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Abstract

This thesis defines and implements a conversational environment for the user to address issues
regarding incompleteness and ambiguity in natural language, for an automatic model-generating
environment. The goal of this research is to address issues in requirements specifications. To
achieve this a conversational agent (chatbot) will be offered, which can make modifications to
a specification model. The user will be engaged in a dialogue with the chatbot, the goal of
these dialogues is to fix issues such as ambiguity and incompleteness. The chatbot will realize
the modifications and change the model in the database, visualizing the results afterward.
Furthermore, the chatbot can fill the gaps in the knowledge of the user, concerning the modeling
language (UML). One can ask the chatbot for information about a specific model or general
definitions within UML and its components. The chatbot will also proactively reach out to the
user with questions regarding incompleteness in the (by the user) provided natural language
source. The goal of this approach is that completeness for the model is achieved and that a user
(who is not a modeling expert) can change the UML model in a user-friendly way. Bridging
the gap between the domain expert and the specification model.
The system proposed in this thesis is an addition to the ngUML project of Leiden University.
Where the focus is on elicitating requirements specifications and transforming them into
specification models and source code. Natural language is processed via Natural Language
Processing (NLP) models to generate the UML models and the source code. As a part of this
thesis, the proposed design and functionality have been developed into a working prototype.
For the implementation within ngUML, a rule-based approach has been chosen. With the
communication happening via a Websocket. The structure of this system can be expanded or
reused for future development or usage with other modeling languages.
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1 Introduction

1.1 Context

In today’s digital society software is playing an ever-growing role. One might say that the current
society cannot function without it. For example businesses, organizations and governments depend
on software systems. The software that is developed is becoming more complex and the systems
are larger than ever. But the way we develop software (Software Engineering) has not changed a
lot in the last decades. Software Engineering is still done (mostly) by coding, using programming
languages such as Python, C++, PHP, etc. Although these languages have changed and are more
mature than they were decades ago, the principle of how they work and how the user should
program is still the same.
One of the issues with programming is that the programmer or coder needs to have extensive
knowledge before he or she can program any complex program or algorithm. Therefore only a small
portion of the world has knowledge of coding or the ability to create programs or models. A trend
of the last couple of years has been low-code platforms and applications. Allowing users to create
programs with less programming knowledge or without any programming knowledge at all.
Low code offers a shortcut for creating programs and applications. But that is not all the material
that is used for Software Engineering. Another big part is capturing requirements effectively,
typically resulting in a specification model. One of the most commonly used model languages is
UML. A graphic way to show for example classes, attributes, and relationships between them. To
make these models in an easy way without the business specialist user needing any programming
knowledge the Prose to Prototype / ngUML project was founded at LIACS (Leiden Institute of
Advanced Computer Science), a faculty of Leiden University. This project is further explained in a
later section of this thesis.

1.2 Problem statement

With the current software of the ngUML project, a business specialist can generate a UML model
by providing plain text or spoken text to the web app. The problem with this is that spoken and
written language has a lot of incompleteness and ambiguity within them. This is something that
cannot be included in a computer program if we want to generate a UML model. A developer can
already fix these issues manually. But the developer will have to go into the back-end/ developer
environment to make changes. So the user (business specialist or developer) will need programming
knowledge to do this, therefore the goal of the project has not been reached this way. To fix these
issues the project needs a conversational component to talk to the business specialist about the
text that is provided. Therefore this thesis proposes a chatbot for the ngUML project to give the
business specialist a conversational environment to fix issues surrounding the UML model. This can
be about incompleteness, ambiguity, or setting variables. The system will also play a role in the
identification of potential issues in the provided text of the business specialist. At the same time
the system will offer a environment to quickly change the model to the modeler/developer user.
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2 Background & related work

2.1 UML

Unified Modeling Language (UML) was created by the Object Management Group (OMG) and
is a language to visually display models. UML diagrams are used for visually displaying systems
based on objects and the relationships between them. With UML there can be (for example) a
representation of how a user interacts with a system. UML defines a big number of different kinds
of diagrams. For this thesis, the focus will be on 2 types of UML diagrams: class diagrams and
activity diagrams.

2.1.1 Class diagram

A class diagram visualizes different classes, their attributes, and their operations (or methods) and
shows the relationships between them [1]. The main components of a class diagram are:

• Classes: the square objects in the model.

• Attributes: part of a class, attributes are shown in the first partition of the class.

• Operations/Methods: part of a class, operations are shown in the second partition of the
class.

• Relationships: the connections (lines) between the different classes. The different kinds of
relationships are shown in Figure 1:

Figure 1: Relationships in UML class diagram [2]

Figure 2 shows an example of a class diagram in UML. In this model, a system for an ATM is shown.
It shows all the classes and the relationships between them. The numbers and stars next to the
relationships represent the cardinality of the relationship. A star represents For instance the model
shows that a Customer can only have 1 Bank, but a Bank can have multiple customers (looking at
the "has" relationship). Furthermore, we see associations and inheritance type relationships. The
relationships that are represented with "just" a line, are bidirectional associations. The classes
consist of three parts. The first part is the top, representing the name. The second (middle) one
represents the attributes of the class. The third part shows the operations for the class.
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Figure 2: Simple example of a class diagram in UML [3]

2.1.2 Activity diagram

UML activity models are designed to model computational and organizational processes, such as
workflows [4]. The diagram should represent the flow of a certain process or activity. The diagram
represents the metadata that is located in the activity model. Figure 3 shows the most basic
components of a UML activity diagram. And figure 4 shows a simple example of a UML activity
diagram. In this example, the verification process of the documents of a student is described.
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Figure 3: Basic symbols used for a UML activity diagram [5]
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Figure 4: Simple example of an UML activity model

2.2 ngUML project

This research and thesis are additions to the ngUML (Next Generation UML) project of
the LIACS (Leiden Institute of Advanced Computer Science) faculty of Leiden University. In this
article, [6] more information about the project and relating to this system can be found. The current
ngUML tool is a web-based application, mainly programmed in Typescript and Python (Django).
In this web application, a business specialist can provide a requirements text by either typing it in
or by uploading a file. In this text, all the requirements for the model should be stated. Then the
text is analyzed and processed, as stated in [6]: "we first apply NLP to a large text. Our finding
is that text in natural language always contains ambiguities, noise, and omissions that make it
impossible for any NLP approach to produce a correct and complete model automatically. Therefore,
we present the resulting model to the developer for feedback and refinement. Our approach includes
showing the model in a UML editor and utilizing a (simple) executable prototype of the resulting
system. We believe that we can achieve a high level of automation in this way, and offer mechanisms
for rapid feedback and refinement." The generated source code is not in scope for this thesis.
The ngUML project has different kinds of users: business specialists and developers. Business
specialists are the users that provide the text or speech from which the model will be generated.
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The developers are the users that can manually change the requirements or modify the model (using
the diagram editor in figure 6). These are people with programming or UML knowledge. Below are
screenshots of the ngUML tool. Figure 5 shows the environment where the business specialist can
provide the requirements text, Figure 6 shows the environment where the developer can modify the
model.

