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Abstract

Parametrized quantum circuits can serve as supervised learning models executed on near-term
quantum computers. In previous work these models have been applied to classification and bivariate
regression problems. However, their performance on real-world regression datasets has yet to be
evaluated. Furthermore, very little is known about the generalization performance of these models
or regularization methods to improve this performance. In this thesis we evaluate these models on a
real-world multivariate regression dataset and obtain similar performance to many commonly used
classical regression methods. Furthermore we train the models on artificially generated datasets and
empirically show a decrease in generalization performance of circuits with repeated encoding of the
data. We evaluate the effect of several regularization methods and show that these methods do not
positively affect the generalization capacities of these circuits. Finally, we propose layer-cancelling
parametrized quantum circuits and show these can be regularized successfully. This work therefore
shows parametrized quantum circuits can be effectively applied to real-world regression problems
and provides useful insights and methods to improve the generalization performance of these circuits.
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1 Introduction

Regression problems deal with the task of finding the relationships between a single dependent
variable and multiple independent variables. These problems have been studied for centuries and
early mathematical models used to tackle regression problems can be traced back to the begin-
ning of the 19th century. With the rise of computers in the 20th century more computationally
expensive mathematical models have become prevalent, with artificial neural networks as primary
example. These models have an increased expressivity, meaning they can generally be used to han-
dle complex learning problems more accurately. Besides the developments in regression algorithms,
the success of modern regression models can largely be attributed to the continuing increase in
available computational power.

This increase in computational power is slowing down however, as the transistor size in modern
computers is approaching physical limits [1]. Furthermore, there are multiple classes of problems
which are believed to be impossible to solve efficiently on a classical computer. An example of such
a problem is the simulation of quantum mechanical systems. The mathematical description of a
quantum mechanical system generally grows exponentially in the size of the system. Because of this
exponential growth large quantum mechanical systems become intractable to simulate on classical
computers. This intractability guided physicists to the idea of using a new model of computation
based on quantum mechanics.

This idea has started a wide branch of research based on quantum computing. Besides the large
potential of efficiently simulating physical systems, this research has lead to many more algorithms
with a variety of potential applications. Clever usage of quantum mechanical phenomena in these
algorithms has in many cases led to a significant improvement in time complexity compared to the
corresponding classical algorithm. The most well-known example is Shor’s algorithm [2], which
factors integers in polynomial time while the fastest known classical algorithm can only do this in
sub-exponential time [3]. In the current era however, state-of-the-art quantum computers are rela-
tively small-scale and often have to deal with noise, likely causing many of the potential applications
(like Shor’s algorithm) to be many years away. Therefore much of the current research is focused
on algorithms which are not crucially affected by noise and use a lower amount of qubits, and can
therefore obtain good results on near-term devices [4].

One class of currently researched quantum algorithms uses so-called parametrized quantum
circuits (PQCs). With the help of classical computers to optimize the parameters, these circuits
can serve as machine learning models for both classification and regression problems. PQCs map
data into a high-dimensional feature space, which can be intractable to simulate on a classical
computer [5]. The increased complexity of these models poses an interesting open question whether
or not these feature spaces are useful for classical machine learning tasks.

Additionally, from classical machine learning we know that an increase in model complexity
can come with problems of overfitting, where the performance of the model on test instances is
much worse than its performance on the training instances. These problems are tackled using
regularization techniques, which limit the complexity of the trained models to increase the test
performance of the model. The increased complexity provided by parametrized quantum circuits
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gives rise to the open question to what extent overfitting can occur within these models.
In this thesis, the learning capabilities of the PQC are tested on a classical regression dataset

through simulations on classical computers. Furthermore, we investigate the presence of overfitting
in PQC-based regression models. Finally, we experiment with several regularization techniques on
the models with overfitting behaviour.
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2 Preliminaries

2.1 Quantum computing

2.1.1 Qubits/quantum states

In classical computers, information is stored using binary digits, or bits. Each bit is described by
its state, which can be either 0 or 1. By combining multiple bits, larger pieces of information can
be represented by the resulting bit string.

In quantum computers, information is represented by quantum bits, or qubits. A qubit is a
quantum-mechanical system which can take a similar form as classical bits (denoted using so-called
bra-ket notation as |0〉 and |1〉), as well as a linear combination (or superposition) of these two states.
Mathematically speaking, the state of a qubit |ψ〉 can be described by a two-dimensional complex
unit vector [6]. This description can be specified in different bases. Using the most commonly used
basis ({|0〉 , |1〉}), also known as the computational basis, a qubit can therefore be written in the
form

|ψ〉 = α |0〉+ β |1〉 =
[
α
β

]

where α, β ∈ C : |α|2 + |β|2 = 1 (1)

When α and β are both nonzero, we say that the state is in a superposition over the states |0〉 and
|1〉.

Similarly to a single qubit, a system with multiple qubits can be represented by a state vector.
More specifically, a state vector with n qubits is a unit vector in the 2n-dimensional complex Hilbert
space.1 In this vector space, the computational basis is defined as the set of possible bitstrings of
length n. As an example, the combined state of two qubits can be written as

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 =







α
β
γ
δ







where α, β, γ, δ ∈ C : |α|2 + |β|2 + |γ|2 + |δ|2 = 1

(2)

Generally, when we have two separate systems described by the states |ψa〉 and |ψb〉 respectively,
their states can be combined using the tensor product with the resulting combined state equal to
|ψ〉 = |ψa〉 ⊗ |ψb〉 ≡ |ψa〉 |ψb〉.

2.1.2 Computations

Quantum states are evolved by unitary transformations. In quantum computers, these transforma-
tions are applied using quantum gates. These gates can act on single qubits or on multiple qubits

1Technically, this is a description of so-called pure states. Qubits can also be in mixed states, which are statistical

ensembles of pure states. Throughout this thesis we will not encounter mixed states and therefore only refer to pure

states.
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at the same time. Quantum gates can be combined into a quantum circuit, which serves as the
model for quantum computations.

Circuits are often represented mathematically by unitary matrices in the computational basis.
The resulting state after running a quantum circuit with unitary transformation U on a system of
qubits with initial state |ψ〉 is given by U |ψ〉.

