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1 Introduction

Creativity is the ability to create that which does not exist [33]. Most times creative outcomes
stem from those which already exist, but brings about a new linkage which generates new
outcomes [7]. The multidisciplinary field of Computational Creativity explores the idea of how
computational systems could be made to produce creative outcomes to unbiased observers
in particular tasks [17].

A growing sub-field of Computational Creativity is the use of computational systems to
generate music. Such systems are called Music Generation Systems (MGS) [10]. The answer
to the question “can computers be creative?” is the origin of Computational Creativity and
it is not directly answered through the course of this work, instead a domain of creativity
within MGS is explored, where a computational system is setup to aid its user in being
creative, thereby, bringing about creativity. The concept of an AI agent providing suggestive
aid to its user is known as co-creativity and the AI agent is known as a co-creative AI [25].
This work explores the development and assessment of a co-creative AI in the MGS field of
Computational Creativity.

The challenge faced with a computational creativity task is the evaluation of the outcome.
Creativity is subjective to the unbiased observer, and mathematical evaluation of the outcome
is not enough [59], thereby, human evaluation tasks are performed along with mathematical
evaluation to give the needed assessment.

Singing Voice Synthesis (SVS) [45, 30, 57] is a sub-field of MGS concerned with the
generation of singing voice, synthesizing vocals from lyrics and at times with acoustic features
(such as pitch, timbre, etc), and is an equivalent task of text-to-speech (TTS) but for singing
voice. Compared to speech, singing voices have a complex prosody requiring SVS to take
control of the duration and pitch of the vocals [62] unlike in TTS. Lyrics alignment with
vocal separation [57, 15, 69, 60], acoustic modeling using deep neural networks [14, 37, 45],
and parametric synthesis with spectrogram features [6, 32], are previous works in the rapidly
growing field of SVS.

These tasks utilize high quality audio data for training, and require data to be annotated
for the specific purpose of the SVS system such as labelling lyrics with the timestamped
audio for lyrics alignment, or annotating the fundamental frequencies of the audio for pitch
manipulation. Acquiring these datasets are challenging because they require human anno-
tation and are scarcely available to the public. Music datasets are generally comprised of
instrumentals, vocals, silences, and noise all together [4, 19]. To generate the sung vocal
parts of a song without manual recording along with its manual labelling incurs cost.

Several challenges arise with developing an SVS system, as well as difficulties from the
subjective goal of creativity. These include:

• Datasets containing audio with aligned lyrics are not available and have to be created
from mining data from the Web. Websites 1 containing files of lyrics in an LRC format
(LyRiCs) giving timestamped sentences of the lyric text are available. But this is not
usable considering the requirement for alignment of also the words in lyrics and not
only sentences. DeepSinger [57], is a SVS system that mines data from the Web. But
their work is currently unavailable to the public.

• A single database with both audio and lyrics in the English language are not available.
Therefore audio files will have to be matched with lyric files using the title and artists

1https://www.megalobiz.com/
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of the tracks, which is challenging due to the inconsistencies in labelling across different
platforms.

• Music websites contain song files with both the instrumental and the vocal parts to-
gether. SVS systems cannot be trained on such data because of the large quantity of
noise. Therefore the removal of noise by separation of the instrumentals for each audio
is necessary.

• After separation of the noise from songs, the vocals may contain large duration of
silences. On a phoneme-level, silences are sometimes part of a single phoneme which
causes difficulties in structuring of sentences.

• The automated alignment of audio with lyric texts is challenging due to the variations in
vocal duration, pitch and tone of similar audios. State-of-the-art deep neural networks
to automate lyrics alignment are performed usually at the sentence and word-levels. To
achieve accurate alignment on a phoneme-level with web crawled data requires careful
signal processing of the audio files.

Due to the developments in the field of Computational Creativity and SVS, an idea of a
co-creative AI to suggest vocals given lyrics is possible to explore. The idea is to develop a
system that suggests multiple vocals as audio containing a given phrase or lyric, each with a
different flow or melody. A “flow” or melody of the vocals is what differentiates two vocals
with the same lyrics. Even songs that are covers of an original song sound different than the
original because of the unique way it is sung.

This task takes a computational creative approach, different from previous SVS systems
since the flow of the vocals is derived from a novel evolutionary method and is uncontrolled
by any audio feature such as fundamental frequency, tone or duration. These features are
an additional cost to annotate in audio data and an “overhead free” approach is desirable.
Genetic Algorithms (GA) [29] have creative potential because of the crossover and mutation
operators [31] providing the ability to combine significant solutions to create new linkage.
Although its use is not standard in SVS, for the purpose of providing creative outcome, a
novel genetic algorithm method is developed to generate original sounding vocal flows.

There are challenges that arise due to the creative solution of this task:

• Designing a creative model using genetic algorithms requires a good representation of
the data for the specific task. This dictates the variables of the fitness function [31].
Due to the computational creative approach, there does not exist such a fitness function
for this task. Developing aforesaid model is challenging.

• A method of mathematical evaluation for comparison of similar audio outputs is to
be developed. Mathematical evaluation of the results requires signal processing of the
variable lengths of the output files. When comparing similar audios, discrepancies in
the duration of the vocals can influence their correlation.

• Evaluation of the outcome has to done with a human observation and not only mathe-
matical estimation due to the subjectivity of the task. Development without a standard
measure is often difficult.

This work introduces VocalFlows, a co-creative singing voice synthesis AI agent to suggest
vocal flows from an input lyric developed from scratch using data mined from the Web. To
overcome the aforementioned challenges, the following steps are included in the pipeline of
VocalFlows:
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• Web crawling. The most popular songs of the year are collected from the Web irre-
spective of the language along with their lyrics, both from different sources.

• Vocal separation. The songs are separated from their instrumental parts to extract
their vocal parts, using a source separation model called Spleeter 2 [27].

• Filtration and processing. Only data with matching title and artist of the lyrics and
songs are filtered. The retained vocals and corresponding lyrics are checked for English
language using Polyglot 3 [2]. The lyrics are processed to phonemes using a grapheme
to phoneme converter [49].

• Alignment of lyrics. The lyrics and corresponding audio are aligned with a pre-trained
alignment model [60] at a word level and a phoneme level.

• ALT Fitness function model. An automatic lyrics transcription (ALT) model was devel-
oped based on the Deep Speech 2 [3] model used for speech recognition [65] leveraging
the training on the collected dataset.

• Genetic Algorithm. A representation for the genetic algorithm (GA) was developed
using an index dictionary for the phonemes in the English language according to the
CMU pronouncing library 4 and the GA was run to produce the vocal suggestions.

• Evaluation. Both subjective and objective evaluation methods were developed to anal-
yse the results of the VocalFlows AI.

