 0) return 0;
if (n == 1) return 1;

int Fn;
int Fn_1 = 1, Fn_2 = 0;

for (int i = 1; i < n; i++) {
Fn = Fn_1 + Fn_2;

Fn_2 = Fn_1;
Fn_1 = Fn;

}

return Fn;
}

Figure 3.5: Bottom-up Fibonacci algorithm.

remainder of this thesis we denote our method as being symbolic execution.
The most prominent differences between the two methods is in how con-

ditional branches are handled. As described in Section 2.1, whenever symbolic
execution encounters a branch conditional on some symbolic value, it forks the
entire execution state — constraining the symbolic value such that the true or
false branch is taken — and continues the interpretation of both paths concur-
rently. In contrast, our method does not interpret the paths concurrently, but
instead does this sequentially. Our method emulates — or interprets with con-
crete input arguments from the state — the program statements. Whenever the
input argument is of a primitive type, we additionally mark it as being “sym-
bolic” — eventhough there is at the same time a concrete value for it — such
that we can generate new values for it using constraint solving whenever we
encounter the value in a branch condition. We continue emulating whatever
branch is taken based on the concrete value. Since the value is also symbolic
we, generate a value for it which satisfies the condition of the untaken branch
and place this value in a copy of the state. We then visit the untaken branch
with the modified state containing the solved value during a next iteration of
our algorithm.

3.6 Implementation
This sectiondescribes the implementation of ourmethod and the lessons learned
in the process. Our goal was for our method to be applicable to as many li-
braries as possible. For this reason and to aid in ease of development — see
Section 2.2 —we decided to implement our symbolic execution on top of an IR.
Initially, we considered a number of different IRs for this. We chose the IR of
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Egalito [39], a tool for comprehensive analyses and transformations directly on
binaries, so that we would be able to test libraries without needing their source
code present.

Things provedmore difficult this way, however, and since our method is not
fundamentally restricted to a specific IR, supporting a different IR would be a
straightforward engineering effort. For this reason, we decided to implement
our method on top of LLVM [26] IR instead. LLVM has mature tooling support
and documentation which made it easier for us to get to a working proof-of-
concept of our method.

As it stands, our method is implemented in a tool written in C++ of approx-
imately 2000 lines of code. At its core, our tool works by emulating the LLVM
IR instructions. In order to obtain the LLVM IR, each library was compiled us-
ing the clang compiler frontend. Our tool makes use of LLVM libraries in order
to parse LLVM IR input files. Additionally, our tool makes use of the Z3 [5]
constraint solver for solving path conditions.

Note that we have constrained our approach to the C programming lan-
guage for now. Despite it being possible to generate LLVM IR from other lan-
guages — most notably C++ — this often results in more complex LLVM IR.
Supporting these languages would again be a straightforward engineering ef-
fort not needed for a proof-of-concept. Given that C is the most popular lan-
guage for writing libraries due to its easy interoperability with other program-
ming languages, we believe this to be a reasonable compromise.
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Chapter 4

Evaluation

In this chapter we evaluate the effectiveness of our method using a set of em-
pirical experiments. Remember from Chapter 1 that we are mostly interested
in maximally covering a given library. Hence by applying our method to three
libraries, we aim to discover how well our method covers each library with re-
gard to the code coverage metrics described in Section 2.3. Specifically, we are
interested in the measured statement, branch and function coverage metrics of
each library.

4.1 Test subjects
To evaluate the effectiveness of our method on real-world code, the libraries
were selected to be of differing code sizes measured in lines of code (LoC).
Moreover, two of the three libraries were taken from publicly available repos-
itories on Github. The selected libraries consist of: a doubly linked list imple-
mentation, developed by ourselves, of approximately 150 LoC; a JSON parser
and tokenizer 1 of approximately 400 LoC; and, a red-black tree datastructure
implementation 2 of approximately 800 LoC.

4.2 Experimental setup
The experimental setup is as follows. Each library was compiled from source to
LLVM IR through the clang compiler frontend. This LLVM IR forms the input
to our tool together with an optional parameter how many iterations of our
method — as described in Chapter 3 — to perform.

