
Bioinformatics

Speeding up the multiscale access in the

MycoDiversity DataBase

Haike van Thiel

Supervisors:
Irene Martorelli, Fons Verbeek & Richard van Dijk

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 01/02/2022

www.liacs.leidenuniv.nl

Acknowledgement

Irene Martorelli and Aram Pooryousefi have provided an important foundation for this thesis. My
gratitude goes out to Irene Martorelli, Fons Verbeek and Richard van Dijk for supervising this
project. In addition, I would like to thank Jeremy Gobeil for his advise and additional support
along the way.

Abstract

There are many species of fungi in the world. Some of them have essential roles in ecosystems.
The amount of DNA barcoding information retrieved from fungi has increased exponentially
over the last decade. The data is stored in online archives and they could be a rich source of
information. Some researchers are very interested in how different fungi grow under different
environmental conditions. The MycoDiversity DataBase was introduced to process the raw
archive data and enable users to investigate Fungi in different environments. This thesis
presents new methods for the MycoDiversity DataBase that speed up the multiscale access.
The main approach for that was implementing a hierarchical tree based filter. In addition,
this thesis introduces a new visualization method, a map, as well.

Contents

1 Introduction 1
1.1 Contributions . 1
1.2 Thesis overview . 1

2 Background 3
2.1 MDDB fungal biodiversity data . 3
2.2 Database types . 3
2.3 MDDB database . 3

3 Methods 5
3.1 Software . 5

3.1.1 MonetDB . 5
3.1.2 ODBC . 5
3.1.3 PHP . 5
3.1.4 HTML5 . 5
3.1.5 CSS . 5
3.1.6 UIkit . 6
3.1.7 JavaScript . 6
3.1.8 JQuery . 6
3.1.9 Leaflet . 6

3.2 MVC . 6
3.3 Style conventions . 7
3.4 SQL Queries . 8

4 Implementation 9
4.1 Filter . 10

4.1.1 Location/taxonomy . 10
4.1.2 Environment . 11
4.1.3 Filter button . 12

4.2 Tabs . 13
4.3 Results . 14

4.3.1 Table . 14
4.3.2 Map . 15

5 Results 16
5.1 Use cases . 16

5.1.1 Use case 1 . 16
5.1.2 Use case 2 . 18
5.1.3 Use case 3 . 19

5.2 Validation . 21
5.3 Performance . 22

6 Conclusions 25

7 Further Research 26
7.1 Other pages . 26
7.2 More samples . 26
7.3 Download . 26
7.4 Efficiency . 26
7.5 Other db . 26
7.6 More tabs . 26
7.7 More filter options . 26

References 28

A Appendix use cases 29

B Appendix page components 30

1 Introduction

Fungi are one of the most abundant organisms in the world. There are millions of different species
with many different functions. Some live in symbiosis with plants, others break down organic
material and some are pathogenic and dangerous to our health. In other words, they have an
important role in many ecosystems [1]. The variation is one of the aspects which make fungi very
interesting to research. There still is a lot unknown about them. Large quantities of fungal data are
collected constantly and the results are stored online in biological archives e.g. National Center for
Biotechnology Information (NCBI) [2]. The problem is, even though the storages are very rich in
information, researchers might not be able to use the information directly.

The MycoDiversity DataBase (MDDB) was created to solve this issue [3]. It needs a proper
interface in order for researchers to be able to work with it. At the start of this thesis there already
existed some code, but it needed some changes to make processes more efficient. There was a long
list of requirements which needed to be implemented as well. The thesis is a smaller project that
focuses on the biodiversity search of the MDDB. It builds on a larger project, which is made with
a content management system (CMS). The main page, the headers, footers, menu’s etc are all
defined using the CMS. The biodiversity search program will be loaded as an iframe within the
Mycodiversity project.

Research aim: This project aims to design and test algorithmic approaches for MDDB with relation
to data retrieval over different scales. The efficiency of the different algorithms will be assessed
and the best performing algorithms will be incorporated in the UI of the database. In addition the
visualization of fungal biodiversity data will be investigated and implemented.

1.1 Contributions

This thesis will deliver the following items

• software description and implementation for algorithmic approaches and assessment to filter
the MDDB and visualize the results in a table and on a map

• Three use cases and their results

• evaluation and performance methods

1.2 Thesis overview

In this section the structure of this thesis is outlined.
This chapter 1 contains the introduction as well as the problem statement and the research aim.
Chapter 2 provides some background information for the methods of this research. It will explain
how the data is obtained. It will also state how the data is stored in the database and how the
database was designed. Then it will go into more detail how the database was structured. And
lastly it will explain which parts of the database will be used for this project.
Chapter 3 provides a description of the methods. It will give an overview of the software used. On
top of that it shows the code structure and the interface structure.

1

Chapter 4 shows the implementation design and description
Chapter 5 gives an overview of the results alongside a discussion of these results.
Chapter 6 presents the conclusions this research provided. It will explain whether the aim is
achieved.
Chapter 7 will give some future prospects as this project is just the tip of the iceberg.

