
Computer Science

Autolayout of UML diagrams using metaheuristic

algorithms and natural computing

Luca Stoffels (s2335220)

SUPERVISORS:
First supervisor: Dr. G.J. Ramackers
Second supervisor: Dr. A.V. Kononova

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.universiteitleiden.nl

1

Abstract

Automatic functions for laying out UML diagrams found in commercial tools
have been limited so far. This is not ideal as visual layouts of these diagrams play a
significant role in visualizing complex system requirements. In this work a layout
algorithm is proposed that combines heuristic rules with artificial intelligence
features stemming from natural computing. In particular, a bat based particle
swarm algorithm is used along side a spring based network layout technique.
These natural computing algorithms will optimize the parameters used by the
layout generation algorithm, based on data gathered from test users and data
generated by a computer. The result is a set of parameters for the layout algorithm
that significantly improves the average score of the layouts generated compared to
layouts generated with sets of random parameters. Only Class diagrams are covered
in this work, however, the created software is designed with future expansion for
other UML diagrams in mind. The future applications of a system like this could
be a completely self-learning, self-data gathering system that learns how to layout
a diagram for an individual or a group of people.

2

Acknowledgement

The research done for this paper would not have been possible without the dedicated
support from my first supervisor Dr. G.J. Ramackers, and the Prose To Prototype
project. This project is led by Dr. G.J. Ramackers and is a rapidly developing. Without
the systems in this project that already existed I would not have been able to focus
solely on this research. Dr. G.J. Ramackers had inspired me to start this research and
has keep inspiring me throughout the whole process.
Two years ago I took a class led by Dr. A.V. Kononova about natural computing. This
took my interest, with a particular focus on swarm optimization algorithms. This
inspired me to make use of these natural computing techniques and I am delighted
that Dr. A.V. Kononova is the second supervisor for this research project.
During a meeting with Dr. A.V. Kononova the PhD candidate Jacob de Nobel was part
of the meeting and gave some insight full tips and questions.
At last I would like to thank Luuk van den Nouweland and Richard Middelkoop for
testing a prototype made for this research project and giving feedback.

3

Contents

1 Introduction 5

2 Related Works and Background 6
2.1 Unified Modeling Language . 6

2.2 Autolayout . 6

2.3 Heuristic and Algorithms . 6

2.3.1 Meta-Heuristic Algorithms . 7

2.4 Natural Computing . 7

2.4.1 Particle Swarm Optimization . 8

2.5 Multi-Dimensional Problems . 8

2.6 Bat-inspired Algorithm . 8

2.6.1 Bats In Nature . 8

2.6.2 Bat Algorithm Workings . 9

2.7 Prose To Prototype Project . 9

2.7.1 Rendering . 10

3 Methods 11
3.1 Layout Generation . 11

3.1.1 Subset Division . 11

3.1.2 Heuristic Layout . 14

3.1.3 Springs . 15

3.1.4 Parameters . 16

3.2 Gathering and Tuning . 17

3.2.1 Optimizing Weight . 18

3.2.2 Normalizing Data . 18

3.3 Objective Function . 19

3.4 Parameter Optimization . 20

3.5 Alignment Tool . 20

4 Results 21
4.1 computer-generated Scores . 21

4.2 Bats algorithm . 22

4.3 Final Scores . 23

4.4 Generated Layouts . 24

4.5 Diagram 1 . 25

4.6 Diagram 2 . 28

4.7 Diagram 3 . 30

4.8 . 33

5 Conclusion and Future Works 35

4

1 Introduction

At the start of a new software project, a significant amount of designing and docu-
menting gets done by people before the actual implementation gets worked on and
part of this is the making of UML diagrams. These diagrams require a human to make
a layout and this is impractical as it leads to a lot of time getting spent on designing
a practical layout for a UML diagram by hand. If this process could be sped up it
would result in a more cost-efficient early stage of software development. There are
basic auto-layout software technologies that could give a graph an auto-layout, but
these are often limited and still require a human to make subtle and big changes to the
graph, especially for UML diagrams. On top of that they tend to be rule-based and
rules sometimes miss the mark when it comes to catering to the variability in human
view on whether a graph looks good.

By collecting data about users’ experience of layout a layout algorithm could be
trained to reflect the needs of a group of people, but also individuals. By combining a
rule-based layout with a system that deforms the layout based on a list of parameters,
the parameters could be optimized to give the best results, whilst the rules still influ-
ence the layout. For this optimization multiple systems can be used. In this work an
evolutionary-inspired algorithm is used to train a model that predicts a score that a
human would give to a layout based on gathered scores from test users. This is then
used to rank layouts generated with random parameters for the layout algorithm. The
resulting data is used by a particle swarm optimization algorithm to find the best
set of parameters for generating a layout. Using algorithms inspired used in natural
computing for layout generation systems could lead to significant improvements of
the state of the art for UML layout generation.
Therefore the question; could natural algorithms for multi-dimensional optimization
problems be used to optimize an auto-layout algorithm for UML system design?

