
Master Computer Science

Classification of bank transactions into multi-class, non-
uniformly distributed ledger accounts

Name: Thomas Vink
Student ID: 2043998
Date: July 13, 2022
Specialisation: Artificial Intelligence
1st supervisor: Peter van der Putten
2nd supervisor: Jan N. van Rijn
AFAS supervisor: Erik van de Ven

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

ABSTRACT In financial accounting, bank transactions need to be categorised into specific ledger accounts.
Some bank transactions can be automatically categorised when specific identifying fields are available which
can be used in combination with simple business rules. This is what we call structured data. However, a large
set of transactions remain which do not carry sufficient structured data for automatic classification. Manual
classification is quite a costly process. This thesis aims to automatically assign or suggest the correct ledger
account whenever a new transaction is recorded in the system. This means solving a multi-class classification
problem with unbalanced classes. To achieve a solution, a range of experiments will be run with various classical
Machine Learning algorithms and a deep learning pre-processing algorithm. The final results show that a linear
SVM model is able to reach 80% accuracy by suggesting the top-three classes. This depends on the number of
features chosen as well as the number of instances available. The most useful pre-processing model of the data
is a tf-idf transformer.

INDEX TERMS multi-class classification, SVM, text mining, word2vec

2

Table of Contents

I Introduction 4

II Related Work 4

III Methods 5
III-A Classification algorithms 5
III-B Hyperparameters to tune 6
III-C Classical Machine Learning 6

III-C1 Naive Bayes 6
III-C2 Support vector machine . . . 7
III-C3 Random forest 7
III-C4 Xgboost 8

III-D Word embeddings 8
III-E General pipeline 8

IV Experiments 8
IV-A Datasets 9
IV-B Experimental setup and results on

Profit dataset 10
IV-C Experiments on Focus A 10

IV-C1 Experimental setup and results
with different algorithms . . . 11

IV-C2 Different folds cross-validation 11
IV-C3 Cross-validation for accuracy

verification 11
IV-C4 Feature selection 12

IV-D Experiments on Focus B 12
IV-D1 Training size comparison be-

tween Focus datasets A and B 12
IV-D2 word2vec as a pre-processing

step 12

V Discussion 14
V-A Experiments discussion 14

V-A1 Algorithm choice 14
V-A2 Feature selection 14
V-A3 Number of instances for training 14
V-A4 Word2vec pre-processing . . . 15

V-B Discussion of theoretical concepts . . 15

VI Future research 16
VI-A Input choice 16
VI-B Algorithm choice 16
VI-C Output choice 16
VI-D Practical recommendations 17

VII Conclusions 17

References 18

3

I. INTRODUCTION
Most companies will record all transactions that
happen in the company. Whether the transaction
is a bank transaction or a financial transaction that
belongs to its own company, accountants try to
register it all for a complete overview of trans-
actions done through the company. Considering
bank transactions, the incoming and outgoing
transactions will be classified into different ledger
accounts. Ledger accounts contain the records
of each bank transaction, categorised for con-
venience and as an overview of all the different
transactions. Even if an employee buys lunch, it
has to be recorded somehow. The accountants
working for a specific company have to manually
categorise the bank transactions, which takes
time. Especially when large companies have lots
of different ledger accounts to choose from.

Such a task can be partially solved through
an algorithm that can accurately detect to which
ledger account the new transaction belongs.
These tasks are typically considered to be clas-
sification tasks.

The key idea of classification algorithms is to
find an input where the algorithm can find rela-
tions between the input and the desired output.
Considering we are able to use data that is al-
ready correctly labelled, we can narrow our algo-
rithms down to supervised learning algorithms [8].
Supervised learning algorithms have labelled out-
put such that the algorithm can learn which output
could belong to which input. Since there are more
than two different ledger accounts, the problem is
considered to be a multi-class problem [1].

Every accountant can create as many ledger
accounts as needed for their company. There-
fore, the multi-class problem becomes expend-
able, meaning that new classes can be introduced
at any time. Furthermore, some ledger accounts
may be used frequently while others are used
only on occasion. These two factors make the
problem non-trivial. Moreover, the input columns
consist of two different data type inputs. Either
a structured input, such as the amount of the
transaction, or free, sparse text input, such as the
description of the transaction. ‘BEA NR:619FGT
01.01.16/10.38 SHELL NIJKERK’ is an example
of a transaction description. Most well-known text
classification algorithms only work well with rich
text data, while such a small sentence is consid-
ered sparse text. The algorithm that will be used
should find connections with limited data.

A classification task with such specific problems
had been researched on invoices [4]. The classifi-
cation of bank transactions into ledger accounts
has also been researched with such problems
by Ojala et al. (2018) [38]. However, Ojala et al.

intentionally left out the description column as
input for the machine learning algorithms. They
made this choice based on the freeform text,
which ‘complicates the processing significantly’.
Our research focuses on the description column.
Therefore, this thesis provides novel research.

The research question we will focus on is as fol-
lows: “Is it possible to predict (with a certain prob-
ability) to which ledger account a bank transaction
belongs by means of its unstructured data?” We
will also explain our approach in detail, as most
users for this particular problem will not have the
background information they might require to be
able to use the algorithm correctly. This research
is carried out in cooperation with AFAS Software
[46], a software as a service company for financial
accounting.

The remainder of this thesis is structured as
follows. Section II covers all research on the
general topics related to our research. Section III
explains the used algorithms. Section IV covers
all experiments done with the various datasets
and algorithms. Section V discusses the range
of experiments and the results. Section VI lists
all kinds of possibilities for future research and
Section VII concludes.

II. RELATED WORK
The general problem of classification in finan-
cial software is a relatively untouched territory.
Bardelli et al. [4] experimented with different al-
gorithms and different pre-processing methods
for automatic invoice classification. Even though
invoice classification has different problems com-
pared to bank transaction classification, some
methods could be of use. The approach to choos-
ing different pre-processing methods is a known
practice in text classification [45] and could be of
use in our research.

For bank transaction classification, Ojala et
al. [38] discovered potential using different input
columns from the bank transaction. Ojala et al.
compared the accuracies for different companies
on a trained model, revealing that one general
trained model could work for different compa-
nies. However, Ojala et al. intentionally left out
the description column because it contains free
text, which is unstructured data. Nonetheless, a
machine learning model can still learn from all the
input if the words from the text are considered as
features.

Both papers made use of several models.
These need to be compared accordingly, while
not ruling out any models prematurely. One of
the most used comparison methods is the learn-
ing curve method [29] [41]. Full learning curves
can be used to see which model is preferred

4

depending on the number of training instances.
An extension to the learning curves is the learning
curve cross-validation (LCCV) [37]. This method
uses so-called anchor points and discards can-
didates early whenever a method seems unlikely
to be competitive. The anchor points are certain
training sizes and cross-validation folds are used
before the predictive performance is calculated on
a separate test set. Based on the learning curves,
one can determine which model performs better.

Different models are used with different classifi-
cation problems. The multi-class datasets have a
skewed outcome distribution (few classes appear
frequently while most classes have few appear-
ances) which makes the problem an imbalanced
classification problem. Models such as support
vector machines (SVMs) [50] and ensemble mod-
els [40] [33] have been researched for these prob-
lems. Undersampling [30] and adding weights or
thresholds are well-known and used frequently in
combination with these models for better perfor-
mance with imbalanced classification problems.

Models can be either linear or non-linear. A
comparison between linear and non-linear mod-
els [47] showed that non-linear models outper-
form linear models. However, the performance
difference was insignificant when applied to most
datasets, meaning that linear models might be
beneficial for practical applications where an ex-
planation of the model is also relevant.