2

2 Background

2.1 MDDB fungal biodiversity data

Fungi can be found all over the world and there is a lot of diversity between them. With the
DNA barcoding technique their DNA can be sequenced. Metabarcoding focuses on identifying the
compositions of species within a sample. This technique led to an estimation of 5.1 million species
of fungi [4]). High throughput sequencing (HTS) technologies are used to study the fungal diversity
on different scales. Some focus on small scales like country level or regional level, some on global
scales and others look at environmental influences or relationships among fungal organisms. These
HTS methods generate a lot of data which is often stored in a repository. To name a few: European
Nucleotide Archive (ENA), NCBI, Sequence Read Archive (SRA) and the DNA DataBank of Japan
Sequence Read Archive (DRA). The data is then obtained and stored in the MDDB using SRA
mapping techniques and the NCBI SRA Toolkit [5].

2.2 Database types

The traditional way of storing records is through the use of a row oriented database (R-DB). A
different database architecture was introduced in 2005 [6]. This database is called a column oriented
database (C-DB). In a R-DB the data is organized by record whereas a C-DB organizes data by
field. A small note: in order for the C-DB to have advantage, the database needs to be stored on
separate disks. Writing in a R-DB is very easy as a new record will simply be added behind the
last record in the database. In a C-DB there has to be a check on which disk the data actually
needs to be stored. This means that for writing data the R-DB has an edge over the C-DB. The
opposite occurs when reading data. If data is needed from one or multiple rows the R-DB is still
fast. The problem is that for a lot of projects, including this one, aggregation is needed. This causes
the process to be slower as additional data columns are added to the memory. The amount of disks
the R-DB has to access is often higher. The C-DB structure allows to minimize the number of
disks that need to be accessed. Also, the number of additional data columns that are put in the
memory is kept as small as possible. This thesis mainly concerns itself with reading data. That is
why at least for now, the logical choice was to use a column store database. [3] The original MDDB
project compared two R-DBs with a C-DB. the C-DB had a much lower computation time. The
included R-DBs were MySQL and SQlite. The C-DB that was used to compare was MonetDB [7].

2.3 MDDB database

The MDDB is designed with 20 tables, which can be divided in five main components: Study,
Literature, Taxonomy, Sequence and Location. This is indicated in the UML diagram in figure 1.
Data obtained from the NCBI is stored in the Literature and Study components. The processed
HTS data are contained in the Sequence component. The Location and Taxonomy components give
extra context. The Taxonomy labels the DNA sequence data from the Sequence component and the
Location assists the geographical aspects of the Study and Literature. The location is associated to
the study which is linked to the sequence data. The latter is also connected with the taxonomy
that permits assigning scientific names belonging to fungi.

3

Figure 1: MDDB UML diagram, source:[3]

4

3 Methods

3.1 Software

This section gives an overview of all the software used with a little bit of background information
and why they are relevant for this thesis.

3.1.1 MonetDB

The database-management system (DBMs) used is MonetDB. As mentioned before, MonetDB is
column-oriented. It is an open source DBMS. It was specifically developed to handle large quantities
of data. There were two versions of the MDDB, one in MonetDB and one in mySQL. MonetDB is
used because it retrieves the data faster than mySQL.

3.1.2 ODBC

ODBC stands for Open Database Connectivity and it is produced by Microsoft and Simba
Technologies [8]. It is an interface that allows access to data in a DBMS by an application. For this
project it connects the server with the MonetDB.

3.1.3 PHP

The scripting language on the back end is Hypertext Preprocessor better known as PHP. It is a
language which can be embedded into HTML and is very suitable for web development. Rasmus
Lerdorf is the original creator of PHP who released it in 1995[9]. The latest version is PHP 8.0
released June 8th of 2020. The server the project currently runs on PHP 7.4. PHP is still a very
dominant language for web development. For the websites whose server-side language is public, it
is used in roughly 79.2% of them [10]. PHP has a large community and therefore provides a lot of
support. There are other options besides PHP, Python for example. Both have their advantages
and their disadvantages. The code made before the start of the thesis was all in PHP and that
gave it the edge over Python.

3.1.4 HTML5

HTML is an abbreviation for Hyper Text Markup Language and was first released in 2008 [11]. It
is a standard markup language and it is used to describe a webpage’s structure. It does so by the
use of tags like “paragraph” [12]. The HTML is responsible for the webpages structure.

3.1.5 CSS

CSS is short for Cascading Style Sheet and can be used for formatting the layout of a webpage.
This includes colors, textstyles, bordes and many more aspects. The first standard for CSS was
published in 1996 and was developed by H̊akon Wium Lie [13]. CSS is used to make the layout
appealing to users and to help them understand parts by giving visual feedback.

5

3.1.6 UIkit

Currently version 3. The UIkit is a package which can be integrated in HTML code and is responsible
for different parts of the layout [14]. UIkit components can also be manipulated through JavaScript
if necessary. The UIkit is used to make the page more appealing for the user and to give it a more
professional look.

3.1.7 JavaScript

The first release of JavaScript was in 1996 [15]. It is a very popular language used by an estimated
71.5% of professional developers. JavaScript is a scripting language that can be used to create
intricate features for a webpage. It is supported by most web browsers and has many libraries. The
language is used to manipulate elements, to define button actions and in some cases to make new
HTML code.

3.1.8 JQuery

JQuery is a JavaScript library with multiple uses. In 2006 John Resig created it based on Dean
Edwards’ earlier cssQuery library [16]. It provides an API that handles things like Asynchronous
JavaScript and XML (AJAX), event handling and HTML document manipulation much simpler.
JQuery is used for the AJAX calls and to manipulate certain variables.