In section 2 related work and background knowledge is described. This sections
contains background knowledge needed to know in order to properly understand the
work in this research, as well as works by other authors explaining matters in more
detail.
In section 3 the inner workings of the created prototype are explained, including a
detailed overview of the layout algorithm. This section also describes the data gathering
from users and data generation by the computer, along with the data processing to
prepare it for the bats algorithm.
In section 4 the results of the prototype are shown, including statistics of the perfor-
mance and layouts generated by the layout algorithm. At last in section 5 the results
are discussed and future work is proposed

5

2 Related Works and Background

2.1 Unified Modeling Language

The Unified Modeling Language (UML) is a modeling language mainly used in
computer engineering and software development. With this language diagrams can be
made to easily display information about the architecture and requirements of a system.
This is very useful during the design of the workings of any software project, as usually
many components rely on the specific workings of other components within the project.
In 1998 Andrew Lyons [Lyo98] created an extension for UML that was ”specifically fine-
tuned for the development of complex, event-driven, real-time systems, such as those
found in telecommunications, aerospace, defense, and automatic control applications”
([Lyo98], p.6) . UML has 14 different types of diagrams which are all used to display
different aspects of projects, ranging from user interaction to the most complicated
inner workings of the system. Gianna Reggio et al. [GR15] did research into which of
these diagrams are used the most and why. They found that the class diagram is used
the most (at 100% of the time in any of their sources) as ”it is indeed the fundamental
diagram of the UML” ([GR15], p.7), closely followed by the activity diagram (at 98%)
and the sequence diagram (at 97%). For this work usage of different UML diagrams
is out of the scope, as all the diagrams have their own rules and ways of displaying
information. Trying to make a layout algorithm with all these rules at once would be
unavailing as there is no need to have the rules for these diagrams mixed up, given
that they are displayed separately. Given that the class diagram is used the most we
focus on exactly that diagram in this work.

2.2 Autolayout

Hauke Fuhrmann et al. [HFvH] proposed an automatic layout algorithm for UML dia-
grams. This algorithm focuses on recursively subdividing the elements into subgroups,
after which a layout is applied to the nodes in the subgroups, and then subgroups
themselves, moving up the hierarchy. In this research a similar approach is taken;
however, a different method of applying the layout is used along with a different
way of dividing the elements into subsets. Also, after applying the layout based on
subgroups a spring based algorithm is used alter the layout even more. This algorithm
used is based on a springs algorihtm proposed by Thomas Kamps et al. [KKR96]

2.3 Heuristic and Algorithms

Heuristic algorithms are a type of algorithms that trade off accuracy for speed, whilst
focusing on approximating a solution, rather than finding the exact solution. Vincent
Kenny et al. [VKS14] wrote a survey of well-known heuristic algorithms along with
example problems. One of these problems is the traveling salesman problem which
is as follows: ”given a list of cities and the distances between each city, what is the
shortest possible route that visits each city exactly once?” ([VKS14], p.3). The nearest
Neighbour algorithm starts from any of the cities after which it moves to the closest city.
After this, the distances from the current city to all not yet visited cities are compared
and the closest city is picked to move to. This process repeats until all cities have been

6

visited. ”This algorithm is heuristic in that it does not take into account the possibility
of better steps being excluded due to the selection process” ([VKS14], p.3). This could
and probably will result in a path that is not optimal; however, considering that there
is no way to precisely compute the shortest path without brute-forcing the problem, an
algorithm like this might prove itself useful nonetheless. Especially when using a large
number of cities as for every city the time taken to brute force the solution multiplies
by the total number of cities.
Laying out a UML diagram also does not have a perfect solution, however, with a
heuristic based algorithm a good layout might be found anyway.

2.3.1 Meta-Heuristic Algorithms

Meta-heuristic algorithms are a category of algorithms that are not that dissimilar to
heuristic algorithms, with the difference lying in the applicability. Heuristic algorithms
are designed specifically to solve one problem, whereas meta-heuristic algorithms are
designed so that they can be used to solve a variety of problems that stem from the
same general problem concept. The ”No Free Lunch theorem”, as defined by Wolpert
and Macready 1996 NoFreeLunchTheorum, states that there is no meta-heuristic
algorithm that is best at solving every problem. This is due to the ways meta-heuristic
algorithms are not focused on finding the exact solution, and instead make trade-offs
in accuracy for speed. For different kinds of problems different sets of trade-offs are
best, therefore there is no way that one meta-heuristic algorithm is best. This is relevant
for this research as there are multiple types of UML diagrams and many possible
structures within the networks for these types of diagrams. By combining different
techniques, and allowing for change within settings for these techniques based on the
type of UML diagram, hopefully the algorithm made for this research could be used
in the future to layout types of UML diagrams not covered in this work.

2.4 Natural Computing

In the modern world it is easy to view computers and the algorithms that run on them
as something unnatural. Many algorithms and computational systems are designed
based on natural processes. According to Leandro Nunes ”Natural computing is the
computational version of the process of extracting ideas from nature to develop compu-
tational systems, or using natural materials (e.g., molecules) to perform computation”
([de 07], p.3). There are multiple branches of natural computing like computing algo-
rithms to simulate natural phenomenona, computing using natural materials. In this
work these forms of natural computing are not of interest. The one that is relevant here
is the branch where the computing itself is inspired by nature. There are many complex
problems in the world that are solved every day by organisms and natural occurring
movements. Think of ants always finding the way home, and water flowing. Leandro
Nunes [de 07] describes that this way of natural computing arose with two main goals
in mind; ” devise theoretical models, which can be implemented in computers, faithful
enough to the natural mechanisms investigated so as to reproduce qualitatively and/or
quantitatively some of their functioning” ([de 07], p.4) and to provide alternative
methods of complex problem solving for problems that could not yet be solved with
traditional methods.