All textual data needs to be transformed before
models can use the data to train. A frequently
used method is the ‘term frequency inverse doc-
ument frequency’ (tf-idf) [23]. An extensive expla-
nation of tf-idf will be given in Section III-A. tf-idf
is also widely used with imbalanced classification
problems [48] [3].

The models, or classifiers, can be separated
into two different categories. Either soft or hard
classifiers [51]. Soft classification, as stated by
Liu et al. (2011) [32], ‘generally estimates the
class conditional probabilities explicitly and then
makes the class prediction based on the largest
estimated probability.’ Liu et al. state that hard
classification, on the other hand, ‘directly esti-
mates the classification boundary, bypassing the
class probability estimation.’

Loads of classifiers have been created to solve
text-mining-based classification problems. Naive
Bayes [2] is a well-known, relatively straightfor-
ward classifier. Another well-known classifier is
the support vector machine [50]. Furthermore,
ensemble models, such as random forest [7] are
also frequently used in text-mining-based classi-
fication problems. Xgboost [9], another ensem-
ble model, is the current state-of-the-art machine
learning model widely used [14]. In the deep

learning department [36], BERT-like [13] algo-
rithms are thriving (e.g. RoBERTa [31] or distil-
BERT [44]). The explanation of these algorithms
will be given in Section III and Section VI.

III. METHODS
This section explains all algorithms that have
been used. Before the algorithms can be ex-
plained, however, one must first have an under-
standing of classification algorithms in general.
Furthermore, we divided our used algorithms into
two categories, classical machine learning algo-
rithms, and deep learning algorithms. Everything
related to datasets is explained in Section IV.

A. CLASSIFICATION ALGORITHMS
Data mining has been researched comprehen-
sively in studies and textbooks [49] [20]. Accord-
ing to D. Hand [20], ‘Data mining is the discovery
of interesting, unexpected or valuable structures
in large datasets.’ Data mining can be applied in
a wide variety of sectors, e.g. bio-informatics [15],
or education [42]. Data mining is a broad concept
that consists of different applications and algo-
rithms through the use of text data. Because the
problem at hand consists of classification through
sentences, the problem can be narrowed down
to information extraction from text data [11] and
supervised learning methods for text data [27],
where both areas can be intertwined.

Supervised learning, the method to learn to
correctly classify the input to a labelled output [8],
needs to learn relations between the input and the
label (or class) the input belongs to. Furthermore,
if an algorithm can extract information from the
input, our supervised learning algorithm might be
able to make a more accurate prediction of which
label belongs to which input. One problem that
may arise with the supervised learning methods
is the number of labels the dataset might contain.
We will be discussing this problem in Section V.

The input for supervised algorithms can be
either a structured data type or an unstructured
data type, such as free text. The data needs to be
transformed from textual to numerical data when
the input is in free text format. This transformation
is normally done through the use of the bag-of-
words model [34]. In this model, every word in the
document collection that satisfies certain criteria
(e.g. a minimum frequency threshold) will first
be counted on occurrences. A new text is then
represented by the frequency of occurrences. If
the data contains a rich amount of unique words,
the resulting occurrence matrix will be sparse.

However, some words occur many times even
though they do not add to the context of a sen-
tence, while other words which make a sentence

5

unique occur rarely. Therefore, after the occur-
rence matrix is obtained, another measure will be
done, called term weighting. The universal term
weighting method is the ‘term frequency inverse
document frequency’ (tf-idf) [23]. This weighting
of words will divide the frequency of a term in a
document by the overall frequency of the word in
all documents. Term frequency inverse document
frequency is calculated through Equation 1:

tf-idf = tf ∗ idf (1)

tft,d =

{
1 + log10 ∗ tct,d, if tct,d ≥ 0

0, otherwise
(2)

idft = log10(
N

dft
) (3)

Here, tf is the term frequency, idf is the inverse
document frequency, d a document in document
collection D , tct,d is the term count (the number of
times that term t occurs in document d), N is the
number of documents, and dft is the document
frequency (the number of documents that term t
occurs in.

A more sophisticated model is required to lever-
age semantic relationships between words. The
representation of textual data can be represented
by means of embeddings [35], reducing the di-
mensionality of the numerical representation of
words. The algorithm to obtain the numerical rep-
resentation is called word2vec, where the created
vector is the new representation of the word. The
distance between two vectors can be calculated
to represent the similarity between two words.
One problem may arise when the vector rep-
resentation for a word must be used to create
one vector representation for a sentence. We will
propose our solution to this problem in Section
IV-D2.

Because the dataset had numerous different
labels, the classification problem can be specified
as a multi-class classification problem. This has
been widely studied in the world of classification
problems [1] [24]. All classifiers initially assign one
class to the input. The interesting part of our re-
search is that we would still like the user to choose
which class the input belongs to. The classifier
will only recommend classes to the accountant.
Therefore, we were free to allow the classifier to
suggest more than one class for one input.

B. HYPERPARAMETERS TO TUNE
With the background of classification algorithms
in mind, one should think about the number of
different (hyper)parameters that play an important
role in classification. First of all, several algorithms
have been introduced which are useful in text-
mining problems [8] [26] [1]. Most algorithms have

been proven to predict accurately with different
types of data. Therefore, we had to establish
which algorithm had the most potential for the
specific problem of multi-class classification of
bank transactions.

Secondly, the number of training instances
might have a large effect on the actual accuracy.
A model trained with too many instances could be
prone to overfitting. Overfitting is the issue that
the model has perfected the predictions on the
training instances and does not generalise well
with unseen instances. On the other hand, too few
instances would not reach the full potential of an
algorithm.

Thirdly, feature selection and feature filtering
might create a positive effect on accuracy. The
number of features could explode when every
unique word in a free text is a feature. In contrast,
Too few features could result in low accuracy.

C. CLASSICAL MACHINE LEARNING
Based on previous studies, we decided to use
naive Bayes (NB), Support Vector Machine (SVM),
random forest (RF), and xgboost.

1) Naive Bayes
Naive Bayes is mostly seen as an algorithm that
is easy to understand, and works notably well with
classification problems [2]. While the algorithm
is also suitable for multi-class classification prob-
lems, it is best known for its wide usage in binary
classification problems, for example, e-mail spam-
filtering [43]. We considered this algorithm as our
first baseline.

The calculation of naive Bayes is done through
probabilities. The input consists of the Document
series D, where d ∈ D. The probability that class
c belongs to document d is calculated through
Equation 4.

P (c|d) = P (d|c) ∗ P (c)

P (d)
(4)

The class with the highest probability for one
document will then be chosen as its label. For
P (d|c), the naive assumption can be made that
it can be calculated through the product of each
term t based on Bayes’ theorem [5]. In short, the
probability of a document’s term dictionary given
a specific class is calculated as the product of the
probabilities of each term given a class. This is
done through Equation 5.

P (d|c) = P (t1|c) ∗ P (t2|c) ∗ ... ∗ P (tk|c) (5)

Here, t1 is the first term of one input document,
with k being the number of terms in a document,
c is the given class, and d is the document. The

6

Figure 1. A collection of different separating hyperplanes in a
2-dimensional vector space [16].

probability of class c belonging to the input term t
can be calculated through Equation 6.

P (t|c) = Trct + 1

(
∑

t′∈V Trct′) + |V |
(6)

Here, Trct is the number of occurrences of t in
training inputs from class c, |V | is the number of
different terms and

∑
t′∈V Trct′ is the total num-

ber of term occurrences in training inputs from
class c.

2) Support vector machine
The Support Vector Machine algorithm has
proven to be extremely useful in text-mining clas-
sification problems [52]. SVM tries to find a hyper-
plane in an n-dimensional vector space that will
divide every data point into a distinct class. Here,
n is the number of unique classes. The algorithm
is best explained with a two-dimensional vector
space since this algorithm will scale no matter
how large the dimension size is. For a more
technical description of the SVM algorithm, see
Hearst et al. (1998) [21].