3.1.9 Leaflet

Leaflet is an open-source JavaScript library to make interactive maps [17]. The maps are based
on the OpenStreetMap maps. It was originally created by Volodymyr Agafonkin. Leaflet was first
released back in 2011. The library is used to make the map and to present results in the form
of markers with InfoWindows. An alternative to make interactive maps is the Google maps API.
Both are easy to work with and provide solid maps. The Leaflet maps however seems to load faster.
Another disadvantage of google maps is that they will charge when using more than 25.000 page
loads a day.[18]. As the project grows and demands more and more loads, a larger number might
be necessary.

3.2 MVC

The code was built on existing work. One could divide code into different components. These are
parts which handle the interaction with the database, parts which handle user requests and parts
which deal with what the user gets to see. In the old code these parts could be found mixed in
single files. This works but in the long run it can be difficult to work with. That is why the new
code is structured with the Model-View-Controller (MVC) philosophy. This separates the three
components and makes it more clear what parts of the code are responsible for certain actions. The
MVC design pattern is used by many well known frameworks like Django (a python framework)
and Laravel (a PHP framework). These known frameworks do not support MonetDB unfortunately
and existing integrations were deprecated. In addition, they seemed to slow the program down.
The models folder contains a database file. This file contains a function which connects to the
database. The other model files extend on the class with this function to execute SQL queries. The

6

other model files have functions in which the SQL query parts which do not change are defined and
they can be adjusted with parameters which it receives from the controller.
The controllers take the information from the user, often information sent with a POST request. It
uses this information to retrieve information from a model and it either calls a PHP function which
makes a view or it sends the information back in Json format. In the latter case, the user’s view is
updated with JavaScript.
A view is what the user sees and interacts with. This can be made with PHP when for example
a table has to be made. Sometimes it is necessary to make the view with JavaScript for example
when making a map.

3.3 Style conventions

Using style conventions is important to keep the code consistent and easy to work with. For the
naming conventions, the CodeIgniter was followed [19]. the most important aspects include:

• File: A class file name starts with a capital letter. Other files are in all lower letters. In both
cases words separated with an underscore.

• Class: has the same name as its file.

• Variable: lower letters with words separated with an underscore describing the variable.

• Functions: lower letters with words separated with an underscore describing the function.

The main file structure is as follows:

• js

– all js files

• css

– all css files

• src

– controllers

∗ all controller files

– models

∗ all model files

– views

∗ all view files

• index.php

7

3.4 SQL Queries

The biodiversity search part of the research uses five tables directly. The association of the tables
are explicitly important to provide information regarding the sequences, where they have been
collected and observed and to what taxonomic names they belong to or something more simplistic
but in line with this. Some queries are done in one single table like getting the continent or country.
The main outline of the queries are predefined. These parameters can be determined by a user who
clicks on a specific filter e.g. a country.
The tables used for these single table queries are “Sample” and “RefTaxonomicDB” entities.
A basic query would be: SELECT $field FROM $table WHERE $condition. Most queries are based
on the filter and need to combine five tables (Sample, Contain, RefTaxonomicDB, RefSequence
and AssignTaxa). The queries only contain AND operations in the WHERE section of the query
and not OR operations.
A basic query would be: SELECT $fields FROM ”Sample” SM, “RefSequence” RS, “Contain” RSM,
“RefTaxonomicDB” URS, “AssignTaxa” AT WHERE 1 = 1 AND URS.Refsequence taxonomic pk =
AT.Refsequence taxonomic pk AND AT.refsequence pk = RS.refsequence pk AND RS.refsequence pk
= RSM.refsequence pk AND RSM.sample pk = SM.sample pk AND $condition

SELECT FROM WHERE
$field “Sample” / “RefTaxonomicDB” 1 = 1

$field = $condition

Table 1: Query template for one table

SELECT FROM WHERE
$fields “Sample” SM 1 = 1

“RefSequence” RS URS.Refsequence taxonomic pk = AT.Refsequence taxonomic pk
“Contain” RSM AT.refsequence pk = RS.refsequence pk

“RefTaxonomicDB” AT.refsequence pk = RS.refsequence pk
“AssignTaxa” AT RS.refsequence pk = RSM.refsequence pk

RSM.sample pk = SM.sample pk
$condition

Table 2: Query template for multiple tables

8

4 Implementation

This section contains flowcharts to illustrate the dynamics of the program. The program could have
one large flowchart, but it was split up into smaller components to make the separate components
more understandable. The interface consists of three main components. The filter component,
the tab navigation and the result display. After interacting with one of the three, the user can
immediately make a new decision meaning it is a continuous loop. Table 3 is the legend with all the
symbols a flowchart may contain with a description. The grey circle symbols contain one or more
letters. They illustrate a connection point between two figures and the letter has something to do
with the connected figure. For example, in figure 3 the ‘F’ under ‘interact with filter’ is connected
with the figure with the next steps when interacting with a [F]ilter. An important note is that the
flowchart is not necessarily sequential. At all times a user can switch to a different action. The
charts merely represent how a complete action would look like.

symbol meaning

decision

process either by program or user

start

display on screen

continue next figure

database request

indicates flow direction

Table 3: Legend with all possible flowchart symbols

Figure 2: Main choices to navigate the MDDB biosearch when starting the page: Filter [F], Result
[R] and Tabs [T].

9

4.1 Filter

The filter is one of the most important components of this project. It allows a researcher to only
extract the information they need. It has three main categories which can be seen in figure 3. The
location, the taxonomy and the environment. All three of them are accordion elements to keep
the page as clean as possible. When the page is loaded all three of them are closed. The main
structure of the location and the taxonomy are the same. Both are hierarchical tree filters. For
each of them there is the choice to either expand the tree to see a new layer or to add an option.
The environment is a little different. This part provides an option to choose some biome terms or
to decide the pH range.