7

2.4.1 Particle Swarm Optimization

Swarm intelligence is a term that refers to a system with seemingly unintelligent
agents that rely on rules that make their individual capabilities simplistic, yet in a
group show intelligent behavior. Examples of swarm intelligence algorithms are the
artificial bee colony, and the ant colony optimization algorithm. The one that is of
interest to this project is the particle swarm optimization (PSO) algorithm. Kennedy
and Eberhart originally found the inspiration for this kind of algorithm in 1995 in
trying to replicate human social behavior. Individuals would be capable of interacting
with their neighbors and the environment around them, leading to behavior on a
population level. ”Although the original approach has also been inspired by particle
systems and the collective behavior of some animal societies, the main focus of the
algorithm is on its social adaptation of knowledge” ([de 07], p.11). Garcı́a-Gonzalo et
al. [GG12] reviewed the history of particle swarm optimizing techniques and Mahmud
Iwan Solihin et al. [MISK11] used it to tune a PID controller.

2.5 Multi-Dimensional Problems

There are many types of optimization problems, with one of them being multi-
dimensional optimization problems. These problems focus on optimizing multiple
dimensions at once. This means that instead of trying to find the optimal value for
one parameter, a set of values is found for multiple parameters. This results in a
combination of values for parameters which with those values will produce the best
result.

2.6 Bat-inspired Algorithm

CXin-She Yang [Yan10] proposed a bat-inspired metaheuristic particle swarm algo-
rithm.

2.6.1 Bats In Nature

As this algorithm is inspired by microbats, a type of bat, it is essential to understand
the bats’ behavior. CXin-She Yang [Yan10] describes this behaviour very well. Microbats
use echolocation to detect objects in the dark. The properties of their pulses used for
echolocation vary depending on the species of bats and what they are doing at the
time. These pulses have a constant frequency which for most species is between 25kHz
and 100kHz. These pulses usually last between 10 to 20 ms for microbats. The rate
of these pulses could go up to 200 pulses per second when they fly near their prey.
”Amazingly, the emitted pulse could be as loud as 110 dB, and, fortunately, they are
in the ultrasonic region” ([Yan10], p.3). With all this, the bats can detect the distance
to, orientation of and moving speed of their target. ”Such echolocation behaviour of
microbats can be formulated in such a way that it can be associated with the objective
function to be optimized, and this make it possible to formulate new optimization
algorithms” ([Yan10], p.3).

8

2.6.2 Bat Algorithm Workings

Here is a simplified overview in pseudo-code of the bats algorithm.

fi ← fmin + (fmax − fmin)β, (1)

vi ← vi + (xi − x∗) fi, (2)

xi ← xi + vi (3)

λ =
v
q

(4)

xnew ← xold + ϵA (5)

Ai ← αAi, (6)

ri ← r0
i [1− exp(−γt)] (7)

Algorithm 1 Bat algorithm
1: for i = 1→ M do
2: Initialize population xi (i= 1, 2, 3, ..., n) ▷ Initialize
3: Initialize velocity vi
4: De f ine pulse f requency qi ϵ [0, 1] at xi
5: Initialize pulse rate ri ϵ [0, 1]
6: Initialize loudness Ai ϵ [1, 2]
7: end for
8: while termination criteria are not met do
9: fi ← fmin + (fmax − fmin)β ▷ Generate new solution by updating the frequency

Eq. (1)
10: vi ← vi + (xi − x∗) fi ▷ and the velocities Eq. (2)
11: xnewi ← xi + vi ▷ and the solutions Eq. (3)
12: if rand > ri then
13: Select a solution from the best solutions▷ Sort all solutions and grab a random

one from the top 5

14: Generate local solution around the selected best solution ▷ Eq. 5

15: end if
16: if rand < Ai AND f (xnewi) < f (xi) then
17: xi = xnewi ▷ Accept new solution
18: ri = ri ∗ 1.01 ▷ Update pulse rate Eq. (7)
19: Ai = Ai ∗ 0.99 ▷ Update loudness Eq. (6)
20: end if
21: Rank the individuals and find the best current x∗
22: end while

2.7 Prose To Prototype Project

The prose to prototype (P2P) project is a project led by Dr. G.J. Ramackers. The focus
of this project is to reduce the time spent on tasks in software development that do
not add production value or knowledge. Tasks like listing requirements for parts of

9

the software when a general text describing the full process are already made. Dr. G.J.
Ramackers et al. [GJR21] describes a way to pull these requirements straight from the
text, with the use of artificial intelligence (AI). The work described in this paper is
developed to be part of this Prose To Prototype Project.

2.7.1 Rendering

The prose to prototype project has a visualizer that renders UML diagrams, on which
this research relies. This renders made by this visualizer have some shortcomings
as it is still a work in progress, but these were not a big influence on the layout of
the algorithm. The most important point for this research was that the lines in the
layouts would attach to seemingly random parts of the nodes, which resulted in some
connections being off center by a couple of pixels. This is not ideal, but it only has a
minor effect on the layout an it is not the focus of this work, as the focus mainly lies
on the placements of the nodes.