Figure 5: A screenshot of the class generator of the ngUML tool
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To create this model out of the requirements text. The tool first identifies the metadata from the
provided text. The NLP approach to identifying the metadata from the requirements text is based
on pre-trained unsupervised language models. After the metadata is collected, the UML model is
built. This model is then shown in a visual environment in the diagram editor. Here the developer
can make changes to the model. By clicking on a class a menu with different options appears. A
developer can for instance change the datatype of an attribute here.

Figure 6: A screenshot of the diagram editor of the ngUML tool
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Below there is an overview of all the components of the project (Figure 7). The chatbot will fulfill
the role of the conversational component (part of the interactive components).

Figure 7: A schematic overview of the ngUML project and all its components [6]

2.3 NLP

Natural Language Processing is a field within artificial intelligence and linguistics. Khurana et al
[7] describe NLP as: "Natural Language Processing (NLP) is a tract of Artificial Intelligence and
Linguistics, devoted to making computers understand the statements or words written in human
languages." Traditional rule-based NLP has 2 blocking issues: natural language has a very big and
unstructured nature and the approach with predefined rules is not competent to handle human
errors in the natural language [8]. To tackle these issues, NLP based on machine learning algorithms
gained popularity. These techniques use algorithms based on probabilities. These systems gave good
results because they learn from the data. They do not require a big set of predefined rules and they
respond better to unfamiliar and unexpected input. NLP is used in this project to transform the
supplied text into a UML model. In the Rule Engine section, the use of NLP for the chatbot is
discussed.

2.4 Chatbots

Definition
Lokman and Ameedeen describe chatbots as: "Chatbot (abbreviated Chatting Robot) is a computer
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system that allows human to interact with computer using Natural Human Language" [9]. Other
terms used for chatbots are dialogue systems, conversational agents, chatterbot, or bot (although
bot can also be used to describe other kinds of systems). For this thesis, the term chatbot or bot
will be used to represent the options named above.

History
In 1950 Alan Turing wrote his "Computing Machinery and Intelligence". In this piece he discussed
the question: "Can Machines think?" [10]. Turing focused on testing whether a computer can
communicate in a way that is indistinguishable from the way a human communicates [11]. To test
this he came up with the "imitation game" also known as the "Turing test".
This imitation game is played with two people (person A and B) and one interrogator. The
interrogator stays in a separate room from the two people. The interrogator can ask person A and
B questions and receive answers from them (via a teletypewriter) [12]. The interrogator’s goal is to
tell if person A and/ or B is a human or a computer program. Adamopoulou and Moussiades [13]
argue that the question Turing discussed was the idea that started the development of chatbots.
And that the computer programs that could participate in the imitation game can be called a
chatbot.
One of the most famous and first chatbots is ELIZA, created in 1966 by Joseph Weizenbaum [14].
Which tried to imitate a psychotherapist, by replying to the human user in the interrogative form
[13]. Since then the amount of chatbots and their performance has increased significantly, by using
new machine learning technologies such as deep learning and neural networks [14]. The development
of the internet, the access to large amounts of data, and more powerful computers led to a lot
of improvements for chatbots and an increase in the number of chatbots. Below (Figure 8) is an
overview of how many documents were created per year that included keywords like "chatbot", in
the Scopus database [15].
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Figure 8: Search Results in Scopus (Scopus preview—Scopus—Welcome to Scopus, 2020), from
1966 to 2019 for the keywords “chatbot” or “conversation agent” or “conversational interface”. [13]

Interaction with chatbots
HCI stands for human-computer interaction and is a field of study about how human users interact
with computers and software. How well human behavior is mimicked is vital for how a human
user experiences the interaction with a chatbot. Chatbots open a new field of possibilities but also
present new challenges for HCI. Because users experience the interaction with chatbots differently
and compared to the interaction with other types of software, according to Brandtzaeg and Følstad
[16]. Just adding human aspects is not a guarantee for success. As Ciechanowski et al. [17] found
when they experimented with 2 different chatbots. One only replied to the human user with text
messages (Figure 9), and the other had an animated human avatar that spoke to the human user
(Figure 10). The results showed that the test subjects experienced the contact with the first chatbot
as more pleasant. Because the second chatbot felt more inhumane and weird. Because of these
results, the decision was made to let the chatbot for this thesis look more like the one in Figure 9
than the one in Figure 10. For more information about the design, see section 3.3.

Figure 9: Screenshot of the TEXT chatbot that participants interacted with [17]
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Figure 10: Screenshot of the AVATAR chatbot participants used. The visible avatar was animated
(moved according to speech produced on the basis of its text responses presented on the screen) [17]

Jain et al. [18] evaluated the design of different chatbots by conducting a study with a group of
first-time chatbot users and their experience with different kinds of chatbots. The study found
that the participants expected that the chatbot should always outperform the "traditional" system
(website, search engine, etc.). And that the chatbot should show social skills and a personality
according to the participants.

2.5 Chatbot classifications

The word "chatbot" has become a container definition for a variety of systems. Chatbots can be
classified in different ways, based on certain characteristics of the system [19]. Below is an example
of a classification model for chatbots (Figure 11). This is a model presented by Hussain et al.
[19]. One classification component that could be added to this model (concerning this system)
is the initiator of a conversation. This could be the human user or the chatbot. This is further
explained and discussed in section 3.2. Figure 12 shows an expanded and altered version of the
model presented by Hussain et al., applied to the chatbot of this thesis. The blue elements are the
ones that apply to this particular chatbot.
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Figure 11: Broad classification of Chatbots [19]
Figure 12: Applied classification model

Interaction mode
The interaction mode is the way a human user can communicate and interact with the chatbot.
Hussain et al. [19] argue that a chatbot or conversational agent can interact via text or speech with
a human user. The interaction mode of the chatbot of this thesis will be via text.
Another way of communicating with a conversational agent is via a holographic environment. This
can be done (for example) with augmented reality (AR) or virtual reality (VR). A topic that is
based on these techniques and receiving a lot of attention, is the metaverse. The metaverse could
play an important role in the future of chatbots. Mystakidis describes the metaverse as: "The
Metaverse is the post-reality universe, a perpetual and persistent multiuser environment merging
physical reality with digital virtuality. It is based on the convergence of technologies that enable
multisensory interactions with virtual environments, digital objects and people such as virtual
reality (VR) and augmented reality (AR)." [20].

Chatbot application
According to Hussain et al. [19], there are 2 different types of chatbot applications: non-task-oriented
and task-oriented. Dybala et al. [21] describe non-task-oriented chatbots as: "They are commonly
known as “chatterbots” - and, in fact, the name perfectly describes what such systems do: they
chat with users. This is why they are called “non-task-oriented” systems". These systems simulate
a conversation with another human person. One could say that these systems are designed to test
Turing’s theorem [10], as discussed in section 2.4.
Task-oriented chatbots are the opposite of non-task-orientated chatbots. These systems are designed
to have conversations with the human user, to achieve a pre-defined goal. These chatbots are usually
of the domain-specific type (see next paragraph). Adamopoulou and Moussiades [22] describe
task-oriented (task-based is an equivalent of task-oriented) chatbots as: "Task-based chatbots
perform a specific task such as booking a flight or helping somebody. These chatbots are intelligent

12



in the context of asking for information and understanding the user’s input. Restaurant booking
bots and FAQ chatbots are examples of Task-based chatbots." The chatbot that is developed for
this thesis is a task-oriented chatbot. Since it has clearly defined goals (see section 3.1).