Figure 3: Flowchart for Filter [F] choices: Filter Environment [FE], Filter Location/Taxonomy
[FLT] and Press filter button [P]

4.1.1 Location/taxonomy

The flowcharts for the location and the taxonomy are very similar. The location and the taxonomy
are combined in figure 4 because of similarities. The only difference being that the taxonomy has
more layers. A layer is a subclass, for example the location has the layers: continent, subcontinent,
country, sample. Taxonomy has: phylum, class, order, family, genus and species. There are multiple
actions one can take. It first looks if the component is visible. If it is not someone has to open it
first. If it is opened for the first time the first layer is made and displayed. If the first layer has been
shown before it simply shows the content made before. Someone could expand on the interface
which sends a signal to the controller which asks information from the database. The data is then
processed and displayed on the screen. Each layer has two buttons. One which will expand the
layer and one that allows a user to select the value. When expanding, these buttons are made with
JavaScript. A selected value will appear at the top of the location or the taxonomy component
as a checked value. Clicking on this checkbox will remove the selected value. Both the location
and the taxonomy also include a autocomplete search. Navigating through all of the layers can be
helpful and insightful because one can see the hierarchy but some users already know what value
they want. In their cases it might be frustrating having to go through the layers over and over
again. That is one of the reasons the autocomplete search was added. A user types in at least three

10

characters which will be send to the database and suggestions with these characters will be send
back. Three characters are required because otherwise it would be too straining for the program
causing it to load endlessly.

(a) location/taxonomy (b) Autocomplete search

Figure 4: (a) Flowchart for Filter Location and Taxonomy [FLT]. (b) Shows how the Autocomplete
search [A] dynamics works with a flowchart

4.1.2 Environment

The environment in figure 5 is a little different from the location and the taxonomy. Instead of
navigating through layers, the environment provides both terms used to describe the contextual
aspect, by means of biome terms and measurements, such as pH range that is used for navigating
acidity values of the environmental sample. Like with the location and taxonomy, it first looks if the
component is open in the first place. If it is not, the user can open it and like earlier it looks if it is
opened for the first time. The biome terms are put in a list of terms with checkboxes. The pH is a
numerical value which can be controlled through a range slider. A user can choose to slide the min
and max value or to type the values in directly. If a user makes a mistake by having a minimum
higher than the maximum value this will be corrected when someone presses the filter button.

11

Figure 5: Flowchart for Filter Environment [FE]

4.1.3 Filter button

When pressing the filter button all the filter information is extracted as explained in figure 6. A
check is performed to make sure the values in the sliders are correct. Then the JavaScript code will
look at which tab is active as it has to call a function based on that information. It will call either
the function which makes a map or a function which makes a table. Both make a POST request
to the server and provide the filter information. The request is received by their corresponding
controllers. A query with all the filter information is made using the function in the filter class.
This query is then handed to either the model for the map or for the table. Each demands different
information from the database. The table is limited by the amount of records per page as that
defines the table size. Visualising the data is different for the table and for the map. The table uses
another PHP file in which the table is made. The controller sends the results from the model to this
file and sends the result back to the JavaScript file. This result is HTML code and in JavaScript
the result is appended in the right place on the page. The map controller sends the model result
directly back to the JavaScript file in Json format. The map itself is made in Javascript using the
Leaflet package. If there has been a map, before the map markers from the previous map have to
be erased. This happens before the request is made to the server. Then the new map is initialised
and the markers will be made using the information from the server. Sometimes the map provides
many samples and many markers make the map look chaotic. That is why a clustering package is
used to solve this problem. The clusters have a color based on the number of markers they contain.
This color is determined in the package. To clarify what the colors mean a small legend is provided
on the top of the map. The markers themselves differ in color as well. The DNA sequence variants
represented as Zero-radius Operational Taxonomic Units (ZOTU) numbers, determine what the
color of the marker is. A color legend is provided for this situation as well. The clusters have one of

12

three colors whereas the marker colors lie on a gradient. At the beginning there was no button and
everything was live updated. A button however gives a user more sense of control and it asks less
computation of the program.

(a) filter button pressed (b) map/table pressed

Figure 6: (a) Flowchart for Pressing a new tab [P]. (b) Flowchart for Pressing the Map or Table
tab [PMT]

4.2 Tabs

Figure 7 shows the flowchart for clicking on a tab. There are three tabs a user can choose from.
When a user clicks on the tab they are already looking at, nothing will happen. That means no
new request is send to the server. When they click on a different tab from the one they are on, one
of two things can happen. To illustrate what happens an example will be provided below. A user
is on the table tab. They then press the filter button and a new table will be made. Then they
navigate to the map tab where a new tab will be made. The program will not make a new table
when the user returns to the table tab, but simply shows the table made before. If the user had
pressed the filter button while on the map tab and then navigated to the table tab a new table
would be made. A JavaScript file will check which of the situations is occurring when the tab is
changed. If needed, they will call the same function as if the filter button was pressed, which is
explained in section 4.1.3. The filter information is extracted and sent to the server for either the
map or the table tab. It depends on whether the table or the map tab is open. The process is the
same so we will not go in depth into the controllers and models.