Experiments were conducted on the ALT model, as well as the GA model to assess the
effectiveness of VocalFlows AI. Different methods of generating results with VocalFlows in
terms of words and sentences are also observed. Human evaluation was conducted through a
questionnaire to assess the quality in terms of the recognition of the results. The study shows
that VocalFlows can successfully generate suggestive flows to songwriters as a co-creative AI
with data mined from the Web.

The contributions of this work are as follows:

• The first co-creative SVS system to suggest vocal flows developed from data collected
without any human interaction and annotation.

• A new music dataset of the top 500 popular songs of the year as audio files along with
lyrics in a csv file matched with title and artist.

• A new dataset with pairs of phonemes and their corresponding aligned audio files.

• A simple and efficient ALT model, that can transcribe the lyrics of a vocal input.

• A co-creative VocalFlows GA model the generates suggestions of vocal flows given an
input lyric uncontrolled by pitch, timbre, and singer identity.

All the contributions are made available online5, along with the code to replicate datasets
with options to reduce its size for the sake of public usage.

The remainder of the thesis is structured as follows. In Section 2 the related work are
discussed. The collection of the datasets and the pipeline of the VocalFlows AI is explained

2https://github.com/deezer/spleeter
3https://github.com/aboSamoor/polyglot
4http://www.speech.cs.cmu.edu/cgi-bin/cmudict
5https://github.com/noelvasanth/VocalFlows
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in Section 3. The experiments performed using the VocalFlows AI are described in Section
4 and their results in Section 5. A reflection on the results, limitations and the future work
is discussed in Section 6. Section 7 concludes this thesis.

2 Related Work

In this section, the key components of text-to-speech (TTS), lyrics alignment, singing voice
synthesis (SVS), speech recognition, and genetic algorithms (GA) are introduced. The related
works on these fields are discussed to give insight into the techniques used in this work.

In order to understand how different parts of the VocalFlows system work, their back-
ground is described. Singing voice synthesis systems are based on text-to-speech systems
where the similar tasks performed on speech are leveraged for singing voice. The related
work of TTS and SVS systems are given in Section 2.1 and Section 2.2 respectively. The
recent developments of lyrics alignment methods discussed in Section 2.3 accurately align
text at a phoneme-level allowing for the development of the automatic lyrics transcription
(ALT) model, which is differentiated from previous ALT models in Section 2.4. Insight is
shown into the choice of evolutionary methods for the VocalFlows AI and their progress over
the years in Section 2.5.

2.1 Text-to-Speech

Text-to-speech systems [46, 47, 56] convert given text input to natural and intelligible speech
output. TTS is a growing field, which brought about the growth of SVS systems. Due to the
development of artificial intelligence and deep learning, TTS systems are nowadays mostly
neural based systems [61, 56, 35]. The pipeline of neural TTS begins with the conversion of
sequences of text to linguistic features by text analysis, which are then fed to an acoustic
model to produce acoustic features such as mel-spectrograms, which vocoders transform into
speech waveforms. Neural TTS have also developed from learning short sequences using
vocoders [46, 46] extending to larger sentences with transformers [35]. TTS systems are the
basis for SVS systems. SVS systems follow a similar pipeline containing components of TTS.

2.2 Singing Voice Synthesis systems

Previous SVS systems were initially made using hidden Markov Models (HMM) [1], but
with the advancements in deep learning they make use of neural based synthesis techniques
[6, 57, 37, 30, 14] for synthesizing high quality singing voice. The vocoder architecture of
TTS [47, 56] pre-trained on speech is used as a foundation over which SVS vocoders are
trained on music data [57, 30, 14]. Adversarial networks are also used as vocoders trained
on spectrograms [12, 11]. The SVS systems and TTS systems take audio features as musical
score to their models for singer-independent high fidelity.

Jukebox [22] creates themed singing voice and music by training on conditioned informa-
tion such as artists or genre. Jukebox uses three vector-quantized variational auto-encoders
(VQ-VAE) for three levels of coarseness on the audio information captured: (1) a coarse top-
level encoding that is able to learn structure and patterns of long sequences, (2) an mid-level
encoding that learns more detail within the audio input, and (3) a bottom-level encoding
that learns granular and highly detailed information of the audio input. Using transformers,
a combination of the three encodings are decoded sequentially with conditioned informa-
tion such as artists and genres to produce original music in the style of the artist or genre.
For lyrics conditioning the transformers were provided with the entire songs lyrics and were
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trained to predict a lyrics position within the music thereby learning to predict alignment.
This SVS system successfully produces entire songs with control on lyrics, artists and genre.

DeepSinger [57] uses data mined from the web for and the initial stages of data extraction
such as separation of singing voice with the instrumentals are done similarly with VocalFlows.
DeepSinger uses two transformer models: (1) Bi-directional LSTM encoder-attention-decoder
model for alignment of the lyrics and the audio based on WaveNet architecture [47]. This
model is trained with guided attention to learn the position of the text with the position of
the audio using a diagonal mask to reduce the loss. With the accurate positioning of lyrics,
the duration of each word in the song is also extracted. (2) a feed-forward transformer singing
model based on FastSpeech [56] that takes the lyrics, duration and the pitch as an input
along with the reference audio to generate singing voice audio that contains the input lyrics
that is similarly sung according to the reference input. VocalFlows does not use controlling
parameters such as pitch and a reference vocal input instead it uses an inspiration set to
sample audio bringing about creative linkage via evolutionary algorithms.

With the exception of DeepSinger [57], human recordings and/or annotations are collected
for high quality datasets. Publicly available SVS systems are not trained only on English
languages [32, 30, 14]. A recent survey on neural SVS systems [16], discusses a lack of unified
datasets unlike in TTS, but show the rate of growth of these systems. VocalFlows does not
use a musical score to train data and unlike any previous standard work, uses a genetic
algorithm model to synthesize vocals. Besides this, VocalFlows also differs from DeepSinger
in web crawling and provision of the dataset for public use.

2.3 Lyrics alignment

Without the alignment of text and audio, TTS and SVS systems cannot be trained. This is
a key component of such systems that require the annotation audio data with text and their
corresponding timestamped occurrences.

The work of [34], use cumbersome human annotations for alignment. Previous TTS
works use HMM based Montreal Forced Alignment (MFA) [40] leveraging speech recognition
from the Kaldi toolkit [54] to observe the timing of recognised text from speech. Due to
the complex prosody of sung vocals alignment is done differently with their lyrics, as speech
recognition alone is unreliable for singing voice. In [14], TTS speech recognition models are
trained over singing voice data for word-level and phoneme-level alignment using MFA. The
scarcity of audio-lyrics alignment datasets have made it difficult to leverage this method.
Data augmentation techniques augment singing voice datasets to bring about improvements
in lyrics transcription on pre-trained speech recognition models [67].