A full computation is usually illustrated using a circuit diagram. Such a diagram shows the
initial state of the qubits and connects these to gates using wires from left to right to illustrate the
order of the gates applied to each specific qubit. Table 1 depicts the circuit symbols of some of the
commonly used gates, along with their matrix representation in the computational basis.

Table 1. Common quantum gates with corresponding matrix representations in the computational basis.
The first four gates are applied to a single wire each, indicating that these gates are single-qubit gates. The
CNOT gate is applied to two wires and is therefore a two-qubit gate. An operation is applied to the second
qubit (the target) conditional on the state of the first qubit (the control).

Name Gate Matrix representation

Pauli-X X

[
0 1
1 0

]

Pauli-Y Y

[
0 −i
i 0

]

Pauli-Z Z

[
1 0
0 −1

]

Hadamard H
1√
2

[
1 1
1 −1

]

Controlled Not (CNOT)







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







Besides the fixed gates in Table 1, there are three common gates that each depend on a pa-
rameter. These can be found in Table 2. As we will see in Section 2.1.4, each of the operations
performed by these parametrized operators can be geometrically represented as a qubit rotation by
an angle θ around a specific axis. When used in circuits, changing the parameters of these gates
allows the computation performed by the circuit to be tuned.

2.1.3 Measurements

As described in previous sections, we can use unitary operators to transform quantum states. Unlike
in classical computing, where we can observe the value of each bit at any given time and then
perform more calculations with it afterwards, in quantum computing such observations can only be
performed using measurements which can permanently influence the state of the system. Therefore,
in most quantum computations these measurements take place at the end of the computation to
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Table 2. Parametrized quantum gates. Each gate represents a qubit rotation by an angle θ around its
specific axis (x, y, or z).

Name Gate Matrix representation

Rx(θ) Rx(θ) e−iXθ/2 =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]

Ry(θ) Ry(θ) e−iY θ/2 =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]

Rz(θ) Rz(θ) e−iZθ/2 =

[
exp(−iθ/2) 0

0 exp(iθ/2)

]

extract classical information from the quantum system. The circuit symbol used for a measurement
on a single qubit is depicted in Figure 1.

Figure 1. Measurement symbol

To be able to describe how measurements work, we write the complex inner product between
two states |x〉 , |y〉 ∈ C2n as

〈x|y〉 := |x〉† |y〉 =
∑

i

x̄iyi

Here, † denotes Hermitian conjugation.
The possible outcomes of a measurement depend on |ψ〉, the state of the system before the

measurement is performed, and the so-called observable which is measured, O. This observable
acts as an Hermitian operator. Each of its eigenvalues {λi} represents a possible outcome from the
measurement and its corresponding eigenvector λi represents the state of the system after obtaining
this outcome from the measurement. Because an observable is Hermitian, it can be described using
its spectral decomposition:

O =
∑

i

λi |λi〉 〈λi|

where 〈λi| = |λi〉† and acts as a functional on |ψ〉, such that

O |ψ〉 =
∑

i

λi |λi〉 〈λi|ψ〉 =
∑

i

λi 〈λi|ψ〉 |λi〉

The probability of obtaining the outcome λi from the measurement is given by the Born rule

p(λi) =
∣
∣ 〈λi|ψ〉

∣
∣2
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From this expression, the expected outcome of the measurement can be derived to be

E(O, |ψ〉) = 〈ψ|O|ψ〉

On quantum computers, this expected outcome can be estimated through sampling by executing
the circuit multiple times and measuring each final state.

An important result of the way in which measurements work is the physical irrelevance of the
global phase, the phase of the entire system. To illustrate this, we can add any global phase θ to a
state |φ〉 such that |ψ〉 = eiθ |φ〉.

For the measurement of observable O on this system, the probability of measuring any eigenvalue
λi on the state |ψ〉 is therefore

p(λi, |ψ〉) =
∣
∣ 〈λi|ψ〉

∣
∣2 =

∣
∣eiθ 〈λi|φ〉

∣
∣2 =

∣
∣eiθ

∣
∣2
∣
∣ 〈λi|φ〉

∣
∣2 =

∣
∣ 〈λi|φ〉

∣
∣2 = p(λi, |φ〉)

The global phase of a state therefore has no effect on the probabilities of the measurement outcomes.

2.1.4 Bloch sphere representation

The general description of a single-qubit state (eq. 1) uses two complex numbers, which means
four real numbers are needed to describe the state of the system. However, the insignificance of
the global phase allows one of the complex coefficients to be fixed to a real positive value without
changing the physical state being represented. Using only three real numbers a, b and φ, the state
of a single qubit can therefore be described as

|ψ〉 = a |0〉+ beiφ |1〉 where a, b ∈ R≥0 : a
2 + b2 = 1

Furthermore, due to the unit vector-constraint on the state of the qubit we can represent the state
as a point on a unit sphere in three dimensions. The real values a and b can be parametrized using
this constraint, yielding

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π

The sphere representing all single-qubit states is called the Bloch sphere. Its visual representation
is depicted in Figure 2. In this representation the x, y, and z-axes are defined by the eigenvector
corresponding to the positive eigenvalue of the Pauli-X, Pauli-Y and Pauli-Z matrix respectively.

2.1.5 Entanglement

The final gate in Table 1 depicts a two-qubit gate known as the Controlled-NOT (CNOT) gate. If
the control qubit is in the state |0〉, this gate has no effect on the system. If the control qubit is in
the state |1〉, the gate effectively applies the Pauli-X gate to the target qubit, i.e. |0〉 is transformed
to |1〉 and vice-versa.

11



x

y

|0

|1

|

Figure 2. Bloch-sphere representing all possible single-qubit states. The z-axis points in the direction of
|0〉. The position of the state |ψ〉 on the sphere is determined by the angles θ and φ.

