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Abstract 

This bachelor thesis investigates the performance of different High Content 

Screening (HCS) analysis tools based on Cellprofiler by using a test screen and 

measuring how long it takes to fully analyze it. The analysis tools are also tested on 

their ease of use. The CellProfiler app itself produced results the fastest, being three 

times faster than Jupyter Notebook and around fifteen times faster than Galaxy. For 

Jupyter and Galaxy, methods to improve their performance have been attempted. 

These methods would add multi-processing to the analysis tools which increased 

performance. However, it didn't had much success, as introducing multi-processing 

was either impossible in the case of Galaxy or brought with it more complications 

than could be forseen for Jupyter. After considering all factors, Jupyter Notebook has 

the most promise as HCS analysis tool as it is a very flexible tool where new scripts 

can easily be added to.  
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1. Introduction 
1.1 High-Content Screening 
Imaging many cell phenotypes under different conditions  

HCS, or High Content-Screening, is an image analysis technique originating from the 

90’s. This technique has become more and more popular over time because 

technology has improved so much as well, and automated microscopes can now 

acquire images faster than the human eye can analyze them (Li et al., 2019) [1]. 

HCS is a phenotypic screening technique, which means analyzing differences in the 

appearance (or phenotype) of cells after they have been subjected to compounds, 

such as candidate drugs or small interfering RNAs (siRNA) to modify gene 

expression in cells. The simplest example of a phenotypic change is the death of a 

cell. Other changes would be examining the localization of cell organelles after being 

exposed to different compounds.  
  

How to use HCS 

HCS are performed on multiwell plates, which are either 96-, 384- or 1536-well 

plates, with the 384-well plate being used most frequently (Boutros et al., 2015) [2]. 

To perform an HCS, cells first need to be grown in the multiwell plate. In each well, 

around 10 cells are grown to a size of over 100 cells. Secondly, the cells in each well 

are treated with the compound of your choice of interest. As an example, a siRNA 

library containing thousands of siRNA molecules can be screened using a well of 

cells for each molecule can be added to investigate the function of onco-related 

genes upon inhibition of these genes. Thirdly, to visualize the phenotypes of the 

cells, fluorescent probes are used that stain the cell. Ideally, these probes are 

specific, only stains the desired organelles or target molecules of choice, and bright, 

meaning it must be bright enough to have short exposure times. It is possible to 

combine multiple probes within the same sample and images are taken 

simultaneously using different channels for each probe. The signal recorded for each 

channel is filtered using bandpass filters for emitted light. In case of using multiple 

probes within the same sample, the bleed-through must be minimized between 

channels and these effects must be taken into account during image analysis 

(Boutros et al., 2015). Fourthly, images are acquired for each well and plate in study 

and analyzed. 

 

Types of HCS  

HCS can be subdivided in two types that could be performed. The first type of HCS 

is fixed cells with fluorescently labeled targets. The second type of HCS is live cells 

with multicolor fluorescent indicators and “biosensors”. Fixed cell assays are the 

simplest, because the initially living cells can be subjected to a multitude of different 

compounds before fixing them. After the cells are fixated, there is no need to deal 

with any environmental variables. The downside is that the information acquired from 

the cells consists solely of the single time point of fixing them. Fixating and labeling 

can be automated to process the assays efficiently. Live cell assays yield more 

information because they are measured both over space and time. The environment 

of the cells needs to be controlled in this case, as a different environment can 

change their behavior. (Giuliano et al., 1997) [3].  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7011178/
https://www.sciencedirect.com/science/article/pii/S0092867415014877
https://journals.sagepub.com/doi/pdf/10.1177/108705719700200410
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Image acquisition, more cells is more time or lower resolution  

Within the image acquisition, the option exists to only take images of part of each 

well, rather than the entire well. This can be done to increase the resolution of the 

images, such as when analyzing subcellular structures (Boutros et al., 2015). This 

does increase the time it takes to analyze the images.  

 

Advantage of imaging cell dynamics  

The strength of HCS is that images are taken over time as well as over space. It’s 

almost like analyzing a video recording of the cell. The effects of compounds are 

measured over time and more accurate conclusions can be drawn from the images 

this way. The entire screening procedure can be automated, which includes cell 

seeding and pipetting during the fixation- or staining-steps of the process (Laufer et 

al., 2014).   
  