The recently published DALI dataset [41] contains labelled data of audio spectrograms
and corresponding text, which has led to SVS systems leveraging spectrograms for alignment
[57, 60, 30]. These use encoder-attention-decoder based transformer models to align lyrics
with spectrogram input.

The works of [60] uses dynamic time warping (DTW) and attention jointly with the sepa-
ration of vocal and accompaniment making precise phoneme level alignment and is similarly
used in VocalFlows. The difference is in VocalFlows, the accompaniment or instrumental
parts of the audio file are not given to the alignment model.

2.4 Automatic Lyrics Transcription

Automatic lyrics transcription (ALT) is the similar task of Automatic Speech Recognition
(ASR) for music audio instead of speech audio [20, 18, 21]. Previous works heavily rely on

Page 6 of 31



the Kaldi ASR toolkit [20, 18] as it provides a language model and an acoustic model. The
use of Time-Delay Neural Networks (TDNN) [51] is preferred for this task over RNNs due
to the ability of modeling long-term context, to predict the lyric. With the development
of self-attention [63], many language processing tasks have used attention based models,
including ASR tasks [56, 65], which has catalysed its development. Similarly with ALT
models, attention based TDNNs [18, 20] produce high-quality results.

These works are not simple and efficient to leverage, since they have the Kaldi depen-
dency. The process flow of the task of ALT is to develop a pre-trained ASR model by
leveraging the same over music data. ALT models were shown to produce quality results6,
and an ALT model based on the Deep Speech 2 [3] ASR model was developed and used in
VocalFlows trained on the aligned vocal-audio data.

2.5 Computational creativity

The field of Music Generation Systems (MGS) [28, 10, 8], create musical content either
autonomously (all by the machine), or as an assistance to human musicians. The results of
a exhaustive survey [8] of MGS systems observe that the key components are representation
of the data such as MIDI, waveform, spectrogram, symbolic, or textual, and the architecture
of the networks such as CNNs, RNNs, LSTMs, GANs, Evolutionary algorithms such as
Genetic algorithms (GA), or also Markov chains. Depending on the task, the representation
is chosen, and the MGS model can be determined.

Genetic Algorithms [29], are used in MGS systems because they do not require the context
of the task as they only require a fitness function and an input representation [10]. The
earliest and most popular GA for MGS was GenJam [5]. It is an MGS system developed
using GA for Jazz music assistance originally having a human intervening as the fitness
function to discriminate whether the outcome was good or bad. Later, a fitness function
developed as a set of rules for harmonization of melody was performed by a GA [52]. With
development of probabilistic methods, the use of Markov chains were used in the fitness
function [39], and with recent development of deep learning, neural networks are now used
in the fitness functions [42, 68]. VocalFlows incorporates an ALT model as a fitness function
with a combination of text and audio waveform representation in the genetic algorithm.

The VocalFlows AI is a neural SVS system that utilizes a computational creative MGS in
the form of a GA. The ALT model used in the GA is trained on aligned lyrics data mined from
the web. The background work demonstrates data mined from the web can produce quality
singing voice with a reference vocal such as in DeepSinger [57]. To achieve understandable
or recognisable singing voice without references and with end-to-end open source data is the
aim of the VocalFlows AI. The methods incorporated are discussed in Section 3.

3 Methodology

This section is divided into two parts. Section 3.1 describes the methods used to collect and
process the website data. Section 3.2 explains the pipeline of the VocalFlows AI detailing
each step in the process.

6https://www.assemblyai.com/blog/how-well-does-ai-transcribe-song-lyrics/
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Figure 1: Pipeline for the acquisition of the Top 500 songs dataset used in VocalFlows

3.1 Dataset

For the collection of songs with metadata such as title, artist, and lyrics, websites with APIs
such as Musixmatch7 provide lyrics synchronised with the audio for companies like Spotify8.
The goal is to obtain such a dataset with synchronised lyrics and corresponding audio, but
the Musixmatch API is not entirely open source as only 30% of the song lyrics are provided
with synchronisation for developer use. Music data crawling could not be achieved through
music APIs for developers, but had to be done through websites. To the best of my knowledge
MiniLyrics9 was the only site that had synchronised lyrics, but the website went down on
May 2021. Other websites such as Megalobiz10, LyricsWikia11, Songlyrics12 provide LRC
(LyRiCs) file format providing limited availability of synchronised lyrics for English songs
and are not reliable. There do not exist reliable open source music databases or platforms
that can provide both synchronised lyrics and audio files in English for any song of choice,
and its creation was necessary.

Two types of datasets are formed through collection of audio and lyrics via Web crawling
methods. These methods are discussed to give insight on the challenges of collection of music
data for SVS systems. The two datasets created are:

1. Top 500 songs dataset - consisting of music separated vocal audio and corresponding
lyrics.

2. Phoneme-audio pairs dataset - dictionary of 39 English language phonemes as keys and
their corresponding vocal segments derived from the top 500 songs dataset.

3.1.1 Top 500 songs dataset

To begin with the collection of songs, it is necessary to know what songs to collect. For
this purpose a list of the top 4000 popular songs of 2021 was observed in the form of a

7https://developer.musixmatch.com/
8https://open.spotify.com/
9https://minilyrics.com/

10https://www.megalobiz.com/
11http://lyrics.wikia.com/
12http://www.songlyrics.com/
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No. of songs Duration of songs Memory

466 26.3 hrs 8.7GB

Table 1: Summary of the statistics of the top 500 songs dataset.

Spotify playlist13 organised by a radio station in the Netherlands14. The playlist contained
song metadata such as title and artist collected using the Spotify API15 for developers. The
API also provides the song URL for each song in the playlist. The playlist contained 3960
songs. With the title and artist metadata, the song could be found on the Genius API16 for
retrieving the song lyrics. Each song’s lyrics were obtained using the Genius API provided
the title and artist conditions were met.

Non-alphanumeric characters were stripped from each title and artist text of the Spotify
playlist data to have the highest success of matching on both platforms due to inconsistencies
in the names of the songs and names of the artists between platforms. After processing, 3556
out of 3960 songs could be matched and the lyrics were obtained for those songs. There were
404 songs with inconsistent metadata. Using the song lyrics, the language of the song could
be determined. To the song metadata, the language was also added. It was found that 297
songs were not in English language, and the remaining 3259 songs were selected. The lyrics
are processed to convert numbers into words, for example 1973 to ’nineteen seventy three’.
All special characters were removed from the lyrics, to form a word corpus. The processed
lyrics were also passed through a phonemizer17 to acquire the phoneme for each word in the
word corpus of each song. The phoneme corpus is collected to have its availability if required
but was not used in VocalFlows.