Figure 1 illustrates classification by any hyper-
plane, while Figure 2 illustrates classification by
the optimal hyperplane. Every data point on the
figure is an input, with the squares and circles
representing the different classes. By continually
‘drawing’ different hyperplanes and calculating
the mean distance to all data points from one
class, the algorithm will eventually find the optimal
hyperplane for one class. If the mean distance
for both classes is at an optimum, then the best
hyperplane has been found. The most important
data points to decide the optimal hyperplane (e.g.
the two square data points and one round data
point on the dotted lines in Figure 2) are called the

Figure 2. The optimal hyperplane found for a 2-dimensional vector
space [16].

support vectors. If a new data point will be used
as input where the algorithm does not know which
class it belongs to, it will be placed in the vector
space, and depending on where it is placed, the
particular class will be assigned to it.

SVM makes use of so-called ‘kernel’ functions.
Kernel functions are a set of mathematical func-
tions to manipulate the data. The kernel func-
tions are used to calculate the inner product be-
tween two points in a standard feature space.
This means that the SVM can use the data in a
higher dimension of the feature space, no matter
the dimension surface of the data. Well-known
kernels are the linear kernel, Gaussian kernel,
and the sigmoid kernel.

3) Random forest
Random forest is another well-known machine
learning model [7]. random forest is an ensemble
method, meaning it consists of different smaller
models which are combined into one large model.
As the name ‘forest’ suggests, the smaller models
are all decision trees. Every decision tree uses
features to split the possible classes into different
leaves from the tree. The feature splitting is done
through random initialisation and the quality of a
particular split is then evaluated by a metric such
as entropy [25] (Equation 7, with D the entropy,
K the number of classes with k as a particular
class, m the chosen split region (one node in the
decision tree), and p̂ the proportion of training
observations in the mth region from the k th class).
All models are uncorrelated from each other be-
cause the trees are made from random subsets
of features. All models are trained independently
and running a test set on all of these models
will yield one most predicted class, which will be

7

the class random forest predicts. This method is
known as bagging, or bootstrap aggregation [6].
The combination of both bagging and random
feature decision trees makes random forest less
prone to overfitting or variance.

D = −
K∑

k=1

p̂mklog(p̂mk) (7)

4) Xgboost
Similar to random forest, xgboost (Extreme Gra-
dient Boosting) is also an ensemble method [9].
Xgboost consists of several decision trees. How-
ever, the greatest difference with random forest
is that xgboost uses boosting instead of bagging.
Boosting is a technique where instead of creating
decision trees in parallel, the decision trees are
built on top of each other, learning from errors
of earlier created models. Gradient boosting uses
a gradient descent algorithm over an objective
function to correct the errors present in its pre-
decessor. Gradient descent algorithms tend to
iteratively find a local optimum with the help of the
objective function. Xgboost also assigns weights
to all of the individual features. In each training
round, the weights of the features with a wrong
prediction are increased and used in the next
decision tree. In the end, the weighted sum of all
decision tree predictions, over the course where
each decision tree learns from its predecessor, is
the final xgboost algorithm.

D. WORD EMBEDDINGS
More recent classification algorithms are deep
learning algorithms [36]. Such algorithms use
complex, layered models to ultimately categorise
the input into the correct output. These layered
models, also known as neural networks, usually
transform the data in several ways. Deep learn-
ing algorithms can be applied to classification
algorithms with different techniques. One such
technique is the end-to-end model, such as Bidi-
rectional Encoder Representations from Trans-
formers (BERT) [13]. However, most end-to-end
models need an extensive amount of train data.

Another technique is to apply deep learning for
embedding. This would enrich the pre-processing
of the input with a semantic relationship between
words. The classification part remains the same
as with classical machine learning algorithms.
Because this application does not require an ex-
tensive amount of train data, we decided to not
only use tf-idf pre-processing, but also a word
embedding algorithm for pre-processing. This is
done with a method called word2vec [35].

As the name word2vec suggests, it transforms
a word into a vector. The dimension of the embed-

ding space is a parameter that can be set freely.
Furthermore, the vectors of all the words are an
embedding of words [19]. This means that every
word correlates with the other words. During the
training of the model, the model tries to find words
that exist in similar contexts. If two words of similar
context can be linked to each other, then the
similarity of these words is high. With such a pre-
processed model, the input of the classification
algorithm might have some correlation between
words, instead of the more simplistic tf-idf pre-
processing. Because word2vec creates relation-
ships between words, we expected that word2vec
might further increase the accuracy of our model.

E. GENERAL PIPELINE
The algorithms explained in the previous sec-
tions need to be combined to have a fully func-
tional model predicting ledger accounts from
bank transaction descriptions. There is a pre-
processing part and a learning part. We have
two different pipelines since we used different
algorithms for both parts. Either:

a) Classical machine learning:
1) Vectorizing (bag-of-words)
2) Transforming (tf-idf)
3) Classifying (naive Bayes, SVM, random

forest, or xgboost)
b) Combination embedding and classical ma-

chine learning:
1) Vectorizing and transforming (word2vec)
2) Classifying (SVM)

IV. EXPERIMENTS
This section covers all the conducted experiments
to analyse and improve the accuracy of predict-
ing the ledger account of the bank transactions.
Firstly, four different algorithms had been run on
the provided dataset, naive Bayes, support vector
machine, random forest, and xgboost. Secondly,
feature selection was used to experiment with
different amounts of features, because free text
as input might contain many unique words, which
determines the number of features. Thirdly, the
number of instances for the training dataset was
changed on a fixed test set. This experiment was
run on multiple datasets for verification. Finally,
two different pre-processing methods were used.

The models had been compared on the accu-
racy they obtain. In addition to top-1 accuracy, the
top-n accuracy was also covered. Top-n accuracy
is defined as the accuracy over n-classes. If one
of the top-n classes with the highest probabil-
ity is the correct class, then the suggestion of
the model is correct. This design was chosen
because of the large number of unique classes

8

Bank transaction component definition
Component name bank transaction
Date 01-01-1700
Counter account
Counter account name AnYoi
Amount 10
Reference REFRNR. AAA111

Description
BEA NR:619FGT

01.01.16/10.38 SHELL
NIJKERK

Alternative Type receipt

Ledger account Id 11111111-1111-1111-
1111-111111111111

Ledger account name revenue low
Ledger account number 1000
tax percentage
tax

Table 1. A fictional example of one bank transaction in the dataset.

and because we only have to suggest ledger
accounts. Before any experiments were run, a
thorough understanding of the datasets was re-
quired.

A. DATASETS
The data was collected and provided by AFAS
Software. AFAS Software is a Dutch software
company (Independent Software Vendor, ISV) that
delivers enterprise resource planning (ERP) sys-
tems for other companies and businesses [46].
Their current customers use a system which is
called ‘Profit’. Profit is widely used in the Nether-
lands with a large installed base. At the same
time, AFAS is rebuilding its Profit ERP applica-
tion on a brand new application platform called
‘Focus’. A dataset can be obtained from both
systems, with Profit holding an extensive amount
of data while Focus will contain more data in
the near future. The target for our research is
Focus, even though we experimented with the
Profit dataset to uncover if using more training
instances had a positive effect on accuracy of the
model.

Both datasets have one transaction per line.
Every column is a different attribute of the trans-
action. An example of a bank transaction can be
seen in Table 1. Moreover, all transactions are
already classified with two columns for the ledger
account description and number. Our main input
column will be the transaction description. Other
columns involve the tax category, amount of the
transaction, name of the organisation, counter
accounts, and more. Such information from a
bank transaction can also be used as input for the
machine learning model. However, these were not
considered due to the scope of this thesis, as we
focused on information extraction from free text.