Image Analysis in HCS  

The analysis steps in HCS are performed by using different software's and tools. The 

entire analysis can be divided in two parts, upstream analysis and downstream 

analysis. Upstream analysis part resolves and interprets the image data to tabular 

information. The downstream analysis part refers to extracting data, visualizing data, 

plotting data, and performing statistics on tubular data retrieved from the previous 

part to draw conclusions and test hypotheses. This is done because automated 

microscopes can now acquire images faster than the human eye can analyze them 

(Li et al., 2019). 

 

1.2 FAIR 
FAIR data is an acronym for findability, accessibility, interoperability and reusability.  

In 2016, a publication by a number of scientists [4] introduced FAIR as a set of 

principles that “may act as a guideline for those wishing to enhance the reusability of 

their data holdings”. The principles improve the findability, accessibility, 

interoperability and reusability of data. Recently, HCS-data itself has become more 

in line with the FAIR principles, but the software tools that analyze HCS aren't 

necessarily following FAIR as well. There aren't any guidelines for FAIR software. 

 

1.3 Research Question 
This research project investigates a FAIR-workflow for the analysis of High Content 

Screening results. The open-source software tools CellProfiler app, Jupyter 

Notebook and Galaxy will be tested on their performance in analyzing high content 

screens. In addition, we will examine/review the usability and FAIRness of these 

tools. If applicable, the workflows of these tools will be improved using 

multiprocessing, resulting in better performance. 

https://www.nature.com/articles/sdata201618
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2. Materials & Methods 
2.1 CellProfiler 
Features of CellProfiler 

CellProfiler[5] is a tool for quantifying images. This means as much as counting and 

measuring the images given to it. A process called a pipeline is used to get the 

desired output of the images. A pipeline consists of a sequence of modules with 

each module advancing the process. Examples include processing an image by 

identifying objects on the image, resizing the image, measuring overlap between 

objects, creating a histogram based on measurements taken earlier, or exporting 

findings to a spreadsheet. Each module also comes with extensive documentation, 

telling the user what it does and what it can be used for. All the variables within a 

module have similar documentation.  
  

Modularity of CellProfiler's pipeline  

CellProfiler’s pipeline is modular. Every module in that pipeline can be changed 

without any trouble, if the user wants to. The modules can be mixed and matched 

until the desired output is reached. This modular nature also means that modules 

can be put in an already existing pipeline. After editing a few variables of other 

modules in the pipeline, the process works without any trouble. This is in part thanks 

to CellProfiler’s graphical user interface.  
  

Interface of CellProfiler  

CellProfiler’s interface is a Graphical User Interface (GUI). This means that users will 

have an easier time getting used to the program, and will have less trouble finding 

their way around CellProfiler. It also works intuitively. For example, a pipeline made 

in CellProfiler can be saved. If that pipeline is needed when using CellProfiler at a 

later time, it can be dragged and dropped into the pipeline-area straight from the 

documents folder, and the pipeline is directly imported.  
  

Documentation of CellProfiler  

If something is unclear to the user, the help-tab of CellProfiler offers as much 

documentation as the modules themselves have. It is also open-source, so edits can 

be made to a personal version to improve upon it.  
  

CellProfiler can be seen as a deterministic tool. This means that the outcome is not 

random. If the same images are sent as input and use the same pipeline, the result 

will always be the same. The version used in this project is 4.0.7. 

 

 

2.2 Jupyter Notebook 
Just like CellProfiler, Jupyter[6] is a tool that is being used in HCS image analysis. In 

this project, CP pipelines are imported into Jupyter, which allows it to run CellProfiler 

in “headless mode”, or using CellProfiler pipelines without the CellProfiler 

application.  

 

Starting Jupyter 

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005970
https://ebooks.iospress.nl/publication/42900
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Instead of using an application to launch Jupyter, it is started from the command line. 

In this project, a Windows computer with the ubuntu 18.04 LTS-application from the 

microsoft store is used to have a linux environment in which Jupyter is called from. 