Using the song URL metadata, the songs could be downloaded by using the spotDL
API18. The spotDL API works by taking a song’s spotify URL, and looking up the song’s
Spotify metadata on YouTube Music from where the song is downloaded. Only the first
500 songs of the 3259 English songs were downloaded of which 480 songs were successfully
obtained without errors. The dataset occupied 8.9GB of memory for storage. Downloaded
audio files contain both background instrumentals and vocals. Each audio file is separated
into their respective vocals and accompaniment. Both are collected for the purpose of making
a complete dataset. The dataset contains approximately 26.3 hours of English vocal audio
data, double the amount of English vocal audio data used in DeepSinger [57]. If all the 3259
songs were downloaded the method has the potential to contain 162.95 hours of English vocal
audio data, which is more than any dataset that is publicly available online.

With the possession of the words and the vocals, the synchronization of the two could be
made possible. The lyrics aligner [60] model was trained on the MUSDB18 [55] dataset with
the lyrics annotated manually. The model aligns vocals to the phoneme-level and supports 39
phonemes according to the ARPAbet notation given in the CMU pronouncing Dictionary19.
The pre-trained model of the lyrics aligner was used in VocalFlows, with modified functions
to suit the collected data. The model was not fed with the source audio data for internal
separation, instead pre-separated vocals were used.

13https://open.spotify.com/playlist/0JSRbELaotklnZODkGRyHf
14https://www.radio10.nl/
15https://developer.spotify.com/
16https://genius.com/developers
17https://github.com/bootphon/phonemizer
18https://github.com/spotDL/spotify-downloader
19http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Figure 2: Process of the derivation of the Phoneme-audio pairs dataset used in VocalFlows

The model uses Dynamic Time Warping (DTW) combined with an attention mechanism
to align lyrics. DTW helps with aligning different duration of audio belonging to the same
word or phoneme by fitting the alignment path to a time sequence that matches the audio
by conditioned trials. This is an important aspect that differentiates speech processing and
singing voice processing. In speech processing the prosody and duration of spoken words are
generally consistent between different instances of audio. The duration of singing voice for
each word varies between different instances of singing audio, and DTW stretches or shrinks
the vocals to a constant duration. The alignment model provided the necessary onsets of the
word and phonemes in terms of the frequency frame, which was converted to the timestamp
of the audio thereby observing the synchronisation of the lyrics and audio. A total of 466
were aligned without errors, and is the total number of aligned words and phones with vocal
audio contained in the dataset. This method of obtaining the top 500 songs dataset is shown
in Figure 1.

3.1.2 Phoneme-audio pairs dataset

The top 500 songs dataset described in Section 3.1.1, made available phoneme onsets for
each of the 466 songs. There are only 39 songs in the English ARPAbet notation according
to the CMU pronouncing dictionary as discussed previously. A new dataset which was used
as the inspiration set [58] for VocalFlows was derived from the top 500 songs dataset, and
is named Phoneme-audio pairs dataset. The 39 phonemes are used as keys in a dictionary,
whose values are every occurrence of the corresponding phoneme in the 466 songs.

This process is shown in Figure 2. An example of the word ‘Day’ is represented with
phonemes ‘D’ and ‘AY’ as can be seen in Figure 2. Here, the phonemes and words are along
with their start time in the vocal file. The phoneme ‘D’, along with all vocal metadata such
as the vocal track filename, filepath to find it in the top 500 songs dataset, start time, and
duration of audio segment for that corresponding start time in that vocal file is recorded
and stored as the value to the key ‘D’ in the phoneme audio pairs dictionary. The same is
done for the next phoneme ‘AY’ and is repeated until all the phonemes in that vocal file is
recorded into the dictionary. This is repeated for all vocal files. A total of 153, 941 audio
segments for the 39 phonemes are observed. The distribution of the count of audio segments
per phoneme is shown in Figure 3.
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Figure 3: The statistics of the Phoneme-Audio Pairs dataset with respect to the count of
audio segments per phoneme

It is observed that rarely occurring consonant phonemes have a lower amount of represen-
tation within the top 500 songs dataset than frequent vowel phonemes. The phoneme-audio
pairs dataset is the pairing of the vocal files with their corresponding phonemes and is used
as the inspiration set in the VocalFlows model.

3.2 VocalFlows Pipeline

The phoneme-audio pairs dataset described in Section 3.1.2, is the inspiration set that is used
in the VocalFlows model. The most basic model that can be developed from this inspiration
set is described under Section 3.2.1 as the baseline model. Description of the VocalFlows
model is given in Section 3.2.2.

3.2.1 Baseline Model

A word is a sequence of phonemes. For example, the word “today” can be broken up into four
phonemes: T , AH, D, and AY . From the inspiration set, each phoneme has a set of audio
segments that can be used to audibly represent that phoneme in a given word or sentence.
The baseline method includes the random selection of one audio segment corresponding to
the given phoneme, and the combination of such audio segments to generate the word. Hence,
in the example of the word “today”, four audio segments are randomly selected from the
inspiration set, one for each phoneme and are combined to form the word “today”. The audio
features such as duration, timbre and pitch, are inherent to the combined outcome and are
not manipulated.

3.2.2 VocalFlows Model

After the previous steps of web crawling and obtaining the top 500 songs dataset as well
as the inspiration set, a computational creative approach is used to design the SVS system
of VocalFlows in the form of a genetic algorithm (GA). The model is given a phrase or
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a lyric as a text input, the text input is processed and converted to words, each word is
phonemized, and each phoneme is a key in the inspiration set from which an audio segment
can be obtained. These segments represent the input to the VocalFlows GA. For example,
for lyric “i love you”, the words of the lyric are split up as “i”, “love”, and “you” and the
phonemes are AY , L AH V , and Y UW . For each phoneme, an audio segment from the
inspiration set is selected randomly, just as in the baseline model.

The genetic algorithm consists of the following components:

1. Inputs: A list of audio segments that are chosen randomly to represent the respective
phonemes that make up the given word. The index of the audio segment in the list is
the same as the index of the phonemes in the sequence with which they form the word.
For example, for the word “love”, the input is a list given below in (1).

[< Lvocal >, < AHvocal >, < Vvocal >] (1)

This represents an individual in the population of the GA. The population can be of
size N .

2. Output: Similar to the input, a list of audio segments that are processed by the GA.
An output individual is represented the same as given in (1) above, for the given word
“love”. The size of the output population is also N , each individual having the highest
fitness of the evolutionary process.