Domain-specific or open-domain
Adiwardana et al. [23] characterize domain-specific chatbots as chatbots that respond to keywords
or intents. Where open-domain chatbots can engage in conversations with the human user, on
any topic. The classifications of chatbots based on application or domain are very similar. The
difference is that a chatbot classification based on the application looks at a defined goal or the
absence of a goal. A classification on domain looks if a domain is specified or not. But the two, in
practice, share a lot of similarities. The chatbot that is developed for this thesis is domain-specific,
it only responds to specific words and can perform specific tasks.

Design approaches
The design approach of the chatbot determines the way the system generates or selects a response,
based on the input from the human user. The 3 different approaches in this classification model are
explained below.

1. Rule-based: Thorat and Jadhav [24] describe rule-based chatbots as: "Here a Chatbot
system works on basis of certain rules. However when the input pattern does not match
with any predefined rule then this Chatbot system is inefficient to answer the question."
So with this approach, the system uses pattern matching to generate a response. The rules
represent the knowledge of the chatbot and are hand-coded by humans [22]. This knowledge
is organized and represented in the set of rules using conversational patterns. This kind of
system is not always robust against grammatical errors or incorrect input. Because this kind
of system is using pattern matching on a predefined set of rules.

2. Retrieval-based: Retrieval-based chatbots select an answer from an existing repository of
answers. The answer is selected based on the input of the user (certain words, structures,
numbers, etc.) Thorat and Jadhav [24] describe a retrieval-based chatbot as: "These bots are
trained for lot of inquiries and their possible answers. For each question, the bot can locate
the most important answers from the set of every conceivable answer. Likewise, there is no
issue with the language and sentence structure as the appropriate responses are pre-decided
and it can’t turn out badly in sentence structure way." A big advantage of a retrieval-based
chatbot is that the answer is always a correct text or sentence since the answer is predefined.
A disadvantage of this kind of chatbot is that there can be a situation where the chatbot
does not have a good (predefined) answer or when the chatbot selects the wrong answer from
the repository of answers [25].

3. Generative-based: A generative-based chatbot does not rely on a predefined set of responses.
This kind of system generates a new response based on the input the human user provides [19].
A generative-based chatbot often generates the answers using machine learning algorithms.
These algorithms are trained using big amounts of training data. This way the chatbot is
able to respond to the human user on a variety of topics, depending on the set of training
data. These chatbots are usually more fit for open-domain applications. Because they do not
rely on a predefined set of responses, the system offers a lot more conversational flexibility
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[26]. The downside often is that these kinds of chatbots are less success full when the user
asks in-depth questions on a specific topic.
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3 Logical system design

3.1 System requirements

The goals and requirements for the specific chatbot of this thesis are:

1. Bridging the gap between the business user and the UML-models: by providing a
conversational component for the business (domain expert) user. This way a user-friendly
environment is created to immediately fix problems in the model or requirements text. Without
the business user needing to study UML models more.

2. Provide a human-in-the-loop approach: the idea is to combine the knowledge of the
system and the business (domain expert) user. That is why the system generates the UML
model. And the human user can then modify the model to create the best model, using
his/her knowledge of the specific model or domain.

3. Directly implement solutions: if a developer or business user changes the stored model
via the chatbot. The modification will be directly implemented, the model will be updated.
For example, if the user chooses to give the attribute "price" the datatype integer (String by
default), the generated UML model will show the price as an integer.

4. Proactively reach out to the user: the chatbot will send a message to the user when
a new UML model is generated. The chatbot will ask if the user would like to change the
datatype of some attributes in the generated UML model.

5. Re-usability: this is a key requirement since the ngUML project is an ongoing project
of LIACS. The idea is to design and develop a framework. In such a way the chatbot’s
functionality can be expanded later to be able to fix more issues for the human user. To
make this process easier, a manual for expanding the system has been added in appendix A.
This manual can be used by (future) team members to expand the system. And the build
framework can be reused for the construction of other chatbots.

6. Robustness: one of the requirements is that the system should be able to directly implement
changes in the model. Therefore the system should be able to make changes to the model,
that is stored in the database. This should be done in a safe and robust way. To guarantee
that the user does not access parts of the databases, for which he/she has no permission. And
to make sure that the model in the database remains correct at all times.

7. Dynamic dialogues: to make the system and the dialogues appear to be more "human",
dialogues should be dynamic. This means that if a user goes through the same process twice
(same path in the dialogue tree), the system should use different responses to achieve the
same goal. By randomly using different responses with the same meaning and using dynamic
responses, that change based on the user input.

3.2 Architecture overview

Conceptual architecture (Figure 13), in UML use-case format is shown below. What the most
important components contain and how they work is explained in this section and the System
technical design section.
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Figure 13: Schematic overview of the architecture

The components shown in Figure 13 all serve a separate purpose and they do so in a certain order.
A user interacts with the diagram editor, where the chatbot is accessible. The front-end sends a
message to the back-end, specifically to the rule engine. The rule engine selects a response from the
knowledge base and sends that back to the front end. All send and received messages are saved
in the chat history. If a stored model needs to be changed, the rule engine activates an internal
API, which tracks all made changes in the change log. The internal API can make queries on the
database. If a new UML model is saved in the database, a signal trigger sends a message to the
rule engine.
With this design, a closed domain chatbot that is based on a rule-based back-end is realized (section
2.5). All the components of the system are further explained in specific sections. Next to the flow
of the components in Figure 15, there is an example of how a response is generated for the chatbot.
Since in this case the stored UML model is not changed, the only required architecture components
from the back end are: Rule Engine, Chat History and Knowledge Base.
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Figure 14: Flow and function of architecture components
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Figure 15: Example of the chatbot process

Figure 16 shows the flow of the chatbot process. The chatbot has two ways of interacting with the
user:

1. Proactive: this way is activated when the user creates a new UML model and saves it in
the database. This can be done either by supplying a requirements text or by manually
building the model in the diagram editor. Once the model is saved, a trigger in the database
is activated (this is further explained in the "Signal trigger" subsection). Once the trigger is
activated, the bot will send a message to the user. The chatbot will ask if the user wants to
change the datatype of attributes of the model. This way the user can the data types of a
batch of attributes at once. This way the requirement of proactively reaching out to the user
is satisfied. And the solution is directly implemented, also satisfying that requirement. The
proactive approach allows the system to work (partially) with an event-driven architecture
[27].
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2. Reactive: this is the "standard" way of communicating with a chatbot. A user sends a
message to the chatbot and the chatbot sends a response. The user can change the UML
model via the chatbot or have a conversation with the chatbot. The user can for instance
ask the chatbot for basic explanations of certain components of the model. By letting the
user change the model in a conversational environment, the requirements of providing a
human-in-the-loop approach and bridging the gap between the business user and the UML
models are satisfied.

