£Y3. Universiteit Opleiding Informatica
W) Leiden b 8
The Netherlands

Impact of Flow Anonymization on Cyberattack Detection in IoT

Jack Voorham

Supervisors:
prof. dr. Marco Spruit
Max van Haastrecht, MSc

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 12/07/2022



www.liacs.leidenuniv.nl

Abstract

Intrusion Detection Systems (IDS) are crucial in networking as they can detect malicious
intent that other mechanisms such as firewalls fail to recognize. A technique commonly used
in an IDS to detect malicious intent is the use of flow data. However, flow data often contains
personal identifiers such as IP addresses that can be considered privacy-sensitive. The privacy
sensitivity of these fields makes it hard to share these logs in settings such as collaborative
intrusion detection systems (CIDS) or open-source threat intelligence models. This paper
will assess how an IDS in an IoT setting performs when privacy is taken into consideration
using various anonymization techniques, this is examined in both a binary setting and a
multi-class setting with multiple attack types. We show that when we consider the sensitivity
of data in a multi-class setting, the F1 score of our best baseline model drops by 12.46%
when applying binning anonymization and 22.47% when applying the more conservative
black-marker anonymization. Subsequently, in the binary classification setting, we show that
anonymization has only a slight effect, with F1 scores dropping 2.90% when applying binning
anonymization and 5.46% when applying black-marker anonymization.
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1 Introduction

Cyberattacks have increased rapidly in volume, complexity, and diversity in the past few years.
A recent report from Accenture [1] stated that cyberattack frequency on companies increased by
31 percent in 2021 with respect to the year prior. The same report also stated that 82 percent
of company budgets for cybersecurity have increased. Additionally, attack trends and complexity
are constantly changing in the cybersecurity landscape [2]. A recent trend on a threat actor level
is COVID-19-related malware and phishing [3]. Also, some sectors can become more prevalent
as attack targets. Figure 1 shows that attacks on critical sectors of society such as education,
government, and healthcare have been increasing since 2019. This changing landscape makes it
challenging for entities focused on information security to mitigate risk as mitigation strategies
need constant evaluation on both a threat-actor and industry level.

Monthly count of attacks against entities in: <> Education <> Government <

Figure 1: Monthly attacks against education, government, and health care from the period 2016-2022. [1]

Another emerging trend is cyberattacks on Internet of Things (IoT) devices [5]. We can define IoT
as all devices that on them contain hardware, software, and sensors that make it possible to share
information with other devices and systems. Examples of IoT can be as simple as a lightbulb or
thermostat but can also be as critical as a driverless bus or entire cities [6]. The ENISA 2021 threat
landscape [3] states that ToT in conjunction with 5G is accelerating attack volume, with ToT devices
becoming more predisposed to DDoS attacks. Subsequently, it is shown that 98 percent of the IoT
data is unencrypted and that most [oT devices run outdated software, increasing exploitation risks
[7]. This combination of IoT being a vulnerable target and the potential impact of a successful
cyberattack makes it easy to see that [oT can be a hotbed for malicious intent.



1.1 Problem statement

As cyberattacks are becoming more advanced and sophisticated and with new attack (zero-day)
exploitation becoming more common [3], Intrusion Detection Systems (IDS) also are posed the
challenge of needing to detect situations not currently known. To combat this, most IDS use forms
of alert logs and network traffic to collect data and then extract needed data such as Internet
Protocol (IP) addresses for usage in the IDS. This data can then be used to train models that
detect anomalies in incoming network data, for example, huge connection sizes.

Another possible solution for the detection of novel attacks and intrusions are collaborative intrusion
detection systems (CIDS). In a CIDS, IDSs cooperate to share their collected information and
experience to achieve better intrusion detection performance [9]. CIDS can also benefit businesses

and enterprises that do not have the big data of networks or the resources to set up their own IDS,
such as SMEs.

However, while CIDS propose an opportunity to scale the mitigation of cyberattacks even in
settings that do not have many resources, sharing data between multiple entities and organizations
is prone to privacy-related issues [10]. These privacy-related issues stem from the fact that some
of the data shared is considered personally identifiable information (PII). For example, sharing
raw, unanonymized IP addresses could lead to the identification of end-users in a network. Privacy
considerations become especially important when a system needs to comply with regulations such
as the General Data Protection Regulation (GDPR). According to article 4 of the GDPR, PII
concerns any data that can be directly or indirectly identified to a source [ 1]. This also concerns
data commonly used in an IDS, such as IP addresses.

What is needed is a more general approach to solving the problem of attack prediction while still pre-
serving the privacy of end-users. A potential solution to these problems is the use of flow data. Flow
data traditionally has a significant privacy advantage over solutions such as analyzing raw network
packets as it does not contain any payload information, and the end-to-end user communications

are protected [12]. However, it is still recommended for the flow data to be anonymized to protect
privacy [10]. This anonymization of flow data can be approached using various anonymization
techniques.

As stated in the introduction, a recent trend in the cybersecurity landscape has been cyberattacks
on IoT devices. The Microsoft IoT Signals Report [13] states that in 2021 90 percent of all businesses
and organizations were [oT adopters. This same report also stated that one of the key developments
in the IoT landscape has been the focus on security, with nearly a third of the IoT adopters keeping
a close eye on the security risk of IoT with specific concerns about data privacy and network security.
Thus, examining how an IoT-based IDS performs in a more private manner is vital so parties can
ultimately share data and secure their devices while not risking legal and privacy-related issues.

1.2 Research Scope and Questions

This thesis will evaluate the impact of anonymizing flow-based network data on the detection
performance of an IoT-based IDS. This is done by comparing different techniques for anonymization



of flow data and evaluating their impact on the performance. We approach this by examining both
a setting where the model has to determine whether a flow is malicious or benign and a setting
where the model has to detect specific attacks. We will look at the following (sub)questions in this
process:

1. How does anonymized flow data perform in the detection of malicious traffic in comparison
to raw flow data in an IoT environment?

2. How does anonymized flow data perform in the detection of traffic from specific attacks (e.g.,
DDoS) in comparison to raw flow data in an IoT environment?

3. What classical machine learning models are best suited for the detection of malicious traffic
in an IoT environment using anonymized flow data?

4. Which features are most important for the detection of malicious traffic in an [oT environment,
and how do anonymization techniques impact the importance of these features?

These questions lead us to the overarching research question of the paper, which we will define as
the following:

To what extent can less sensitive flow data detect cyber-attack traffic in an IoT environ-
ment in comparison with privacy-sensitive, unanonymized data?