3. Fitness function: An automatic lyrics transcription (ALT) model that takes the pop-
ulation as input, combines it into one audio, and transcribes the audio into lyric. The
transcribed lyric is checked against the ground truth lyric and the following are re-
turned:

(a) Character error rate (CER): The Levenshtein distance [66] between the hypoth-
esized or transcribed text and the ground truth text on a character-level. The
equation for character error rate is given in 2 below:

CER = Sc + Dc + Ic

Nc
(2)

where Sc is the number of characters substituted, Dc is the number of characters
deleted, Ic is the number of characters inserted, Nc is the number of characters in
the ground truth text. This represents the edit distance computed by Levenshtein
distance measure, divided by the count of the characters in the text. For example,
if the ground truth text is “i love you”, and the predicted text is “i lob yo”, the
CER will be 3

10 = 0.3. For a single word ”love” and predicted ”lob” the CER will
be 2

4 = 0.5.
(b) Word error rate (WER): The Levenshtein distance between hypothesized or tran-

scribed text and ground truth text on a word-level. The equation for word error
rate is given in 3 below:

WER = Sw + Dw + Iw

Nw
(3)

where Sw is the number of words substituted, Dw is the number of words deleted,
Iw is the number of words inserted, Nw is the number of words in the ground
truth text. This represents the edit distance computed by Levenshtein distance
measure, divided by the count of the words in the text. For example, if the ground
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truth text is “i love you”, and the predicted text is “i lob yo”, the WER will be
2
3 = 0.66. For a single word “love” and predicted ”lob” the WER will be 1.

(c) Decoded prediction: The predicted word or lyric of the ALT model.
(d) Predicted phonemes: The phonemized decoded predictions.

Automatic Lyrics Transcription (ALT) Model was developed using the top 500 songs
dataset audio spectrograms as input and lyrics as the ground truth. The architecture of the
ALT model was based on the Deep Speech 2 [3] speech recognition model. The model prior
to training on the top 500 songs dataset, was first trained on the LibriSpeech dataset [48]
consisting of 100 hours of clean speech data for the speech recognition task. The architec-
ture of the ALT model used in VocalFlows is shown in Figure 4. The model takes audio
spectrogram as input and returns predicted word represented as a one hot encoded vector of
29 characters (26 English language characters and 3 special characters: apostrophe, comma,
and full stop). The model calculates the Connectionist Temporal Classification (CTC) loss
[24] between the continuous temporal input and the target sequence.

VocalFlows Genetic Algorithm consists of the selection, crossover and mutation functions
that are essential to produce creative outcome towards minimising the CER and WER,
thereby maximising the fitness. As discussed previously, the inputs and outputs of the GA are
the population of individuals that are represented as a list of audio segments corresponding
to the phoneme sequence of a given lyric. The fitness function calculates the CER and WER
of the combined audio segments, and the generation of the lyric is evolved through this
iterative process. A budget parameter of 100 iterations is used and the size of a population
N consists of 10 individuals. During the process of the GA, N individuals are recombined
and mutated 2 × 20 × N times to allow for a high chance of the best combination. This is
explained further in the below steps. Therefore N = 10 parents, produces 400 children to
select the fittest from. Other values of N were not further experimented with since N = 10
proved to be a reliable parameter. The core steps of the GA are as follows:

1. Selection: In this step, the top N individuals of the population are selected based on
their fitness values. The WER and CER, and an index score are used as the fitness
values to sort the population. The index score utilizes the decoded phonemes and
the ground truth phonemes marking the index of those decoded phonemes that match
the ground truth. The index score is the sum of all the matched phonemes. For
example, if the decoded phoneme are [TAH] to make the word “to”, and the ground
truth phonemes are [TAHDAY ] to make the word “today”, then the index score is
the sum of [1, 1, 0, 0] = 2, CER would be 0.4, and WER would be 1. The sorting order
prioritizes WER, then CER and then the index score.

2. Crossover: In the crossover step, the input population is considered as the parent
population, and the children are the recombined versions of the parents after crossover.
During crossover, the number of crossovers are parameterized to be 10×N , where N is
the size of the parent population. For each of the 10 × N iterations, two parents from
N , are randomly selected and a single point crossover at a randomly chosen point with
crossover probability of 0.5 is performed forming two children. Therefore, the total
output children will be of size 2 × 10 × N , and the output size of the population after
this step will be 20 × N + N as the parents are added back into the population with
the children. The process can be seen in Figure 5. The selection of two parents for
the purpose of crossover is not based on fitness of the parents to allow for variability
in melody by random selection. The fitness function prioritizes understandability or
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Figure 4: Shows the architecture of the ALT model used as a fitness function in VocalFlows
trained on the top 500 songs dataset. The internal architectures of the Residual CNN layers
and the Bidirectional GRU layers [3] are shown below the ALT architecture respectively.
The model takes the spectrogram as an input and returns the one hot encoding of the
hypothesized word.
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Figure 5: Crossover and mutation operations by the VocalFlows genetic algorithm for an
example lyric “today”. The phonemes for the lyric “today” are T AH D and AY . The
audio segments for each phoneme is taken from the phoneme audio pairs dataset, and is
represented as Taudio AHaudio Daudio and AYaudio. The grey and white colours are used to
represent different individuals of a population in the crossover operation, and for a mutated
audio segment of an individual in the mutation operation.
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recognition of the lyrics due to its function to discriminate the collective audio as text.
Selection of only the fittest parents for crossover results in the loss of melodic variability
in the resultant samples.

3. Mutation: After crossover, the mutation step is performed on the 20×N size population
with a mutation probability of 0.1. Mutation involves replacing an audio segment of
the individual with another audio segment of the same phoneme from the phoneme-
audio pairs dataset. The output of this stage is the same size as it’s input, that it,
20 × N . The process is shown in Figure 5.

After mutation, the population is evaluated for fitness and the top N individuals of the
population are selected through the selection step. Fitness conditions such as the CERavg ≤
0.2 and WERavg ≤ 0.3 are checked for in every iteration of the GA. If these conditions are
met, or if the budget constraints are exhausted, then the GA converges to an outcome.

4 Experiments

The top 500 songs dataset was used to train the Automatic Lyrics Transcription (ALT)
model. For each song in the dataset, the words were used as the labels and the word onsets
were used to extract the corresponding waveforms. The waveforms were converted into
spectrograms and were used as the training data. The training data consisted of 134, 960
vocal waveforms for 6, 140 unique words, which was split into train and test sets by 70%
and 30% respectively. The training loss, learning rate, CER, and WER per iteration is
recorded and shown in Figure 6. For training the ALT model, the hyperparameters were set
to 5 × 10−4 as the learning rate, 10 as the batch size, and 10 as the number of epochs. On
evaluation on the test set, the final test set CTC loss [24] values were found to be 0.5595,
average CER was 0.1578 characters per text, and average WER was 0.4669 words per text,
that is a 46.7% word error rate, which is comparable with the state of the art. Training was
performed on a Tesla K80 GPU with 12GB RAM and took 30 hours to converge.