Our main output column is a concatenation

of the ledger account name and ledger account
number, which is the case for every model. This
will create more unique classes, as every cus-
tomer can create their own ledger account names.
However, if the model predicts only the ledger
account number, the predicted number might not
reflect the same ledger account for one customer
compared to other customers. The datasets also
contain ledger account numbers without a de-
scription Therefore, the combination of the two
was the most useful output column. Since all data
is customer data from AFAS, the data is strictly
forbidden to be used outside of AFAS and follows
the rules of the EU General Data Protection Reg-
ulation [18].

The Profit dataset consists of 1.383.319 trans-
actions. Such an extensive amount of data is a
good indication of how much an algorithm can
learn from train data. Furthermore, the algorithms
can be tested to see what the computational cost
is for these inputs. The Focus datasets consist
of respectively 10.698 (Focus A) and 21.062 (Fo-
cus B) instances. At the start of the research,
the Focus software had only 10.698 instances of
transactions. As AFAS obtains more customers,
the transactions will gradually increase as well.
Some experiments were run with Focus A before
AFAS was able to provide Focus B.

Every unique ledger account belongs to cer-
tain higher-level categories. For instance, revenue
systems, revenue components, and revenue con-
sultancy all belong to the same category, rev-
enues. An example of the hierarchy levels can be
seen in Figure 3. The ledger accounts are part
of a hierarchical tree. The models predicting the
outcome will predict the lowest leaf value of the
tree. This design is chosen as there belongs a
1:1 mapping between transactions and the leaves
in Figure 3, which are the ledger accounts. In
all current datasets, there is no direct mapping
between the parent nodes in Figure 3 and the
bank transactions. The parent nodes can instead
be derived from the leaves.

A challenge in classification with this dataset
will be the skewedness of the outcome distri-
bution (see Figure 4 for the twenty most fre-
quent classes). There are 447 unique classes
in Focus B, with 94 of these classes appearing
only once. This means that 21% of all unique
classes only appear once. Some classes, on the
other hand, appear more frequently than other
classes. Therefore, the classes are non-uniformly
distributed over the inputs. It should be noted that
accuracy is the central metric in the experiments.
The production model should suggest more than
one ledger account since the number of unique
classes is high. Therefore, top-n accuracy is more

9

Figure 3. An example of the different hierarchy levels for ledger
accounts. The leaves represent different ledger accounts, while the
nodes represent different sub-categories.

Figure 4. The 20 most frequent classes for concatenated ledger
account name and number. The names have been filtered. For
reference, the 94 least frequent classes all appear only once.

useful than other metrics.

B. EXPERIMENTAL SETUP AND RESULTS ON
PROFIT DATASET
The most logical experiment to take for the vast
amount of data of the Profit dataset was to inves-
tigate to what extent the size of the dataset could
improve the accuracy of our test set. Therefore,
we decided to make a fixed subset for testing and
continuously raised the amount of training data.
The Profit dataset would be the baseline for the
number of available instances that could have a
positive effect on accuracy.

The data was read and pre-processed through
a tf-idf transformer. However, it was decided to
only use a fixed amount of most frequent features,
as this parameter choice was already experi-
mented with in Section IV-C. There are a lot more
features, so it was chosen to use two different
amounts of the most frequent features. These

Figure 5. Accuracy of SVM on fixed Profit test set when increasing
the number of Profit training instances with 25.000 and 100.000 most
frequent features respectively.

are respectively 25.000 and 100.000 features.
Furthermore, the algorithm that was used for this
experiment is the support vector machine algo-
rithm with a linear kernel. Cross-validation was left
out due to the massive amount of data available,
which means that the computational cost of the
algorithm was already high. The choice for this
specific algorithm had been experimented with in
Section IV-C1.

The total train set consisted of 1.106.655 in-
stances because the dataset was first split into
an 80% train set and 20% test set. The initial
experiment was run with a test set consisting of
276.664 instances. However, during the increase
in the number of training instances, the model
ran into memory issues with the test set. There-
fore, the fixed subset for testing had been further
cut off to 30 percent of the initial test set. This
resulted in a fixed test set of 82.999 instances.
Results with both fixed amounts of features can
be seen in Figure 5. The accuracy reached an
optimum of around 600.000 instances for both
the model with 25.000 features and the model
with 100.000 features. The difference in accuracy
between these models was minimal, while the
training time for 25.000 features took around 25%
less time compared to 100.000 features.

C. EXPERIMENTS ON FOCUS A

A range of experiments had been conducted on
the Focus dataset. This section will cover both
the smaller (A) and the larger (B) Focus datasets.
Each subsection covers one experiment and all
discussions of the experiments can be found in
Section V.

10

Algorithm Accuracy Recall Precision F1
naive Bayes 1 column 0.4759 0.0855 0.1186 0.0861
naive Bayes 2 columns 0.4513 0.0806 0.1100 0.0800
linear SVM 1 column 0.6183 0.2632 0.3434 0.2759
linear SVM 2 columns 0.6183 0.2676 0.3435 0.2825
xgboost 1 column 0.5747 0.2261 0.2538 0.2276
random forest 1 column 0.6405 0.3296 0.3865 0.3382

Table 2. Results of different algorithms run on Focus A.

1) Experimental setup and results with different
algorithms
First of all, it was important to use the same
setup with different algorithms, to get a better
understanding of which algorithm had the most
potential for this specific data. A total of four
different algorithms had been chosen, with naive
Bayes being the baseline. The other algorithms
include SVM, random forest, and xgboost.

The hyperparameters of each algorithm were
set to a constant value, as we first wanted to
experiment with the potential of different algo-
rithms. Experimenting with the hyperparameters
would increase the computational time signifi-
cantly. Focus A was used, in which for every
algorithm a different train and test split were cho-
sen, with 80% train and 20% test. Because the
splitting is random, the numbers could change a
little for every run. Cross-validation was not yet
considered, because the precision of the accu-
racy would not affect whether an algorithm has
potential for further experiments. The input data
was pre-processed through a tf-idf transformer.
The main input column was the description of
the transaction. However, we also concatenated
a transaction reference (e.g. REFRNR. AAA111,
see Table 1) to the description column to see if
that would affect the training. Results can be seen
in Table 2.

As can be seen in Table 2, both SVM and
random forest are the most promising algorithms.
The F1 scores reached around 30%. The ledger
accounts were counted to see whether or not the
algorithms only predict the most common ledger
accounts. The most common ledger account ap-
peared in 8% of the total data. Therefore, the ac-
curacy shows that most algorithms have learned
from the input data and not just suggest the most
frequent ledger account.

2) Different folds cross-validation
After experimenting with different algorithms, the
experiment to alter the number of folds in cross-
validation was carried out. For this experiment, a
linear SVM was used in combination with increas-
ing the cross-validation folds. By using cross-
validation, a more reliable estimate of train and

Figure 6. Accuracy of SVM with different cross-validation folds on
Focus A. More folds results in a larger training set.

test set errors can be obtained. Cross-validation
is a technique to divide the data into train and
test sets. The results can be seen in Figure 6.
Increasing the number of folds means the train
set has more instances while the test set has
fewer instances. Increasing the number of training
instances results in higher accuracy, while a small
decrease in accuracy can be seen from the train
set. Both results were expected, as increasing
the number of instances will also increase the
number of unique classes in the train set and
more classes are known and predictable in the
model for the test set.

3) Cross-validation for accuracy verification

Validation methods are normally used to ensure
the precision of the results a model predicts. The
accuracies obtained in Table 2 were not precise
due to the randomness of splitting the dataset into
one train and test set without cross-validation.