1.3 Thesis Overview

This thesis is divided into several chapters. First, we will examine related research on flow-based
cyber-attack detection and compare our work with other works. Then in Section 3, Methodology, we
will lay out the foundations and techniques that will be utilized to conduct the research. Here we for
example examine what data privacy entails in the context of an IDS and investigate how this relates
to specific features. Section 4, Experimental Setup, details the experiment setup and data processing.
We will also present techniques for anonymizing flow data based on our privacy classifications. In
Section 5, Experiments, the information from the previous sections will be applied, and the results
of the experiments will be presented. Section 6, Discussion, will answer our subquestions and main
research questions based on the experiments. We will also state limitations that were found when
conducting our work. Finally, in Section 7, Conclusion and Further Work, we will conclude our
work and explore what areas could be considered in future work.



2 Background

2.1 Flow-based Intrusion Detection

The field this paper can be classified into is flow-based intrusion detection. Traditionally, most
intrusion detection systems used deep packet inspection or protocol analysis. However, due to
the growth in speed of modern networks and the aforementioned methods being computationally
expensive, scaling these methods is not feasible in modern environments [11]. A more modern and
scalable approach is flow-based intrusion detection which uses flow data from exporters such as
Cisco’s NetFlow. We can define a flow as the following:

“A flow record contains information about a specific flow that was metered at an
observation point. A flow record contains measured properties of the flow (e.g., the total
number of bytes of all packets of the flow) and usually characteristic properties of the
flow (e.g., source IP address).” [15, p. 5]

Flow exporters are designed to collect IP traffic metadata by traversing network devices such as
routers and switches. This metadata can consist of entries such as IP addresses, port numbers, and
packet volumes.
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Figure 2: Flow exporter setup: based on Figure 3 by Hofstede et al. [16]

Figure 2 shows how a flow exporter will be positioned for use in a flow-based intrusion detection
system. The flow exporter extracts the flow information between an attacker and a target. This flow
data can then be exported for usage in the detection of harmful network activity and anomalies.
This can be as simple as detecting an IP that is on a whitelist [17] but also DDoS detection with
algorithms utilizing flow-based features as their parameters [18].



2.2 Related Work

In the last decade, there has been extensive research in the field of intrusion detection with flow
data. In this section, we will briefly describe papers that are closely related to this work. We will
also state in what aspects this paper differs from the current state of the art. Because this paper will
focus on the usage of machine learning methods, we will only look at work incorporating machine
learning methods.

Many approaches for flow-based intrusion detection have been proposed utilizing a wide range of
methods, from classical machine learning approaches to deep learning. Tran et al. [19] proposed an
Artificial Neural Network (ANN) approach using a hardware-based detection system, making it
possible to process large volumes of data in real-time. Diro et al. [20] proposes a Convolutional
Neural Network (CNN) approach. Yin et al. [21] proposes a deep learning approach based on
Recurrent Neural Networks (RNN) with better results than with baselines of ANN, Random Forest,
and Support Vector Machine (SVM) approaches. However, these works examine their approaches
with datasets not from an IoT-related environment. Also, the proposed methods do not consider
privacy-related issues and use the raw network data in their models.

Some work also has been done using datasets captured in IoT settings. For example, Koroniotis et
al. [22] looked at the detection of botnets with the recent Bot-IoT dataset using SVM, RNN, and
LSTM approaches. Koroniotis et al. also considers the correlation between features and evaluates
performance using only the top 10 features. However, a shortcoming is that this is only examined
in a binary setting and multiple attack types are not considered. Ullah et al. [23] also uses a deep
learning approach for anomalies in an IoT network using 1D, 2D, and 3D CNNs. This is examined
in both a binary and a multi-class setting. The dataset combines multiple public datasets, such as
the aforementioned Bot-IoT set. While Ullah et al. examines the models’ performance in predicting
specific attacks, it does not look at which features influence the classification of these different
attacks. Sarhan et al. [21] uses the ToN-IoT dataset, the same dataset utilized in this paper, and
looks at both binary and multi-class classification performance on this dataset. However, the paper
does not scrutinize privacy issues, and the data that is trained on is kept in its raw state. Also, it
does not look at the classification impact of certain features. This shortcoming is also mentioned in
possible future work. Meidan et al. [17] used Random Forests for the detection of unauthorized
IoT devices with the use of classifying whitelists. While the paper does not specify any concerns of
the sensitivity of the data or anonymization, it does look at how specific features impact detec-
tion performance of different devices and found that the min. time-to-live (TTL) was most impactul.

As we can see, there has been quite some research on attack detection using flow-based data in
various settings. We have summarized the work as mentioned earlier in Table 1. This table contains
columns concerning the techniques used in the paper and the name of the dataset that is used
in the work. We also created columns for the properties of each work containing checkmarks for
a quick overview. The Anonymization column contains a checkmark if the work concerns itself
with potential privacy issues and anonymizes the features, the feature impact column contains a
checkmark if it looks at the impact of certain features on the overall prediction performance or the
prediction of specific classes, and the IoT column contains a checkmark if the data that is used is
generated in an [oT related environment.



Table 1: Overview of related work and their properties

Research Technique Data Anonymization Feature Impact IoT
This work SVM, KNN, DT ToN-IoT v v v
Koroniotis et al. SVM, RNN, LSTM Bot-IoT X v v
Meidan et al. RF Custom X v v
Ullah et al. CNN Multiple X X v
Sarhan et al. Tree-based ToN-IoT X X v
Wang et al. SVM, KNN, DNN, RF NSL-KDD X v X
Yin et al. RNN NSL-KDD X X X
Tran et al. ANN Darpa X X X
Diro et al. CNN NSL-KDD X X X

We have seen that all the papers mentioned use sensitive and unanonymized data for their detection
algorithms. Also, we have seen that there is little research on the direct relationships between
specific features and attack detection in both the multi-class and binary settings. Subsequently, no
work was found on the intersection between feature relation and anonymization.

In comparison to other work, this work will distinguish itself in the following aspects:

1. Acknowledgement of privacy sensitivity of features and looking at the performance impact of
using anonymized data for attack detection compared to using raw, unanonymized flows in
an IoT environment (Subquestion 1,2,3).

2. Establishing the relationship between anonymized features and attack detection performance
in an IoT environment (Subquestion 4).

In general, this paper can be considered to lay a foundation for developing a privacy-protecting
[oT IDS, and conclusions can be made on the impact of taking a private approach to the intrusion
detection problem and the impact this has on performance.