An interesting phenomenon happens when the state of the control qubit is in a superposition.
As example, let us take |ψ0〉 = H |0〉 = 1√

2
(|0〉 + |1〉) as the control qubit and |ψ1〉 = |0〉 as the

target qubit. The combined state of this two-qubit system is

|ψ〉 = |ψ0〉 ⊗ |ψ1〉 =
1√
2
(|00〉+ |10〉)

We then apply the CNOT gate to this system, as shown in Figure 3.

|0〉 H

|0〉

Figure 3. Circuit containing a CNOT gate where the state of the control qubit is in a superposition.

The final state after running this circuit is

|ψf 〉 = CNOT
1√
2
(|00〉+ |10〉) = 1√

2
(|00〉+ |11〉)

The state of the this two-qubit system |ψf 〉 is such that we can no longer describe the state of each
qubit separately, i.e. ∄ |ψa〉 , |ψb〉 ∈ C2 : |ψf 〉 = |ψa〉⊗|ψb〉. The states of the two qubits are therefore
entangled. This phenomenon has interesting consequences when we perform measurements. If we
measure the control qubit, there is a probability of 1

2 of measuring |0〉 and the state of the system
collapsing to |00〉, and an equal probability of measuring |1〉 and the state collapsing to |11〉. If we

12



subsequently measure the target qubit, this will give us the same outcome as the measurement of
the first qubit. Entangled systems therefore introduce correlations into the measurement of multiple
qubits.

2.2 Regression

2.2.1 Problem statement

In regression, one aims to predict a real-valued target variable using given independent variables
by learning the function f mapping the independent variables to the target variable. This is done
through supervised learning, where a dataset of N instances D = {Xi, yi}Ni=1 is used. Here Xi ∈ Rm

is a vector of m features, which are independent variables. yi ∈ R is a target, which is a dependent
variable that depends on Xi as well as an error term ǫi ∈ R such that

yi = f(Xi) + ǫi

Each instance (Xi, yi) of the dataset can be used to train a regression model. This mathematical
model acts as a function f̂D(x) with x as a feature vector. The goal of training this model is to
have f̂D represent the function f as accurately as possible, so that in a situation where the value
of the target variable is unknown, the model can use the independent variables x to estimate its
value.

Regression models generally are trained by making the output f̂D(x) depend on a set of param-
eters θ and optimizing these parameters such that they minimize the error of the predictions made
by the model on the instances in the dataset. Two commonly used error measures (also known as
loss functions) are the mean squared error (MSE) and the root mean squared error (RMSE). When
calculated on a set of n instances, with y as the vector of target values in the dataset and ŷ as the
vector of target values predicted by the model, these error measures are given by:

MSE =
1

n

n∑

i=1

(yi − ŷi)
2

RMSE =
√
MSE

2.2.2 Classical models

The most well-known class of regression models is the class of multiple linear regression models.
These models assume there are one or more linear relations between the independent variables and
the target variable, i.e. the output function of the model on a vector of independent variables x is

f̂D(x,θ) = θ0 +
n∑

j=1

θjxj

Here, the assumed linear relations are described by the parameters θ, which are often optimized
using the so-called least-squares method. Using this method on a dataset X with n instances
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containing m features each, the parameters θ which minimize the mean-squared error are related
to y through the Moore-Penrose inverse of X, i.e.

θ = (XTX)−1XTy

where y is the vector of target values in the dataset and X is a n×m-matrix such that Xij denotes
the j-th feature of the i-th instance in the dataset.

Another commonly used class of models is the class of artificial neural networks, which can
be used for a wide range of machine learning tasks including regression tasks. The number of
parameters used in these models can range from a few parameters to billions of parameters. Artificial
neural networks can therefore be much more complex than linear regression models, so they are
more suitable for datasets with non-linear relations.

2.2.3 Overfitting

As discussed earlier, regression models are used to estimate an unknown target variable y from a
given feature vector x, where y = f(x)+ǫ. The goal of training regression models is then to use the
training dataset D = {Xi, yi}Ni=1 to find a function f̂D which represents the function f as closely as
possible. However, as each yi is known while each f(Xi) is not, the task of minimizing the error on
the training dataset means representing each yi as accurately as possible and therefore also implicitly
taking into account the error terms ǫi. When f̂D conforms too closely to the training dataset, it will
therefore not accurately represent the function f , which in turn means the performance of the model
on instances outside of the training dataset may be much worse. This phenomenon is a common
problem in supervised learning methods called overfitting. Overfitting usually happens when the
model used is capable of representing functions which are more complex than the target function f .
An example in which this happens is depicted in Figure 4.

x

y

True function
Model output function
Training dataset

Figure 4. Example of a model suffering from overfitting. The model output function f̂D represents the data
points much more accurately than the true function f and therefore often diverts from f .

14



Because of the possibility of overfitting, a proper evaluation of the trained model cannot be
performed on data used for training. Therefore datasets are usually split up into two datasets: one
for training and one for validation. The validation dataset is used to evaluate the performance of
the model on unseen data not used in training. In this way, different models can be compared using
their performance on the validation dataset.

A disadvantage of using a validation dataset for evaluation, is the fact that the evaluation now
depends on what part of the dataset is used for validation. To reduce the variance this introduces
into the evaluation metric, a method called k-fold cross-validation can be used. With this method,
the dataset is split into k groups. Each group is used once as validation dataset while a model is
trained on the other k − 1 groups. After training k models, the performance on their respective
validation datasets is averaged to obtain the cross-validated performance.

2.2.4 Bias-variance trade-off

When trying to prevent overfitting, one has to deal with the so-called bias-variance trade-off. Both
the bias and the variance are part of the expected prediction error that a model will make on an
instance (x, y) /∈ D, where D denotes the training dataset. To define these two errors, we define
P (x, y) as the distribution from which each instance in D has been drawn, i.e. D ∼ PN . We then
define the expected validation error on an unseen instance (x, y) as

ED

[

(f̂D(x)− y)2
]

:= ED∼PN

[

(f̂D(x)− y)2
]

It can be shown that

ED

[

(f̂D(x)− y)2
]

= ED

[(

f̂D(x)− ED[f̂D(x)]
)2

]

︸ ︷︷ ︸

Variance

+
(

ED[f̂D(x)]− f(x)
)2

︸ ︷︷ ︸

Bias2

+
(
y − f(x)

)2

︸ ︷︷ ︸

Noise

In this equation, the noise represents the error term ǫ which is added to f(x) to form the instance
(x, y). This term is independent of the model, and therefore forms a lower bound on the expected
validation error.