Anaconda is installed as well. Anaconda is used to make an environment in which 

Jupyter Notebook is installed and launched from. When Jupyter is started, a link will 

be given to the user, which will be copy-pasted into an internet browser from which 

Jupyter is used. 

 

Features of Jupyter 

When Jupyter is used in a browser, the user will first be able to select which file they 

want to edit and run. When a file is selected, Jupyter will open the interactive 

environment in which this file can be run and edited. This works through multiple 

cells, where each cell can either be code or markdown that can be created. Cells 

with markdown will be ignored when running the cells and are solely explanatory. 

Examples of this would be markdown cells which tell what program does or what a 

code-cell below requires as input. The code cells contain programming code. Each 

cell can be run individually. This can be compared to having a program where parts 

of the code can be run separately from the rest of the program. For example, the first 

part of the code that will be executed will be the part where the dependencies and 

imports are. The next part of code can then be the definitions of the program. Jupyter 

will return the output, if any, when a cell has finished running. Jupyter will also output 

errors. Jupyter notebook is compatible with several programming languages, like 

Python, R or MatLab. The Jupyter Notebook version used is 6.1.4. 

 

 

2.3 Galaxy 
Galaxy[7] is a website which can be used to perform HCS analysis. It has sequential, 

modular modules, just like the CellProfiler app. Galaxy allows the user to select 

modules from the search bar to put in their history, which is their workflow, and edit 

parameters of those modules.  Calculations for Galaxy are done on the galaxy 

server, rather than on a local computer. If modules are inserted in the history, Galaxy 

will immediately execute them as a job. 

 

In a CellProfiler setting, Galaxy offers CellProfiler-like modules which are the same 

as the ones used in the application, or existing CellProfiler pipelines can be 

imported, and Galaxy allows data to be imported from remote databases. It also 

offers tutorials created by the community on how to create certain workflows. [8] 

 

2.4 Computer 
The hardware used in testing consist of a quad-core Intel i5-7500 CPU (3.4 GHZ) 

and 16 GB of RAM. The computer used Windows 10, and to simulate Ubuntu, used 

the Ubuntu 18.04 LTS shell. 
 

  

https://academic.oup.com/nar/article/46/W1/W537/5001157
https://linkinghub.elsevier.com/retrieve/pii/S2405471218302308
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3. Implementation 
3.1 CellProfiler app 
To use CellProfiler, images and a workflow need to be imported into the application. 

There are a multitude of modules available to add to a workflow. An example of a 

CellProfiler workflow that’s used in this research can be seen in figure 1. An 

explanation for the modules is taken from the documentation of the CellProfiler app 

itself. 
 

Images 

The Images module allows a location to be specified of files to be analyzed by the 

pipeline; setting this module correctly is the first step in creating a new project in 

CellProfiler. These files can be located on a local hard drive, on a networked 

computer elsewhere, or accessible with a URL. Rules can also be provided to 

specify only those files that need to be analyzed out of a larger collection (for 

example, from a folder containing both images for analysis and non-image files that 

should be disregarded).  
 

Metadata 

The Metadata module allows metadata to be extracted and associated with the 

images. The metadata can be extracted from the image file itself, from a part of the 

file name or location, and/or from a text file.  
 

NamesAndTypes 

The NamesAndTypes module gives images and/or channels a meaningful name to a 

particular image or channel, as well as defining the relationships between images to 

create an image set. Once the relevant images have been identified using the 

Images module (and/or has had metadata associated with the images using the 

Metadata module), the NamesAndTypes module gives each image a meaningful 

name by which modules in the analysis pipeline will refer to it.  
 

Groups 

The Groups module organizes sets of images into groups.  
 

EnchanceOrSurpressFeatures 

EnhanceOrSuppressFeatures enhances or suppresses certain image features (such 

as speckles, ring shapes, and neurites), which can improve subsequent identification 

of objects.  
 

This module enhances or suppresses the intensity of certain pixels relative to the 

rest of the image, by applying image processing filters to the image. It produces a 

grayscale image in which objects can be identified using an Identify module.  
 