3 Methodology

3.1 Feature Privacy

To conduct the experiments, we first must classify which features tend to be privacy-sensitive.
Privacy in the context of an IDS is two-way intractability, meaning the ability “to assert that
endpoint X contacted endpoint Y at timestep Z” [10, p. 8] is removed.

In Tan et al., [25] it is stated that sanitizing flows is a difficult task because the line between what is
sensitive and not is often not fully known and is subject to change over time. However, we do know of
certain features to be privacy-sensitive. Tan et al. states that we should be careful with IP addresses,
port numbers, and trace counters. The most direct identifiers are the IP addresses and ports. IP
addresses can be used to identify a specific network or host, for example, by using IP address
ranges. Subsequently, ports can be sensitive because they can be associated with specific services
or processes that are currently active. Trace counters such as packet and byte volumes per flow,
while not identifiers in and of themselves, can be used to extract sensitive data with injection attacks.

Aleroud et al. [20] also states that the last three features, IP addresses, ports, and trace counters,
should be sanitized for privacy in flows. It also states that MAC addresses and timestamps should
be considered privacy-sensitive. MAC addresses are 48-bit hexadecimal addresses for specific devices
and can thus be used to identify a specific end device if this MAC address is known. Timestamps,
while not being a direct identifier, can be seen as privacy-sensitive because they can be used with
injection attacks similar to trace counters.

The aforementioned five feature groups are also stated in RFC6235 (IP Flow Anonymization
Support) [10], which provides a proposed internet standard for anonymizing flow-based features.
Besides the aforementioned privacy-sensitive groups, Section 4.5 of the aforementioned RFC also
mentions that protocol numbers can also be seen as privacy-sensitive besides port numbers.

This leads us to six feature (groups) that we consider to be privacy sensitive; we have highlighted
the six groups in Table 2, with their respective reason for anonymization.

Table 2: Overview of sensitive features and their anonymization reasons

Feature (group) Anonymization Reason

MAC Addresses Can be used to identify a specific end device

IP Addresses Can be used to identify a specific host or network
Port Numbers Can be used to identify the use of specific services
Protocol Numbers Can be used to identify the use of specific services
Timestamps Can be used for fingerprinting and injection attacks
Trace Counters Can be used for fingerprinting and injection attacks

In Section 4.2, we will look at which of the features in our data are contained in one of these six
feature groups and thus have to be anonymized for optimal privacy.



3.2 Data

The data used in this work comes from the NF-ToN-IoT dataset [24]. This dataset is a collection
of multiple IoT and industrial IoT datasets that are aimed at use for testing the efficiency of
cybersecurity applications and 1DS.

The datasets used are all collected from an extensive testing network created at the Univer-
sity of New South Wales (UNSW) that connects hacking platforms, VMs, and IoT sensors [27]. A
threat model is used to simulate an environment that is as realistic as possible [28]. This threat
model distinguishes nine categories of attack types labeled in the dataset for each flow. The nine
categories included within this threat model and their definitions are listed in Table 3.

Table 3: Attack Types present in ToN-IoT dataset

Label Definition

Backdoor Malware type to get remote access to resources within applications

DoS! Attack that attempts to overload a system’s resources from one attack source

DDoS? Attack that attempts to overload a system’s resources from distributed attack source
Injection Attack supplying untrusted input that aims to alter the usual control flow

MITM? Attack, where the attacker is placed between host and victim and intercepts network traffic
Password This label covers all password-related attacks; this can be, e.g., sniffing or brute-forcing

Ransomware Attacks that encrypt files on a host and require payment for decryption
Scanning Group of techniques that try to discover information or vulnerabilities in networks

XSs? Attack that attempts to inject malicious browser-side scripts into benign sites

! Denial-of-Service 2 Distributed Denial-of-Service 3 Man-in-the-middle ~ * Cross-site scripting

Each flow is supplemented with 12 flow-based features extracted from network packet captures
using the nProbe [29] extraction tool. The data also contains two labels, one for the attack type of
one of the previously mentioned attack types and a binary label that is true based on whether the
flow is part of an attack.

3.3 Data Composition

This section will examine the data used to conduct the experiments. Additionally, we will investigate
the composition of the data to avoid potential bias.

First, we will look at some primary data about the dataset and the labeling composition. The raw
dataset has 1,379,274 entries with no NaN or null values in both the features and labels, and we
can thus use the raw dataset without many cleaning tasks beforehand. As mentioned earlier, the
dataset contains both a binary label, which is true based on whether the flow is an attack, and a
multi-class label for the attack type.
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Figure 3: Data Composition

We can see in Figure 3 that the labels of benign and attack samples are slightly imbalanced with
1,108,995 attack labeled flows and 270,279 benign flows. If we look at the distribution of the labels
in the dataset, we see that injection and DDoS are the most common labels for attacks, with
occurrences of 33.97 and 23.66 percent of all flows. Password and XSS follow with occurrences of
11.33 and 7.25 percent of all flows. Scanning, DoS, and backdoor attacks occur to a lesser extent,
with occurrences of around 1.5 percent. MITM and ransomware attacks occur much less than the
other classes, with all occurring less than 0.1 percent of the time.

We can thus conclude that there is a slight imbalance in the binary labels and a pretty sig-
nificant imbalance in the attacks with some outliers that have almost no occurrence and thus have
an extreme imbalance. Our experiments can mitigate biased results with performance metrics suited
for imbalanced data. This will be handled in the Section 3.4. We can also look at oversampling of
the data to create a more uniform representation which will be looked at in Section 4.1.

3.4 Evaluation Metrics

To evaluate our models, we need to specify the metrics that will measure the performance. Addi-
tionally, we will examine what metrics should be examined when an IDS needs to meet specific
needs. As we saw in Section 3.3 we have an imbalance in the binary and multi-class labels; we
should thus look at performance metrics suitable for imbalanced data.

To evaluate how the models perform, we will use precision, recall, F1, and Matthews Corre-
lation Coefficient (MCC) as our metrics for both the multi-class and the binary classification.
Additionally, we will use SHapley Additive exPlanation (SHAP) values to determine feature contri-
bution, which is essential to answer our fourth subquestion.



We define the precision metric by the following formula:

TP
Precision = ———— 1
recision = ;s (1)

here T'P and F' P are the true-positive and false-positive, respectively. Here the true-positive means
the number of predictions that predicted the positive class when the positive class was also the
target. The false-positive means the number of predictions where the positive class was predicted,
but the target was not positive. In the context of this work, this can be seen as the number of flows
that are labeled to be malicious that were malicious. This metric is important in an IDS where
benign flows must not get marked as malicious.

