
Opleiding I&E

A RUNTIME ENGINE FOR INTERPRETING UML ACTIVITY

META DATA FOR PROTOTYPE EXECUTION

Taro Spruijt 2599325

First supervisor: Dr. Guus Ramackers
Second supervisor: Prof. Dr. Joost Visser

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 10/08/2022

www.liacs.leidenuniv.nl

Abstract

Model Driven Engineering is a growing practice aiming to enhance software development from
the generation of models. Whereas previous research has thoroughly studied the rationale,
users, challenges, usage and industries of Model Driven Engineering none have reviewed a
runtime engine for prototype execution. Particularly, UML activity diagrams and interpreting
their subsequent meta data for prototype execution is of interest. As such, this paper aims
to tackle exactly this. While a project containing static pages in which users create activity
diagrams and enter data exist, this paper adds behavioural and workflow to enable prototype
execution.

This was done by making users link pages they create to nodes of an activity diagram in
order to display these pages. As a result these pages can be displayed in the order relevant to
the activity diagram. By making users link pages to nodes a sequential order of nodes was
generated with their respective pages. Subsequently, all pages will be shown in order of the
nodes of the activity diagram when a user wishes to execute a prototype. In addition, users
are able to manually move on to next nodes and browse through the pages by clicking a “next
page” button.

Even though an engine for prototype execution was made, full functionality to interpret
activity diagrams is not entirely implemented. Specifically, decision, fork and join nodes have
no functionality yet. Another essential component which has not been included in the runtime
is the interpretation of edges between nodes. Future research should extend the runtime engine
by adding interpretation for all types of nodes of an activity diagram and the interpretation
of edges between nodes. Lastly, this research and development is part of the ngUML/Prose
to Prototype Software Development Environment project at Leiden Institute of Advanced
Computer Science (LIACS).

2

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Task definition . 1
1.3 Approach . 1
1.4 Goal . 1
1.5 Contribution . 1
1.6 Thesis overview . 2

2 Background and Related Work 2
2.1 Unified Modelling Language . 2

2.1.1 Activity diagrams . 2
2.2 Current state . 4
2.3 Desired state . 5
2.4 Related work . 7

2.4.1 Rationale behind MDE . 7
2.4.2 MDE’s industries . 8
2.4.3 Users of MDE . 8
2.4.4 Challenges for MDE . 8
2.4.5 Usage of MDE . 10

3 System Design 11
3.1 Logical Design . 11

3.1.1 Requirements . 11
3.1.2 Overview . 11

3.2 Technical Design . 12

4 Worked Examples 12
4.0.1 Page creation . 13
4.0.2 Workflow example 1 . 17
4.0.3 Workflow example 2 . 23

5 Conclusion 24

References 26

1 Introduction

1.1 Introduction

Unified Modelling Language (UML) is a set of modelling standards widely used as the norm to
create diagrams. However, making diagrams manually may be timely. As a result, automation of
the process of developing diagrams could greatly reduce the amount of time and resources needed to
model and visualizing software projects. As a consequence, time previously allocated to developing
models could now be spent elsewhere. This may result in more efficiency within software engineering.

Most diagrams should usually not be used as static artefacts. Namely, diagrams are often used
to describe the behaviour and functionality of a prototype at runtime. This means that diagrams
are not just used as an image to view, but diagrams are used to show how a certain prototype or
software element should behave under certain circumstances. This way, the creator of a diagram
can easily show a developer for example how they want some software to behave and function at
runtime.

1.2 Task definition

Previous research has already created the ability to automatically create activity diagrams. This
was done by taking text input from a user specifying their requirements which are translated
into Python classes using Natural Language Processing. Currently, the existing project has no
functionality to interpret UML class metadata or prototype execution. There are only static pages
where the user enters data. This needs to be extended with behavioural aspects for workflow and
application flow to be able to execute more real life prototypes.

1.3 Approach

Namely, automatic execution at runtime for processes is not integrated yet. Automatic execution at
runtime enables users to perform tasks without any lag. In addition, the final prototype no longer
consists of static pages but now also supports linking pages within an application or workflow. As
such, users are able to easily generate activity diagrams and perform tasks. This will be done by
adding interpretation to activity nodes.

1.4 Goal

Thus, the goal of this research is to develop software which is able to perform processes at runtime.
That is, the aim of the software is to be able to take user inputs specifying application or workflow
processes used to make a UML activity diagram after which the process specified must be executed
at runtime. However, there is no backend which can automatically execute the processes yet.

1.5 Contribution

This report will contain two main details.

• Firstly, a description of the software created will be given.

1

• Secondly, examples of the software created will be shown.

1.6 Thesis overview

Furthermore, this report is part of a bachelor thesis at the Leiden Institute of Advanced Computer
Science and is supervised by Guus Ramackers. Also, the report is divided into five chapters. Firstly,
this chapter contains the introduction; Section 2 describes both background information needed to
understand this research and research related to this work; Section 3 discusses both the logical
design of the system as well as the technical design; Section 4 describes the created software and
shows examples of its functionalities; Section 5 discusses challenges regarding the research, concludes
and discusses potential further research.