The VocalFlows genetic algorithm (GA) was run to generate singing voice for the input
lyrics. When the GA converges, the result is a suggestion of N vocal samples. The vocal
samples can be produced by four possible methods mentioned below. These methods depend
on the way in which the ALT model is trained and the type of outcome generated by the
GA.

1. Phrase-to-Phrase: The ALT model is further trained on entire phrases and the GA
generates phrases as one output.

2. Phrase-to-Word: The ALT model is further trained on entire phrases and the GA
generates words from the same phrase one by one. The words generated are combined
together to produce the output.

3. Word-to-Phrase: The ALT model is not trained further on phrases, and the GA gen-
erates entire phrases as out output.

4. Word-to-Word: The ALT model is not trained further on entire phrases and the GA
generates words from the same phrase one by one. The words generated are combined
together to produce the output.

The ALT model training explained in this Section, is not trained on sentences or phrases,
but only on words. Therefore, the experimentation on the aforementioned methods, required
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(a) (b)

(c) (d)

Figure 6: Shows the training process of the ALT model from a pre-trained Speech recognition
model on the top 500 songs dataset. The graphs report the (a) CTC loss versus the no. of
iterations, (b) the learning rate versus the no. of iterations, (c) the CER versus the no. of
iterations, and (d) the WER versus the no. of iterations.
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Figure 7: Shows an example of dynamic time warping of 2 vocal samples xreference and yinput

for the same example phrase a good time. Column 1 (left) shows the mel-spectrogram of the
sample and Column 2 (right) shows the MFCC features of the same corresponding sample.
From top to bottom: xreference signal, yinput signal and the y∗

warped signal.

training the ALT model further on common phrases of word length with 3, 4 and 5. In order
to avoid those phrases that are repeated in a song, the count of such phrases is limited to 3
times per song. All the training parameters for training on phrases were kept the same as
the previous parameters when training for words.

4.1 Evaluation

The ALT model was compared to the state of the art (TDNN-F, MSTRE-Net) [18, 21] lyrics
transcription models. The state of the art models have all been trained on different datasets.
The previous work compares models to the average test set WER and hours of song audio
in the train set. This comparison was similarly observed for the VocalFlows ALT model.

The results of the VocalFlows GA are singing voice audios that are suggestions to the
user in terms of recommended melodies for the input lyric. Due to the subjective nature of
the results they cannot be evaluated without human observation. For the purpose of doing
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(a) (b)

Figure 8: Shows the dynamic time warping alignment performed for two signals of an example
phrase a good time with respect to their (a) waveform and (b) mel-spectrograms.

so, human evaluation was conducted via a questionnaire in which 58 participants volunteered
to take part. The questionnaire comprised of the following components:

1. Three audio clips that are suggestions made by the VocalFlows AI were presented to
the participant. As they are recommendations, these audio clips all contain singing
voices for the same input lyric. The participant is asked for the transcription of these
audio clips. The transcription is observed for possible differences in the perception of
the VocalFlows AI result.

2. For the same audio clips, the participants were asked for a recognition score between
1 and 5. The pronunciation of the lyric in the vocal outputs are made without a
reference as seen in Section 3.2.2, therefore the score is used to determine the difficulty
in recognizing the result of the VocalFlows AI.

3. For the same audio clips, the participants were asked for a melody score between 1
and 5. The melody of the vocals are also not made with a reference vocal, therefore
the score is used to discern subjectively how participants value melody in the results
of the VocalFlows AI.

4. An audio clip that is a suggestion made by the baseline model was presented to the
participant for the same lyric as the previous questions. The participant was asked
to mark a recognition score between 1 and 5 for this audio clip. This was done for
the purpose of comparison on the same input given to a baseline model with random
selection and the VocalFlows AI.

5. The same set of 4 questions were repeated for 4 different input lyrics.

6. The participant was asked for their music involvement in terms of playing an instrument
or music production or singing. This question gives an idea of their knowledge about
music and whether they find the results of the VocalFlows AI melodic and recognizable.

The results of the VocalFlows AI were also subject to objective evaluation by testing
the similarity of the results with the top 500 songs dataset. The input lyrics used in the
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experiments were used to extract the similar audio clips as an entire phrase from the dataset.
This was possible since common phrases used in the dataset songs were used as inputs. Audio
fingerprinting [9] is a technique that is used to recognize unlabelled songs by comparing their
similarity against a database of songs or song metadata irrespective of the audio format.
These are also known as Content Based audio Identification systems (CBID). CBID systems
have matching algorithms that are used in linking unlabelled songs with the labelled match.

Mel-frequency cepstral coefficients (MFCC) [64] are audio features that are commonly
used in CBID systems for audio fingerprinting [53, 36, 13, 23]. Techniques shown in voice
recognition CBID systems [43] are similarly followed to develop a matching algorithm. This
involves the following steps:

1. The unlabelled audio U and the labelled audio V are inputs to the matching algorithm.

2. Twenty six MFCC audio features [26] are extracted for both the audio. This is shown
in equation 4. Here, X represents the audio U or V , x represents the MFCC features
of shape 26 × tX , where tX represents the no. of time intervals or the duration of the
audio X and 26 is the amount of MFCCs extracted.

MFCC(X) = x ∈ R26×tX , (4)

3. The MFCCs of the labelled audio v ∈ R26×tV are aligned with that of the unlabelled
audio u ∈ R26×tU using dynamic time warping (DTW) [44]. The DTW process requires
an additional parameter to use as a distance measure. For this the cosine distance was
used. The DTW returns the cost matrix, and the alignment path. The alignment
path can be used to stretch or shrink the labelled audio V at different time intervals
producing V ∗ to match the unlabelled audio U .

4. The two audio signals V ∗ and U , both having time duration of tU , can now be compared
using cross correlation to find the similarity. The similarity score is given as the Pearson
correlation coefficient [50].

5. With “thresholding” of the similarity score, a classification of similar audio can be
made.

Using this method, audio fingerprinting or CBID system is developed to match similar
audio together. The outputs of the VocalFlows AI and select audio segments from top 500
songs dataset are matched and a similarity score is measured. It can be seen in Figure 7 the
process of dynamic time warping of an input signal yinput to be stretched to the size of a
reference signal xreference before finding the similarity measure between the two. The signals
are examples of phrase a good time generated by the VocalFlows AI. The resultant y∗

warped

signal has the duration of the xreference signal allowing for cross correlation. The waveforms
of the same example are shown in 8 (a) to show the dynamic time warping process. The grey
lines in the image show the points of the signals that are to be aligned with one an another.

5 Results

On comparing the VocalFlows ALT model with the state of the art models: TDNN-F [18],
and MSTRE-NET [21], it is observed that the VocalFlows ALT model performs similarly.
This is shown in Table 2.