The second metric we will use is the recall score which is defined as:

TP
ll=——— 2
Reca TP EFN (2)
The recall metric measures how many actual positive class labels are labeled positive in our predic-

tions. This metric is essential in an IDS where malicious flows must get marked as malicious.

The third metric we will look at is the F1 score. The F1 score is a function of both the precision
and recall metrics and is defined as follows:

Pl 2 x Precision * Recall 2xTP (3)
~ Precision + Recall ~ 2+«xTP+ FP+ FN

The F1 score measures a balance between the precision metric and recall metric. This measure is

thus essential when both the false positives must be equally represented. In the context of an IDS,

a balance between benign flows not being marked as malicious and malicious flows getting marked
as malicious is optimal.

As an additional metric in our experiments, we use the MCC metric. This metric provides a
more balanced view of the model’s performance against F1 because it also considers how well it can
predict the negative value [30]. Thus, the model must score well in all four sections of the confusion
matrix for a higher score. It is defined as:

MCC — TP xTN —FP x FN ()

~ /(TP+FP)(TP+FN)(TN + FP) (TN + FN)
Where T'N and F'N are the true-negative and false-negative, respectively. Here, the true negative
means the number of predictions on negative when negative was also the target. False-negative means

the number of predictions where the negative class was predicted but the positive class was the target.

To determine feature importance, we will use SHAP values. Shapley values are a metric from
game theory to determine the contribution of each player to a game; however, they can also be
used to determine feature importance in machine learning models. For this we use SHAP [31], an
interpretability method based on the aforementioned Shapley values to assess the effect of specific
features in a machine learning model.
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4 Experimental Setup

This section will look at the experimental setup, which explains how the experiments will be done.
Subsequently, this section will look at how the data needs to be preprocessed such that the data
will be optimal and fair for the experiments. All written code for this thesis can be found in the
following GitHub repository: github.com/jackvoorham /thesis code.

4.1 Data Preprocessing

Because the dataset was created within a small subset of networks worldwide, the first preprocessing
step we take is the removal of the source and destination IP addresses. We do this because the IP
address is not a generalizable feature across different intrusion detection systems as the IP addresses
and their ranges will change based on the network an IDS is situated in. Another feature we will
remove is the L7_PROTO feature. Because we will anonymize features based on RFC6235 (IPFIX
Anonymization Support), we will remove this feature as it is not specified in the IPFIX standard [32].

Subsequently, since machine learning algorithms can only interpret integers, it is necessary to
conduct some preprocessing before the data is used in the models. While most of the features
present in the data are integers, some categorical data exists. Features like the ports need to be
mapped to integers to be correctly interpreted in our model. We do this mapping from categorical
values to integers using one-hot encoding. With one-hot encoding, we convert each categorical value
into a new column that is assigned either a one or a zero based on whether the categorical value is
present or not. The features that we will encode include the ports, the IP protocol, and the TCP flags.

The second goal we want to achieve with preprocessing is the minimization of bias. The first
step to achieving this goal is normalizing the numerical features so that data does not have a
bias towards large or small values. We use min-max normalization, which normalizes the value
between zero and one. Sarhan et al. [21], which utilizes the same dataset, also proposed this step.
Additionally, we will balance all attack classes using oversampling for both binary and multi-class
classification tasks. We will use the Synthetic Minority Oversampling Technique (SMOTE), which
adds synthetic samples for the minority classes. Additionally, we will apply k-fold cross-validation
with ten folds to prevent overfitting.

To conduct our experiments, Pycaret [33] is used. To do the preprocessing we pass the normalize=True
and fix_imbalance=True parameters to Pycaret’s setup function which will apply normalization
and SMOTE respectively. It is important to note that SMOTE gets applied individually for each
cross-validation step when running the models, and SMOTE does not get applied on the test set.

4.2 Privacy Labeling

As the dataset does not have any labels for privacy sensitivity, we need to make conclusions about
this aspect manually. We can use the groups described in Section 3.1 to identify which features
should be listed as sensitive. Because some features are similar (e.g., source and destination port),
we will group them in a single category and label them based on that.

11



Table 4 contains the groups of the extracted features from the NF-ToN-IoT dataset. Each group
is grouped with the NF-ToN-IoT feature names, textual descriptions, and the anonymization
techniques that will be evaluated in the scope of this work. These anonymization techniques will be
explained in Section 4.3. This results in us having six groups that are grouped on similar features.
Four of the six groups contain PII per the privacy-sensitive groups stated in Table 2.

The ports are considered sensitive under the port numbers feature group; The IP Protocol is
considered sensitive as per the sensitive protocol numbers group. The volume in octets and packets
ought to be sensitive under the trace counters group. The MAC Address and timestamps groups
are unused because none of the features present in the dataset are contained in one of these two
groups.

Table 4: Feature groups of ToN-IoT features with respective anonymization techniques

Group Feature name(s) Description Anonymization
Techniques
L4 _SRC_PORT IPV4 Source Port o
Ports Binning & black-marker
L4 DST_PORT IPV4 Destination Port
) IN_BYTES Incoming num. bytes o
Volume in Octets Binning & black-marker
OUT_BYTES Outgoing num bytes
) IN_PKTS Incoming num. packets o
Volume in Packets Binning & black-marker
OUT_PKTS Outgoing num. packets
IP Protocol PROTOCOL IP Protocol Number Binning & black-marker
TCP Flags TCP_FLAGS Cumulative of TCP flags None
Durations FLOW_DURATION MILLISECONDS Flow duration (msec)  None

4.3 Anonymization Techniques

Now that we have distinguished feature groups based on their privacy sensitivity, we can look at
anonymization techniques. This paper will look at two techniques; black-marker anonymization and
binning. We will follow the guidelines of RFC6235, IPFIX anonymization support, by Boshi et al [10].

Black-marker anonymization is the simplest and most extreme form of anonymization and can be
applied to any field. In black-marker anonymization, we delete the field or do not export the field
in the network setup. While black-marker is the most secure technique, a trade-off is made in the
usability of the dataset. Another technique that can be used for anonymization is binning. Binning
can be seen as a type of data generalization where the data gets mapped into a specific bin based on
its value. Multiple different values can thus be placed in the same bin and ultimately get the same
value when anonymized. RFC6235 states that there is no particular one-fit solution for binning

12



and the binning scheme depends on the field type. However, the main goal of an excellent binning
scheme is to keep precisely the information required for the analysis task. Notice that binning is
closely related to black-marker anonymization, with black-marker anonymization being equivalent
to binning into a single bin.