13

Figure 7: Flowchart for changing Tabs [T]

4.3 Results

The results can be triggered to be made with different conditions. This can be seen in figure 8. The
first is when loading the page. The default tab is the table which is why the table is made when
loading the page. Interacting with the results means interacting with the visualisation that is made
with the requested data. What result a user can interact with depends on which tab is open. In
total there are three tabs: the table tab, the map and the chart tab. The latter tab is currently not
active, but it is the next step in the process. The table tab is further explained in section 4.3.1 and
the map is elaborated in section 4.3.2.

Figure 8: Flowchart for interacting with Results [R]

4.3.1 Table

The table is a method to visualise the data. Figure 9 illustrates that it does that in a very orderly
manner. When interacting with the table a user has multiple options. First they can change the
number of rows in the table per page or move to the next page. Changing either one triggers an
event which causes a new table to be made. The same steps are followed as if the filter button
was pressed and the table tab was open explained in the section above. Different ways a user can
interact with the table is clicking directly on the table itself. There are a few choices. A user could

14

click on one of the hyperlinks. These links lead to websites and explain either the term or send a
user to the publication where the sample comes from. One could also change the order of a column
in ascending or descending.

Figure 9: Flowchart for interacting with the Result Table [RT]

4.3.2 Map

The map is the other implemented visualisation method.The flowchart can be found in figure 10
The map has two additional legends to explain what the colors in the map mean. There are two
color groups. One for the cluster colors and one for the individual sample markers. People can
zoom in by using the mouse or the mouse pad. This causes some of the clusters to split into smaller
clusters and individual samples. The logic for the clusters comes from a Leaflet library.

Figure 10: Flowchart for interacting with the Result Map [RM]

15

5 Results

The webtool can be accessed using https://mycodiversity.liacs.nl/thesis/Mycodiversity/ In order
to verify whether the different filters combined work properly there are three use cases. The use
cases are realistic scenario’s of what researchers may look for. The use cases are also meant to
see how the program deals with more complex queries. In addition to have some extra validation,
separate components are tested as well. There is a performance test as well to see if the program
works properly and to see if there is a difference between using localhost port 5000 (called local
host for the remainder of the thesis), in the tables abbreviated with ’L’ which is a development
server and using the actual server, in the tables abbreviated with ’S’, which it will eventually run
on. Some of the outputs from these lose components can be found in appendix B with figures 17-28.
The appendix contains some visuals of the individual components of the page. To make a fair
comparison the circumstances were as consistent as possible. All the tests were run on the same
laptop around the same hour on the same network. In both cases there were no other programs
running in the mean time. For each of the table the average time is given as well to make it easier
to compare the localhost and the server in a more general sense.

5.1 Use cases

The first use case uses filters through all the options, location, taxonomy and environment. The
second looks at an individual sample and one taxonomy group. The third and last use case looks
for a specific region and pH range. In appendix A the steps to take to get the results are presented
with visuals.

5.1.1 Use case 1

In the first use case all the filter components are used. In this example someone looks at the samples
in Central Africa with Agaricomycetes. Central America is a subcontinent of the continent Africa.
Agaricomycetes is a class of the phylum Basidiomycota. The selection is also limited to the tropical
dry broadleaf forest biome term and the pH lies between 4.5 and 10. Table 4 shows how well the
localhost and the server perform and Table 5 shows the validation. Figure 11 has the output map
and Figure 12. Table 19 in Appendix A shows the selections made.

Time L table Time S table Time L map Time S map
757 ms 206 ms 349 ms 50 ms

Table 4: use case 1 performance

Exp table Actual table Exp map Actual map
221 rows 221 rows 2 samples 2 samples

Table 5: use case 1 validation

16

https://mycodiversity.liacs.nl/thesis/Mycodiversity/

Figure 11: Use case 1 map result

Figure 12: Use case 1 table result

17

5.1.2 Use case 2

The second use case looks at one sample and one phylum within that sample. This is the case for
a user who wants to know if a fungal group is observed in a specific sample, in addition to know
how many DNA sequence variants belonging to that specific group are detected. The sample is
SRS651234 and the phylum is Ascomycota. Figure 13 shows the map result for the second use case
and figure 14 contains the table result. Table 7 contains the validation results and Table 6 shows
the performance between the server and the localhost version. Table 20 in Appendix A shows the
selections made.

Time L table Time S table Time L map Time S map
503 ms 104 ms 164 ms 74 ms

Table 6: use case 2 performance

Exp table Actual table Exp map Actual map
80 rows 80 rows 1 samples 1 samples

Table 7: use case 2 validation

Figure 13: Use case 2 map result

18

Figure 14: Use case 2 table result

5.1.3 Use case 3

The third and last use case looks at a specific region and an environmental component. The region
is the continent Europe and the pH values lie between 1 and 3. This is the case for a user who is
interested to explore the fungal communities in Europe that live in extreme conditions, such as in
high acidic soils. Figure 15 shows the map result for the second use case and figure 16 contains the
table result. Table 9 contains the validation results and Table 8 shows the performance between
the server and the localhost version. Table 21 in Appendix A shows the selections made.