The task for which the VocalFlows ALT model was trained for differs from that of the
state of the art models, as it was required to only discriminate words generated by the GA
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Model WERavg Dataset Hours N-gram

TDNN-F 42.3% DSing1 15.1 3

MSTRE-NET 42.1% DALI 156.0 4

VocalFlows ALT 46.7% Top 500 songs 18.4 1

Table 2: Shows the comparison between three ALT models: TDNN-F, MSTRE-NET and
VocalFlows ALT on the basis of the average test set WER %, training dataset used, hours
of song data used in training and the n-gram or number of words in the labelled text used
in training.

and not short phrases. The state of the art models were trained on N-gram text corpus
that were larger than 1, which implies that the model was required to transcribe lyrics of
word lengths 3 and 4 instead of individual words. The WERavg % is lower with 46.7% than
the TDNN-F (42.3%) and MSTRE-NET (42.1%) models as can be seen in Table 2 but for
different reasons in both cases.

The DSing1 and DALI datasets are human annotated and high quality of song recordings
data, whereas the Top 500 songs dataset is obtained from websites and is aligned without
manual effort. Compared to MSTRE-NET being trained on 156 hours of singing data, the
VocalFlows ALT model is only trained on 18.4 hours. The TDNN-F model and MSTRE-
NET model both train on labelled text that allows for contextual inference. By training only
on words due to the specific requirement of the task, the context information between words
is not available.

The four methods involving input to the ALT model and the generation of the vocal
samples of the VocalFlows GA was experimented on. These methods are phase-to-phase,
phase-to-word, word-to-phase and phase-to-word. The same lyric was used to test these
four methods, the process of which is explained in Section 4. An objective evaluation of the
same four methods were carried out and the results can be seen in Table 3 for the phrase
“i love you”. The experiment compares the average similarity of the audio waveforms of the
commonly sung phrase “i love you” extracted from the top 500 songs dataset, produced by
the VocalFlows AI and the combined average similarity of both the dataset and the model
output.

It can be seen that the method that has the highest correlation with the dataset, as well
as within the outputs of the model is the word to word method. The samples produced by the
four methods were manually observed for subjective evaluation. The word to word method
produced better enunciated words in the composition, but the remaining had no noticeable
difference in recognition, or melody. The word-to-word method was found to converge faster,
with clearer audio for the words in the composition and was used as the standard method.
This method also allows for the combination of words that do not exist in the dataset.

The results of the objective evaluation for two sets of input phrases are shown in Table 3.
Set (1) exists in the top 500 songs dataset and their average similarity scores are calculated
in addition to the output of the VocalFlows AI. Set (2) consists of phrases that do not exist
in the dataset and was produced only by the VocalFlows AI. The similarity score between
two signals defined by their cross correlation coefficient, informs of the signals relation in
terms of their waveform. The maximum score that can be achieved is 1 and is mostly the
case if the two signals being compared are exactly the same. For this purpose the same
signals were never compared.
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(Set) Phrase/Lyric corrdataset corrV ocalF lows corrcombined

(1) a good time 0.683 ± 0.103 0.735 ± 0.072 0.694 ± 0.105

(1) i love you

phrase to phrase

0.705 ± 0.076

0.723 ± 0.018 0.708 ± 0.072

phrase to word 0.722 ± 0.001 0.707 ± 0.074

word to phrase 0.708 ± 0.008 0.708 ± 0.072

word to word 0.767 ± 0.056 0.716 ± 0.075

(2) you are my life N/A 0.745 ± 0.028 N/A

(2) today is a beautiful day N/A 0.739 ± 0.048 N/A

Table 3: Shows the cross correlation similarity scores (max similarity = 1) of different phrases
sung by the VocalFlows AI. Two sets of phrases were chosen: (1) phrases that exist in the top
500 songs dataset and (2) phrases that do not exist in the top 500 songs dataset. The scores
are calculated between audio found within the dataset under corrdataset column, between
audio produced by the VocalFlows AI under corrV ocalF lows column, and for the combined
audio under the corrcombined column. For the phrase “i love you”, the results of the method
objective experiments explained in Section 4 are also calculated.

The average similarity score gives an idea of how variation in melody and enunciation
of the same phrase between multiple signals are correlated. If the phrase has a lower score,
then it implies that the signals sound differently from each other, although they sing the
same phrase. Therefore this score is not an ideal measurement for capturing differences in
melody, but it provides information on recognition of the signals. If the average score is high,
then their similarity in terms of recognition of the phrase is high, and it is assumed to have
inherent melody variations. Table 3 shows that the comparison of the similarity scores. The
dataset similarity scores are lower due to the higher variation in melody of the songs. Since
the ALT model is trained to transcribe words, a higher fitness vocal is aimed at being more
recognisable.

A questionnaire survey was conducted where 58 participants performed a subjective hu-
man evaluation of the results of the VocalFlows AI and the baseline model. This involved
transcription of the vocals and scoring the outputs on recognition and melody. The results of
which are shown in Figure 9. The participants found that the lyrics were consistently easier
to transcribe on the VocalFlows output than on the baseline output for the same vocal. A
95.6% of participants found the VocalFlows AI to be more recognisable than the baseline
model. Although the lyrics were recognisable, the participants found the vocal suggestions
to be more melodic than recognisable. 73.9% of participants scored melody higher for the
outputs than recognition. When transcribing any song there are always inconsistencies in
results between participants and is not an easy task to obtain accurate results for. For ex-
ample, the phrase “you are my life” was transcribed accurately by 75% of the participants,
but was commonly mistaken for the phrase “you are my love” and “you are my high”.

The results show that phrases that do not entirely exist in the top 500 songs dataset are
equally recognisable and melodic compared to those that do. It was observed that phrases
with multiple syllables are harder to generate accurately by the VocalFlows AI such as in the
phrase “today is a beautiful day” wherein the word “beautiful” was the most inaccurately
identified word. Despite the subjective difficulties, the consensus of the survey is that the
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(a) (b)

Figure 9: Shows the (a) melody score and recognition score of the output of the VocalFlows
AI compared with the recognition score of the baseline model on a scale of 1 to 5, and (b)
percentage of correct responses for the four phrases used the in the questionnaire.

participants agree that the VocalFlows AI produces better outputs than the baseline model
in terms of recognition, and agree that there exists inherent melody in the output samples
of the VocalFlows AI. To assess the credibility of the participants in their evaluation it is
noted that 58% of the participants are involved in making music either by singing, music
production or playing instruments.