The RFC, however, proposes some ideas about how we can approach this for different IPFIX
features. Binning ports can, for example, be done using a bilateral binning approach by creating a
split based on low (0-1023) and high (1024- 65535) port numbers. This binning makes it possible
to still tell the difference between service and ephemeral ports without the possibility to make
conclusions about specific applications that are used. The pseudocode for the binning anonymization
of ports is defined in Algorithm 1.

Algorithm 1 Bilateral binning of Port Numbers

Input: An arbitrary Port Number € {0...65535}
Output: X, the binned Port Number
X < Port Number
if X <1023 then
X <+0
else
X+ 1
end if
return X

Subsequently, for packet volumes, another algorithm was proposed. Packet volumes can also be
binned by a bilateral approach which distinguishes between packet volumes smaller or equal to 2 or
packet volumes larger than 2. The intuition behind this distinction is that connections that are
opened usually contain less than or equal to 2 packets, and packets that were not opened contain
three or more packets; we thus get one bin for connections that are likely to have been opened
and a bin for connections that have likely not been opened. The pseudocode for the binning of the
packet volumes is defined in Algorithm 2.

Algorithm 2 Bilateral binning of Packet Volumes

Input: An arbitrary Packet Volume € N
Output: X, the binned Packet Volume
X + Packet Volume
if X <2 then
X+0
else
X+1
end if
return X

A binning scheme was also provided in the RFC for the IP protocol. This scheme also uses a
bilateral binning approach and looks if the protocol is part of a specific subset of IP protocols,
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namely protocol numbers 1, 6, and 17 for ICMP, UDP, and TCP traffic, respectively. If the IP
protocol number is not present in this specific subset, it gets placed in the other bin. Pseudocode
for the binning of the IP protocol is defined in Algorithm 3.

Algorithm 3 Bilateral binning of IP Protocol Number

Input: An arbitrary IP Protocol Number € {0...255}
Output: X, the binned IP Protocol Number
X < IP Protocol Number
if X € {1,6,17} then
X<+0
else
X +1
end if

return X

For the octet volumes, no particular binning schemes were proposed in RFC6235. We propose a
simple bilateral binning scheme where the volume gets binned on whether it is higher or lower than
the median of all before-seen octet volumes. This scheme is chosen, so that small and large flows
get separated, and anomalies in either relatively large or small flows could still be spotted while
not being influenced by outliers in either direction. The pseudocode of this binning technique is
defined in Algorithm 4.

Algorithm 4 Bilateral binning of Octet Volumes

Input: An arbitrary Octet Volume € N and S, the set of all Octet Volumes
Output: X, the binned Octet Volume
X < Octet Volume
Y « med(S)
if X <Y then
X <+0
else
X+1
end if
return X

4.4 Experimental Setup

Before we conduct the experiments, we will first look at how we set up the experiments and what
type of experiments will be done to answer the research questions optimally. To train in a way that
minimizes bias, the models will be validated using 10-fold cross-validation on both the binary and
the multi-class experiments. For the models, we will use K-nearest-neighbours (KNN), linear SVM,
and Decision Trees (DT) as we think they have the optimal trade-off between performance (based
on F1 scores and MCC scores) and training time, for both the multi-class as binary environments.
For reference we ran all models using the compare models function in Pycaret, the results can be
seen in the tables in Appendix A. While the training time is on the higher side, the KNN model has
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significantly better MCC scores than other models, especially in the multi-class setting. SVM and
DT have low training time but perform similarly to other models with higher training time. It is
also stated that these models are quick in their classification speed which is crucial if we want to use
the model in a fast-paced IDS system [31]. Additionally, we saw that some of the mentioned related
work also conducted their work using SVM, KNN, and tree-based models. The aforementioned
models will be run using the Pycaret library [33], which is a wrapper over model implementations
from, for example, the sci-kit-learn machine learning library.

To answer subquestions 1 and 2, we will train the models in binary and multi-class settings
on the raw, unanonymized data. These results can act as a baseline with which we can compare
the performance of the models that use anonymized data and make conclusions based on how they
perform based on the metrics described in Section 3.4. To answer subquestion 4, Which features are
most important for differentiation of cyber-attack traffic from benign traffic in an IoT environment,
and how do anonymization techniques impact the importance of these features?, we will also examine
the anonymization techniques on individual feature groups and see how this impacts the overall
performance of using the feature set. With the results from these experiments, we can see how each
feature gets impacted by its anonymization technique by simply comparing it to the unanonymized
baseline. To get a better insight into the feature impact, we will also use the explainability of the
DT model to look at the SHAP values for the classification performance. With this, we can also
better understand the impact of specific features on the various attack types. We will use Pycaret’s
interpet_model function to calculate the SHAP values.
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5 Experiments

5.1 Binary Classification

Table 5 presents the results of our baselines for the binary experiments. We see that based on both
the F'1 and MCC scores, KNN is the best classifier using unanonymized data from our considered
models, followed by DT and SVM, respectively.

Table 5: Binary Experiments: Baselines

Anonymization = Model  Anonymized Feature(s)  Recall  Precision F1 Mcc
KNN — 0.9977 0.9987 0.9982  0.9908
None (baseline) DT — 0.9966 0.9748 0.9856  0.9244
SVM — 0.9454 0.9972 0.9706  0.8713

When looking at the Shapley values of the DT in Figure 4, we conclude that the L4 DST_PORT,
TCP_FLAGS and L4_SRC_PORT are the three most essential features in the unanonymized baseline
using the DT model. We see that the packet volumes and protocol are the least important in the
binary classification task out of all the features. As for the protocols, we see that protocol numbers
17 and 6, or TCP and UDP protocols, are the most important.
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IN_BYTES .- --+_-. .ele
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OUT BYTES --—I- - 2
g
IN_PKTS . .-l.. A :
PROTOCOL_17 l- -l i
OUT_PKTS +
PROTOCOL_6 I .
PROTOCOL_58 I
PROTOCOL 1 I
PROTOCOL 2 I
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-0.7% 050 025 000 025 050 079
SHAP value (impact on model output)

Figure 4: Binary Experiments: SHAP values of DT with no anonymization

16



5.1.1 Black-marker Anonymization

Table 6 shows the results of the experiments using black-marker anonymization in the binary
classification setting. When using black-marker anonymization on all sensitive features, which we
can see as the safest anonymization scheme, a significant decrease in performance happens on
all three models. This decrease in performance is especially noticeable in the DT model, which
goes from being the second-best in our baselines to the worst when using the black-marker tech-
nique. We see this in the metrics with an F1 score of 0.9856 in the baseline compared to 0.9107
when using the black-marker anonymization on all sensitive features. Subsequently, the MCC
drops from the baseline of 0.9244 to 0.6064. The KNN approach is still the best classifier in the
binary setting. However, anonymization significantly impacts our F1 and MCC metrics, decreasing
from 0.9982 to 0.9436 and 0.9908 to 0.7198, respectively. For the SVM approach, it is important
to note that while being the worst performer in the baseline, full black-marker anonymization
has metric scores close to that of the KNN model with an F1 score of 0.9317 against 0.9436
and an MCC of 0.6767 against 0.7198. We can thus conclude that the SVM model is most re-
silient against applying full black-marker anonymization when comparing the metrics to the baseline.