One smaller experiment had been run to verify
the accuracies obtained in Table 2. 5-fold cross-
validation was used on SVM, naive Bayes, and
random forest. Xgboost did not achieve the ac-
curacy SVM and random forest obtained when
we compare the accuracies in Table 2 and was
therefore dropped from this experiment. 5-fold
cross-validation means the sets were divided into
an 80% train and 20% test set. The same pre-
processing had been done as with Section IV-C1
with Focus A. Results can be seen in Table 3.
Here, the accuracy of SVM was a bit higher com-
pared to random forest, although the accuracy
obtained after cross-validation was lower com-
pared to the accuracy obtained with the smallest
Profit train data (see Figure 5 for comparison).
Following experiments were carried out with SVM

11

Algorithm cross-validated accuracy
naive Bayes 0.3926±
SVM 0.5243±
random forest 0.5209±

Table 3. The accuracies reached with different algorithms using 5-fold
cross-validation with Focus A.

because it obtained the highest baseline accu-
racy.

4) Feature selection
The current feature selection is based on the
words that occur in the description column. Ev-
erything that consists of a combination of letters,
digits, and signs is seen as a word. Currently,
every feature consists of one word, a one-gram.
Another experiment had been run with two-grams,
three-grams, and four-grams as features. The ini-
tial results, however, were not promising enough
for further exploration.

A small analysis of the data of how many fea-
tures a dataset has shown Focus A with 11.301
features from 10.698 instances, Focus B with
15.056 features from 21.062 instances, and Profit
dataset with 1.348.707 features from 1.383.319
instances. This means that an increase in the
number of instances will also increase the number
of features. Since such an extensive amount of
features will not be useful, an experiment was run
to see if there is an optimum amount of features.

The setup for feature selection consists of
Focus A, an SVM with linear kernel, and 10-
fold cross-validation. The number of features was
changed with each run, where the results can be
seen in Figure 7. The features are chosen with the
highest count first. This means if there are 1.000
features chosen, the 1.000 most frequent features
will be used during training. There seems to be
an optimum at 3.000 features, which in this case
means around the 30% mark. Some experiments
used a fixed amount of most frequent features
(e.g. 3000) while other experiments consisted of
a fixed percentage of most frequent features (e.g.
30%).

D. EXPERIMENTS ON FOCUS B
An updated version of the Focus dataset was
obtained, which had more than twice the amount
of instances compared to the first dataset. As
we have seen in Section IV-B, increasing the
amount of training data resulted in higher accu-
racy. Therefore, a comparison between Focus A
and B, the larger Focus dataset, should result
in higher accuracy with Focus B. Furthermore,
we introduced an embedding method for pre-
processing the data, such that the feature vectors

Figure 7. Accuracy of 10-fold SVM with different amount of features
from Focus A.

are not word counts but rather complex vectors
which were trained to embed similar words close
to each other. Together with this experiment, the
combined accuracy of top-n classes was given.
The accountant has the choice between a top-n
most likely classes, and therefore our accuracy
should be given for not only the most likely class
but also for the top-n most likely classes.

1) Training size comparison between Focus datasets
A and B
First of all, a comparison between datasets A
and B might give more information on how much
growth there was to be gained with more Focus
training data. For this experiment, the data of both
datasets A and B was tf-idf transformed. To see
if there was an increase in accuracy for a test set
between two datasets, the test subset should con-
tain almost the same amount of instances for both
datasets. a 20% test subset had been chosen
for Focus A, while a 10% test subset had been
chosen for Focus B. The training dataset gradually
increased for both datasets, until the complete
train subset was used for both datasets. An SVM
was used with a linear kernel, and 10-fold cross-
validation was used on the training data. 35%
most frequent features were selected for both
datasets. The results can be seen in Figure 8. The
accuracy scores for Focus A range between 45%
and 64%, while the accuracy scores for Focus B
range between 57% and 73%.

2) word2vec as a pre-processing step
In this experiment, we compared the traditional
tf-idf weighted bag of words representation used
for our transaction description column input with a
trained word2vec model. Since the model needs
to do suggestions for accountants, we also intro-

12

Figure 8. Accuracy of 10-fold SVM on datasets A and B with an
increasing amount of train data.

duced the top-n classes’ combined accuracy.
The word2vec model must first be trained to

obtain the most accurate word vectors. Instead
of using all unique words in the description as
with tf-idf, we filtered any non-alphabetic words
from the feature list. We did not know the mean-
ing behind all non-alphabetic words, for which
we assumed that it could interfere with the em-
bedding of these words and alphabetic words.
A revised version could include some of these
non-alphabetic words, although this is out of the
scope of this thesis. All words were lower-cased
to ensure different occurrences of the same word
are all the same after the filter process.

A trained word2vec model can give a probability
for two words how much they are related to each
other. The model had been trained with a vector
length of 150 as well as a vector length of 1500.
The tf-idf transformer created sparse vectors with
a length as long as all the features. This was not
feasible for word2vec, since the word2vec model
itself must also be trained and the process would
take too long if the length increases. 10 epochs
were chosen such that the model does not overfit,
but would benefit from more training time. The
word2vec model was then saved for later use
during the actual training of the SVM.

The input in the linear SVM model was a vector
of either 150 numbers or 1500 numbers for each
transaction. For the word2vec model, the vector
for the complete sentence was created through
a summation of the vectors for each word in
the description. If a word does not appear in
the word2vec model, then a vector of zero’s was
chosen, such that it does not impact the trained
model. As a final step, the summed vector was
divided by the number of words that had an exist-

Figure 9. A comparison between three different pre-processed data
for the combined accuracy reached with top-n classes using 10-fold
cross validation SVM on Focus B.

top-n accuracy tf-idf word2vec 150 word2vec 1500
1 0.695 0.611 0.614
2 0.771 0.705 0.706
3 0.81 0.749 0.75
4 0.828 0.781 0.783
5 0.836 0.805 0.803
6 0.846 0.817 0.817
7 0.86 0.83 0.827
8 0.865 0.837 0.837
9 0.874 0.845 0.845
10 0.878 0.852 0.849
standard deviation 0.056 0.076 0.074

Table 4. The combined accuracy values obtained when looking at the
top-n predicted classes with different pre-processed data on Focus B.

ing vector. Due to this computation, a sentence2vec
was created (Equation 8), which was exactly what
was needed for the SVM. Here, k is the amount of
non-zero word vectors.

sentence2vec =

∑k
i=1 word2veci

k
(8)

During the actual training of the SVM model,
10-fold cross-validation was used for every in-
creasing top-n class accuracy. The 10-fold cross-
validation was changed in each iteration, which
accounts for a small bit of randomness during the
experiment. The results can be seen in Figure
9. These results also contained a trained linear
SVM model where the inputs consisted of a tf-idf
transformed vector. This tf-idf transformed vector
used all features. For reference, the actual results
of the experiment can be found in Table 4. The tf-
idf transformed vectors obtained higher accuracy
compared to both word2vec vectors.

13

V. DISCUSSION
We will discuss the experiments individually, be-
cause some results from earlier experiments were
used in later experiments. Each subsection cov-
ers the discussion of one experiment, carried out
in chronological order. Furthermore, some addi-
tional topics are covered in subsection V-B.

A. EXPERIMENTS DISCUSSION

Since every model makes suggestions for an ac-
countant and is not decisive, the incorrect sug-
gestions are less of an issue. Furthermore, as
established in Table 2, some algorithms can not
only predict the most frequent classes but use the
input for a more accurate suggestion. The final
experiment shows a top-3 accuracy of +80% (Fig-
ure 9). While such accuracy is desirable, there is
enough room for even more improvement. Some
of these will be discussed in Section VI.