The bias represents the error caused by assumptions made within the design of the model. A
high bias means these assumptions generally tend to result in a model for which its output value
f̂D(x) is very different from f(x). This is usually the case when a model is not complex enough to
capture the dependence of the true function f on the feature vector x. Bias generally decreases as
more complex models are used.

Finally, the variance represents the degree to which f̂D(x) fluctuates depending on what dataset
is sampled. When the variance is high, these fluctuations tend to result in models for which the error
achieved when evaluated at x is very dependant on the training data. This is often the case when
the model is complex enough to accurately represent the noise in the training data, and therefore
no longer accurately represents the true function f , i.e. the model is susceptible to overfitting.
Variance generally increases as more complex models are used.
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Because bias decreases when more complex models are used while variance decreases as less
complex models are used, decreasing the expected validation error of a regression model generally
equates to finding the right balance in this bias-variance trade-off. This is illustrated in Figure 5.

Model complexity

Er
ro

r

Op
tim

al
 c

om
pl

ex
ityTotal error

Bias
Variance

Figure 5. Influence of the model complexity on the bias, variance and the resulting total validation error.
To achieve the lowest possible total error, it is necessary to use a model with the right complexity.

2.2.5 Regularization

Overfitting can be reduced using so-called regularization methods which limit the complexity of
the model. These methods increase the bias of the model and decrease its variance. Therefore
regularization methods can be used to achieve a better balance between these two quantities. Two
very common regularization methods are L1 and L2-regularization, which add an additional term
to the loss function which is optimized. This loss function will therefore be a sum of the mean
squared error and a regularization penalty.

With L1-regularization, the resulting loss function is given by

L = MSE + λ
∣
∣
∣
∣θ
∣
∣
∣
∣
1
=

1

n

n∑

i=1

(yi − ŷi)
2 + λ

p
∑

i=1

|θi|

where θi is the i-th parameter in the model and λ is a hyperparameter used to weight the regulariza-
tion penalty. This form of regularization penalizes any increase of the model parameters, therefore
leading to a sparse model where the parameters tend towards zero.

L2-regularization works similarly to the L1-regularization, but with a slightly different penalty.
Instead of using the L1 norm of the parameter vector θ, we use the L2 norm so that the loss function
becomes

L = MSE + λ
∣
∣
∣
∣θ
∣
∣
∣
∣
2
=

1

n

n∑

i=1

(yi − ŷi)
2 + λ

p
∑

i=1

θ2i
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This type of regularization has a different effect from L1-regularization, as it mainly penalizes
the large parameter values and leaves the smaller parameter values relatively unchanged.

2.3 Parametrized quantum circuits

On quantum computers, one way to create a regression model is through parametrized quantum
circuits (PQCs). These circuits make use of parametrized gates which can be tuned to change the
possible measurement outcomes and probabilities. PQCs are part of a hybrid quantum-classical
algorithm, where the model is evaluated through the parametrized circuit on a quantum computer,
and the parameters of the model θ are optimized on a classical computer. The model can produce
predictions by sampling the expected measurement outcome through multiple runs of the same
circuit. The original structure of a PQC as proposed in [7] is depicted in Figure 6a. As shown, the
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Figure 6. Circuit layout without data reuploading (a) and with data reuploading (b). In either circuit the
highlighted area is repeated D times, where D denotes the depth of the circuit. Here Uenc represents a single-
qubit encoding operation, Uent represents an n-qubit entangling operation, and Upar denotes a single-qubit
parametrized operation.

circuit is built from encoding, entangling and parametrized components. Each encoding component
depends on the feature xi and therefore embeds xi into the state of the n-qubit system. Each
entangling component uses multi-qubit gates (e.g. the CNOT gate) to introduce entanglement into
the system. Finally, the parametrized gates embed the parameters θ into the system. The gates
used in each of these components can vary widely and are usually adjusted to the specific learning
problem.

An alternate PQC structure is depicted in Figure 6b, where the encoding components have
become a part of the repeated section. With this method, known as data reuploading [8], the
feature vector x is encoded into the circuit multiple times.

The parameters of the circuit θ are optimized on a classical computer using gradient descent.
The most common method to calculate the gradient of the expected measurement output with
respect to each parameter is the parameter-shift rule [7, 9]. With this method the parametrized
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quantum circuit can be used to calculate these gradients. For a circuit with p parameters, this
method requires estimation of 2p expected outcomes of the circuit.
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3 Related work

3.1 Development of parametrized quantum circuits

The first experiments and developments with hybrid quantum-classical optimization algorithms were
not aimed specifically at machine learning tasks, but rather at the task of state preparation. More
specifically, they were developed to be used in conjunction with quantum algorithms like quantum
phase estimation (QPE) and quantum expectation estimation (QEE) [10]. QPE and QEE require an
approximation of the ground state of a given Hamiltonian, i.e. the lowest energy state of a quantum
mechanical system. Earlier methods to obtain this approximation, like adiabatic evolution [11], are
difficult to perform on near-term quantum devices because they require long coherent evolutions.
This motivated early work on hybrid quantum-classical optimization algorithms in order to replace
these earlier methods with more feasible algorithms for near-term devices [12, 10].

3.2 Parametrized quantum circuits as machine learning models

Early work on PQCs as supervised learning models has been performed by Mitarai et al. [7] In
their work, they successfully train PQCs on datasets generated using univariate functions, as well
as classification datasets.

Chen et al. [13] investigated the overfitting capabilities in a regression context as well as a
classification context. Specifically, they experiment with the PQCs used in [7], which do not use
data reuploading. They found that for increasing circuit depth, the increase in expressive power
diminishes. In their experimental results they therefore do not observe significant overfitting.

In the field of quantum support-vector machines, Park et al. [14] used visualizations of the
decision boundary to demonstrate overfitting. This decision boundary was smoothened significantly
with the use of L2-regularization.