When looking at the black-marker anonymization impact of the individual features, we see that
anonymizing the ports using the black-marker approach significantly impacts the overall prediction
performance. The black-marker anonymization of the protocol, the volumes of packets, and the
volume of octets show similar results as the baseline, meaning their individual anonymization
using the black-marker technique does not lead to a significant decrease in performance. Thus
when considering the performance-privacy trade-off, they will be the best anonymized using the
black-marker technique.

Table 6: Binary Experiments: Black-marker Anonymization

Anonymization =~ Model Anonymized Feature(s)  Recall ~ Precision F1 MCC
All Sensitive 0.9376 0.9496 0.9436  0.7198

KNN Ports 0.9777 0.9917 0.9847  0.9246

Protocol 0.9977 0.9987 0.9982  0.9909

Octet Volume 0.9978 0.9870 0.9923  0.9604

Packet Volume 0.9973 0.9984 0.9978  0.9890

Black-marker All Sensitive 0.8817 0.9419 0.9107  0.6064
DT Ports 0.9301 0.9389 0.9345  0.6729

Protocol 0.9859 0.9793 0.9824  0.9133

Octet Volume 0.9908 0.9759 0.9831  0.9145

Packet Volume 0.9801 0.9808 0.9801  0.9043

All Sensitive 0.9160 0.9479 0.9317  0.6767

SVM Ports 0.9168 0.9481 0.9322  0.6785

Protocol 0.9443 0.9986 0.9707  0.8729

Octet Volume 0.9452 0.9980 0.9709  0.8732

Packet Volume 0.9449 0.9975 0.9705  0.8713
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Furthermore, we find that the individual anonymization of the ports in the SVM model bears
similar metrics to complete black-marker anonymization. From this, we can conclude that the
SVM does not find an interaction between the other features, while KNN and the DT model find
interaction between the other features. This effect can be explained since the SVM model makes
classifications based on linear separability.

In Figure 5 we see the SHAP values of the features in the feature set where all sensitive features are
anonymized with the black-marker approach. Here we can see that the TCP_FLAGS is the most critical
feature of the non-sensitive features when doing binary classification, with flow duration coming
after that. Another thing to notice from this Figure is that TCP_FLAGS makes more predictions on
malicious when the value is higher and more predictions for non-malicious when the value is lower.
We can conclude from this that in cyberattacks, the higher bits are more often set, or more bits are
set in general.
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Figure 5: Binary Experiments: SHAP values of DT with black-marker on all sensitive features

5.1.2 Binning Anonymization

Table 7 shows the results for the experiments using the binning anonymization algorithms in the
binary classification setting. To compare the impact of the binning approach, we again look at
binning all sensitive features against the baseline described in Table 5. As we can see, the binning of
all sensitive features results in a slight decline in performance on all models, but not as significant
as when applying the black-marker approach. From this, we can conclude that the degradation
in precision still keeps relevant information that can be used to separate benign and malicious
flows. Again, we see that the DT model suffers from the most significant decrease in performance,
with the F1 score decreasing to 0.9535 and the MCC score decreasing to 0.7828. We can again
conclude that the SVM approach is most resilient against anonymization using binning based on the
distances between the baseline and the metrics when anonymized. Comparing the metrics against
the baseline, we see that the F1 and MCC metrics decline from 0.9706 to 0.9598 and 0.8713 to
0.8301, respectively. While for the binning approach, the KNN is still the best performing model,
the impact of the anonymization is noticeable. This is most noticeable when comparing the MCC
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score against the baseline, with a score of 0.9908 against 0.8648.

Table 7: Binary Experiments: Binning Anonymization

Anonymization =~ Model Anonymized Feature(s)  Recall  Precision F1 MccC
All sensitive 0.9439 0.9958 0.9692  0.8648

KNN Ports 0.9826 0.9988 0.9906  0.9546

Protocol 0.9978 0.9988 0.9983  0.9913

Octet Volume 0.9982 0.9908 0.9945  0.9716

Packet Volume 0.9975 0.9985 0.9980  0.9898

Binning All sensitive 0.9362 0.9715 0.9535  0.7828
DT Ports 0.9375 0.9708 0.9539  0.7831

Protocol 0.9853 0.9788 0.9818  0.9104

Octet Volume 0.9909 0.9769 0.9837  0.9174

Packet Volume 0.9964 0.9743 0.9852  0.9225

All sensitive 0.9281 0.9939 0.9598  0.8301

SVM Ports 0.9356 0.9936 0.9637  0.8432

Protocol 0.9447 0.9985 0.9708  0.8735

Octet Volume 0.9812 0.9892 0.9851  0.9257

Packet Volume 0.9452 0.9977 0.9708  0.8725

Looking at Figure 6, we can see the SHAP values of the features in the DT model using the binning
anonymization technique. Here we can see that using the binning approach, the L4 DST PORT and
TCP_FLAGS still are essential features, as we saw in the SHAP values of our baseline. However, some
discrepancies can be noticed when comparing the values to the SHAP values in our baseline; for
example, we can see that the OUT_PKTS becomes significantly more important using the binning
approach, while, for example, the IN_BYTES feature declines from being the fourth most important

feature in the baseline to the second least significant value.
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Figure 6: Binary Experiments: SHAP values of DT when binning all sensitive features
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5.2 Multi-class Classification

Table 8 shows the baseline of the multi-class experiments. We can see that even on unanonymized
flows, our models do not perform well on multi-class prediction in the Recall, F1, and MCC metrics.
However, our models do perform quite well on precision. We see that for the multi-class prediction,
the KNN model is the best choice out of our models based on the F1 score. Comparing the F1
score of the KNN model to the F1 score of 0.6 achieved by Sarhan et al. [24], we see that we get
comparable scores to previous work.