From all the experiments that were done,
classes with only a few transactions or just one
transaction were difficult to predict. The absence
of many instances for a unique class was the
general issue throughout the experiments. Clas-
sification algorithms generally cannot suggest a
class that does not exist in their training set. To
partially solve the growing issue when accoun-
tants introduce more and more ledger accounts,
is to let the model train during new inputs. This
would suggest an online learning environment for
the model and as such real-time analysis of the
correct labels. When an accountant labels the
new transaction, the transaction itself is sent to
the model and added to the training dataset. The
trigger to send the labelled transaction would be
for every transaction that is classified manually
by the accountant. We could also let the model
learn when an accountant selects one of the
suggestions by the model. However, the model is
more prone to overfitting if the model learns from
correct suggestions.

1) Algorithm choice

Many experiments were run with an SVM. Table
2 shows that both SVM and random forest have
some potential for this specific problem. How-
ever, one decision tree with a small depth will
not be able to accurately distinguish more than
447 classes. Even though random forest is an
ensemble that consists of different decision trees,
an increase in depth would be beneficial. If the
depth increases, the learning time for a decision
tree algorithm will also increase. Furthermore, the
memory needed for random forest increases with
the number of instances and the number of trees
used. Therefore, due to these scalability issues,

SVM was chosen to be the main algorithm for
most of the experiments.

2) Feature selection
The description column has many different words,
some might contain abbreviations, some might
have reference numbers, and other non-dutch or
non-English words. As the tf-idf transformer con-
siders every unique word from the input a unique
value, our dictionary can become very large. The
results obtained in Figure 7 thus show that unique
values, such as a combination of digits and letters
from a specific company, are not useful for training
a classifier. There has to be some caution, as the
amount of features increases with the number of
instances. A fixed amount of most frequent fea-
tures might not guarantee the best results but was
used when large amounts of training instances
are available. A fixed percentage was also con-
sidered for experiments with Focus B. The opti-
mum found in Figure 7 was 3.000 most frequent
features, which translates to around 30%.

3) Number of instances for training
While the amount of features is important for
training time, the number of instances could have
a larger impact on the accuracy of the model. As
can be seen in Figure 6, an increase in the num-
ber of cross-validation folds, which leads to an
increase in train data, will net a better test score.
To further prove this, the experiment carried out in
Section IV-B consists of continually increasing the
number of training instances with a fixed subset of
test instances. The biggest implication that can be
seen in Figure 5, is an optimum for the number
of train instances in the Profit data. Since the
accuracy will not improve sufficiently after around
600.000 instances, there is no need for even more
training instances.

When the test scores are compared in Fig-
ure 8, the model trained on Focus B (the larger
dataset) scores higher accuracies for both train
and test set compared to the model trained on
Focus A (the smaller dataset), even when the
size of both training sets is the same. This could
be because the training instances in Focus B
might have richer information in the transaction
description column compared to Focus A. It is
also worth noting that, even though 10-fold cross-
validation is used, the random splitting into train
and test sets might have slightly different results
each time the experiment is run. This impacts
the smaller subsets more than the larger subsets,
which might also impact the difference in test
accuracy for datasets A and B.

Furthermore, the curve of the test set for Focus
B looks to be flattened, while the curve of the

14

test set for Focus A is still upwards. The flattened
curve could suggest that the model has an im-
proved generalisation with Focus B, or the curve
suggests that the SVM model would need a lot
more instances for a small increase in accuracy.

A comparison between the curves in Figure
5 is insightful for the number of features and
the training time. There are more than 1.000.000
features in the Profit dataset if all the data is
used. The suggested 30% in Section V-A2 yields
more than 300.000 features. The first run with
such an amount of features resulted in memory
and computational errors. To still see whether an
enormous amount of features was useful, two
experiments were run with 25.000 features and
100.000 features. As can be suggested from Fig-
ure 5, the increase in accuracy is minimal com-
pared to the extra computational cost. This is in
contradiction with the suggested 30%, as 25.000
features are less than 2.5% of the total features.
Therefore, a maximum amount of features might
be more useful than a fixed percentage of the
most frequent features when a large amount of
instances is available.

4) Word2vec pre-processing
While tf-idf is widely used in text classification
problems, it does not take into account semantic
similarity. Words within the same context, abbre-
viations of words, and subject-equal words are
not considered in a tf-idf transformer. Therefore,
an embedding might be of use, to calculate dis-
tances between words and create a vector for
each word. However, stated in Section IV-D2, the
dimension of the vector for one word must be cut
down significantly before it can learn in sufficient
computational time.

When the results in Figure 9 are compared,
the accuracy of a simple tf-idf transformer is
even higher than the word2vec input. This could
very well be associated with the dimensionality
reduction compared to the tf-idf representation. If
the dimensionality of the word2vec representation
would be closer to the dimensionality of the tf-
idf representation (15.056), then the result might
become different. The differences between both
word2vec results in Figure 9 are insignificant,
although the training time was a bit longer for the
word2vec model with 1500 size compared to the
word2vec model with a length of 150.

Another possible explanation for the lower ac-
curacy of the word2vec model might be due to
the context of the descriptions and the ledger
accounts. The relevance of semantics between
words might not be useful in this classification,
as accountants will probably not create ledger
account labels based on the sentences in the

transaction description, such as ‘Shell Nijkerk’ in
Table 1. Such semantics might be more useful in
combining descriptions with open invoices, as an
accountant can directly issue an invoice to ‘Shell
Nijkerk’, whereas categorising into the ledger ac-
count ‘revenue low’ has less context.

B. DISCUSSION OF THEORETICAL CONCEPTS
The discussion in Section V-A covers all the dis-
cussions about the results of the experiments.
However, there are some other concepts for this
specific problem that needs to be discussed. The
models return the labels of the ledger accounts
they predict, as well as the number that corre-
sponds to the ledger account. While this is a
normal design for most models, a lot of labels
could be company-specific. In the software AFAS
created, every accountant can re-assign labels
for most of the ledger accounts. Furthermore, an
accountant can create even more for whatever
purpose. The current model is a global model
that learns from all bank transactions from every
company. However, a new problem arises that
some accountants might obtain a ledger account
name or number from the model that they do
not know. Furthermore, some labels might contain
sensitive information, therefore breaching privacy
laws.

To solve these issues, one might introduce
company-specific models. This would indicate
that one model cannot learn data from other
companies, which could drastically lower the ac-
curacy of most models. To avoid having a differ-
ent model for each company, the model could
also be minimised to suggest only the general
ledger accounts that AFAS provides to every new
customer of them. However, a more complete
solution would be to build a filtering machine, that
would filter any suggested ledger account for a
company that should not be allowed to see the
suggested ledger account. The model does not
need to be changed with this solution and is as
such the recommended solution.

Another possible workaround for any privacy-
related issues would be to suggest a certain hi-
erarchy level instead of the ledger account itself.
All ledger accounts are sub-categories of higher-
level categories, where the whole ledger tree
can have multiple levels of hierarchy. This would
mean that the model would suggest ‘Revenues’ or
‘Net revenues’ instead of ‘Revenue consultancy’
(Figure 3). While this would be sufficient, the ac-
countant still has to manually decide which of the
ledger accounts the new transaction would belong
under ‘Revenues’. As explained in Section IV-A,
the higher-level category can be derived from the
predicted ledger account. This would mean that

15

the predicted higher-level category is only based
on the predicted ledger account. Explicitly pre-
dicting the higher-level category would result in
a multi-dimensional classification problem, where
the newly trained model not only predicts a ledger
account, but also the higher-level categories.

VI. FUTURE RESEARCH
While many experiments had been conducted,
there is still much left to experiment and analyse.
There are many more possible approaches to
experiment with-not only the data pre-processing
part, but the model itself as well as the output that
is given by the model.