IdentifyPrimaryObjects 

IdentifyPrimaryObjects identifies biological objects of interest. It requires grayscale 

images containing bright objects on a dark background. Incoming images must be 

2D (including 2D slices of 3D images) 
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MaskObjects 

MaskObjects removes objects outside of a specified region or regions. 
 

This module allows objects or portions of objects that are outside of a specified 

region (mask) to be deleted. For example, after identifying nuclei and tissue regions 

in previous Identify modules, all nuclei that are outside of a tissue region can be 

excluded. 
 

If using a masking image, the mask is composed of the foreground (white portions); 

if using a masking object, the mask is composed of the area within the object. The 

user can choose to remove only the portion of each object that is outside of the 

region, remove the whole object if it is partially or fully outside of the region, or retain 

the whole object unless it is fully outside of the region.  
 

ConvertObjectsToImage 

ConvertObjectsToImage converts identified objects into an image. This module 

allows previously identified objects to be converted into an image according to a 

selected colormap, which can then be saved with the SaveImages module. 
 

RelateObjects 

RelateObjects assigns relationships; all objects (e.g., speckles) within a parent 

object (e.g., nucleus) become its children. 
 

This module allows child objects to be associated with parent objects. This is useful 

for counting the number of children associated with each parent, and for calculating 

mean measurement values for all children that are associated with each parent.  
 

MeasureObjectSizeShape 

MeasureObjectSizeShape measures several area and shape features of identified 

objects. Given an image with identified objects (e.g., nuclei or cells), this module 

extracts area and shape features of each one. 
 

ExportToSpreadsheet 

ExportToSpreadsheet exports measurements into one or more files that can be 

opened in Excel or other spreadsheet programs. This module will convert the 

measurements to a comma-, tab-, or other character-delimited text format and save 

them to the hard drive in one or several files, as requested.  
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Figure 1: Schematic of a CP workflow, where inputs come from and where outputs go to 

 

 

3.2 Jupyter Notebook 
As mentioned earlier, Jupyter Notebook works with two different types of cells: 

coding cells and markup cells. The markup cells can be ignored as their only 

purpose is to inform the user. What will follow is a brief summary of all the coding 

cells and what they do. 
 

Setting up 

The first coding cells (Import Packages, Definitions and helper functions and Set Cell 

Output Directory) are used to set up the rest of the script. Python packages are 

imported and functions are defined. The most important functions are the following, 

which are the analyzation steps  
 

• Analyze Plate: This function creates variables in which the information is 

stored. On top of that, it creates a list of all the wells on the plate. 

• Analyze Well: Iterates over all the wells and extracts their location within the 

plate 

• Analyze Field: Loads all the information of what image is linked to the location 

found in Analyze Well. It loads the image into the CellProfiler pipeline, runs 

the pipeline and stores the results as a csv, inserting the information into a 

dataframe and giving the files unique names. 
 

In the third coding cell, a temp-directory is created in which the results will be stored. 
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This allows the user to run the notebook several times without the storage space on 

the computer or server running out. 
 

Selecting which plate to analyze 

The next block of coding cells all refer to selecting which plate to analyze. In the first 

coding cell (Connect to Omero@UL), the notebook attempts to establish a 

connection with the Omero web server. The input consists of a username and 

password. If that is successful, the connection remains. The next cell (User and 

group info) gives the user the choice to use data from other users in your Omero 

group. The following cells (Your screens and plates and Fetch the Plate data) have 

an interactive widget in which you can select which plate to analyze. The first cell 

shows you a list of all the screens and plates there are, and the second cell allows 

the user to pick which plate will be analyzed. A coding cell directly below the 

previous one can be used to hardcode the plate ID which needs to be selected, if the 

user wants to ignore the previous steps. 
 

Getting additional data 

The next block of coding cells (Fetch Annotations, Format to DF, Load CP Pipeline) 

will add the final touches to the script before the pipeline is run. The first coding cell 

(Fetch Annotations) allows the user to select the metadata-file that is associated with 

the plate from a dropdown widget. In the next cell (Format to DF), this metadata-file, 

which contains information that could be used as input variables for both the script 

and the downstream analysis, is converted to a dataframe. Finally, the third coding 

cell (Load CP Pipeline) has a path to the pipeline file, which will then be loaded into 

the notebook. The first four modules (Images, Metadata, NamesAndTypes, Groups), 

which are used in the CellProfiler app to access and group images, are removed. In 

Jupyter Notebook, the data for these four modules are retrieved from the OMERO 

database. 
 