Time L table Time S table Time L map Time S map
1275 ms 468 ms 420 ms 103 ms

Table 8: use case 3 performance

Exp table Actual table Exp map Actual map
11754 rows 11754 rows 62 samples 62 samples

Table 9: use case 3 validation

19

Figure 15: Use case 3 map result

Figure 16: Use case 3 table result

20

5.2 Validation

This section will cover the outcome of the validation tests.
For the validation we take a look at the table and the map. The most important aspect for the
table to look at is whether the correct rows are presented. This is achieved by counting the rows
and compare them with the expected number. For the map we both take a look at the number of
samples and the number of DNA sequences found. This number should be the same as the number
of rows in the table.
Table 10 shows the 5 different test that were performed for both the taxonomy and the location.
Making the layers is a recursive function. For this reason, the assumption is made that if the first,
the last and a middle layer work correctly, all of the layers work as they should. There are tests to
validate if the program deals with multiple values as well, number 4 dealing with middle layers. As
the database deals with AND operations two values in the same layer but in different branches
should output the union of the two. Two values in different layers in the same branch the output is
equivalent to the intersection. And lastly when the values are in different layers and in different
branches there has to be a disjunction, meaning no results.

1 Value in First layer
2 Value in Last layer
3 Two values in same layer in different hierarchy branches
4 Two values in different layer in same hierarchy branch
5 Two values in different layer in different hierarchy branch

Table 10: 5 different tests for location and taxonomy

Table 11 shows the validation results for the location. It shows the expected number of rows the
table should have and the actual value. It also shows how many samples are expected on the map
and how many are generated.

loc selection Exp table Actual table Exp map Actual map
Africa 9836 rows 9836 rows 35 samples 35 samples

Srs651354 320 rows 320 rows 1 samples 1 samples
Cameroon, Germany 921 rows 921 rows 3 samples 3 samples
Africa, SRS651354 320 rows 320 rows 1 samples 1 samples

Germany, SRS651354 no data found no data found empty map empty map

Table 11: validation location

Table 12 shows the validation results for the location. It shows the expected number of rows the
table should have and the actual value. It also shows how many samples are expected on the map
and how many are generated.
Table 13 shows the validation for the environment test. For the test one term was checked and for
the other test a pH value was given between 4 and 10.
Table 14 shows the validation for the pH slider. When someone fills in a value the program checks
whether the values are withing the borders. It also checks what happens when someone fills in
correct values as a control. And it checks if someone fills in a minimum that is higher than the

21

tax selection Exp table Actual table Exp map Actual map

ascomycota 9836 rows 9836 rows 35 samples 35 samples
Archaeorhizomyces borealis 320 rows 320 rows 1 sample 1 sample
Archaeorhizomycetes, insecta 921 rows 921 rows 3 samples 3 samples

ascomycota, Archaeorhizomyces borealis 320 rows 320 rows 1 sample 1 sample
Insecta, Archaeorhizomyces borealis no data found no data found empty map empty map

Table 12: validation taxonomy

environment Exp table Actual table Exp map Actual map
Terms Mixed forest 14186 rows 14186 rows 41 samples 41 samples

pH 4-10 74229 rows 74229 rows 233 samples 233 samples

Table 13: validation environment

maximum. The program ensures that the minimum is always the smaller than the maximum by
swapping the input if needed.

pH input expected output output
Min < 1 Min = -5 Min = 1 Min = 1
Max < 1 Max = -5 Max = 1 Max = 1
Min > 14 Min = 15 Min = 14 Min = 14
Max > 14 Max = 15 Max = 14 Max = 14
Min < max Min = 5, max = 10 Min = 5, max = 10 Min = 5, max = 10
Min > max Min = 10, max = 5 Min = 5, max = 10 Min = 5, max = 10

Table 14: Check numerical values

5.3 Performance

This section will show the comparison between a localhost host and the actual web server. This
gives a general idea of the importance of developing locally as opposed to on the server. It also
gives a good idea on how well the program performs. Tables 15 Table 16 Table 17 contain the
performances of the location, the taxonomy and environment respectively. The time is noted for
each test separately and the average time is given. The average time gives an indication of how
long a researcher needs for a set of different tests.
Table 18 shows the performance of some general test. These are main components of the page. The
first interesting test is to see how long it takes to load the complete page. It is also interesting to see
how long it takes to load the table and map with all the samples. An additional check is to see how
long opening the location and taxonomy components take in which the continents and phylums are
made. The last part of the filter, the environment is also evaluated by looking at the biome terms.
Finally, we have taken a look at the auto searches from the location and the taxonomy.

22

loc selection Time L table Time S table Time L map Time S map
Africa 1117 ms 429 ms 356 ms 104 ms

Srs651354 405 ms 90 ms 200 ms 321 ms
Cameroon, Germany 733 ms 107 ms 348 ms 297 ms
Africa, SRS651354 424 ms 154 ms 176 ms 279 ms

Germany, SRS651354 439 ms 104 ms 186 ms 70 ms
Average time 623.6 ms 176.8 ms 253.2 ms 214.2 ms

Table 15: Performance location Local [L] vs Server [S]

tax selection Time L table Time S table Time L map Time S map
ascomycota 1678 ms 551 ms 534 ms 110 ms

Archaeorhizomyces borealis 611 ms 124 ms 449 ms 95 ms
Archaeorhizomycetes, insecta 832 ms 310 ms 504 ms 32 ms

ascomycota, Archaeorhizomyces borealis 464 ms 258 ms 164 ms 92 ms
Insecta, Archaeorhizomyces borealis 436 ms 88 ms 248 ms 100 ms