A. INPUT CHOICE
Even though the accuracy reached with the cur-
rent description input is a positive result, different
inputs might lead to more convincing predictions.
For example, the counter account or the date
might contain more information that is useful for
classification. Some models have multiple differ-
ent features as input. While the data in Table 2
already contains the results of experiments done
using multiple columns, the columns are modified
such that only one kind of feature is used. There
could exist relationships between other inputs and
the ledger accounts that are not found from the
transaction description column alone (e.g. either
classify the counter account or use the counter
account as another feature). Before the multi-
feature option is considered, one could also use
the ‘amount’ column and divide it into segments,
such that the smaller amounts are categorised
into the same segment. These segments could
just be concatenated to the description column,
which in turn would make the description column
a bit richer in text.

Even though the experiment with different n-
grams (Section IV-C4) did not have promising
initial results, another experiment could be run
where the n-grams are combined. This would
mean that not only one-grams exist as a feature,
but also the most frequent n-grams. The number
of features will drastically increase, so it would
be interesting to see whether such an experiment
has positive results on the accuracy.

B. ALGORITHM CHOICE
While random forest and especially SVM already
have promising results, many more algorithms for
text classification are created over the years. In
the classical machine learning department, one
might suggest a k-nearest neighbour algorithm
[10]. This algorithm uses distance calculation
(e.g. Euclidean distance [12]) to calculate the dis-
tances of its k-nearest neighbours and classify the

new data point depending on the classes of those
neighbours. This algorithm might work notably
well in combination with word2vec because the
word2vec model is trying to create vectors where
words with similar meanings tend to be close to
each other in the dimensional space.

More algorithms are available in the area of
deep learning which might be useful for the text
classification problem. A neural network with mul-
tiple layers would then be the most evident al-
gorithm to use. Since the output is multi-class,
the final layer of the neural network should have
one neuron for each class. The neural networks
range from the classic neural networks, such as
multilayer perceptrons [17] (multiple feed-forward
layers with activation functions, each layer has
weights defined before each epoch) or the back-
propagation network [22] (the weights are trained
on the amount of error from the last epoch) to
more advanced neural networks, such as BERT
[13], roBERTa (Robustly Optimized BERT pre-
training Approach) [31], DistilBERT [44], or AL-
BERT (A Lite BERT) [28].

The biggest challenge for such an algorithm
would be the amount of data. Normally, a neural
network needs massive amounts of training data
to be of any use. The amount of data currently
available from Focus would likely not be enough
to be able to successfully train a neural network.
Furthermore, the output neurons needed for the
current Focus dataset would be 447, which will in-
crease with more instances. The dataset obtained
from Profit contains enough instances for such a
task. However, the datasets cannot be combined,
as the ledger accounts in Profit could be defined
differently compared to Focus. As AFAS obtains
more and more data from Focus, a neural network
might be very useful in the future.

Another option would be to experiment with
algorithms that are already used. Most param-
eters of the algorithms had been set to basic
constants, to reduce the number of possible vari-
ables. The fine-tuning of algorithms could have
high computational costs for a small increase in
accuracy. Therefore, the choices with the largest
impact were more important to experiment with
during this thesis. However, a grid search over the
algorithm parameters, for example, could be used
to obtain slightly higher accuracy. The training
time for such a grid search could become lengthy,
depending on the number of training instances.
Especially when more than one algorithm is anal-
ysed.

C. OUTPUT CHOICE
The current output consists of a ledger account
label and corresponding number. However, an

16

accountant might want additional information re-
garding the new transaction. One option would be
to include the tax information, whether the trans-
action belongs to the high or low tax category.
Another option would be to also include the higher
category to which the ledger account belongs. To
include such options, the train and test set should
already consider the extra information as another
label to predict. This would transform the multi-
class classification problem into a multi-label clas-
sification problem. In addition, when predicting
the higher categories, the multi-label classification
problem becomes a multi-dimensional classifica-
tion problem. The model would predict a class on
more than one hierarchy level. These additional
classifications could be more difficult to solve.

Another change that could be of use for this
problem would be to introduce a second output
with only the ledger account number. Although
accountants can create new ledger accounts with
new labels and numbers, the standard ledger ac-
counts that AFAS provides to its new users are fol-
lowing dutch national labelling [39]. By providing
only a ledger account number, the privacy issue
discussed in Section V-B would be resolved. It
does introduce a new problem, however, as some
numbers from ledger accounts from one company
might not be related to the same numbers from
ledger accounts from another company, therefore
predicting a wrong number and introducing false
positives to the suggestion (e.g. the model thinks
the number is correct based on its training data,
although the suggested number is not available in
the ledger from a specific company).

D. PRACTICAL RECOMMENDATIONS
All models are based on existing data and local
storage as of today. This could be taken as a
starting point to turn it into a proof of concept or
product. The global model should be stored on a
server, such that it will stay live for all customers
from AFAS. Furthermore, it should learn from new
inputs, so the model should train on new data
whenever the customer manually categorises a
bank transaction into a ledger account. The best-
recommended model based on the experiments is
currently a linear SVM model with a tf-idf weighted
bag of words representation. Since the number
of instances, and thus the amount of features
is constantly expanding, a maximum number of
most frequent features should be chosen. As of
now, 25.000 features will be enough. In addition,
the resulted output consisting of a ledger account
name and number should first be filtered to see
whether or not the customer can see the predicted
ledger account, to prevent privacy issues.

VII. CONCLUSIONS
The research question of this thesis was: “Is it
possible to predict (with a certain probability) to
which ledger account a bank transaction belongs
by means of its unstructured data?” The ledger
accounts can be predicted with a +80% accuracy
and top-3 suggestions using the unstructured
data from a bank transaction. The description
consists of a small sentence, which means that a
model can learn such cases even with an input
that has sparse text features. The amount of
ledger accounts is substantial, but the model is
still able to reach a reasonable accuracy.

The accuracy was reached after experimenting
with different algorithms, different amounts of fea-
tures and instances, and different pre-processing
of the datasets. First, we experimented with naive
Bayes, support vector machine, random forest,
and xgboost. SVM was chosen as the algorithm
with the most potential. After that, we contin-
ually increased the number of cross-validation
folds, which also increases the number of train
instances. Furthermore, we continually increased
the number of features to find an optimum amount
of features.

Additionally, we used a vast amount of Profit
train instances to see the potential with mas-
sive amounts of data. To validate these results
with Focus data, we compared two different Fo-
cus datasets. Finally, we compared tf-idf pre-
processing with two word2vec models as pre-
processing. On top of that, we looked at the top-n
classes’ accuracy.

We hypothesised that the word2vec model
would have a positive effect on accuracy, but
instead, it showed a negative effect. Creating a
word2vec model with a vector length the same
as the tf-idf transformer could prove to be useful,
but for now, the tf-idf transformer is better suited
for this multi-class classification problem. Further-
more, not all features are needed for an optimum
result. The hypothesis that more instances up to
a certain maximum would result in a higher accu-
racy had been proven through the use of different-
sized datasets. Once Focus gets large enough,
we can experiment with BERT-like algorithms or
other transformer models.

The results of this research can be used and
incorporated into the Focus software from AFAS,
in such a way that accountants can easily pick the
right ledger account from a small set of possible
options with a probability of around 80%.

17

References
[1] M. Aly. Survey on multiclass classification methods. Neural Netw,

19(1-9):2, 2005.
[2] I. Androutsopoulos, J. Koutsias, K. V. Chandrinos, G. Paliouras,

and C. D. Spyropoulos. An evaluation of naive bayesian anti-spam
filtering. arXiv preprint cs/0006013, 2000.