Table 11 shows the feature impacts on the various classes.

Table 8: Multiclass Experiments: Baselines

Anonymization =~ Model Anonymized Feature(s)  Recall  Precision F1 MccC
KNN — 0.6137 0.6599 0.6315  0.5179
None (baseline) DT — 0.3546 0.6734 0.3993  0.3920
SVM — 0.4452 0.7257 0.4753  0.4011

Figure 7 shows the SHAP values using unanonymized flows in the multi-class classification setting.
Comparable to the binary setting, the L4 DST_PORT is the most crucial feature for predicting all
classes, with it being the most impactful to the prediction of the injection, benign and DDoS classes,
respectively. An essential difference between the SHAP values we saw in our binary classification
baseline is that the separation in the multi-class environment is more impacted by the volumes of
both the packets and octets, with a focus on the outgoing packets and octets.
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Figure 7: Multi-class Experiments: SHAP values of DT with classes benign: 0, backdoor: 1, DDoS: 2,
DoS: 3, injection: 4, MITM: 5, password: 6, ransomware: 7, scanning: 8, XSS: 9
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Again, like the binary classification baselines, we see that the protocols do not have much explanatory
power. Here, a potential reason the protocols do not have as much explanatory power is that the
most commonly used protocols (TCP, UDP, and ICMP) have their own way of accomplishing a
specific attack. For example, for DDoS and DoS attacks, we can flood ICMP using ICMP echo
requests, UDP by sending excessive amounts of IP packets containing UDP datagrams, and TCP
by sending excessive amounts of SYN network packets [35]. While done on different protocols, the
aforementioned attack approaches are all classified as DoS or DDoS attacks. Thus, based on the
protocol alone, attack specification is not possible on some attacks, such as DoS and DDoS attacks.

5.2.1 Black-marker Anonymization

In Table 9 we see the impact of black-marker anonymization on the multi-class classification perfor-
mance. We notice that the black-marker anonymization leads to significantly worse performance
in all three tested models, with more significant relative drops than we saw in the black-marker
anonymization of the flows for the binary classification. For instance, the SVM model decreases
from an F1 score of 0.4753 in the baseline to an F1 score of 0.1692 and an MCC score of 0.4011 in
the baseline to an MCC score of 0.1743 when all of the sensitive features were anonymized using the
black-marker approach. Looking at the performance impact of using black-marker anonymization
on specific features, we again notice that the ports have the most impact when anonymized using
the black-marker approach.

Table 9: Multi-class Experiments: Black-marker

Anonymization ~ Model Anonymized Feature(s)  Recall — Precision F1 Mmcc
All Sensitive 0.5079 0.5290 0.4896  0.3697

KNN Ports 0.5214 0.5778 0.5462  0.4016

Protocol 0.6146 0.6604 0.6323  0.5188

Octet Volume 0.6108 0.6411 0.6232  0.5070

Packet Volume 0.6137 0.6592 0.6313  0.5174

Black-marker All Sensitive 0.1681 0.5555 0.2294  0.1313
DT Ports 0.1960 0.5225 0.2640  0.1637

Protocol 0.3387 0.5642 0.3676  0.3803

Octet Volume 0.3345 0.5725 0.3725  0.3733

Packet Volume 0.3451 0.6308 0.3908  0.3787

All Sensitive 0.1950 0.3298 0.1692 0.1743

SVM Ports 0.2772 0.4342 0.2457  0.1874

Protocol 0.4184 0.6562 0.4487  0.3639

Octet Volume 0.4058 0.5574 0.3946  0.3581

Packet Volume 0.3580 0.6707 0.3967  0.3492

Looking at the SHAP values of the non-sensitive features in Table 11 we see that feature impact
order is the same as in the binary setting, with TCP_FLAGS being the most important feature followed
by the FLOW_DURATION MILLISECONDS. When looking at the importance of the TCP_FLAGS to the
different classes, we again see that the injection, DoS, and benign classes have the most benefit of
TCP_FLAGS for differentiation between other classes.
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Figure 8: Multi-class Experiments: SHAP values of DT with black-marker on all sensitive features

5.2.2 Binning Anonymization

Table 10 shows the results and metrics of using the binning anonymization algorithms for the
classification of the various attack types. We can see that the best performing model in the multi-
class case using binning anonymization is the KNN model, which is the same model we noticed to
perform best in the multi-class baseline and with complete binning anonymization in the binary
setting. However, we notice that the performance of binning all sensitive features significantly
decreases the performance of the models in the precision scores, which was seen in the baseline as
the highest-scoring metric. Unlike the binning of the binary flows, all models significantly decrease
their precision when looking at the multi-class case.

We again see that, like in previous experiments, the ports have the most impact when anonymized.
This can be explained because different attacks happen on specific ports which fall both in the range
of the ephemeral ports as the service ports; we can see this, for example, in the Mitre ATT&CK
knowledge base [30], which presents a list of used ports that are used for different attacks.

Looking at the SHAP values in Figure 9, we can more closely argue why performance decreases in
precision in the multi-class case. Comparing the SHAP values to baseline values, we can see that the
L4_DST_PORT moves down to the second spot of the most impactful feature from the first spot. We
can see that the L4 DST_PORT now has comparable importance to the FLOW_DURATION _MILLISECONDS.
Thus, we can conclude from both the individual removal of ports, as the change in the order of the
SHAP values that a more considerable precision in the L4 DST_PORT binning scheme is a significant
factor in the separability between different classes.
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Table 10: Multi-class Experiments: Binning

Anonymization = Model Anonymized Feature(s)  Recall  Precision F1 Mcc
All Sensitive 0.5800 0.5726 0.5528  0.4665
KNN Ports 0.5331 0.5877 0.5561  0.4170
Protocol 0.6136 0.6591 0.6311  0.5176
Octet Volume 0.6180 0.6436 0.6285  0.5149
Packet Volume 0.6157 0.6573 0.6318  0.5188
Binning All Sensitive 0.2603 0.4818 0.3145  0.2151
DT Ports 0.2417 0.5094 0.3007  0.2071
Protocol 0.3193 0.4811 0.3377  0.3546
Octet Volume 0.3298 0.6589 0.3754  0.3676
Packet Volume 0.3536 0.6400 0.3985  0.3837
All Sensitive 0.4274 0.5210 0.4366  0.3723
SVM Ports 0.2850 0.5643 0.2820  0.2598
Protocol 0.3952 0.5726 0.4159  0.3344
Octet Volume 0.4308 0.6312 0.4364  0.3960
Packet Volume 0.4980 0.6941 0.5298  0.4259
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Figure 9: Multi-class Experiments: SHAP values of DT when binning all sensitive features
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6 Discussion

6.1 Interpretation

In this section, we will briefly summarize the main points from our experiments by answering the
subquestions and main research question. To answer the first subquestion, how does anonymized
flow data perform in detecting malicious traffic compared to raw flow data in an IoT environment?
we can interpet the experiments done in Section 5.1. We can conclude based on the experiments
that binary classification can positively be done using anonymization techniques. When binning
all sensitive features, we achieved an F1 score of 0.9692 and an MCC score of 0.8648, respectively,
using the KNN model. Black-marker anonymization, while still achieving relatively good scores for
the amount of privacy it provides, the loss of information is noticeable in the performance, with all
models declining to F1 scores less than 0.95 and MCC scores less than 0.75.