Average time 804.2 ms 266.2 ms 379.8 ms 85.8 ms

Table 16: Performance taxonomy Local [L] vs Server [S]

environment Time L table Time S table Time L map Time S map
Terms Mixed forest 944 ms 379 ms 244 ms 88 ms

pH 4-10 1928 ms 559 ms 500 ms 348 ms
Average time 1436 ms 469 ms 372 ms 218 ms

Table 17: Performance environment Local [L] vs Server [S]

23

general tests Time L Time S
Whole page 4250 ms 1630 ms

Table all samples 2228 ms 676 ms
Map all samples 508 ms 257 ms

Continents 136 ms 169 ms
phylum 204 ms 74 ms

biome terms 213 ms 60 ms
Auto search ’sou’ 528 ms 79 ms
Auto search ’dio’ 1039 ms 500 ms

Average time (without whole page and table) 438 ms 190 ms
Total time (whole page and table) 6478 ms 2306 ms

Table 18: Performace general components Local [L] vs Server [S]

24

6 Conclusions

In this thesis we have investigated different algorithmic approaches to retrieve data over different
scales with analysis. In addition there are visual representations made for the results. The data can
be retrieved through three main filter components. These were investigated and made more efficient
and there are methods added. They were analysed through a validation check and performance
evaluations.

At the start of the project there were four checkbox lists. The continents and the countries were
combined in one tree list. These only had one ‘layer’. All of the layers were added for this project
meaning people can search more specifically and therefore retrieve the desired information faster.
These layers could be made with separate checkbox lists but that would be chaotic for the users.
That is why a hierarchical treeview was used. Another addition that was made are the autocomplete
search bars. The pH is added for the environment. This is another specification for people to filter
on. Users can therefore search faster and more directed than before. We can conclude that the
multiscale access of the MycoDiversity DataBase was successfully sped up.

Another part of the research goal was to investigate visualization methods for fungal biodiversity
data. The table is a visualization method that already existed. The information displayed in the
table has not been altered. The newly investigated visualization method was a map. This was first
attempted with the google maps API. However, this was not the fastest method. That is why the
map was eventually produced with the Leaflet API which was faster and presented the results more
clearly. The map was validated and the performance is always fairly consistent no matter what the
query is. The tables are more susceptible for change in the number of samples.

Tested the three main filter components. These all passed the validation tests. The autocomplete
searches worked as well. The pH sliders were validated as they have free input. Users should not
be able to fill in wrong input. That is why there is a control and a validation to check if it works
properly. The sliders passed the test and are therefore adjusted against invalid input from users.
To make an additional analysis, three use cases were performed to see if the combination of the
different filters work as well. The use cases passed the validation. The performance was good as
well due to the small amount of results. The filter combinations are the cause for only getting a
few results. The conclusion we could draw is that the database can handle large amounts of data
but processing the results can become slow. The reason the table is really slow is because of the
rowcount. This is a built-in feature which cannot easily be accelerated. Alternatives like count(*)
are slower. The expectation is that users will look at quite specific samples which would mean that
it would not be as big of a problem.

The code was originally fairly cluttered and in one place. The existing code was separated in the
MVC components and the new code was built following the same design pattern. This means that
the different components are divided over different files. A README is added to clarify how to
add and to keep everything consistent. This makes everything more sustainable. As this is part of a
long term project, consistency is an important factor.

25

7 Further Research

7.1 Other pages

The biodiversity search is only one of the pages. The entire project should provide more functional-
ities, a literature search for example.

7.2 More samples

The MDDB used in this project contained around 500 samples. This is a fraction of the available
samples. The sample number also grows in time

7.3 Download

Visualizing the data in tables and maps is already interesting but another important thing would
be to represent the DNA data. A researcher should be able to download this information. The
DNA data will be presented in the FASTA format.

7.4 Efficiency

This project was mainly focused on creating new features and not necessarily on the efficiency of
those methods. The program could also be made more efficient by for example using a cache.

7.5 Other db

The decision to use MonetDB might not have been completely fair. The previous research was
meant to compare R-DB and C-DB, therefore two R-DB’s were compared along with one C-DB.
The C-DB performed the best which makes sense. The thing is though, for the bigger project it
might also be interesting to compare different C-DB’s as well. MonetDB is very fast as far as we
can tell but unfortunately has not a very supportive community. A database like MariaDB might
be interesting. On top of a bigger community, MariaDB can be integrated in most frameworks like
Django or Laravel as well.

7.6 More tabs

The results can be displayed in two ways, in a table and in a map. It would be interesting to add
different methods to display the results. The most important way is through the use of charts and
graphs. These could include charts where the relations of the different fungi are made clear. In
combination with the map this could yield some interesting information.

7.7 More filter options

The location and the taxonomy options are quite complete. Only the layout can have some more
visual feedback. The environment however is very limited. There are only two aspects on which you
can filter. There are a lot more features in the environment one could filter on. Think for example
about the elevation or nutrition level in terms of nitrogen or carbon.

26

References

[1] Kabir G Peay, Peter G Kennedy, and Thomas D Bruns. Fungal community ecology: a hybrid
beast with a molecular master. Bioscience, 58(9):799–810, 2008. https://doi.org/10.1641/
B580907.

[2] Rose Marie Woodsmall and Dennis A Benson. Information resources at the national center
for biotechnology information. Bulletin of the Medical Library Association, 81(3):282, 1993.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225790/.