6 Discussion

The VocalFlows AI requires the training of the ALT model, which took 30 hours to converge
on 12GB RAM. Networks that are used in Open AIs Jukebox [22] are heavy and require 1.2
million songs of training data with more than 10, 000 epochs to train. Expensive machinery
having GPUs with over 50GBs of RAM would take more than a week to train on. Although
these networks are the state-of-the-art, they are cumbersome to train and they are difficult
to bend to the needs of specific tasks. A big inhibition to the implementation of SVS systems
is the large amounts of data required and the heavy machinery for training. DeepSinger [57]
performs the crawling of web data and uses their dataset for singing voice synthesis similar
to VocalFlows AI, but the dataset or the code to replicate this data is not made publicly
available. Although this work has similarities with VocalFlows AI, the architectures used
in their alignment model and singing model are also computationally expensive and require
large overhead from previous model architectures such as FastSpeech [56] and WaveNet [47]
that DeepSinger is based on.

The evaluation of the results is mainly done through human recognition and melodic
inferences. These results give insight into the use case of the VocalFlows AI. The survey
shows that majority of the participants are musically inclined, but the subjectivity of the
task is more varied than that. Closed silences between words imply faster and shorter
phrases, which is subjectively Hip-hop and Rap music whereas open silences imply longer
and airy phrases, which is subjectively Rock, R&B, and Pop Music. These are the most
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common genres in the top 500 songs dataset, but the results are not conditioned on genres.
The faster vocals are harder to interpret than the longer vocals, which could influence human
recognition, but silences between phonemes are not manipulated by the VocalFlows AI.

6.1 Limitations

There do exist limitations with VocalFlows AI and are as follows:

• The model currently only works with phonemes of the English Alphabet. From the
data collection to the processing of the data, all of the songs are in English. But these
can be substituted for any language. The VocalFlows AI is not language dependent
and is flexible in this respect, provided the lyrics alignment model is also trained on
the required language. However, this has not been experimented with in this work.

• The VocalFlows AI currently only uses a fitness function that is trained on word-level
lyrics recognition and not sentence level. Works such as Jukebox [22] and DeepSinger
[57] use lyrics of the entire song at once. Other ALT models [21, 20, 18] use N-grams
of size 3 or 4 whereas VocalFlows is currently limited to 1. This brings about a loss in
contextual information, which the VocalFlows ALT model has the potential to learn.
Due to the requirements of the task and the word-to-word generative method used by
the genetic algorithm approach, the 1-gram lyrics recognition ALT model sufficed.

• For the sake of being fully creative, the VocalFlows AI does not benefit from pitch,
duration, timbre and tone audio features as it currently does not control any of these
parameters, which most SVS systems do. The VocalFlows AI therefore has no con-
ditioning on genre or artist and has no control on the melody of the outcome. The
melody is a requirement that the VocalFlows AI wants to achieve but is left inherent
to the generated outputs.

• With the noticeable overhead of large networks and datasets required for modelling
singing voice using transformers or GANs, the recognisability aspect of the objective
task was prioritised as human recognition of the lyrics of outputs was lacking. Due to
this requirement and the availability of the inspiration set, the evolutionary approach
was suitable and achieved the necessary recognition of lyrics as seen in the survey. The
results however are not recognised by all the participants but simply by a majority.
A reason for such could be the manipulation in resembling vocal structure in songs
and the silences between them. This is currently limited in the VocalFlows AI and is
manipulated only by using silences of 200ms in between words.

The gaps in quality caused by the aforementioned limitations could be bridged with
advanced deep learning methods, but the attempt to achieve the outcome using evolutionary
methods was performed and observed to bring about creative results. Genetic algorithms
are versatile methods and can be used without training or without transfer learning any
contextual conditioning that are often used in deep learning methods [57, 37, 14].

6.2 Future Work

The VocalFlows AI can be applied for inspiring creativity in song writing blocks opening up
new melodies that are generated without the influence of an instrumental track. Currently
only working in languages that have the English phonetic, but future work could be to
improve the set of phonetic capabilities of the AI. The VocalFlows method achieves the goal
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of suggesting vocal samples given an input lyric, but does not enhance the melodic aspect of
the vocals. The melody contained in the outputs are a byproduct of the phonetic combination
of the vocals done by the genetic algorithm. VocalFlows AI does not control audio features
such as pitch, duration or tone. In music production, these audio features are controlled by
expert sound engineers to provide further melodic suggestions to the user.

To use such features requires fundamental understanding in music theory, but many
previous works have left the sound engineering to deep neural networks [22, 34, 57]. Advances
in deep learning, transformers, and audio processing have shown neural networks to be
capable of converting the pitch of an audio to a reference pitch without changing musical
content [38], producing singing voice from speech audio features [12], and also producing
entire songs with lyrics of popular artists such as Elvis and Sinatra [22]. These works
combine the latent spaces of reference inputs with the latent space of generated outputs to
produce audio effects and vocal samples of different melody, pitch or tone.

This differentiates the VocalFlows AI as it uses evolutionary algorithms and does not
use traditional audio processing methods. The limitation is that these methods are heavy
and come with large overheads. Memory efficient and lightweight methods such as those
used in VocalFlows are more flexible and necessary to develop. However, few components of
the heavier methods can be incorporated to improve melody and recognition of the results
such as context-based learning and pitch information. The lyrical context of commonly used
sequence of words can help leverage the recognisability of the lyrics. Similarly the pitch of
each sung phoneme can be observed and the sequence-to-sequence pitch information can be
learned to better predict what fundamental frequencies work together in providing aesthetic
melodies.

7 Conclusion

The work contributes to the field of audio processing, and computational creativity in the
following ways:

• A new open source dataset, the top 500 songs dataset, with the code to create similar
datasets is made publicly available. This dataset allows for Web crawling of songs from
online websites as well as the synchronisation of the lyrics to produce high quality vocal
audio files with corresponding text and duration of the texts sung in the corresponding
vocal audio files.

• A new dataset, the phoneme-audio pairs dataset is made publicly available. This
dataset is used for representation of the inputs in the VocalFlows genetic algorithm. It
is a unique dataset that allows for evolutionary approaches in audio processing.

• An automatic lyrics transcription model (ALT) trained on words for the specific task
of word-to-word generation in the VocalFlows AI. The ALT model was also trained
on n-gram sentences upto a length of 5 and thereby has the potential to fit tasks that
require phrase-to-phrase or phrase-to-words transcription.

• A genetic algorithm that evolves phonemes into words with inherent melody for syn-
thesising singing voice. This is a novel technique used in the VocalFlows AI to suggest
vocal flows to users.

• An open source audio fingerprinting technique for the objective evaluation of the sim-
ilarity between audio signals using MFCC features and dynamic time warping.
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The objective and subjective results show that the VocalFlows AI produces outputs that
have melodic suggestions to its user. The end-to-end singing voice synthesis is performed
with original data that is Web crawled and aligned to be synchronised as required inputs to
the VocalFlows AI. The novel computational creative approach using genetic algorithms in
audio processing is a step in the direction of creative singing voice music generation systems.
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