Secondly, for the subquestion, how does anonymized flow data perform in detecting traffic from
specific attacks (e.g., DDoS) compared to raw flow data in an IoT environment? we can look at
Section 5.2. The first thing we notice in the experiments of this section is that the classification of
different attack types performs poorly even on the raw baseline. When examining the performances
of complete black-marker anonymization, we saw that the DT and SVM model could not keep up
with the amount of anonymization. However, the impact on performance on the KNN model was
relatively minimal compared to the other models scoring an F1 score of 0.4896 and an MCC score
of 0.3697. Using the binning approach we saw that our binning schemes kept performance relatively
close to the unanonymized baseline for the SVM and KNN model. Using the binning approach,
KNN was the best performing model when applied on all sensitve features with an F1 of 0.5528
and an MCC of 0.4665 for the KNN model.

To answer the second subquestion, what machine learning models are best suited for the detection
of malicious traffic in an IoT environment using anonymized flow data? we can conclude that the
KNN model is the best performing model for binary as multi-class classification using anonymized
features. However, declines in the KNN model were noticeable compared to the baseline. For the
SVM model, we saw that this model stayed closest to its unanonymized baseline in the binary
and multi-class classification task when binning all sensitive features, signaling stronger resiliency
against binning anonymization.

To answer the third subquestion, which features are most important for the detection of malicious
traffic in an loT environment, and how do anonymization techniques impact the importance of
these features? we can conclude that in the binary as the multi-class case, the ports were most
impacted using the binning approach and generally have the most impact when anonymized on
the classification performance. When using black-marker on all sensitive features, we saw that
the TCP_FLAGS became the most essential feature in the classification performance. When using
binning in the binary setting, the L4 DST _PORT kept its position as the most impactful feature.
However, when binning in the multi-class approach, the order of the most impactful features
changes significantly over the baseline, with TCP_FLAGS becoming more critical than L4 DST_PORT.
We hypothesized that for good classification between multiple classes, the distinction between
ephemeral and service ports is insufficient, and more precise bins are needed.
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Now that we have concluded our subquestions, we can conclude with our main research question,
To what extent can less sensitive flow data detect cyber-attack traffic in an loT environment, and
how does it compare to methods with privacy-sensitive, unanonymized data?. As we saw, binning
algorithms perform most positively in the binary and multi-class settings. Especially in the binary
class setting, binning all sensitive features scored relatively well compared to the raw baseline
using the KNN and SVM models. However, in the multi-class setting, the binning anonymization
had more impact on the performance than in the binary class setting. We can thus conclude that
cyberattack traffic can be detected positively in a binary class setting using a anonymization scheme
with binning techniques for the sensitive features.

6.2 Limitations

One of the limitations we ran into when conducting the research was the size of intrusion detection
datasets. As most datasets available are captures of several days, these datasets can get up
to gigabytes of data [37]. With sparse compute power, training on this data size can become
cumbersome. Because of this limitation, we choose to conduct our research on the first, more
compact, NF-ToN-IoT dataset instead of the more recent NF-ToN-IoT-v2 dataset. The main
difference between these two sets is the amount of flow-based features they contain, and the number
of flows that are contained, the attack types in both sets are identical. This limited compute power
was also the reason for only training on classical machine learning models in our work instead of
the deep learning approaches we saw in many of the related works.
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7 Conclusions and Further Work

This paper has looked at how privacy impacts an [oT IDS’ performance and the performance-privacy
trade-off using various anonymization techniques. We also looked at how the performance was
impacted by the anonymization of specific features using various metrics. We concluded by answering
our main research questions that a private IoT IDS can still be performant in the binary classification
task with sometimes showing almost equal performance compared to its non-anonymized counter-
part, especially using binning anonymization techniques. However, black-marker anonymization
can greatly impact binary classification performance, especially when taking maximum precaution
with black-marker anonymization of all privacy-sensitive features. The multi-class classification
performance of the tested models was sub-optimal, even on unanonymized flows. The anonymization
of flows in the multi-class setting made the models even more unstable.

While this thesis provides a reasonable basis for evaluating the performance of a private IoT
IDS, we still would like to mention some shortcomings we think are present in the scope of this
paper and conclude in what directions future work could be taken. Firstly, we tested on a dataset
that, while captured in a real-world environment, will probably not have a one-to-one mapping of
the situation in a live setting. It is thus essential to look at the performance-privacy trade-off in
a live setting, possibly by using a similar experimental setup as seen in our experiment sections.
Secondly, while this work evaluated the most common flow-based features, many of the features
that could be exported in a flow exporter setup were not considered. Future work could also look
into features like the removed L7_PROTO or IP addresses and conclude on their privacy sensitivity
and anonymization techniques while conducting similar experiments as done in this work. Third,
some work can be done utilizing different machine learning approaches. This work only focused
on a supervised learning environment using a labeled dataset, and unsupervised machine learning
approaches were not considered in the scope of this work. As most IDS want to stay performant
even in a changing environment, it is essential to look at the privacy-performance trade-off in an
unsupervised way. The experiment could be set up using the dataset considered in this work, where
the labels can act as ground truth for the unsupervised created clusters.
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B Abbreviations

ANN: Artificial Neural Network
RNN: Recurrent Neural Network

RF: Random Forest

DNN: Deep Neural Network

KNN: K-nearest neighbours

DT: Decision Tree

SVM: Support Vector Machine
GDPR: General Data Protection Regulation
PII: Personally Identifiable Information
IP: Internet Protocol Address

IDS: Intrusion Detection System
MITM: Man-in-the-middle

XSS: Cross site scripting

DoS: Denial of Service

DDoS: Distributed Denial of Service
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