[3] Irene Martorelli, Leon S Helwerda, Jesse Kerkvliet, Sofia IF Gomes, Jorinde Nuytinck,
Chivany RA van der Werff, Guus J Ramackers, Alexander P Gultyaev, Vincent SFT
Merckx, and Fons J Verbeek. Fungal metabarcoding data integration framework for
the mycodiversity database (mddb). Journal of integrative bioinformatics, 17(1), 2020.
https://doi.org/10.1515/jib-2019-0046.

[4] Heath E O’Brien, Jeri Lynn Parrent, Jason A Jackson, Jean-Marc Moncalvo, and Rytas
Vilgalys. Fungal community analysis by large-scale sequencing of environmental samples.
Applied and environmental microbiology, 71(9):5544–5550, 2005. https://doi.org/10.1128/
AEM.71.9.5544-5550.2005.

[5] SRA Toolkit Development Team. Sra toolkit, 2011. https://github.com/ncbi/sra-tools.

[6] Blake Barnhill and Matt David. Row vs column oriented databases, Jun 2021. https:

//dataschool.com/data-modeling-101/row-vs-column-oriented-databases/.

[7] MonetDB. Open source column-oriented database management system. https://www.monetdb.
org.

[8] Odbc driver. https://docs.microsoft.com/en-us/sql/connect/odbc/

download-odbc-driver-for-sql-server?view=sql-server-ver15.

[9] History of php - manual. https://www.php.net/manual/en/history.php.php.

[10] Usage statistics of php for websites. https://w3techs.com/technologies/details/pl-php.

[11] Matt Silverman. The history of html5, Jul 2012. https://mashable.com/2012/07/17/

history-html5/?europe=true.

[12] Ankush Sharma and Aakanksha Sharma. Introduction to html (hyper text markup language)-a
review paper. Int. J. Sci. Res, 7(5):2017–2019, 2018.

[13] Bert Bos, Dec 2016. https://www.w3.org/Style/CSS20/.

[14] Uikit. https://getuikit.com/.

[15] Allen Wirfs-Brock and Brendan Eich. Javascript: the first 20 years. Proceedings of the ACM
on Programming Languages, 4(HOPL):1–189, 2020. https://doi.org/10.1145/3386327.

[16] John Resig, Russ Ferguson, and John Paxton. page 77–110. A Press, 2015.

27

https://doi.org/10.1641/B580907
https://doi.org/10.1641/B580907
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC225790/
https://doi.org/10.1515/jib-2019-0046
https://doi.org/10.1128/AEM.71.9.5544-5550.2005
https://doi.org/10.1128/AEM.71.9.5544-5550.2005
https://github.com/ncbi/sra-tools
https://dataschool.com/data-modeling-101/row-vs-column-oriented-databases/
https://dataschool.com/data-modeling-101/row-vs-column-oriented-databases/
https://www.monetdb.org
https://www.monetdb.org
https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/connect/odbc/download-odbc-driver-for-sql-server?view=sql-server-ver15
https://www.php.net/manual/en/history.php.php
https://w3techs.com/technologies/details/pl-php
https://mashable.com/2012/07/17/history-html5/?europe=true
https://mashable.com/2012/07/17/history-html5/?europe=true
https://www.w3.org/Style/CSS20/
https://getuikit.com/
https://doi.org/10.1145/3386327

[17] Vladimir Agafonkin. Leaflet: an open-source javascript library for mobile-friendly interactive
maps. 2011. https://leafletjs.com/index.html.

[18] Juan Pablo VentosoMarch. End point, Mar 2019. https://www.endpoint.com/blog/2019/
03/23/switching-google-maps-leaflet.

[19] British Columbia Institute of Technology. Php style guide, Sep 2019. https://codeigniter.
com/userguide3/general/styleguide.html.

28

https://leafletjs.com/index.html
https://www.endpoint.com/blog/2019/03/23/switching-google-maps-leaflet
https://www.endpoint.com/blog/2019/03/23/switching-google-maps-leaflet
https://codeigniter.com/userguide3/general/styleguide.html
https://codeigniter.com/userguide3/general/styleguide.html

A Appendix use cases

Step visual

1

2

3

4

Table 19: Use case 1 steps. 1 selecting the location. 2 selecting the taxonomy. 3 selecting the biome
term. 4 selecting the pH range

Step visual

1

2

Table 20: Use case 2 steps. 1 selecting the location. 2 selecting the taxonomy.

Step visual

1

2

Table 21: Use case 3 steps. 1 selecting the location. 2 selecting the pH range.

29

B Appendix page components

Figure 17: Complete page

Figure 18: location

30

Figure 19: Location, Africa expanded

Figure 20: Taxonomy

Figure 21: Filter options

31

Figure 22: Autocomplete search

Figure 23: Biome terms

Figure 24: pH slider

32

Figure 25: Filter button

Figure 26: Records per page current number

Figure 27: Records per page options

Figure 28: Pagination

33

	Introduction
	Contributions
	Thesis overview

	Background
	MDDB fungal biodiversity data
	Database types
	MDDB database

	Methods
	Software
	MonetDB
	ODBC
	PHP
	HTML5
	CSS
	UIkit
	JavaScript
	JQuery
	Leaflet

	MVC
	Style conventions
	SQL Queries

	Implementation
	Filter
	Location/taxonomy
	Environment
	Filter button

	Tabs
	Results
	Table
	Map

	Results
	Use cases
	Use case 1
	Use case 2
	Use case 3

	Validation
	Performance

	Conclusions
	Further Research
	Other pages
	More samples
	Download
	Efficiency
	Other db
	More tabs
	More filter options

	References
	Appendix use cases
	Appendix page components