10

3 Methods

3.1 Layout Generation

The layout algorithm is a combination of various techniques. It starts with subdividing
the network of nodes into smaller sets of nodes. This is done to reduce the complexity
of generating a layout. By subdividing the network into subsets, we can first focus on
generating a layout for the subsets, and then generate the final layout by moving the
subsets around. After dividing the network of nodes, we pass the subsets on to the
heuristic layout generator. This layout generator creates a simple layout taking into
account the hierarchy of the nodes. This means that the parent classes will be above
their sub-classes, which are next to each other. If two nodes are not connected in a
way where one has to be above the other, then they are put next to each other. This
results in a layout with layers of nodes with connections between and within the layers.
After this, the springs algorithm [KKR96] will be applied to the layout, which pulls
and pushes the nodes from and to each other.

3.1.1 Subset Division

The splitting of the network into subsets is done recursively and starts by defining a
rootset. This naturally starts with all nodes in the network. After this, the rootset is
made to split recursively. This is done in multiple ways as splitting into subgroups can
be done based on multiple criteria.
The first one is connectivity. Generally, a UML diagram contains one network of nodes,
but when splitting the sets a subset might contain nodes that cannot be reached from
all other nodes in the set by only making use of connections within the set. In this
case we split the set grouping the connected nodes together. This is done by taking a
starting node from the set and along with all the reachable nodes putting it in a subset,
and then repeating the process until all nodes are divided. Since we do not want to
take unreachable nodes into account when splitting on other criteria, this is the first
criteria any set is split on.
The second criterion is being part of a cycle. It is of great importance to realize the
difference between cyclic parts and acyclic parts in a network. This is because we can
layout an acyclic network by simply creating a tree-like layout. Whereas for a cyclic
layout this is not always possible, especially when taking into account the rule that
parent classes need to be above sub-classes. In order to split on whether nodes are part
of a cycle or not, first all the cycles within the set (only making use of connections
where both nodes are part of the set) are listed. This is done by walking every possible
path in a breadth-first search, until either a dead end is reached, or a node that is
already part of the path is reached. In that last case a cycle is detected. This cycle
includes the reached node that was already part of the traversed path and all the nodes
that follow it in this path. Then every node that is part of any of these cycles will be
put in one subset, and the other nodes will be put in the other subset.
The third way of splitting a set is by splitting a set that contains only cycles. The cycles
are listed as described previously, and duplicate cycles are removed. This is important
as cycles will be listed at least twice due to the breadth-first search walking the cycle
one way and then the other way. Removing duplicate cycles is important as we need
to know how many cycles there are in the set. If the set contains multiple cycles the

11

smallest nodes that form the smallest cycle are put in one subset, and the rest of the
nodes in the other subset.

After splitting a set the created subsets are given a tag that describes the type of
the subset. These types are:

• Initial: the initial state of a set. If nothing else is specified this set is treated as
the root set .

• Initial but connected: a fully connected set, but nothing is known about cycles.

• Acyclic: a set that does not contain any cycles.

• Cyclic: a set where every node is part of a cycle that consist of only nodes in the
set.

• Rest of a cyclic set: the rest after splitting the smallest cycle from a cyclic set.
This set might contain more cycles and might be fully connected.

• Rest of a cyclic set and connected: the rest after splitting the smallest cycle from
a cyclic set. This set might contain more cycles and is fully connected.

• Rest of a cyclic set and cyclic: the rest after splitting the smallest cycle from a
cyclic set. This set contains more cycles and is fully connected.

• Cycle fragment: the rest after splitting the smallest cycle from a cyclic set. This
set is fully connected, but does not contain any cycles.

• Dead end: contains a dead end that does not contain any cycles.

For each of these set types holds that one of the previously mentioned splitting criteria
is used to split. Figure 1 shows a flowchart of set types. The rootset starts as the ”Initial”
type, after which it gets split recursively and eventually all the sets that contain nodes
will be of a type that is marked green in figure 1.

12

Figure 1: Flowchart of set types. The green set types are final types

Figure 2 shows a network that is divided into subsets, with every colored blocks
representing a set than contains one or more nodes. The red blocks are sets that contain
one cycle, the yellow blocks contain cycle fragments and the green blocks contain dead
ends.

13

Figure 2: Network divided into subsets. Red is a cycle, yellow is a cycle fragment, and
green is a dead end

3.1.2 Heuristic Layout

After the network is divided into subsets each subset gets a layout. This layout is based
on two simple rules: (1) if two nodes have a parent-child relationship, then the parent
needs to be above the child, and (2) if no parent-child relationship exists between two
nodes then they are put next to each other.
A starting node is chosen and is put in an empty layer. Then all the nodes connected to
the starting node are put either in the same layer or a layer above or below depending
on which node is the parent. By adding all nodes of the set whilst taking into account
the relationships between nodes, we eventually end up with a set of layers that
represent a hierarchy of nodes. When a node is added to the layers it is put in a queue.
For every node in this queue the connected nodes that are not yet in the layers will be
added, after which the node is removed from the queue. For a set of nodes without
cycles this results in a set of layers where nodes can be moved horizontally without
passing each other to make a tree structure without overlapping lines. For a set of
nodes that does contain a cycle this is not the case. Also in that case there might even
be connections between layers that have one or more layers in between.
After the layouts for all the subsets have been generated, the relations between sets are
determined. If between two sets there is one connection of the parent-child type, the
sets containing the parent node is marked as the parent set of the set containing the
child node. Once all the relations between sets have been determined, the exact same
process happens as when the nodes within a set are laid out, but this time with sets
instead of nodes.