Figure 16: Activity diagram of process of the chatbot

3.3 Front-end

The front-end of the chatbot is a React application, located in the repository for the diagram
editor. React was created at Facebook (now Meta) and is a library that can be used to create user
interfaces. React is a library based on JavaScript and HTML [28].
A user can open the chatbot by clicking on the blue chat button on the bottom right of the diagram
editor page (Figure 17. Once this button is pressed, a pop-up chat window appears (Figure 18).
The user can type messages and click on the "send" button or hit the enter key, the message will be
dynamically displayed in the chat window. The message is sent via a WebSocket to the back-end
(see section 4.1.2). Once a response is received, it will be displayed in the chat window.
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Figure 17: Button to open the chat window

Figure 18: Screenshot of the chat window

3.4 Back-end

For the back-end of the chatbot, the same programming language and framework will be used as
for the rest of the ngUML project, Python Django. For the design approach, the rule-based method
was selected as the best approach for this chatbot. This decision was based on the following reasons:

• Re-usability: this is one of the earlier defined goals of the chatbot. The rule-based approach
is the best fit for this goal. Expanding or changing the functionality of the system can be
done relatively easily by altering the set of rules/ answers. Since the generative approach is
AI-based, changing or adding functionality later can be a complex process. And the retrieval
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approach uses a mathematical function to select an answer. This entails that for every addition
this function should be reexamined, to check if it still delivers the desired result.

• Shortage of training data: the generative approach almost always uses machine learning
algorithms. These algorithms need to be trained using training data, to achieve high accuracy.
The chatbot that is developed for this thesis is operating in a very specific domain, in which
not a lot of research has been done. Therefore almost no training data is available, making it
hard to develop and train accurate AI-based chatbots for this thesis.

• Human-in-the-loop: one of the earlier defined goals of this chatbot. To achieve the best
human-in-the-loop approach, a rule-based approach is the best option. Since there is no
potential room for bias, which can be the case with one of the AI-based approaches. With
rule-based, the developer can offer the business user a predefined set of options, to combine
the knowledge of the system with the knowledge of the business user. With the rule-based
approach, the user is able to "move" within the dialogue tree (defined by the rules). So a
user has the freedom to choose which path he/she wants to take. But the boundaries and the
options are set by the system. Therefore the knowledge of the system/ developer is combined
with the input of the user, to achieve synergy. This leads to a robust system with a predefined
degree of freedom.

The rules for this approach are located inside the rule engine. This is where the responses of the
chatbot are generated and selected.

3.5 Rule engine

Pattern matching
The rule engine is used to determine which response must be used by the chatbot, based on the
input from the user. To determine this, the function uses pattern matching. It compares the input of
the user to predefined patterns. These patterns are paired with predefined responses (in a separate
JSON file). The rule engine compares the (pre-processed) input to the patterns in the JSON file
(the knowledge base). If there is a match, the paired response is sent back to the front end. If there
is no match, a default message is shown. This matching is not just done with a "simple" direct
comparison. The search function from the RegEx package is used, this package is explained later in
this section. The responses are not always static but can have dynamic elements, that depend on
the input or the model.

Knowledge base
The knowledge base is the place where the "intelligence" of the chatbot is stored. A human can
add, delete or modify the knowledge base to change the behavior of the chatbot. This way the
functionality of the chatbot is also easily expandable and reusable, which is one of the goals of the
project. The knowledge is stored in a separate JSON file which is called from the rule engine. Every
element of the knowledge base has 3 elements:

• pattern: (part) of the input from the user which will trigger this response. These are defined
using the RegEx library.

• response: the response of the chatbot for this specific pattern
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• tag: a tag that represents this pattern-response pair. This is used for easier and faster
processing and matching.

Pre-processing
The rule engine does not use the "raw" input from the user. It first pre-processes the user’s
input. Firstly the input is transformed entirely to lowercase characters, to make the matching case
insensitive. After that multiple functions from the NTLK library are used to perform lemmatization
on the input. These functions are explained in the next few subsections. This way we make the
"dumb" rule-based chatbot a little "smarter", by implementing some machine learning algorithms
to pre-process the input. These functions are used to allow the chatbot to perform smarter and
more efficient pattern matching. With this approach, not every pattern has to be hard-coded but
only the generic cases have to be included in the knowledge base.

Database mutations & hierarchy
In the rule engine, the logic that determines the response of the chatbot is located. This logic
can also trigger separate functions that er located in the rule engine. These functions can make
modifications to the UML model stored in the database. So the user can use the chatbot to make
changes to the model, without the need of using the diagram editor. The chatbot can also provide
information about certain definitions and components of the model (in the case the user does not
have this knowledge yet). By making the chatbot able to make changes to the model, the earlier
defined goals of directly implementing solutions and fixing issues in the requirement text are met.
The functions that can be used to change the stored UML model are called the Internal APIs.
These are explained in section 4.2. With these functions, the chatbot can be used to delete, add or
modify any component of the UML models.
In the database, the activity and class models are stored. The components and all the relationships
are stored in a certain hierarchy. Figure 19 shows the database structure of the saved class and
activity models. This hierarchy is important when one wants to make changes to the data stored
in the database. For instance sub-class elements are only accessible via a foreign key, the parent
class. Due to time constraints, the system is currently only able to change saved UML class models.
But the structure and design for the same functionality with respect to UML activity models had
already been developed. So the functionality can be expanded to activity models and other UML
models in the future.
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Figure 19: Overview of database structure for the models
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Robustness
Robustness is in this system very important since the chatbot has the ability to alter, add and
delete database objects. To make the chatbot robust, multiple checks are implemented within the
rule engine. Every time a database model is changed or added a check is done if the object exists
or if the addition or deletion is valid. To avoid the system from crashing due to database errors or
making invalid mutations.

Random generic and dynamic responses
To make the system act more human and seem more competent, random generic and dynamic
responses are introduced. The dynamic responses are predefined responses with a dynamic element.
For instance, if a user wants to change the data type of an attribute of a classifier: the system will
ask the user to provide the name of the classifier, for example, "Order". And then ask the customer
which attribute of Order should be modified. So dynamically adding the previous message of the
user in the response of the system. Random generic responses are another approach to provide
variety in the dialogues between the user and the system. Here the system will randomly select one
response out of a set of responses, which have the same meaning but in a different formulation. To
make this possible a random selector was built in the Rule Engine. For instance, if a user wants to
change the type of a relationship in a class model. The system randomly selects one of the following
responses:

• "Which type is the relationship currently?"

• "Is it currently a composition, generalization or association?"

• "What is the current type of this relationship?"
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4 Technical system design

4.1 System technical components

4.1.1 Django Framework

The code for the ngUML project for the backend repository is written using the Django framework
for Python. Django is an open-source framework for developing web applications. As the Django
Software Foundation describes it: "Django is a high-level Python web framework that encourages
rapid development and clean, pragmatic design. Built by experienced developers, it takes care of
much of the hassle of web development, so you can focus on writing your app without needing to
reinvent the wheel. It’s free and open source." [29].