Running CP 

In the cell “Run CP Pipeline” the plate is analyzed using the pipeline, using the 

functions explained earlier. After the analysis is complete, the results are 

concatenated into new CSV files. This coding cell has a few hardcoded lines where 

the channel names are initialized. 
 

Calculating and Uploading results 

After the CellProfiler cell has been executed, the results can be visualized in 

Notebook. The concatenated CSV files are saved to the Omero server as 

attachments to the plate which has been analyzed. Finally, the connection to Omero 

is severed. 
 

 

3.3 Galaxy 
As said before, Galaxy works based on workflows, just like CellProfiler. Making 

workflows in Galaxy to use for CellProfiler analysis can be achieved with two 
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different options. Either by importing a CellProfiler pipeline into the history (figure 2), 

or by putting in individual CellProfiler modules (figure 3):  

 
Figure 2: Picture of a Galaxy Workflow with a CellProfiler pipeline imported. When a CellProfiler 

pipeline is imported this way, the images that are to be analyzed can be uploaded as a tar.xz file. 

Then, the pipeline-file will be imported, and a Cellprofiler module will be added which takes the 

image file and the pipeline file as inputs. This job is submitted to the galaxy server and once done, 

displays the results. 

 

 
Figure 3: Picture of a Galaxy Workflow where all CellProfiler modules are added individually. This is 

similar to the way workflows are created in the CellProfiler app. A CellProfiler tutorial on galaxy [9] 

has been used as template for this. 

  

https://training.galaxyproject.org/training-material/topics/imaging/tutorials/tutorial-CP/tutorial.html
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4. Experiments 
To measure the performance of the analysis tools, a test dataset was used. This 

dataset consists of 216 wells with three different channels and two images taken of 

each well, for a total of 1296 images. This data has been analyzed using the 

CellProfiler app, Jupyter Notebook and the Galaxy server. The same workflow has 

been used for all applications. The results can be seen in Table 1. Additionally, Table 

1 features the amount of processor cores available to the application for use, how 

many cores they used and how much memory was available. 

  

Application Time Cores 
Available 

Cores Used Memory 
Available 

CP app 40m 23s 4 4 16GB 

Jupyter 
Notebook 

2h 7m 21s 
(Analysis only) 

4 1 16GB 

Galaxy 6h 10m (+4h 
57m) 

1 1 4GB 

Table 1: Performance results of running the test dataset with different analysis tools 

based on CellProfiler 

  

4.1 CellProfiler 
Performance 

When running the test dataset in the CellProfiler app, the process took roughly 40 

minutes from start to finish. CellProfiler app used all four processor cores available. 

There was 16GB of RAM available. 

  

Usability 

Regarding using CellProfiler app, it is open-source and can be downloaded for 

Windows and mac. It only accepts local 2D images as input for the pipeline, so it 

can't run multi-dimensional data. Pipelines and projects are also stored locally. Every 

pipeline has a specific format and channels are named before the pipeline is 

executed. The pipeline is reusable, easy to adjust and there is a large amount of 

documentation present as well. 

  

4.2 Jupyter Notebook 
Performance 

As can be seen in Table 1, Jupyter Notebook a bit over two hours to run the analysis 

cell of its own notebook. The time taken to run the entire script couldn’t be measured 

as some cells required user-input. However, those cells did not add a significant 

amount of time in comparison to the analysis cell. Jupyter Notebook used only 1 of 

the available 4 cores, and had 16GB or RAM available for use. 

  

Usability 

Similar to CellProfiler, Jupyter Notebook is also downloadable as open-source 

software as part of Anaconda. It might additionally need a conda environment set up 
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for it in order to make proper use of it. The notebook itself is easy to edit, and using it 

for other datasets can be as simple as only swapping out the pipeline. Results can 

be stored online, but this isn't done by default. Additionally, data can be retrieved 

from sources like OMERO which makes multi-dimensional data analysis possible.  