14

Figure 3: The layout after applying the heuristic layout

As seen in figure 3, after the heuristic layout every node is aligned properly and parent-
child relations are satisfied where possible. However it is not without issues. Node bd
is connected to node bj, even though they are not in layers that have direct contact,
and on top of that bj should have been above bd. This might not be clearly visible at
first as it looks like bd has a connection with ba, but actually the word ”connection” is
poorly placed with the first letter looking like the tip of an arrow.

3.1.3 Springs

The last step after the heuristic layout is generated is the springs algorithm. Thomas
Kamps et al. [KKR96] proposed a spring-based layout algorithm, however, this had the
constraints of setting every edge to the same length. Here that is not the case. Instead,
this algorithm will move every node once per iteration to and from other nodes based
on a spring-like structure.
For each node a total movement mt is calculated by calculating movements mi to or
from all the other nodes and adding those movements together. These small movements
are calculated by taking the target distance targetDistance and subtracting the actual
distance actualDistance and then multiplying it with a force f orce.

mi ← (targetDistance− actualDistance) ∗ f orce (8)

mt ← sumnrNodes
i=0 mi (9)

15

There is a separate target distance and force for connected nodes and unconnected
nodes. This is to allow greater control of the layout generation.
When determining mi based on a connected node, if both nodes share a similar x or y
coordinate, the corresponding axis is marked as aligned. If alignenable is set to true this
means that the marked axis is set to 0 in mt to ensure that the nodes stay aligned if
possible. How close the x or y coordinates need to be in order to be marked as aligned
is determined by aligndistance.
The second to last step is the random chance randchance to add a random vector
with magnitude randmagnitude to the total movement. This random movement ignores
alignment to prevent nodes from never moving on an axis.

if randomizer < randchance then mt ← mt +[random(−1, 1), random(−1, 1)] ∗ randmagnitude
(10)

At last, there is a check for overlapping connections. If checkOverlap is set to true the
total number of overlapping connections will be calculated. If after applying mt to the
node there are more overlapping connections, the move will be undone.

3.1.4 Parameters

In total there are 13 parameters that are given to the layout algorithm, which influence
the layout generation. Below is the list of these parameters, along with what they
represent in the algorithm:

• HeuristicDistance The distance between nodes after generating heuristic
layout

• f orceconnected The force used to influence movement magnitude based
on connected nodes

• targetDistanceconnected The target distance used to influence movement based
on connected nodes

• f orceunconnected The force used to influence movement magnitude based
on unconnected nodes

• targetDistanceunconnected The target distance used to influence movement based
on unconnected nodes

• aligndistance The distance in which a node is considered aligned
with other nodes

• alignenable If enabled, cancel movement on axis if a node is aligned
on that axis

• checkOverlapinterval The accuracy for checking if connections overlap

• checkOverlapdistance How close two connections have to be to count as
overlapping

• checkOverlapenable If enabled, cancel a move if it leads to more connections
overlapping

• randchance The change of the random step getting added

16

• randmagnitude The maximum magnitude of the random step

• nrIterations The number of iterations done by the springs algorithm

3.2 Gathering and Tuning

In order to find the best values for the parameters used in the layout algorithm, user
data is necessary. This is because we need to define a way to score a set of values for
the parameters, and we cannot do that without gathering data about what people
think of the generated layouts. Therefore a number of test users were asked to score
the generated layouts of simple diagrams on a scale of 1 to 10. This scale was chosen as
it is detailed enough to pack information, but not so detailed that users might become
inconsistent when scoring the layouts. When a user would generate a layout, first a
diagram was chosen at random out of 15 diagrams. These diagrams varied in size
and complexity, with some being very simplistic and some containing hard to layout
features like cycles. After that, a layout was generated with random values for the
parameters that influence the layout algorithm. Then the score of the user was saved
along with the parameter values for the generation algorithm.

In order to let a PSO work properly, a lot of data is needed. Given that the layout
generation has 13 parameters, it is very time-consuming to manually score enough
diagrams to gather a lot of data. In order to solve this problem computer-generated
scores are used alongside the user scores. These computer scores fill in the gaps where
there is no user data. However, if computer-generated scores are used alongside user
scores a similarity between the two is important. Otherwise, if we would have computer
scores that are very different from the user scores, we would still have the problem of
not having enough user data. Therefore we need to create a function that will try to
score the layouts as close as possible to the user score. In order to do this a dataset was
generated consisting of generation parameters (just like for the user test) and statics of
the layout generated with these parameters. These statics are:

• Average connected node distance: The average distance between all pairs of
nodes that have a connection between them

• Average unconnected node distance: The average distance between all pairs of
nodes that do not have a connection between them

• Overlapping-fraction: The number of overlapping connections divided by the
number of connections

• Alignedness: The average offset between nodes on the axis with the smallest
difference

• Correct relational position fraction: The amount of child nodes below the parent
node divided by the total number of parent-child pairs

All statistics were normalized with 0 equaling the smallest value found in all layouts
and 1 equaling the biggest value found in the layouts. This means that we can define a
set of weights for these statistics to generate a score.

computer− generatedscore← sum4
i=0statistics[i] ∗ weights[i] (11)

17

A system like this can be trained to approximate the score given by the user. However,
overlapping-fraction and alignedness are statistics that for high values indicate bad
layouts. This is a problem since training weights with the possibility of negative weights
increases the complexity of the training and with that decreases the accuracy. Therefore
these statistics are inverted so that high values imply good layouts and we can use
only positive weights.
In order to compare the generated score with a user score, a user score is calculated
based on the 5 closest user scores. This is done by taking the generation parameters of
the layout the computer tries to score, and finding the closest 5 parameter sets with
user scores, and then weighting the scores based on the distance.
An interesting note is that there is no statistic for overlapping nodes. This is due to
there already being a statistic that describes the average distance between connected
node pairs. These two statistics would have a big correlation and therefore only one is
used.