Gyurik et al. [15] proved that depending on the ansatz used, the complexity of quantum linear
classifiers can be tuned by varying the rank of the observable. Furthermore the authors showed that
better generalization performance can be achieved by tuning the Frobenius norm of the observable.

Pérez-Salinas et al. [8] introduced the concept of data reuploading to parametrized quantum
circuits. Instead of only encoding the data into the circuit at the start of the circuit, the data is
encoded into the circuit multiple times. Schuld et al. [16] showed that data reuploading significantly
increases the expressivity of PQCs.

In their research performed simultaneously with the research described in this thesis, Kobayashi
et al. [17] successfully applied a regularization method to their PQC-based models trained on bi-
variate regression datasets. This method randomly removes entangling gates during each training
iteration, improving the generalization performance of the model.

3.3 Contributions

In this thesis, research is performed on the use of parametrized quantum circuits for multivariate
regression problems. Specifically, three main contributions are provided. Firstly, we show that
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parametrized quantum circuits can be applied to real-world multivariate regression datasets and
can obtain a similar performance to many classical regression methods. Secondly, we use artificially
generated datasets to show that parametrized quantum circuits with data reuploading can suffer
from severe overfitting which increases as deeper circuits are used. Finally, we evaluate the effect of
several regularization techniques and provide an adapted PQC-architecture which can be regularized
through cancelling of circuit layers.
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4 Methodology

4.1 Classical simulation

Quantum computers are still in early stages of development and currently mainly used for very
specific experiments. Our experiments are therefore simulated on classical computers using the
TensorFlow Quantum-package [18]. This package is developed to help the development of machine
learning algorithms for quantum computers. This software uses the Cirq-package [19] as a basis
to create quantum circuits, and incorporates this with classical optimization algorithms to create
quantum machine learning algorithms.

Classical simulation of PQCs has advantages and disadvantages. The time complexity scales
exponentially in the number of qubits, so the number of qubits is very limited in a classical simula-
tion. On the other hand, classical simulation allows access to the final state of the circuit without
using measurements. Therefore classical simulators can directly calculate the expected measure-
ment outcome, compared to quantum computers only being able to sample this outcome through
measurements.

On quantum computers, determining the gradient of the expected measurement output with
respect to each parameter is usually performed using the earlier described parameter-shift rule. For
classical simulation of PQCs, there is a faster method to calculate the gradients known as adjoint
differentiation [20]. This method requires one forward pass through the circuit to determine the
final state, and one backwards pass through the circuit to calculate all gradients. Because all our
experiments are simulated classically, this iterative method is used.

Using adjoint differentiation, a variety of gradient-based optimization algorithms can be used to
tune the parameters of the circuit. For all experiments the Adam [21] optimizer was chosen. This
optimizer uses stochastic gradient descent with an adaptive learning rate. The adaptation depends
on the first-order and second-order moments of the past gradients, and decay rates are used to
decrease the significance of older gradients. The adaptive learning rate reduces the importance of
the initial learning rate and therefore significantly reduces the amount of hyperparameter tuning
needed.

4.2 Parametrized quantum circuit components

For the experiments performed in this work, we use PQCs without data reuploading (depicted
earlier in Figure 6a) as well as PQCs with data reuploading (depicted earlier in Figure 6b).

4.2.1 Encoding components

The feature-vector x is encoded into the circuit by applying rotational gates (as defined earlier
in Table 2) to multiple qubits. This encoding, proposed in [7], has been extended for usage with
multiple features such that

Uenc(xj) = Rz(cos
−1 x2j )Ry(sin

−1 xj)
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The domain of this encoding is [−1, 1] and the range when applied to an input state |0〉 is illustrated
in Figure 7. For all experiments, the number of qubits is chosen as either once or twice the number

x

y
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0.25

0.00

0.25

0.50

0.75

1.00

Figure 7. Bloch-representation of qubit encoding Rz(cos
−1 x2j )Ry(sin

−1 xj) |0〉, with xj ranging from -1
(dark blue) to 1 (dark red). The input variable xj here is not to be confused with the x-axis.

of features in the dataset. In both cases, the j-th feature is encoded into the j-th qubit. In the
second case this encoding is repeated for the second half of the qubits.

4.2.2 Entangling components

The entangling layer is composed out of CNOT gates. In our experiments we use two different
layouts for the entangling layer, i.e. ring and full connectivity. These are illustrated in Figure 8.

(a) (b)

Figure 8. CNOT entanglement with ring (a) and full (b) connectivity. With ring connectivity only neigh-
bouring qubits are connected (including the last and first qubit). Full connectivity means all pairs of qubits
are connected unidirectionally, with the order of the qubits determining the control (first) and target (second)
qubits.
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4.2.3 Parametrized components

For the parametrized layer, the unitary operator acting on the j-th qubit in the i-th parametrized
layer is given by

Upar(θ
(i)
j ) = Ry(θ

(i)
j1 )Rz(θ

(i)
j2 )

All parameters are initialized to uniformly random values in the interval [−π, π].

4.2.4 Measurement

Two measurement observables are used in the majority of the experiments. The first observable is
denoted by Z0, which measures Z on the first qubit. The second observable is Z⊗N , which measures
Z on all qubits.

4.3 Grid search on real-world dataset

To evaluate the performance of parametrized quantum circuits (PQCs) on real-world regression
datasets, we train many different PQCs on the Combined Cycle Power Plant (CCPP) dataset [22].
This dataset was collected from a power plant with the goal of predicting its electrical power output
from the ambient temperature, atmospheric pressure, relative humidity, and the exhaust steam
pressure.

The goal of the first experiment is to find the parametrized quantum circuits which work best
on the CCPP dataset and to compare this performance with classical regression methods. In
order to do that we perform a grid search of multiple circuits with multiple hyperparameters. The
hyperparameters used in this grid search are described in Table 3. All features and targets in
the dataset are rescaled to the interval [-1,1]. This is necessary because the features are encoded
into qubit rotations and the domain of the measurement is limited by the observable. The errors
obtained from the model are rescaled back accordingly for comparison to the methods used in the
original paper.