During symbolic execution our tool keeps track of which instructions, edges
and functions are covered. By comparing against the total number available in
the library: line, branch and function coverage can be determined, respectively.
Recall fromSection 2.3 that branch coverage on LLVM IR is in reality the same as

1https://github.com/zserge/jsmn
2https://github.com/sfurman3/red-black-tree-c
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(a) Doubly linked list library.
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(c) Red-black tree library

Figure 4.1: Measured code coverage.

the stronger multiple condition coverage. For this reason, our measured branch
coverage is in reality stronger than is normally the case in the literature. Ad-
ditionally, our tool keeps track of the total number of states evaluated in the
process. Taken together these statistics form the basis for the evaluation of our
method.

4.3 Evaluation results
The results of this experiment can be seen in Figure 4.1. Here for each library
the measured line, branch and function coverage is shown. As can be seen in
Figure 4.1a, our method obtains full coverage on the doubly linked list library.
However, comparing the figures in Figure 4.1 directly side-by-side, shows that
there is a big discrepancy between the effectiveness of our method depending
on the given library.

JSON library

The effectiveness— or lack thereof— of ourmethod on the JSON library can be
explained by looking at the function signatures of the JSON library API shown
in Figure 4.2. The JSON library exposes two functions out of a total of six func-
tions required for parsing and tokenizing JSON. Theway this library ismeant to
be used is by first calling jsmn_init to initialize an object of type jsmn_parser,
and then using that parser object in combination with a character string for
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/**
* Initialize JSON parser.
*/

void jsmn_init(jsmn_parser *parser);

/**
* Run JSON parser. It parses a JSON data string into an array
* of tokens, each describing a single JSON object.
*/

int jsmn_parse(jsmn_parser *parser,
const char *js, const size_t len,
jsmntok_t *tokens, const unsigned int num_tokens

);

Figure 4.2: JSON libary exposed function signatures.

a call to jsmn_parse, which consequently fills an array of type jsmntok_t for
every valid JSON token it encounters within the string. Thus far our “batter-
ies included”-assumption as introduced in Section 3.1 holds nicely; as we don’t
know how to initialize objects of type jsmn_parser and jsmntok_t, this is han-
dled correctly thanks to function calls to jsmn_init and jsmn_parse, respec-
tively.

Where our method goes wrong, however, is in a slight ambiguity of the C
programming language. Namely, when a pointer is passed as a parameter to a
function there is noway of tellingwhether the pointer refers to a single object or
an entire array of objects. Also note that a string in C is implemented as an array
of characters. Our tool tries to make no assumptions regarding the inputs to
functions. As a result, ourmethod only calls the JSONparsing functionwith the
string argument pointing to a single character. Self-evidently, parsing a single
character does not cover a lot of code.

void idiomatic(int *array, size_t len) {
;

}

Figure 4.3: An example of idiomatic C code where the length of an array is
placed directly after the array pointer parameter.

Mitigating this issue is an area where future work could improve upon. Ob-
serve that idiomatic C code, as can be seen in Figure 4.3, usually places the
length of an array directly past the array pointer parameter. By using this as a
heuristic it is possible to distinguish in some cases a pointer from an array.

To show this is indeed the case, we devised a little experiment. In this ex-
periment, we manually create a test driver which our tool would also be able to
generate automatically, with the only difference being that instead of a single
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character we pass a character array to the jsmn_parse function. The test driver
can be seen in the listing in Figure 4.4.

#include "jsmn/jsmn.h"
#include "klee/klee.h"

#define STR_SIZE 24

int main() {
// These complex types are initialized through
// the ``batteries included''-assumption.
jsmn_parser parser;
jsmntok_t tokens;

char json_str[STR_SIZE];

// Mark the character array symbolic.
klee_make_symbolic(json_str, STR_SIZE, "json_str");

jsmn_init(&parser);
jsmn_parse(&parser, json_str, STR_SIZE, &tokens, 1);

return 0;
}

Figure 4.4: Experimental JSON library test driver for use with KLEE symbolic
execution engine to show the effect on coverage of passing a character array
instead of a single character.

Next we evaluate this test driver using the KLEE symbolic execution engine
and record the resulting line and branch coverage. To keep things mostly the
same, we direct KLEE to use the Z3 solver for constraint solving and set a time
limit of one minute. With only this small difference, KLEE— and thus also our
tool if it would handle arrays—obtains 90.91% line coverage and 75.89% branch
coverage.