3.2.1 Optimizing Weight

An optimization algorithm was used to find the best weights to generate the computer
score. The algorithm starts with a set of weights that are all set to 0. Then for each
set of weights the algorithm repeatedly increases or decreases a random weight by a
random amount, whilst checking the totalError every time a change is made to the
weights. This totalError is the sum of the difference between the score generated based
on the weights and the user score to the power of 3

totalError ← sumnrUserScores
i=0 |userScore− computerScore|3 (12)

If after increasing or decreasing a weight the totalError is more than before, the weights
are reverted to the previous values. After many iterations a set of weights could get
close to approximating the user scores. However, if we do this for just one set of
weights, the weights might get stuck in a local optimum and never reach the best set of
values. This could be solved by running the algorithm over and over again until every
possible set of weights has been tried, but that would not be better than brute forcing
it, which is too expensive. Therefore the algorithm meets somewhere in the middle.
It runs 100 times, after which it saves best the 50. Then it runs again a 100 times, but
instead of starting with weights all at 0, it starts with a random set of weights from
the previous top 50. By repeatedly doing this the algorithm will be quicker than brute
forcing it and runs less risk of getting stuck in a local optimum.

3.2.2 Normalizing Data

The user scores are not equally distributed across all possible scores. This means that
if the weights would be trained on the user scores without preparing the data our
weights might be set to always predict the most common score. This way the average
error per prediction would be low, but it would not really work as a way to synthesize
user scores. To avoid this the data is prepared to have an equal distribution of scores,
by leaving out some of the user scores of which there are too many. This process is
also known as undersampling. Unfortunately for the highest scores there simply is not

18

enough data to achieve a perfectly uniform distribution without leaving the majority
of the data out. Due to this the averages of the scores are 4.5 and 4.2 for all the data
and under-sampled data respectively.

Figure 4: User score distribution

Figure 5: User score distribution after undersampling

3.3 Objective Function

A PSO needs an objective function to give every particle in the algorithm a score based
on its location. As stated previously the user score is calculated by combining the
user score of the closest 5 parameter sets that have a user score, giving each score a
weight based on the distance to the corresponding parameter set. In order to calculate
a computer-generated score, the same principle applies, but instead of combining the

19

computer-generated score, the computer-generated statistics are combined and from
that, the score is generated. Given that two of the thirteen parameters of the generation
algorithm are binary, a sigmoid function is used to set these values to 1 or 0 when
calculating the scores.
Two objective functions were used for this research:

objectiveScore← calculateUserScore(parameterSet) (13)

objectiveScore← calculateUserScore(parameterSet)+ calculateComputerScore(parameterSet)
(14)

Given that the computer score is supposed to be an approximation of the user score,
we could halve the result of the second objective function (equation 14) to compare it
to the result of the first objective function (equation 13).

3.4 Parameter Optimization

In order to get the best results from the bat algorithm, the hyperparameters need to
have the right values. In order to find these first I manually searched for the general
factor of values. Then once those were found, the algorithm ran repeatedly with
randomized hyperparameters around the initial found values. Per set of random
parameters the algorithm ran 10 experiments so that the the average result could be
taken, instead of the result of just one run. This resulted in a list of hyperparameters
along with the average result of 10 experiments. The best performing hyperparameters
were used for the final experiment.

3.5 Alignment Tool

After generating a layout for a diagram, the nodes are usually not aligned, even when
alignmentenable is set to true. This is due to the springs algorithm having to chance
to ignore alignmentenable, to avoid being unable to move nodes that are aligned on
both axis. Therefore a simple tool is used to align the nodes afterwards. This works
by checking the difference in x and y coordinated between every pair of nodes. If the
difference in coordinate in less that 40 pixels, one of the nodes is moved to match the
coordinate. Iterating over every pair of nodes is done by iterating over a list of nodes,
and for each node iterating over the following nodes in the list. By moving the nodes
of the second iteration loop to match the nodes of the first iteration loop, it is made
sure that pairs only get matched once.
This tool is completely separate from the rest of the layout algorithm and none of the
parameter optimization or user score takes this tool into account. It is purely made to
show the potential of implementing a similar tool into the main algorithm.

20

4 Results

4.1 computer-generated Scores

The performance of the computer-generated scores can be seen in figures 6, 7 and
8. As seen in figure 8 the computer-generated scores are often within 1 point of the
user score, however from figures 6 and 7 it is clear that even though the user scores in
the dataset are distributed equally, the predictions still tend to follow a similar trend
regardless of the user score. The fact that the computer-generated score is 5 most of
the time, means that we cannot compare the scores of different objective functions by
halving the one that takes into account both user score and computer-generated score.
Instead, we could simply subtract 5 from the result.