Table 3. Hyperparameters used in hyperparameter grid search for parametrized quantum circuits trained
on the CCPP dataset.

Hyperparameter Values

Entanglement connectivity {ring, full}
Measurement observable Z0

Number of qubits {4, 8}
Circuit depth {1, 3, 5, 7, 9}
Learning rate {0.003, 0.01, 0.03}
Batch size {32, 64}
Epochs 200
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4.4 Artificial datasets

Our second set experiments is designed to observe overfitting of parametrized quantum circuits
and to identify in what conditions overfitting occurs. For this experiment, artificial datasets are
generated using randomly initialized PQCs. More specifically, for each instance of the dataset four
uniformly random features are generated within the interval [-1, 1]. The target corresponding to
these features is determined by the expected outcome of measuring an observable after running a
randomly initialized PQC of depth 2. Other than the depth of the generator PQC, all other circuit
properties (e.g. measurement observable, data reuploading) are set to be the same as the PQC that
is trained on this generated dataset. The generated datasets consist of 1000 instances each. The
hyperparameters used for the models which are trained are described in Table 4.

Table 4. Hyperparameters used in experiments with artificially generated datasets.

Hyperparameter Values

Data reuploading {with,without}
Entanglement connectivity {ring, full}
Measurement observable {Z0, Z

⊗N}
Number of qubits 4
Circuit depth {2, 4, 6, 10, 13, 16, 20}
Learning rate 0.005
Batch size 64
Epochs 200

The PQCs used as models in this experiment vary in depth. The use of higher-depth models
means highly complex models are used to fit relatively simple functions generated by low-depth
models. Models which are not prone to overfitting, will have a similar training and validation error,
even at higher circuit depths. On the other hand, we expect to see a large difference between these
two errors for high-depth circuits which are susceptible to overfitting.

For models which do not show overfitting, we perform three separate experiments to test their
resistance to overfitting. Firstly, Gaussian noise is added to the target variables in the generated
datasets. As discussed in Section 2.2.3, errors added to the target variables be a source of overfitting.
Secondly, the size of the training dataset is varied, as the use of small training datasets can cause
overfitting. Finally, we experiment with a different observable, which is specified in matrix form
in the computational basis by diag(−1, 0, 1, 2, ..., 2n − 2), where n is the number of qubits in the
circuit. This observable has n distinct eigenvalues and has a larger Frobenius norm than the Z0

and Z⊗n observables. This is motivated by [15], in which these properties of the observable were
shown to control the complexity of the model.
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4.5 Regularization methods

To determine whether or not overfitting PQC-based models can be successfully regularized, we
experiment with several regularization techniques.

4.5.1 L1 and L2-regularization

In the first of these experiments we use L1 and L2-regularization, introduced earlier in Section 2.2.5.
Because we are working with PQCs where the parameters are rotational angles and are therefore
periodic, the angles are wrapped to the [−π, π] domain immediately after every training update.
This leaves the output of the PQC unchanged while ensuring the regularization penalty is based on
the true magnitude of each rotation.

4.5.2 Parameter dropout procedure

Next, we use a different method from L1-regularization to enforce a fraction of the model parameters
to be zero, which we will call ’parameter dropout’. With this method, the model is fully trained
multiple times. After each full training iteration, the smallest parameter is fixed to zero for the
remainder of the experiment, essentially dropping the parametrized rotations corresponding to that
parameter. For this experiment, two different procedures are tried. In the first procedure, the
parameters are randomly reinitialized after each full training iteration except for the parameters
which are fixed to zero. In the second procedure, the values of the parameters are preserved between
each full training iteration, with the newly fixed parameters as the only change to be made between
two iterations. This experiment is performed with models using a depth of 16 layers.

4.5.3 Layer-cancelling procedure

In our final regularization method, we change the structure of our PQCs to allow them to perform
the exact same operations as the lower-depth PQCs used to generate the datasets. The unitary
corresponding to the i-th repeated layer of a PQC using data reuploading can be denoted as

Ulayer(x,θ
(i)) = Uenc(x)UentUpar(θ

(i))

where Uenc is the unitary corresponding to the entire encoding layer, Uent is the unitary correspond-
ing to the entire entangling layer and Upar is the unitary corresponding to the entire parametrized

layer, which is a function of the i-th vector of parameters θ(i) applied in the i-th parametrized layer.
Our first modification to this repeated layer is the addition of an altered entangling layer such that
a full layer becomes

Ulayer(x,θ
(i)) = Uenc(x)UentUpar(θ

(i))U †
ent (3)

The use of this new layer allows the circuit to cancel out the entangling layer. To see this,
remember that Upar(θ

(i)) only consists of single-qubit rotations using θ(i) as input angles. Therefore

Upar(0) = I
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and thus

Ulayer(x,0) = Uenc(x)UentUpar(0)U
†
ent

= Uenc(x)UentU
†
ent

= Uenc(x)

So with this first modification, which we will call ’entanglement-cancelling’, a full layer can in
theory reduce to a single encoding layer.

In the second modification we use two full layers, each using the entanglement-cancelling method
described above. The second full layer is modified such that Uent is replaced with its Hermitian
conjugate U †

ent. Because our original entangling layer consists of parametrized rotational gates, its
Hermitian conjugate can be implemented by reversing the order of the gates and flipping the sign
of the input angles.

Within the full circuit, the layers alternate between using Uent and U
†
ent. Therefore two subse-

quent layers U1 and U2 can be described as

U1(x,θ
(i))U2(x,θ

(i+1)) = (Uenc(x)UentUpar(θ
(i))U †

ent)(U
†
enc(x)UentUpar(θ

(i+1))U †
ent)

With the first and this second modification combined, which we will call ’layer-cancelling’, the
encoding circuits of two subsequent layers can cancel each other out if the first parameter vector
θ(i) is set to 0. This gives

U1(x,0)U2(x,θ
(i+1)) = (Uenc(x)UentUpar(0)U

†
ent)(U

†
enc(x)UentUpar(θ

(i+1))U †
ent)

= Uenc(x)U
†
encUentUpar(θ

(i+1))U †
ent

= UentUpar(θ
(i+1))U †

ent

Therefore effectively the two layers act together as a single layer without any encoding gates.
In the special case where the second parameter vector θ(i+1) is also set to 0, the unitary matrix of
both layers combined reduces to identity and the effective depth of the circuit is reduced by two
layers.