4.1.2 Websocket communication

For the best user experience, the decision was made to let the chatbot function asynchronously
from the rest of the webpage. Using an asynchronous approach offers faster performance and is
more user-friendly because the webpage doesn’t have to refresh every time the user sends a message
to the chatbot. Handling the requests asynchronously means that the interaction with the user
happens independent of the communication with the server of the webpage [30]. The approach that
was chosen is communication via a WebSocket. This was done based on the following reasons:

• Latency: communication via a WebSocket is faster (less latency) than HTTP polling [31].

• Bidirectional communication: in contrast to HTTP, Websockets are designed to support
bidirectional communication [32]. This allows the chatbot to trigger communication in both
directions. With the original approach, there could only be a single response to every single
message of the user.

• Functionality: since the architecture requires communication between different repositories
and applications. This limited the options to choose from significantly.

The WebSocket protocol consists of two parts: the handshake and the data transfer [31]. The
handshake part consists of a handshake message from the client side to the server side and a response
from the server side to the client side. The data transfer is a bidirectional communication channel
where the client and server side can send data to the other side at any time, independently from
each other [32]. Figure 20 shows the difference between AJAX and the WebSocket protocol. The
blue arrows in the WebSocket visualization represent the handshake and the red arrows represent
the data transfer. The WebSocket connection can be closed by the client or the server side. AJAX
(Asynchronous Javascript + XML) is another option for letting the system work asynchronously.
AJAX works on top of the normal HTTP requests [30]. This means that bidirectional communication
is not possible. That is the reason why the choice was made to work with a WebSocket for the
chatbot.
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Figure 20: Comparison between AJAX and websocket protocol [33]

4.1.3 RegEx library

For the pattern matching in the rule engine, the search function from the RegEx (short for Regular
Expression) library is used. Using this search function allows performing more advanced pattern
matching than the standard Python "in" operation. Using a set of special characters the matching
can be defined. For instance how the regular expression should start and end, repetitive elements,
optional elements, the exact amount of occurrences and more [34]. This way the pattern matching
of the rule engine can be more general and flexible and fewer patterns in the knowledge base are
needed. An example of RegEx is the following email validator:

ˆ[a− z0− 9._%+ \−] + @[a− z0− 9.\−] + \.[a− z]{2, 4}$

Which checks if the beginning is made of lowercase letters, numbers or some special characters.
Followed by the @ sign and a domain check (no % and +). Then a backslash and a top-level domain
of 2 to 4 letters.

4.1.4 NLTK library

NLTK, short for Natural Language Toolkit. Is a collection of functions and programs designed
for symbolic and statistical NLP [35]. It was (originally) developed by Steven Bird and Edward
Loper for the University of Pennsylvania in 2001. NLTK is designed specifically for Python and is
open-source. Although NLTK originates from 2001, it is still being expanded and updated. The
latest release note at this moment is from February 2022 [36]. There is a full NTLK team, working
on the NLTK package.
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Tokenization & POS tagging
The first function that is used from the NLTK library is tokenization. The tokenization function
that is used is called: word_tokenize. This function separates a sentence into separate words, based
on spaces and punctuation [37]. This function needs to be implemented because the POS tagger
needs the tokenized version of a sentence to function correctly.
Next, we use the pos_tag function from NLTK. POS tagging stands for Part of Speech tagging.
POS-tagging is the process of analyzing a sentence a determining what kind of word each word in
the sentence is (noun, verb, adjective, etc.) [37]. This is important for the lemmatizer since the
result of the lemmatizer depends on the tag given by the POS-tagger. You could for instance have
the word "parking" which could be a noun and a verb. If parking is a noun, the stem is parking.
But if parking is a verb, the stem is park.

Lemmatization
For lemmatization, the WordNetLemmatizer function is used. Lemmatization shares a lot of
similarities with stemming. Stemming is the process of reducing a word to its stem. The difference
with lemmatization is that here the word is reduced to a lemma [37]. With lemmatization the
result is a normalized version of the original word [38]. If we look at the following words: computes,
computing, computed. Using stemming, the stem would be "comput". With lemmatization, the
lemma would be "compute". With lemmatization, the result is always a correct word, with stemming
this is not necessarily the case. Since the system needs to process sentences or longer parts of a
text, just implementing lemmatization would not work. The text first needs to be tokenized and
POS-tagged, as explained in the previous subsections. Figure 21 shows an example of lemmatization
for a sentence (the first sentence is in Dutch and the second in English). Including the tokenization
and POS-tagging process for the sentence.

Figure 21: Example of lemmatization for a sentence with tokenization and POS-tagging [39]

4.2 Database storage & interaction

Chat history
To be able to have a longer conversation with the chatbot. The previous messages the user has
sent, need to be stored. This way the chatbot can use a tree-like structure to have a conversation
with the user. This tree structure is built in the rule engine using conditional statements. These
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conditional statements check the tags of the previous messages. Every message that the user sends
is stored in a Django model called "Chat_History", for more information about Django, models
look at the Django documentation [40]. This model stores as long as the server runs. So even if the
user refreshes the page, the conversation is saved and can be continued. The model consists of 4
attributes:

• user_message: stores the input from the user

• answer: stores the answer generated by the bot

• pattern_tag: stores the tag of the answer (from the knowledge base)

• time: a timestamp

Signal trigger
The chatbot should also be able to proactively start a conversation with the user. To achieve this a
trigger is needed. The chatbot should reach out to the user when a UML model is saved for the
first time. To do this a Django Signal post_save trigger is used. This trigger sends a signal every
time (after) the database model is saved. The trigger is built in the Model instance in the database,
as shown in Figure 19. Since this results in a signal being sent when (and only) when a UML model
is created and saved for the first time in the database.
That signal is then received by a receiver function, which can call the trigger function in the rule
engine. From the rule engine, a message can be sent to the front-end, via the WebSocket. For more
information about Django signals and receiver functions, see the Django documentation [41].

Internal API
The modifications to the stored model in the database (explained in section 3.5) are executed via
internal APIs. API is short for Application Programming Interface. APIs allow smooth communi-
cation between digital systems. By using these internal APIs the changes made via the chatbot
can be tracked and stored in the version logging. So if a user reloads the requirements text, all the
changes made before can be reloaded. This is done by creating a list of all the made changes that
are made via the chatbot. The internal API takes JSON objects as arguments to apply the changes
and to track all these changes. Figure 22 shows an example of such an object that could be used
for calling the internal API, in this case for creating a new object.
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Figure 22: Example of a JSON object for adding a new attribute

4.3 Reusability

This section described the design of the system in terms of technical components and interactions.
This design was chosen to be able to make the system easily expandable and reusable. All
communication with the front-end and preprocessing of input happens either separately or at the
start of the back-end processing in the rule engine. This way the chatbot can be expanded easily
by adding new dialogues directly in the rule engine. Without the need to alter the preprocessing of
the input or communication via the WebSocket. That has already been developed and a developer
can use the results of these processes, if he/she needs them for the addition to the system. This is
also the reason, why the files are structured in the way that they are. So adding new components
can happen seamlessly. For more in depth details about expanding the system, see appendix A.
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5 System validation

5.1 Worked example

Model changing capabilities
As explained before an important part of the system is the model changing capabilities. This allows
the user to modify a UML model in the user-friendly environment that is offered by this system.
Figure 23 shows a simple UML class model that could have been generated with the ngUML
software. A user could for instance want to add a new relationship to this model. Figure 24 shows
(the end of) the conversation with the chatbot to add this new relationship to the model. Figure 25
shows the result of the chat in figure 24, in the visual editor. The newly generated relationship
"works for" is clearly visible. The user can realize these changes by solely using the chatbot.