Figure 6: Computer-generated score against calculated user score

Figure 7: Computer-generated score distribution

21

Figure 8: Computer-generated score against calculated user score

4.2 Bats algorithm

Two experiments were performed in an identical way, except for the objective function.
The bat algorithm is initialized with the optimized hyperparameters and is run 10

times, with a 1000 bats and 15 iterations are done. When a new solution close to one of
the best solutions is generated, instead of taking one of the best 5 bats, one of the best
50 bats is chosen to give a new solution to prevent getting stuck in a local optimum.
The results of these experiments are shown in the table below. As stated previously,
the scores of the objective functions cannot be compared by halving the score of the
objective function that uses both user score and computer-generated score. Instead,
we subtract 5 from the scores that use computer-generated data. From the table below
it is clear that objective function based only on the user score leads to a result of just
over 9, whereas the other objective function leads to a result of around 15. If 5 would
be subtracted from the second results one could argue that that result is better than
the first result since 10 is greater than 5. However, there is still a chance that in this
case the computer-generated a score of 7 in which case the total result of around 15

is not better than 9. Because of this it is very hard to compare these results. However,
what is clear is that in both cases the bats found a solution that has a better score than
the average score of diagrams when laid out with random parameters for the layout
algorithm, which was a 4.5.

Run User score User score and computer score
1 9.123 14.836

2 9.098 14.542

3 9.082 14.613

4 9.056 14.735

5 9.093 14.800

6 9.125 14.995

7 9.090 14.945

8 9.107 14.829

9 9.086 15.109

10 9.035 14.769

22

The parameter values corresponding to the best found value for each objective function
can be found in the table below.

Parameter User score User score and computer score
HeuristicDistance 153 59

f orceconnected 47 54

targetDistanceconnected 350 198

f orceunconnected 75 53

targetDistanceunconnected 441 258

aligndistance 261 360

alignenable 1 (True) 1 (True)
checkOverlapinterval 35 26

checkOverlapdistance 200 159

checkOverlapenable 0 (False) 0 (False)
randchance 1 6

randmagnitude 22 87

nrIterations 17 21

For some parameters the difference between the two values found is quite large. There
could be multiple reasons for this. One could be that instead of one clear best set of
parameters, there would be a numerous parameter sets that compete for the best set
across the entire 13-dimensional space. Another possibility is that due to a lack of
large enough data the algorithms have not found a correlation between the results and
every parameter. The parameters checkOverlapenable and alignenable have the same value
and other parameters like nrIterations and f orceconnected have similar values. These
parameters are most likely to have the biggest influence on the layout features that the
users found important.

4.3 Final Scores

After running the experiment with the bat algorithm for both objective functions, the
best result and with that a set of parameters for the layout algorithm was found for
each objective function. Both sets of parameters were used to generate 25 layouts for
users to rank. The results of these rankings could be found in figures 9 and 10 and the
average score for these layouts is 6.1 for the parameters found only making use of user
feedback, and 6.4 for the parameters found by also using computer-generated data.
Whilst the result of parameters found using the computer-generated data is slightly
higher than the result of only using user feedback to find the parameters, given that
only 25 layouts were scored per parameter set these results could be interpreted as
similar in performance. Nonetheless the average score and the distribution of scores
for both sets of parameters are significantly better than the original scores gathered
using random parameter sets.

23

Figure 9: Score distribution of found parameters by only using user feedback

Figure 10: Score distribution of found parameters by using user feedback and computer-
generated feedback

4.4 Generated Layouts

The Prose To Prototype project that this layout algorithm will be implemented in has
no working auto-layout algorithm yet. Therefore the baseline layouts will be the layouts
generated with this algorithm with random parameters. Given their random nature,
some layouts will not be received well, but others might be.
Below are screenshots of generated layouts of four are shown. Per diagram four layouts

24

have been generated with different parameter sets. The first one with random param-
eters, the second one with the best found parameters based on solely user feedback,
the third one with the best found parameters based on user feedback and computer
generated feedback, and the fourth one with the best found parameters based on solely
user feedback and the final alignment tool applied.
It is interesting to see how the layout based on random parameters differ drastically
between some diagrams, whereas the differences in layout between the layouts gener-
ated with set parameters are consistent with each other.
Another observation is that the final layout with the alignment tool applied has a
varying effect per diagram. This leads to the conclusion that whilst the working of the
alignment tool does not directly depend on the parameters of the layout algorithm,
indirectly it does since the generated layout has an influence on the effectiveness of the
alignment tool.

4.5 Diagram 1

Figure 11: Diagram 1 laid out with random parameters

25

Figure 12: Diagram 1 laid out with parameters based on user feedback

26

Figure 13: Diagram 1 laid out with parameters based on user feedback and computer
feedback

27

Figure 14: Diagram 1 laid out with parameters based on user feedback and alignment
algorithm applied afterwards

4.6 Diagram 2

Figure 15: Diagram 2 laid out with random parameters

28

Figure 16: Diagram 2 laid out with parameters based on user feedback

Figure 17: Diagram 2 laid out with parameters based on user feedback and computer
feedback

29

Figure 18: Diagram 2 laid out with parameters based on user feedback and alignment
algorithm applied afterwards

4.7 Diagram 3

Figure 19: Diagram 3 laid out with random parameters

30

Figure 20: Diagram 3 laid out with parameters based on user feedback

31

Figure 21: Diagram 3 laid out with parameters based on user feedback and computer
feedback