We experiment with layer-cancelling in combination with several degrees of L1-regularization to
guide the optimization procedure towards parameter vectors containing elements equal to zero.

26



5 Results

5.1 Classical dataset performance

To compare the performance of parametrized quantum circuits to classical regression methods, we
perform a grid search of different circuits with multiple hyperparameters. For this grid search, the
Combined Cycle Power Plant dataset is used. In the original paper on this dataset by Tufekci,
a large variety of classical regression methods were applied to the dataset. The authors used 5
x 2 cross-validation to evaluate their models, i.e. shuffling the dataset 5 times and performing
two-fold cross-validation on each of those 5 datasets. With methods as linear regression and the
multilayer perceptron (MLP) the authors reached a RMSE of 4.561 and 5.399 respectively. The best
performance was obtained with the bagging REP tree method, which obtained a RMSE of 3.779.
With the use of genetic algorithms to tune the structure of their multilayer perceptron, Lorencin et
al. [23] improved the performance of the MLP to a RMSE of 4.305.

Our models are evaluated using 5 x 2 cross-validation on the same shuffled datasets used in the
original CCPP paper. We compare circuits by choosing the batch size and learning rate with which
it obtained the best cross-validation score. The results of training PQCs on the CCPP dataset are
shown in Table 5. The results show that one of the two largest PQCs in the experiment, with 8
qubits, a depth of 9 and ring connectivity in the entangling layer, obtains the best performance.
With a RMSE of 4.255 this model is outperformed by the multilayer perceptrons created by Lorencin
et al., but it performs better than the multilayer perceptron used in the original paper by Tufekci.

Additionally, we observe only small differences in performance among all models with a depth
of at least 3. The models using a depth of 1 perform substantially worse than all other models.
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Table 5. Performance of different parametrized quantum circuits on the CCPP dataset. The best performing
learning rate and batch size combination has been selected for each set of circuit hyperparameters, with the
achieved performance shown in the last column.

Qubits Depth Connectivity Learning rate Batch size RMSE performance

4 1 full 0.003 64 16.991
ring 0.030 32 16.908

3 full 0.010 32 4.489
ring 0.010 64 4.633

5 full 0.003 32 4.474
ring 0.030 64 4.370

7 full 0.010 32 4.502
ring 0.010 64 4.442

9 full 0.030 64 4.608
ring 0.030 64 4.592

8 1 full 0.003 32 16.995
ring 0.030 32 16.803

3 full 0.010 64 4.315
ring 0.010 64 4.673

5 full 0.010 32 4.290
ring 0.030 64 4.546

7 full 0.010 64 4.346
ring 0.010 64 4.281

9 full 0.003 64 4.519
ring 0.003 64 4.255

5.2 Overfitting capabilities

As the PQCs used in the previous experiment obtained a relatively good validation error, for
this experiment we use artificially generated datasets to observe overfitting and to identify when
overfitting occurs. These datasets are generated using low-depth PQCs and are used to train
different circuit architectures at different depths. For this experiment 5 x 2 cross-validation is used.
A new dataset is generated for each of the five repetitions and the final score is an average of the ten
runs performed. Figure 9 shows the learning performance of the PQCs without and with the use of
data reuploading on data generated with PQCs of depth 2. Regardless of the observable we observe
different behaviour depending on the use of data reuploading. The set of models using only a single
encoding layer show an improvement in both the training and the validation error as deeper models
are used. This behaviour is not present when we look at the set of models using data reuploading.
These models only show an improvement in the training error as deeper models are used, while
the validation error increases as a function of the model depth used. In other words, as models of
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Figure 9. Cross-validated performance of models without and with the use of data reuploading on both the
training and validation set. Note that each unique model is trained on datasets generated with a low-depth
version of that model. The legend applies to both plots.

higher depth and therefore more expressive power are used, their performance becomes worse on
unseen data. Therefore the models using data reuploading are a good example of overfitting in this
experiment.

We perform additional experiments to see if we can observe a similar form of overfitting in
models without data reuploading as we have seen in models with data reuploading. In these three
experiments we add noise to the dataset, vary the size of the training dataset and change the
observable measured respectively. Again, every experiment is performed with models of different
depths and lower-depth PQCs are used to generate the dataset.

We start by analyzing the behaviour of the PQC-based models when different amounts of Gaus-
sian noise are added to the targets in these datasets. The results of this experiment can be found
in Figure 10.

Again we see that both the training and validation error decrease when deeper models are used.
When we add a large amount of noise (σ = 0.1), there is a small gap between the training and
validation error. However, this gap does not increase as the depth of the models used increases.
Therefore, within this experiment the addition of Gaussian noise does not cause deeper models to
overfit.
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Figure 10. Cross-validated performance of models without data reuploading on both the training and
validation set with different amounts of noise added to the targets in the dataset.

For the second experiment to investigate the overfitting capabilities of PQCs using a single
encoding layer, we perform the same experiment without noise and instead vary the size of the
training dataset. The size of the validation dataset is preserved to maintain the accuracy of the
evaluation. The results of this experiment can be found in Figure 11. Using smaller training set
sizes, we observe a larger gap between the training and validation error achieved at higher depths.
However, this gap does not increase as a function of the depth and the validation error decreases
as deeper PQCs are used. Therefore this cannot be qualified as the type of overfitting observed in
earlier in Figure 9 with PQCs using data reuploading.
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Figure 11. Cross-validated performance of models without data reuploading on both the training and
validation set, trained on datasets of varying size.

Finally, we experiment with an observable which is specified in matrix form in the computational
basis by diag(−1, 0, 1, 2, ..., 2n − 2), where n is the number of qubits in the circuit. The results are
depicted in Figure 12.
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Figure 12. Cross-validated performance of models without data reuploading using the
diag(−1, 0, 1, 2, ..., 2n − 2) observable, on both the training and validation set.