Figure 23: Example of a UML class model in the visual editor
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Figure 24: Example of the conversation for adding a new relationship

Figure 25: Example of an added relationship via the chatbot

Informative functionality
To allow users without extensive UML knowledge to use the system. It is possible to ask for
definitions of UML, diagrams, and their components. These definitions are excluded from the
random and dynamic responses, explained in section 3.5. Because this could lead to confusion for
the business user. Figure 26 shows an example of how such a conversation could go.
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Figure 26: Example of the informative functionality of the system

Proactive approach
The system will reach out to the user if a new model is created and saved in the database. This is
done with the signal trigger, explained in a previous section. This would not be possible with a
"traditional" HTTP communication, which is why a Websocket is used for this design. The system
will ask the user if a datatype has to be changed (since all are set to string as default). The user is
then able to change as many data types as he wants. The system will keep asking the user and
changing them until the user answers "no" to the question in figure 27, ending the loop. With this
approach the predefined goal (section 3.1) of fixing incompleteness in the provided requirements
text is satisfied. Since the NLP of the ngUML project is not able to set data types automatically.
With this system, it is now possible to do so via the chatbot. With the chatbot reaching out to the
user, instead of only acting in a reactive manner.
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Figure 27: Example of the proactive functionality of the system

5.2 Prototype testing & experiments

Method
The worked example that is described in the previous section, has been tested and validated. A
group of project members has used the chatbot to execute a set of test cases. These test cases and
the instruction for them can be found in appendix B. The choice was made to only let project
members take part in the validation. Since access to the project is required. And without extensive
knowledge about the existing code and programming in general, testing would not have been
possible. This however meant that the potential group of testers was rather small.
After executing the test cases, the participants completed a short survey. In this survey their
experience with the system was measured, to be able to measure if the system is full filling its
goals. No questions about the background or demographic of the participants were asked since
that serves no purpose for the goal of this validation process. And this validation process and the
survey are additional verifications. This is not the main goal of this thesis, which is the design
and development of the system. The used survey can be found in appendix C. The survey was
conducted using the Qualtrics software package license of Leiden University.

Results
The results of the survey are shown below. The first 12 questions offer 4 options for answering,
following a 4-point Likert scale [42]. 1 representing "Strongly disagree", 2 "Somewhat disagree", 3
"Somewhat agree" and 4 "Strongly agree". The table below shows the results of the survey. The
question number in the table refers to the number (in terms of order) of the question, not the
number before the letter ’Q’ in the survey. A short description is added after the question number
for clarification.
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Question Mean Std Deviation Variance
1 (instruction document) 3.50 0.50 0.25
2 (creating a project) 3.50 0.50 0.25
3 (test case 1) 2.75 0.83 0.69
4 (test case 2) 3.25 0.43 0.19
5 (test case 3) 3.00 0.71 0.50
6 (test case 4) 4.00 0.00 0.00
7 (testing overall) 3.50 0.50 0.25
8 (accessibility) 4.00 0.00 0.00
9 (user-friendly) 3.50 0.50 0.25
10 (relevant addition) 4.00 0.00 0.00
11 (recommendation) 3.50 0.50 0.25

Table 1: Results of validation survey

Only question 3 has a mean below 3. So for all the other questions, the mean was 3 or higher than
3. Meaning that the participants (on average) answered "Somewhat agreed" or "Strongly agree" on
the other questions. These questions stated positive stands on the system, so the overall feedback
was positive (on average). Especially question 10, which stated that the system is a relevant addition
to the existing package, can be viewed as a vital one. This question was answered with "Strongly
agree" by all the participants.
Furthermore, the questions regarding test cases 1 and 3 received less positive feedback than the
other two test cases (on average). So these test cases were executed less successfully, according
to the survey. With this feedback, the functionality of these test cases should be further tested.
To spot and fix any potential errors. The last question (12) was an open question in which the
participants could leave any comments they had after executing the test cases.

Constraints
In the current validation and testing process, only the reactive approach of the chatbot is tested.
This was done because the proactive approach was not ready for testing at the time of the test
cases and the survey. This however means that during the validation, not every capability of the
system was tested. So the validation could be extended for also testing these capabilities.
For the validation, all participants were ngUML team members. This was necessary since they are
the only ones who have access to the software. And they are the only ones with the knowledge to
operate and start the software. But it would give a better representation of how users experience
the chatbot, to also test with people outside the ngUML project. And a bigger group of participants
could also improve the quality of the validation process. Adding some negative statements to the
survey could also improve the fairness and accuracy of the results, currently, those were all positive
statements.
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6 Conclusion

6.1 Conclusion

The system presented in this thesis proposes solutions for the predefined goals, presented in section
3.1. The gap between the business user and the UML models is bridged. This is done via the
conversational environment that is part of the system. And with the informative function that
the system has, for instance providing definitions and explanations about the models. The human-
in-the-loop approach is achieved by involving the business user in the changes that are made to
the model. The user is asked specific questions about the modifications, this way the process is
easy and user-friendly. The system will proactively reach out to the user to fix incompleteness
issues from the requirements text. The process can be viewed in Figure 16. The re-usability goal
is satisfied with the structure of the system. This allows for easy expansion in the future for new
functionalities. To show how the system can be expanded, an expansion manual has been added to
this thesis. This can be found in the appendices.
The system is able to directly implement the solutions that are made in cooperation with the
business user, which was also one of the goals. The interactions with the database that can be
made via the system are:

1. Changing the datatype of an attribute (UML class model)

2. Changing the name of an attribute (UML class model)

3. Checking the datatype of an attribute (UML class model)

4. Changing the name of a relationship (UML class model)

5. Adding a new relationship (UML class model)

6. Adding a new operation (UML class model)

7. Adding a new classifier (UML class model)

8. Mirroring a relationship (UML class model)

With these solutions, this system tries to offer a user-friendly and effective conversational component.
Which tries to have a positive impact and contribution to the ngUML project. The system offers
more efficiency, fixing issues, and more user-friendliness. And tries to help with achieving the bigger
goal of the research group: changing the way we practice Software Engineering.
With the validation and testing (explained in section 5) the claims made above can be verified. The
results of the questionnaire showed an overall positive outcome. Only one question showed a mean
below 3. This means that for all the other questions the participants expressed that they (at least)
somewhat agreed with the presented statements (on average). And the only question with a mean
lower than 3 had a mean of 2.75. Which is still closer to "Somewhat agree" (3) than "Somewhat
disagree" (2). Since all presented (closed) questions in the survey presented a positive statement. If
the participants (on average) agreed with those statements, the testing can be marked as successful.
Since all the participants answered with "Strongly agree" to the question of whether this system
is a relevant addition to the software package. The bigger goal of this thesis can be considered
verified, namely designing and developing a relevant conversational component for ngUML.
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6.2 Constraints