32

Figure 22: Diagram 3 laid out with parameters based on user feedback and alignment
algorithm applied afterwards

4.8

Diagram 4

33

Figure 23: Diagram 4 laid out with random parameters

Figure 24: Diagram 4 laid out with parameters based on user feedback

34

Figure 25: Diagram 4 laid out with parameters based on user feedback and computer
feedback

Figure 26: Diagram 4 laid out with parameters based on user feedback and alignment
algorithm applied afterwards

5 Conclusion and Future Works

The results show an improvement over the starting point, which was using random
parameters for the layout generation algorithm.
This shows that the selected natural algorithm can be used to increase the performance
of a layout algorithm for UML system design. However, increasing the performance
does not equal optimisation and it is clear that there is still room for improvement.
Due to a limited data set the algorithms most likely did not have enough data to
properly train themselves. Eventhough a lack of data is not preferred, being able to sig-
nificantly improve the performance of a self learning algorithm even without sufficient
data shows that the potential of the algorithm. In the end the layouts generated with
the parameters found by the bats algorithm improved the average score of the layouts
by almost 2 points out of 10.

Even though the algorithm performs better with the achieved parameters than before,

35

there is still much to improve. Especially the computer-generated score system. If this
would be improved the bats algorithm would not only have much more data to use,
but it would be taking in an extra type of data as the computer-generated score is
based on the calculated statistics of the layout. This could be good to take into account.
Ideas to improve this system would be to gather more user scores to train on, or to
pick a different optimizing algorithm for the weights. Another possible improvement
would be to calculate more statistics of a layout and with that increase the number of
weights that need to be trained.
The springs algorithm might also be improved as currently it only checks overlapping
connections, not nodes, and it does not take into account that some nodes need to be
positioned above other nodes.
The alignment tool could be optimized by changing the distance at which a nodes is
considered aligned. It was set to 40 for this research, but perhaps future work could
indicate that another set distance, or even a dynamic distance would be better.
This project was done with UML class diagrams in mind, but there are many more
UML diagrams that could benefit from a similar layout function. Specifically the ac-
tivity diagram comes to mind. Adding these other UML diagrams would require the
addition of more types of nodes and connection to the code, along with heuristic rules
describing the relation and with that the placements of nodes that share a connection.
By training the system to perform better on other UML diagrams interesting results
could follow.
The last point of future work is automation. Automated data gathering from test users
when using this layout algorithm would result in a dataset that grows over time. This
could then be used to automatically train the weights for the computer-generated
scores, build a new dataset with these computer-generated scores and then rerun the
bats algorithm to find a new set of parameters with an improved performance. A
system like this could be used to rapidly grow a dataset when used by many people,
but could also be used to gather data for individuals so that the algorithm would
generate a layout based on only the individuals’ preferences. This could ultimately
be used in large-scale development teams where every team member has the same
diagram but with a different layout so they all can easily view the graphical layout of
the specification in their personal preferred format.

References

[de 07] Leandro Nunes de Castro. Fundamentals of natural computing: an overview.
Physics of Life Reviews, 4(1):1–36, 2007.

[GG12] J. L. Garcı́a-Gonzalo, E.; Fernández-Martı́nez. A brief historical review of
particle swarm optimization (pso). 2012.

[GJR21] Martijn B.J. Schouten Michel R.V. Chaudron Guus J. Ramackers, Pepijn
P. Griffioen. From prose to prototype: Synthesising executable uml models
from natural language. 2021.

[GR15] Filippo Ricca Diego Clerissi Gianna Reggio, Maurizio Leotta. What are the
used uml diagrams? a preliminary survey. 2015.

36

[HFvH] Michael Matzen Hauke Fuhrmann, Miro Sponemann and Reinhard von
Hanxleden. Automatic layout and structure-based editing of uml diagrams.

[KKR96] Thomas Kamps, Joerg Kleinz, and John Read. Constraint-based spring-
model algorithm for graph layout. pages 349–360, 1996.

[Lyo98] Andrew Lyons. Uml for real-time overview. 1998.

[MISK11] Lee Fook Tack Mahmud Iwan Solihin and Moey Leap Kean. Tuning of pid
controller using particle swarm optimization (pso). 2011.

[VKS14] Matthew Nathal Vincent Kenny and Spencer Saldana. Heuristic algorithms.
2014.

[Yan10] CXin-She Yang. New metaheuristic bat-inspired algorithm. Nature Inspired
Coop-erative Strategies for Optimization, NISCO 2010, 2010.

37

	Introduction
	Related Works and Background
	Unified Modeling Language
	Autolayout
	Heuristic and Algorithms
	Meta-Heuristic Algorithms

	Natural Computing
	Particle Swarm Optimization

	Multi-Dimensional Problems
	Bat-inspired Algorithm
	Bats In Nature
	Bat Algorithm Workings

	Prose To Prototype Project
	Rendering

	Methods
	Layout Generation
	Subset Division
	Heuristic Layout
	Springs
	Parameters

	Gathering and Tuning
	Optimizing Weight
	Normalizing Data

	Objective Function
	Parameter Optimization
	Alignment Tool

	Results
	computer-generated Scores
	Bats algorithm
	Final Scores
	Generated Layouts
	Diagram 1
	Diagram 2
	Diagram 3
	

	Conclusion and Future Works