Red-black tree library

The effectiveness of our method on the red-black tree library is also quite lack-
ing compared to the exemplary results on the doubly linked list library — see
Figure 4.1c and Figure 4.1a, respectively. Most strikingly, regardless of the num-
ber of iterations, four out of the twenty-three functions remainuncovered. These
functions are only indirectly reachable through the exposed functions of the li-
brary interface. Taken together, these four functions are responsible for more
than 33% branch and 50% line coverage, respectively. We hypothesise these
functions — as well as the other uncovered parts of the library — are not being
covered, because the required state is not built-up correctly.
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To investigate this issue more thoroughly, we performed a manual code in-
spection of the library source code. Again, we found the “batteries included”-
assumption to hold nicely; the red-black tree library exposes functions for valid
initialization and modification of state. Where our method goes wrong, how-
ever, is in the following fundamental design limitation. Namely, our method
expects state to be built-up in the memory and global data sections, as these
sections are persistent inbetween function calls.

The red-black tree library does not adhere to this expectation, as the func-
tions for modifying the state by, for example, adding or deleting a node, are
characterized by the following signature:

new_root = RBT_state_modifier_function(root, ... )

We believe that the reason for this design choice is the self-balancing prop-
erty of red-black trees, as rebalancing could result in a new root of the tree.
Whenever our method calls a state modifying function on the tree pointed to
by the root node object from memory, a new_root object is passed back to the
stack section as a result. However, the stack section does not persist inbetween
function calls in our method, meaning the carefully built-up state is then dis-
carded. We did not foresee the passing of state like this when implementing
our method. Unfortunately, this proves to be a shortcoming on this particular
library.

4.3.1 Complexity evaluation
Now that we have shown that our method can obtain high coverage automati-
cally — albeit with some modifications left for future work — we also want to
evaluate whether our method scales to larger libraries. This section evaluates
the complexity of our method in both time and space.

The pseudo-code implementation of our method as shown in Algorithm 1,
shows that the time and space complexity is directly proportional to the number
of states under evaluation. For every state, we evaluate all exposed functions of
the library with all possible arguments, which in turn results in new states for
further evaluation.

Figure 4.5 shows the number of states evaluated with every iteration of our
method. Here we see that the number of states grows way faster with every
iteration for larger libraries. In theworst case, such aswith the doubly linked list
library the number of states keeps growing exponentially. Extrapolating based
on this observation, we can conclude that the exhaustive strategy for building
state employed by our method does not scale to very large libraries.

However, this is a directionwhere futurework can improve upon. For exam-
ple, consider that very large libraries generally offer very much functionality;
and, that with so much functionality, some parts of the library are possibly,
less tightly-coupled with other parts of the library. For this reason, it might be
possible to tame the complexity by identifying these parts of the library using
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Figure 4.5: Number of states evaluated with each iteration of our method.

static analysis, and subsequently testing these decoupled parts exhaustively in
isolation. Another possibility could be to analyse which parts are responsible
for setting the state, such that these states can be built-up exhaustively before
unleashing them on the remaining parts of the library.
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Chapter 5

Discussion

This chapter discusses the strenghts and limitations of our method. The main
contribution of this thesis is a method for testing libraries fully-automatically.
We have shown how our method can benefit — instead of suffer — from in-
ternal dependencies among library functions. We specificly exploit these de-
pendencies through the “batteries included”-assumption in order to initialize
complex, pointer-rich datastructures. Moreover, Chapter 4 shows the validity
of ourmethod by evaluating its effectiveness on three libraries of different sizes.

This evaluation also exposes some limitations regarding our method. In
Chapter 4we observe a big discrepancy in the effectiveness of ourmethodwhen
comparing two libraries side-by-side. Here we note that our method is limited
in disambiguating whether a pointer argument should point to a single object
or to an entrire array of objects. This is problematic since arrays are frequently
expected as input arguments for library functions.

This limitation can be addressed, however, through a simple heuristic. As
can be seen in the code listing in Figure 4.3, it is often the case that whenever a
function expects an array as input argument that there is an integer argument
denoting the length of the array following the pointer argument. Future work
can improve on our method by implementing this heuristic.

Another limitation is that our method does not make any assumptions on
what values memory can hold. For this reason, our method does not use con-
straint solving in order to initialize the underlying objects referenced to bypointer
arguments. This is a strength as we are convinced that solving complex struc-
tures will result in false-positives. However, this policy is too strict when the
object under point is of a primitive type such as an integer or a character array.
These primitive types can easily be set to specific values as dictated by the en-
countered path constraints. Future work can address this limitation by relaxing
this policy a little bit.