The system proposed in this thesis has its constraints. The rule-based approach that was chosen
has its limitations. This design approach only has correct responses for the predefined patterns
that it can find. So if a user sends a message without any of the patterns located in the knowledge
base, there will not be a desired response. Although there will always be a default response if no
pattern is found by the rule engine. The same holds for if the user misspells a word in the pattern.
The rule engine will not find the correct response in that case. But if the spelling error is made in a
word that is not in the pattern but in another part of the sentence, the system will still find the
correct response. So the system is partially robust against spelling errors.
The system is now designed to react to a single message coming from the user. If a user sends
multiple commands in one message. The system will only pick up one, the first one it will find in
the knowledge base (based on the patterns).
The system is currently only able to change a stored UML class model. The structure and design
for UML activity models have been developed and can be included. The same structure can be
expanded and used for other types of UML models in the future.

6.3 Future work

Interaction mode
For this thesis, the chatbot that is developed communicates via text messages only. For further
development adding communication via speech with the chatbot could be introduced. To expand
the functionality and enhance a user-friendly experience. Keep in mind that these kinds of additions
have to be executed in a good way. To avoid the issues we saw in the paper of Ciechanowski et al
[17], when implementing "human-like" features.

Problem-solving capabilities
One of the goals of the chatbot is that the system should be reusable and expandable. Because the
system’s capabilities should be expanded in the future. Not only the number of responses but also
the functionality and robustness should be expanded.

Design approach
The current design approach of the chatbot is rule-based. With the current developments in AI
en Machine Learning, switching to an AI-based approach could be wise. Therefore looking into
switching to an AI-based system could be a good option. Since AI-based systems are more suitable
to respond to any input of the user. And more robust against spelling errors in the user’s input
[19].

Communication via speech
Currently, the only way to interact with the chatbot is via a text message. Looking at the current
trend for chatbots and virtual assistants. Adding an interaction mode via speech could be a wise
addition. This would make the interaction with the system easier and more accessible.

Validation from the user
The system now only proactively reaches out to the user to fix data types (incompleteness) in
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the provided requirements text. For a more complete and robust approach, the system could also
validate the other generated metadata. So the user could modify this using the chatbot before the
model is generated.
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A System expansion manual
One of the predefined goals of the system was that it should be reusable and easily expandable
in the future. To realize this a certain structure in the system was designed (see the architecture
overview). The system can be expanded in the following way:

1. Add new responses: if a new input response pair needs to be added. The knowledge base
has to be expanded. The knowledge base is located in the knowledge_base.json file. Here
a new input response pair can be added by giving the expression that will be searched for
(pattern matching), the response, and the tag for this pair (all in JSON format). Figure 28
shows an example in the knowledge base for adding a new attribute to a class model. The
patterns should be stated according to the RegEx format [34]. Multiple responses can be
stated here, then the random response selector can be used to randomly pick one.

Figure 28: Example of an instance in the knowledge base

2. Add new dialogue: if a dialogue consisting of more than 1 input and 1 response needs
to be added. A logical tree should be built inside of the chatbot_main function within the
Rule Engine. This function has the input message of the user as input. Based on the tags of
the previous message the logic can be applied, creating a tree-like structure for the dialogue.
Figure 29 shows a simple example of logic in the Rule Engine. This piece of logic is built for
checking the datatype of an already existing attribute of a classifier in a class model. The first
response of the chatbot is inside the knowledge base, after that the "ask_attr_datatype" tag
is given to the dialogue and the logic is activated. The user stated the classifier of which the
attribute is a component in a previous message. This message is no longer directly accessible,
therefore it is retrieved from the database, storing all the input messages and responses. The
object is stored in a variable called "atr_msg" (attribute message) and the specific user
input from this object is then stored in "atr_str" (attribute string). Then there is a check
if the requested attribute and classifier exist within the database (of the model) and if so
the datatype of the attribute is retrieved. In this dialogue there are no random answers (for
more info, see section 3.5), often there are. In that case, the answers should be posted in the
knowledge base and the "random_select_response" function should be called with the tag of
the dialogue phase.
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Figure 29: Example of logic in the Rule Engine

3. Add new database mutation: making changes to a saved UML model, usually happens
after a conversation with the chatbot. So firstly a dialogue would need to be constructed, this
can be done using the structure that is explained in the previous paragraph.
For actually changing the model, the internal APIs have to be used. They can be found in the
"tools" folder on the GitHub repository for the back end. Using the make_changes function,
they can be used. This function needs the model id and an object for the actual changes.
These objects are created using special functions, that can generate objects for specific tasks.
For an overview of what these objects (should) look like, see the documentation for the
internal APIs. Figure 30 shows a simple example of a function that creates such an object. In
this case, the object that can be generated is for adding a new attribute to a classifier. Figure
31 shows how the function from figure 30 can be used within the rule engine. The result of the
function is stored in a variable, that is passed to the internal API (make_changes function).
And after that via a database check, the system checks if there is indeed a new attribute in
the database (if the addition was successful or not). And then communicates that back to the
user.
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Figure 30: Example of function for generating an object for the internal API’s

Figure 31: Example of code for calling internal API
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1 Introduction

This document gives instructions for the validation and testing of the chatbot
system of the NG-UML project. The tests should in total take 20-30 minutes,
that is including the survey afterward. Many thanks for taking the time to take
part in the testing process.

2 Practical requirements

To be able to test the system, some practical requirements apply. The require-
ments are listed below. These are written under the following assumptions:
you have access to the Github repositories of the NG-UML project and you are
familiar with the project.

• Docker installed with an assigned memory (RAM) of at least 4GB.

• You have downloaded git and are signed in with your credentials.

• For the tests two repositories are required: ngUML.backend and ngUML.editor

1

B Test cases & instruction

44



• For the back end: you should use the latest version of the branch
”chatbot”.

• For the front end: you should use the latest version of the branch:
”chatbot”.

3 Creating a project

For the testing of the system, a project needs to be created. This can be done
with the following steps:

1. Start the back end, using ”docker compose up” command. If you need to
build the container first, user the command ”docker compose build” and
then ”docker compose up”. NOTE: before running ”docker compose up”
delete all the current data with ”bash delete demo data.sh” (if you used
the back end before).