[3] B. Arkok and A. M. Zeki. Classification of quranic topics based
on imbalanced classification. Indones. J. Electr. Eng. Comput. Sci,
page 678, 2021.

[4] C. Bardelli, A. Rondinelli, R. Vecchio, and S. Figini. Auto-
matic electronic invoice classification using machine learning
models. Machine Learning and Knowledge Extraction, 2(4):617–
629, 2020.

[5] T. Bayes. Lii. an essay towards solving a problem in the doctrine
of chances. by the late rev. mr. bayes, frs communicated by mr.
price, in a letter to john canton, amfr s. Philosophical transactions
of the Royal Society of London, pages 370–418, 1763.

[6] L. Breiman. Bagging predictors. Machine learning, 24(2):123–
140, 1996.

[7] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[8] R. Caruana and A. Niculescu-Mizil. An empirical comparison

of supervised learning algorithms. In Proceedings of the 23rd
international conference on Machine learning, pages 161–168,
2006.

[9] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 785–
794, 2016.

[10] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
transactions on information theory, 13(1):21–27, 1967.

[11] J. Cowie and W. Lehnert. Information extraction. Communica-
tions of the ACM, 39(1):80–91, 1996.

[12] P.-E. Danielsson. Euclidean distance mapping. Computer Graph-
ics and image processing, 14(3):227–248, 1980.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-
training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, 2018.

[14] N. S. Elmitwally. Building a multi-class xgboost model for arabic
figurative language. In 2020 2nd International Conference on
Computer and Information Sciences (ICCIS), pages 1–4. IEEE,
2020.

[15] E. Frank, M. Hall, L. Trigg, G. Holmes, and I. H. Witten.
Data mining in bioinformatics using WEKA. Bioinformatics,
20(15):2479–2481, 2004.

[16] R. Gandhi. Support vector machine — introduction to machine
learning algorithms. https://towardsdatascience.com/support-vec
tor-machine-introduction-to-machine-learning-algorithms-934a
444fca47, june 2018.

[17] M. W. Gardner and S. Dorling. Artificial neural networks (the mul-
tilayer perceptron)—a review of applications in the atmospheric
sciences. Atmospheric environment, 32(14-15):2627–2636, 1998.

[18] GDPR.EU. Eu-general data protection regulation. https://gdpr.e
u/data-privacy/, 2022.

[19] Y. Goldberg and O. Levy. word2vec explained: deriving mikolov
et al.’s negative-sampling word-embedding method. arXiv
preprint arXiv:1402.3722, 2014.

[20] D. J. Hand. Principles of data mining. Drug safety, 30(7):621–
622, 2007.

[21] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf.
Support vector machines. IEEE Intelligent Systems and their
applications, 13(4):18–28, 1998.

[22] R. Hecht-Nielsen. Theory of the backpropagation neural network.
In Neural networks for perception, pages 65–93. Elsevier, 1992.

[23] D. Hiemstra. A probabilistic justification for using tf× idf term
weighting in information retrieval. International Journal on Digital
Libraries, 3(2):131–139, 2000.

[24] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass
support vector machines. IEEE transactions on Neural Networks,
13(2):415–425, 2002.

[25] G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction
to statistical learning, volume 112. Springer, 2013.

[26] A. Khan, B. Baharudin, L. H. Lee, and K. Khan. A review
of machine learning algorithms for text-documents classification.
Journal of advances in information technology, 1(1):4–20, 2010.

[27] V. Korde and C. N. Mahender. Text classification and classifiers:
A survey. International Journal of Artificial Intelligence & Appli-
cations, 3(2):85, 2012.

[28] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Sori-
cut. Albert: A lite bert for self-supervised learning of language
representations. arXiv preprint arXiv:1909.11942, 2019.

[29] R. Leite and P. Brazdil. Active testing strategy to predict the best
classification algorithm via sampling and metalearning. In ECAI,
pages 309–314, 2010.

[30] X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory undersampling for
class-imbalance learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 39(2):539–550, 2008.

[31] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A ro-
bustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[32] Y. Liu, H. H. Zhang, and Y. Wu. Hard or soft classification?
large-margin unified machines. Journal of the American Statistical
Association, 106(493):166–177, 2011. PMID: 22162896.

[33] H. Luo, X. Pan, Q. Wang, S. Ye, and Y. Qian. Logistic regression
and random forest for effective imbalanced classification. In
2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), volume 1, pages 916–917. IEEE, 2019.

[34] A. McCallum, K. Nigam, et al. A comparison of event models for
naive bayes text classification. In AAAI-98 workshop on learning
for text categorization, volume 752, pages 41–48. Citeseer, 1998.

[35] T. Mikolov, Q. V. Le, and I. Sutskever. Exploiting similari-
ties among languages for machine translation. arXiv preprint
arXiv:1309.4168, 2013.

[36] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad,
M. Chenaghlu, and J. Gao. Deep learning–based text
classification: a comprehensive review. ACM Computing
Surveys (CSUR), 54(3):1–40, 2021.

[37] F. Mohr and J. N. van Rijn. Fast and informative model se-
lection using learning curve cross-validation. arXiv preprint
arXiv:2111.13914, 2021.

[38] J. Ojala. Machine learning in automating bank statement postings.
Helsinki Metropolia University of Applied Sciences, 2018.

[39] S. private and public organisations. Rgs: Referentie groot-
boekschema. https://www.referentiegrootboekschema.nl/, 2022.

[40] F. Rayhan, S. Ahmed, A. Mahbub, R. Jani, S. Shatabda, and D. M.
Farid. Cusboost: Cluster-based under-sampling with boosting for
imbalanced classification. In 2017 2nd International Conference
on Computational Systems and Information Technology for Sus-
tainable Solution (CSITSS), pages 1–5. IEEE, 2017.

[41] J. N. v. Rijn, S. M. Abdulrahman, P. Brazdil, and J. Vanschoren.
Fast algorithm selection using learning curves. In International
symposium on intelligent data analysis, pages 298–309. Springer,
2015.

[42] C. Romero and S. Ventura. Data mining in education. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery,
3(1):12–27, 2013.

[43] N. F. Rusland, N. Wahid, S. Kasim, and H. Hafit. Analysis of naïve
bayes algorithm for email spam filtering across multiple datasets.
In IOP conference series: materials science and engineering, vol-
ume 226, page 012091. IOP Publishing, 2017.

[44] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

[45] Y. Shao, S. Taylor, N. Marshall, C. Morioka, and Q. Zeng-Treitler.
Clinical text classification with word embedding features vs. bag-
of-words features. In 2018 IEEE International Conference on Big
Data (Big Data), pages 2874–2878. IEEE, 2018.

[46] A. software. Erp-systems for your company. https://www.afas.nl/,
2022.

[47] B. Strang, P. v. d. Putten, J. N. v. Rijn, and F. Hutter. Don’t rule out
simple models prematurely: a large scale benchmark comparing
linear and non-linear classifiers in openml. In International Sym-
posium on Intelligent Data Analysis, pages 303–315. Springer,
2018.

[48] A. Sun, E.-P. Lim, and Y. Liu. On strategies for imbalanced text
classification using svm: A comparative study. Decision Support
Systems, 48(1):191–201, 2009.

[49] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to data
mining. Pearson Education India, 2016.

18

[50] Y. Tang, Y.-Q. Zhang, N. V. Chawla, and S. Krasser. Svms mod-
eling for highly imbalanced classification. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 39(1):281–
288, 2008.

[51] G. Wahba et al. Support vector machines, reproducing kernel
hilbert spaces and the randomized gacv. Advances in Kernel
Methods-Support Vector Learning, 6:69–87, 1999.

[52] L. Wang. Support vector machines: theory and applications,
volume 177. Springer Science & Business Media, 2005.

19