As our method performs symbolic execution on LLVM IR there is a need
for the source code to be available, since LLVM IR is obtained through compila-
tion. Our method is further limited in that it only supports the code constructs
encountered in C libraries for now. The need for source code could perhaps
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be addressed by using tools such as SecondWrite [6] which is — although not
perfect — capable of lifing LLVM IR from binaries. Another option would be
to implement our method on another IR which is lifted from binary such as
the ones from Valgrind [29] or Egalito [39]. In fact, this was how we first envi-
sioned to implement our method, but this proved more difficult for creating a
proof-of-concept.

Unlike other symbolic execution techniques (see Section 6.1), our method
does not handle calls to the environment, such as system libraries or functions
from other libraries than the target library, in any way. Our method is thus
only able to automatically test libraries which are not dependent on any other
libraries. Given that our method is mostly a proof-of-concept, we expect this to
be a reasonable compromise.

The evaluation of our method is limited. Eventhough, we evaluated our
method on three libraries of differing sizes, these libraries were all relatively
small. Testing small libraries can still easily be donemanually.Where automatic
testing really shines, is in testing large and complex software, as it is the size and
complexity which makes it more difficult to keep all edge cases in mind. Based
on the performed experiments, it is unlikely that our method will scale to very
large libraries. Given the fact that somewidely-used libraries can easily be in the
order of magnitude of hundreds of thousands lines of code, this shortcoming
would be an interesting area for future work to improve on.
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Chapter 6

Related work

This chapter places this thesis in the context of prior work done in the area of
automatic software testing in general, and more specifically in the area of sym-
bolic execution and automatic library test driver generation. Additionally, we
discuss how our method relates to prior work and on what aspects our method
differs.

6.1 Symbolic execution
Symbolic execution is a testing technique for systematically exploring many
possible execution paths by abstractly representing inputs as symbols and re-
sorting to constraint solvers to construct actual instances thatwould cause prop-
erty violations [8]. Ever since its inception in the mid-1970s [9,19,23,24], sym-
bolic execution has become a widely popular testing technique, with Google
Scholar reporting 742 articles that contain the exact phrase “symbolic execu-
tion” in the title as of August 2017 [8].

The survey on symbolic execution techniques by Baldoni et al. [8] provides
an overview of the main ideas, challenges and solutions developed in this area.
Some of these challenges faced in the area of symbolic execution can be found
in how to handle symbolic data inmemory; how to handle interactions with the
environment when calls to library and system code can have side-effects; how
to deal with the path explosion problem; and, the efficiency obstacle posed by
solving non-linear constraints and interpretation. The highlighted techniques
discussed hereafter deal with some of these challenges in novel ways or apply
symbolic execution to novel domains.

When symbolic execution is used to analyse real-world applications, it often
consumes all available memory in a relatively short amount of time due to the
path explosion problem. Because of this memory pressure, KLEE prematurely
terminates a substantial amount of paths as the given memory limit is reached.
Memoization, by storing the early-terminated paths to disk and then replay-
ing them later, is a solution for dealing with this problem. An extension [11]
build on top of KLEE shows that this technique can enable KLEE to run large

27



applications for long periods of time. Sys [10] is another technique for dealing
with large codebases. This technique works by first using static analysis for de-
tecting potential error sites, before deeply examining these sites using symbolic
execution.

Another impediment for using symbolic execution in practice is speed. Tra-
ditional symbolic execution engines such as QSYM [41], KLEE [12] and others,
work by interpreting the program source code or some kind of IR. SymCC [31]
obtains a speedup of two to three orders of magnitude over KLEE and QSYM,
respectively, by compiling the symbolic execution right into the target binary.

The techniques described before require the presence of source code — or
some IR obtained from the source code — for running symbolic execution.
Angr [36] is a technique for running symbolic execution on binarieswithout the
presence of source code. It does this by first lifting VEX, the IR of Valgrind [29],
from the binary and running symbolic execution on top of this IR.

S2E [14] is another technique for symbolically executing binaries by em-
ploying dynamic binary translation to directly interpret the x86 machine code.
Additionally, S2E is able to accurately deal with the environment by using vir-
tualization to prevent lasting side-effects. This way different paths are not able
to clobber each others domains.