2. Start the front end, with the ”yarn start” command.

3. Browse to the address ”http://localhost:3000/”, now should see the fol-
lowing web page:

Figure 1: Landing page of the front end

4. Now click on the ”Get started” button. You should now reach the following
page:

2
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Figure 2: Page for creating projects

5. There should be no existing projects on this page. If there are existing
project: stop running the back end container, use the command ”bash
delete demo data.sh” (to clear existing projects) and restart the back end
container (start again with step 1).
If there are no existing projects: Click on the ”Create a new project”
button. You should reach the following page:

Figure 3: Page for submitting project data

6. On this page you need to submit the data for the project. You can submit
the following data:

• Project name: Test project

• Project description: Project for testing the chatbot

• Write requirements: An employee has a name and drives a car.
An office has an address and is rented by a company.

Now click on the ”Save and continue” button on the bottom right of the

3
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page.
Now you should reach the following page:

Figure 4: Page for defining the system

7. On this page, execute the following actions:

• In ”System name” write: Test system

• For select entities of interest: mark all the options

• For select UML types: select Class model

Now your page should look like the one in the figure above. Now click on
the ”Save and continue” button, on the bottom right.

8. No should have reached the page shown in the figure below, with the
metadata shown in the figure. If all the data is the same as shown in
the figure, click on the ”Confirm and generate diagrams” button, on the
bottom right.
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Figure 5: Page for reviewing the metadata
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9. After this you should be redirected into the diagram editor. After waiting
for a few moments, the generated model should appear.

10. Click on the ”Auto-Layout (CoSe)” button on the top of the page, now
your screen should like this:

Figure 6: Diagram editor

11. You have now successfully submitted a project and generated a UML class
model. You can now go to the next section of this document to start with
the test cases.

4 Test cases

4.1 Remarks

This system is still being developed and therefore you might experience trouble/
bugs while executing the test cases. If you do, you can always reach out to Max
Vogt, contact details will be shared with all participants. Some remarks about
using this version of the chatbot:

1. If you want to exit/ break a conversation tree, use one of the following
commands (by sending them in the chat window): cancel, quit, exit, break
or escape. This will reset the conversation to the default, without deleting
the previous messages. This can be useful if you for instance make a
spelling error and want to start over.

2. If the whole chatbot stops responding (for instance due to a DB issue), use
the ”DELETE99” command by sending it in the chat window. This will
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delete all previous messages from the database and allows you to start
over. It is wise to use the ”cancel” command after the ”DELETE99”
command to completely start over.

3. The system uses dynamic and random responses, this entails that the
chatbot will use different responses for the same conversation (if you retry
it). These responses should all serve the same purpose, but you can expect
different articulates if you retry a test case.

4. The system is not fully robust against spelling errors and lower/upper case
errors. Especially if you are entering a name of a UML component (clas-
sifiers, relationship etc.), make sure the spelling is correct. For ”normal”
sentences, the system can handle spelling error up to a certain degree.

4.2 Adding a new relationship

For this test case a new relationship will be generated for the generated UML
model, using the chatbot.

1. Open the chatbot from the diagram editor, using the blue button on the
bottom right of the page. You should now see the chat window:

Figure 7: Chat window of the chatbot

2. To test the connection type ”Hi!” and send the message. The bot should
respond with some kind of greeting.

3. Now type and send ”I want to add a new relationship”.

4. The bot will ask you for a starting class of the relationship. Type and
send ”Employee”, make sure that the spelling is correct.
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5. The bot will now ask for an endpoint of the relationship. Type and send
”Company”.

6. The bot will now ask for the name of the relationship. Type and send
”works for”.

7. The bot will ask for the type of the relationship. Type and send
”generalization”.

8. The bot will now tell you if it successfully created the new relationship. If
this is not the case, type and send ”cancel” and start over. If this is the
case: close the chat window and reload the data (click on the ”Read/Load”
on the top, click on ”classes” and then on ”Yes” in the pop-up).
If you now use the ”Auto-Layout (CoSe)” button again, you should see
something like this:

Figure 8: Diagram editor with the new relationship

4.3 Adding a new attribute

For this test case a new attribute will be added to an existing classifier, via the
chatbot:

1. Open the chat window.

2. Type and send ”Creating a new attribute, is what I would like to do”.
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3. The bot will ask to which class you want to add an attribute, type and
send ”Company”.

4. Now you will be asked for the name of the new attribute, type and send
”workforce”.

5. The bot will ask you for a datatype, type and send ”Integer please”.

6. The bot will now announce if the addition was success full. If this is
not the case, type and send ”cancel” and retry. If this is the case reload
the data, with the same steps as for the previous test case. Your model
should now have the new attribute in the class Company, with the correct
datatype:

Figure 9: Diagram editor with the new attribute

4.4 Changing data type

For this test case the data type of the attribute created in the previous test case
will be modified, using the chatbot:

1. Open the chat window.

2. Type and send ”I want to change the data type of an attribute”.

3. The bot will ask for the ”parent” classifier, type and send ”Company”

4. The bot will now ask which attribute of Company you want to change,
type and send ”workforce”.
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5. Now you need to provide a data type, type and send ”bool”.

6. The bot will now announce if the modification was success full. If this is
not the case, type and send ”cancel” and retry. If this is the case reload
the data, with the same steps as for the first test case. Your model should
now have the changed data type for the attribute in the class Company:

Figure 10: Diagram editor with the changed data type of the attribute

4.5 Informative functionality

For the requirements of the system it is important that the chatbot can help
the user, also if the user has limited knowledge of UML diagrams. That is why
the chatbot can provide definitions of UML and its components, that will be
tested in this test case:

1. Open the chat window.

2. Type and send ”Can you tell me what UML is?”.

3. The bot should give a short definition/ explanation of UML. The figure
below shows what the conversation could look like:
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Figure 11: Asking the chatbot about the definition of UML

4. Type and send ”I want to know what a classifier is”

5. The bot should now give a short definition/ explanation of classifiers for
UML class models.

That was the last test case. Many thanks for taking the time to participate
in this validation process. The only thing that you have to do now is answer
a short questionnaire of 11 questions about your experience with the chatbot.
The link to this survey will be shared with you.
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Chatbot_survey 
 

 
Start of Block: Default Question Block 
 
Q1 The instructions in the document were sufficient for the testing 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
 
 
 
Q2 Creating the new project was successful 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
 
 
 
Q4 Testcase 1 (adding a new relationship) was successful 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
 

C Questionnaire
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Q5 Testcase 2 (adding a new attribute) was successful 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
 
 
 
Q6 Testcase 3 (changing a data type) was successful 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
 
 
 
Q7 Testcase 4 (informative function) was successful 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
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Q8 Overall I think the testing was successful 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
 
 
 
Q12 This system can help make the project more accessible for people with less UML 
knowledge 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
 
 
 
Q13 This system can help make the project more user-friendly 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
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Q9 This system is a relevant addition to the project 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
 
 
 
Q10 I would recommend using the chatbot 
 

o Strongly disagree  (1)  

o Somewhat disagree  (2)  

o Somewhat agree  (3)  

o Strongly agree  (4)  
 
 
 
Q11 If you have any comments/ additions please fill them in below: 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 

________________________________________________________________ 
 

End of Block: Default Question Block  
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