 

4.3 Galaxy 
Performance 

Running a Galaxy workflow with the CellProfiler pipeline and the images imported 

took over 11 hours to give results back. The 6 hours 10 minutes were how long 

Galaxy said executing the workflow took, but it took an additional 5 hours for the 

results to show up. Galaxy Servers had one core available, and 4GB of memory.  

 

Usability 

Galaxy as a software tool is very easy and accessible to use. The site is easily 

findable and everything can be public. It is simple to edit workflows and there is a 

good documentation for every module and their variables. 

  
  



   
 

 15  

 

5. Discussion 
5.1 Observations 
Interpretation of results 

In regards to performance, in our setup the CellProfiler app is significantly better than 

the other tools tested. The analysis of the test dataset using CellProfiler app was 

roughly three times faster than using Jupyter Notebook. CellProfiler app has 

multiprocessing built-in, where the other software tools do not have native 

multiprocessing. 

 

While it's difficult to make concrete claims about FAIRness, Galaxy seems to be the 

best option with FAIRness in mind. As long as you have access to FAIR data, it is 

easy to find workflows in Galaxy. If the workflows are public, they are also accessible 

to the public. For interoperability, the workflow can be combined with downstream 

analysis workflows in Galaxy. For reusability, comparable datasets can be analyzed 

using the same workflow with minor adjustments. The CellProfiler app and Jupyter 

Notebook neither have an option to share workflows online. 

 

Comparison of Jupyter and CellProfiler 

Advantages that Jupyter has over CellProfiler lie mainly in the flexibility that Jupyter 

offers. Jupyter isn’t only compatible with CellProfiler pipelines. Programs can be 

used before the CellProfiler pipeline is inserted which alters the input of the pipeline. 

Jupyter also allows downstream analysis of the images, which CellProfiler does not. 

It is possible to include parallel processing with Jupyter. Finally, Jupyter allows data 

retrieval from remote databases, where CellProfiler can only use images that are 

locally stored on the system. 

  

CellProfiler does have a few advantages compared to Jupyter. The interface of 

CellProfiler is easier and more intuitive than Jupyter’s interface, and it is easier to 

give a set of images as input. The pipeline can also be edited rather quickly in 

CellProfiler, if the intermediate output of a step of the pipeline is not to the user’s 

liking. 

  

Comparison of Galaxy and CellProfiler 

While Galaxy offers the same modules that CellProfiler does, not everything is the 

same between the two. 

  

To start, it does not offer just CellProfiler modules. Any amount and kind of 

computation can be performed before the modules relating to the CellProfiler 

pipeline are used. As said before, calculations for Galaxy are done on the galaxy 

server, rather than on a local computer. This has advantages and disadvantages. 

Advantages would be that a pipeline can be executed overnight without the need to 

have the computer being turned on, and that the duration to execute a history is the 

same regardless of what kind of hardware the user has. Galaxy directly executing 

modules that are added to the history rather than waiting for the user to say that they 

want to run the workflow saves time in the long run. Especially when considering that 
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the jobs being run on the server means there are no hardware strains on the user 

side while they add more modules to the history. 

  

Disadvantages would be that the server hardware is usually inferior to the hardware 

used on university computers, and jobs may take several hours. On top of that, the 

speed with which jobs are executed can depend on how many jobs are running on 

the server already. A spike in the amount of running jobs will slow down the process. 

We assume this also happened when we were doing the experiments, where galaxy 

took almost 15x longer than CellProfiler to produce results. 

  

On top of this, some of the CellProfiler modules that are used in this project are 

missing variables in Galaxy. What variables are missing are listed below: 
 

 

• Mask misses variables → No handling of objects that are partially masked. No 

numbering of resulting objects 

• IdentifyPrimaryObjects missing variables based on the adaptive/otsu 

parameters → Automatically calculate size of smoothing filter for declumping, 

Automatically calculate minimum allowed distance between local maxima, 

Speed up by using lower-resolution image to find local maxima, Display 

accepted local maxima, Fill holes in identified objects or Size of smoothing 

filter 

• MeasureObjectSizeShape missing variable → Can’t calculate advanced 

features 

• ExporttoSpreadsheet missing variables → Can’t Add image file and folder 

names to an object data file, Select the measurements to export or export all 

measurement types 

  