Similarly to the previous two experiments, we observe a constant gap between the training and
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validation error, with both errors decreasing as the model depth is increased.

5.3 Regularization

In the previous experiments (Figure 9) we observed a large amount of overfitting when training
models using data reuploading on our generated datasets. Because the amount of overfitting in
these models increased as deeper circuits were used, these results provide an implicit regularization
method in which the depth is limited to reduce the amount of overfitting. Using this method,
selecting a circuit with a depth of 2 will result in the best validation error.

The use of lower-depth models is therefore a useful regularization method but does not provide
ways to improve the validation error obtained by deeper models. In the final experiments we
therefore investigate several regularization methods to reduce the amount of overfitting in these
deeper models.

5.3.1 Loss function penalties

In the first of these experiments we apply L1 and L2-regularization and observe the effect on the
validation error. The results from applying L1-regularization can be found in Figure 13.
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Figure 13. Cross-validated performance of models using data reuploading with various degrees of L1-
regularization applied, controlled with the hyperparameter λ.
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We observe that as λ increases, the gap at higher model depths between the training and
validation scores decreases, so the amount of overfitting is successfully reduced. Unfortunately the
validation error increases as λ increases, meaning that the reduction in overfitting does not have
the desired result of decreasing the validation error.

The results from applying L2-regularization can be found in Figure 14.
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Figure 14. Cross-validated performance of models using data reuploading with various degrees of L2-
regularization applied, controlled with the hyperparameter λ.

These results are quite similar to the earlier results using L1-regularization. The degree of overfitting
at higher model depths is reduced as λ is increased, but the validation error is also increased. There-
fore L1 and L2-regularization do not produce the desired results of improving the generalization
performance.

5.3.2 Parameter dropout

In our next experiment we apply parameter dropout, where the model is fully trained multiple
times and after each iteration the smallest parameter is fixed to zero. We observe the training and
validation performance as more parameters are fixed to zero. Figure 15 illustrates the results of the
experiment.

In this experiment similar results can be observed as in the experiment with L1 and L2-
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Figure 15. Cross-validated performance of models trained repeatedly, fixing the parameter corresponding
to the smallest rotation to zero at each full training iteration. In the left figure, non-fixed parameters are
randomly reinitialized after each full training iteration. In the right figure, non-fixed parameters are preserved
in between iterations.

regularization. Although the overall gap between validation and training performance is reduced as
more parameters are fixed to zero, the validation error increases as well, regardless of whether or
not the remaining parameters are preserved in between training iterations.

5.3.3 Layer-cancelling

In our final method to attempt to regularize our model, we change the structure of our PQCs so
that the layers in the circuit cancel out when the parameters in the layer are set to zero. This
allows the PQC to perform the exact same operations as the lower-depth PQCs used to generate
the datasets. We experiment with layer-cancelling PQCs in combination with several degrees of
L1-regularization. The results can be found in Figure 16.
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Figure 16. Cross-validated performance of layer-cancelling PQCs, with various degrees of L1-regularization
applied, controlled by the hyperparameter λ.

These results show that applying L1 regularization to this modified model significantly improves
the validation error of higher-depth models. Because of this, the higher-depth models are able to
obtain similar validation performance as the lower-depth models. The higher-depth models do not
provide a significant improvement in performance over lower-depth models however.
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6 Discussion

In our first experiment we saw that parametrized quantum circuits with a depth as low as three
layers can compete with many classical regression methods when applied to the Combined Cycle
Power Plant dataset. There is a small side note to this result. As described in Section 5.1, all
features and targets in the dataset are rescaled to the interval [−1, 1], which means data from both
the training and test set is used to determine the scaling factors. A more valid future approach
would determine the scaling factors from the training set only, rescale the dataset using these scaling
factors and finally clamp any outliers to the range [−1, 1].

In our second experiment we observed overfitting of higher-depth parametrized quantum circuits
on artificially generated datasets. This overfitting only occurred when data reuploading was used
within the circuits. This experimental result can be related to the theoretical work by Schuld
et al. [16], where the authors showed that repeated use of encoding layers expands the frequency
spectrum of the functions the models can represent and therefore increases the expressivity of the
models. Because our datasets were generated using lower-depth models with a smaller frequency
spectrum, the use of higher-depth model means that frequencies outside of the generator models
spectrum can be used by the trained model to improve the training performance while reducing the
generalization performance.

This reason would explain why the first regularization experiments did not produce the desired
results. Both the L1 and L2-regularization as well as the parameter dropout procedure were purely
focused on restricting the parametrized gates in the circuits. These methods restrict how the
accessible frequencies can be used by the model, but they do not restrict which frequencies can
be used by the model. This is a possible reason why these methods do not sufficiently reduce the
expressivity of the model. More experiments are needed to demonstrate this however.

In our final experiment with layer-cancelling parametrized quantum circuits, we observed a large
reduction in overfitting when L1 regularization was applied. Although the higher-depth models
did not gain any advantage over lower-depth models, this result does suggest that reducing the
effectiveness of the encoding layers can reduce the amount of overfitting taking place. Therefore
future research on regularization of PQCs applied to other datasets should investigate reducing the
expressivity of the circuit not only through regularizing the parametrized layers, but also through
reducing the effectiveness of the encoding layers. Fine-tuning the layer-cancelling PQCs could be
one way to further improve the generalization performance of deeper circuits. Another interesting
follow-up experiment would be to add trainable weight parameters to the encoding gates, so that the
angle of each rotation performed by an encoding gate is scaled by the gates corresponding weight.
This modification itself increases the expressivity of the model as more parameters are introduced.
On the other hand, it creates a more direct opportunity to reduce the effectiveness of the encoding
layers by applying L1 and/or L2 regularization to these scaling weights.

In conclusion, the experiments performed in this work show that parametrized quantum circuits
can be successfully used in models applied to real-world multivariate regression problems. Fur-
thermore, we have seen that the increase in model expressivity from the use of data reuploading
can have a negative impact on the generalization performance of the model. We have proposed
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parametrized quantum circuits which can successfully be regularized. Finally, our experiments with
regularization point the direction of future research towards restriction of the encoding layers in the
circuits.
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