The enormous popularity of smartphones also give rise to the need for test-
ing mobile applications. Mirzaei et al. [28] show how to apply symbolic execu-
tion to test Android applications.

6.2 Inferring library function preconditions
The ability to reuse code from libraries is beneficial to programmers as it gen-
erally aids ease-of-development. Correctly using a library, however, can some-
times be challenging due to hidden dependencies between library functions
which are not always clearly documented. The survey by Robillard et al. [34]
describes various techniques for automatically inferring these kind of precon-
ditions. Similarly, techniques for testing libraries — regardless of whether this
is by fuzzing, symbolic execution or something else — also need to respect the
preconditions for covering specific parts of the library. This section highlights
a number of related works and the various methods they employ for dealing
with this challenge.

The simplest method for dealing with this challenge is not to handle it at all.
Techniques such as DART [18] andUC-KLEE [32,33] only test library functions
in isolation. This way there is no need for inferring the required preconditions,
but it comes at the cost of not being able to cover the deeper parts of a library
which depend on the required preconditions.

In contrast, CUTE [35] acknowledges that there is a need for handling the
preconditions when testing libraries. However, they require a human to specify
the required preconditions of library functions, with the neccessary trade-off of
giving up automaticity.
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Other approaches, such as FUDGE [7] and FuzzGen [20] employ a corpus
of code for mining patterns for correctly interfacing with the target library. This
way they are only able to generate tests for parts of the library for which there
is code available. Moreover, with FUDGE there is still a need for a human to
tweak the inferred preconditions.

APICraft [42] is able to infer neccessary preconditions from closed-source
libraries by employing both static and dynamic binary analysis andmining pat-
terns from execution traces of programs incorporating the library.

Some other notable approaches use already existing test suites for deriving
function preconditions [17, 21], or use natural language processing techniques
for inferring these from the library documentation [43].

The technique most similar to our method, however, is the work done on
RANDOOP[30] for feedback-directed random test generation. RANDOOPbuilds
inputs by randomly selecting a method call to apply and finding arguments
from among previously-constructed inputs. As soon as an input is build, it is
executed. The result of this execution is the feedbackwhich determineswhether
the constructed input satisfies the preconditions for that method call.

6.3 Method comparison
Wewant to highlight our method in light of the work done on DART [18], UC-
KLEE [32, 33] and CUTE [35], as well as the challenges inhibiting automatic
testing of libraries addressed in Section 2.4, in order to make a clear distinction
where our method contributes.

All three of these works test library functions using constraint solving in or-
der to maximally cover the paths through the function. DART and UC-KLEE
are both able to automatically extract the interfaces of library functions and
test them with the required inputs. However, DART only places constraints
on integer types and cannot handle pointers and data structures. In this situa-
tion DART reduces to simple, random testing. In contrast, UC-KLEE improves
on this regard by being able to generate complex, pointer-rich datastructures
through a technique called lazy initialization [22,40].

BothDART andUC-KLEE, however, test individual library function in isola-
tion, without regard for internal dependencies among library functions. CUTE
addresses this shortcoming, but requires the user to manually specify which
library functions are related and what their preconditions are; hence, giving up
on being fully automatic.

Our method complements these three methods by being able to automat-
ically test library functions which depend on complex, pointer-rich datastruc-
tures, while at the same time respecting internal dependencies among library
functions through amethod similar to thework done onRANDOOP [30].How-
ever, contrary to RANDOOP, our method adds constraint solving for solving
specific values of branch conditions.Moreover, through our “batteries included”-
assumption we specifically exploit these internal dependencies in order to ini-
tialize the values of these complex, pointer-rich datastructures.
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Chapter 7

Conclusion

The goal of this thesis is to automatically cover a given library under test sym-
bolically, while at the same time respecting the fact there might be internal de-
pencies among library functions. These internal dependencies are specifically
exploited in order to generate complex, pointer-rich input arguments through
our “batteries included”-assumption. Furthermore,wehave evaluated ourmethod
on a set of empirical experiments to determine the effectiveness of our method
on real-world code.

Our method has shown to be viable on experiments with three libraries.
These experiments exposed some limitations regarding ourmethodwhich have
been discussed and form the basis for future work to improve upon. Whether
ourmethod can be adapted to scale to very large libraries remains an open ques-
tion for future work to expand on.
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