Output from different tools 

After testing on the dataset, the output consists of nine CSV files. While all three 

programs had the exact same pipeline and the exact same set of images to work on, 

the output between them differed slightly. Some applications gave more variables in 

the output. In Jupyter Notebook, images are read and analyzed one-by-one, and the 

results are saved as CSV files. However, to make the files unique before they get 

concatenated, additional columns are added (Image, Well, WellName, Field) to 

identify the files before they are concatenated. This automatically happens in 

CellProfiler app and Galaxy 

 

In Galaxy, the RelateObjects module didn't work as intended, and the two CSV files 

related to that module (AnV_masked_primaryID and PI_masked_primaryID) don't 

have any content. 

 

5.2 Improvements 
After the initial results, there was a large disparity between the three software tools, 

while they used the same test dataset and the same workflow. It should theoretically 

be possible to have the tools run as fast as CellProfiler did, so we’ve looked into 
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ways of improving the performance of the three software tools. The CellProfiler 

application itself was unable to be improved, as that would imply editing the source 

code of the program itself, while the focus was on adjusting the scripts. For Galaxy, 

we’ve tried uploading channels independently and getting uploads from a different 

OMERO server than was listed in the Omero-upload module. However, both didn’t 

amount to any improvements. 
 

Jupyter 

Jupyter Notebook ran on the same hardware as the CellProfiler app did, but took 

three times longer to complete. Considering it only used one core of the four that 

were available, combined with the fact that it is the easiest to improve as it consists 

of python scripts, it was the most suited to make improvement to of all software tools. 

What follows will be an overview of methods that have been used to try and improve 

the performance of Jupyter. 

 

• Using the multiprocessing package: 

As can be seen in Table 1, Jupyter only used one of the four cores available to it. 

With the multiprocessing package, workers can be defined which will each use an 

individual core. This way, the analysis step of Jupyter (Analyze Plate/Well/Field) 

could be parallelized. In Analyze Well, the program iterates over all well locations. 

The parallel workers would each have a range defined from within they could iterate 

over the wells, so they would not overlap. However, when doing this, the code threw 

an error for a function within CellProfiler, warning about calling the function multiple 

times while iterating over the same variable. This could not be fixed, and running the 

code afterwards without the parallel workers also kept that error. 
 

• Using Dask Bag: 

The Dask package allows datasets to be split into multiple bags. Functions can then 

be performed on the bags in parallel. Dask can only Bag certain kinds of data, and 

images are not one of them. 
 

• Changing from Notebook to Python script: 

Rather than working within the boundaries set by Jupyter Notebook, making the 

notebook a Python Script and running the script multiple times with arguments 

separate from each other in parallel can work. It will bypass the problem caused by 

the multiprocessing package too. What would need to be kept in mind is that the 

output files all have different names before being concatenated, as it would cause 

problems if similar-named files are stored in the same folder. This possibility has not 

been fully worked out yet. 
 

5.3 Conclusion 
In summary, our findings pointed out that each software tool has its own advantages 

and disadvantages. CellProfiler is the best analysis tool performance-wise, but it 

can't be improved, unlike Jupyter Notebook. Although we haven't been able to finish 

adding parallelism to Jupyter Notebook, we expect parallelized Jupyter Notebook 

scripts to be at least as fast as CellProfiler app. In regards of usability and FAIR, 
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Galaxy is the best analysis tool ad it's designed with sharing in mind. However, 

Jupyter Notebook has the most promise of the three software tools tested. The fact 

that it can be combined with any other script gives it a potential that can’t be reached 

with the CellProfiler app. While CellProfiler app is open-source, it can't be adjusted 

as easy as a Jupyter Notebook cell can be altered. Galaxy has a similar problem to 

the CellProfiler app, where new modules are dependent on Galaxy Toolsheds, which 

are maintained by a different party. Notebook scripts can be added to automatically 

save results online as well. 

 

For future work we therefore recommend improving Jupyter Notebook and adding 

parallelism to the notebook, or changing it to a Python Script and working from there 

to improve the performance. 
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