2 Background and Related Work

2.1 Unified Modelling Language

Unified Modelling Language (UML) is a standard which is often used by diagram makers to which
different forms of diagrams should conform to. For example, flowcharts (charts which visualize
the steps of a process) can be visualized in an endless amount of ways. In order to align the
interpretation of readers of diagrams, UML has rules which describe how certain diagrams should
be visualized so making and reading diagrams is easier.

2.1.1 Activity diagrams

The main component of UML which this report studies are activity diagrams. Activity diagrams
are a type of diagram which describes the steps a system must perform [act]. In essence, activity
diagrams portray the flow of activities. An example of an activity diagram can be seen in Figure 1.
In order to display the connection between activities, activity diagrams exist of nodes which are
connected to each other using directed arcs.

There are different forms of nodes in an activity diagram. For this project the following nodes can
be used to create an activity diagram with.

• Initial node: this node shows where the activity flow starts. It is denoted by a fully black
circle (see Figure 2).

• Action node: the action node displays an action which must be performed. It is drawn as a
rectangular box with text of the action to be performed within the box (see Figure 3).

• Decision node: the decision node is used when a condition must be checked. For example,
“is the order total above 10000?” The node is denoted by a diamond with the text for the
decision underneath it (see Figure 4).

• Merge node: the merge node is used to close after a decision. The merge node takes inputs
from the paths created after a decision node and brings these paths back together. The node
is denoted by a diamond with the text for the merge underneath it (see Figure 5).

2

Figure 1: Example of an activity diagram

• Fork node: the fork node splits the behaviour into parallel flows or actions. It is denoted by a
thick black vertical line with the text for the fork underneath (see Figure 6).

• Join node: the join node connects the flows or actions after a fork node has split the behaviour
into parallel flows or actions. The flows or actions are brought back together by a join node.
The join node is denoted by a thick black vertical line with the text for the join underneath
(see Figure 7).

• ActivityFinal node: the activity final node is used to stop all flows in an action. It is denoted
by a circle with a thick black dot in it a thick black vertical line (see Figure 1)

• FlowFinal node: the flow final node denotes the exit of a system. The difference between a
flow final node an activity final node is that a flow final node ends all tokes that arrive in it
and has no effect on other flows and actions, whereas an activity final node ends an entire
flow or action.

Figure 2: An initial node

3

Figure 3: An action node

Figure 4: A decision node

Figure 5: A merge node

Figure 6: A fork node

Figure 7: A join node

2.2 Current state

Currently, there are two main components to the system: the backend and the editor. Moreover,
there are static pages in the backend in which users are able to enter data (see Figure 8).
First, users enter requirement text on this page. For example: ”a product is characterized by a
name, a description, a product number, a price and a location.” This will result in a Python class:
Class: Product Attribute: [’description’, ’price’, ’location’, ’name’, ’product number’] (see Figure 8).
As a result, a class diagram as seen in Figure 9 below will be generated in the editor. Subsequently,

4

Figure 8: The requirement text

models can be created (see Figure 10). Also, the properties of the classes (i.e. the attributes) can
be filled in (see Figure 11) with live data.

Second, users create an activity diagram manually. However, there is no flow to execute processes
at runtime. That is, there are only static pages in which users are able to enter data. There is no
ability to automatically perform the actions described in the activity diagram yet. Thus, the pages
must be extended with behavioural aspects to be able to execute real life prototypes.

2.3 Desired state

In order to automatically perform prototypes, workflow between pages must be added. As such,
the desired state is a software which is able to interpret process specifications at runtime in order
to add pages, which are part of an application or workflow. As a result, pages must be shown at
runtime for each node in an activity diagram. For example, see Figure 1.

In this activity diagram the user starts by entering an order. As such, an enter order page must be
shown to the user. When the user has clicked the enter order button a decision node is reached.
Then, depending on whether the user needs to approve the order, a merge node is reached or the
user must validate the order. If the order is validated the merge node will also be reached. Then,
stock must be allocated. Afterwards the activity flow will be finished if the order was not approved
or stock was allocated.

5

Figure 9: Class diagram of the product order requirmements

Figure 10: The models which can be created

Figure 11: Data which can be filled in

6

2.4 Related work

Whereas this paper analyzes the usage and creation of executable prototypes, other research
has been done on similar subjects. Namely, two main similar subjects have already been studied
quite thoroughly. These two topics are executable specifications and model driven engineering.
Executable specifications are the primary category where the subject studied in this paper falls
under. Nevertheless, model driven engineering is not of much lesser importance. From here on out
executable specifications and model driven engineering will be denoted by MDE.

In order to fully understand the importance and relevance of this paper’s research, the current state
of the art can be evaluated. For this, five different topics are key. The main questions which are
answered by other research are: “why is MDE used?”, “where is MDE used?”, “by whom is MDE
used?”, “what are the challenges with MDE?” and “how is MDE used?.” When these questions
have been answered, it should be clear to see why MDE is an important topic of study.

2.4.1 Rationale behind MDE

First, previous research has determined a rationale behind the usage of MDE. It has been studied
what the central points are which users consider when adopting MDE and the potential usage
MDE has in the 22 years from 2022. As such, a clear reasoning can simply be identified for the
usage of MDE in the present as well as predict the future trend of MDE adoption.

The first paper explaining the why-question of MDE, discusses the acceptance of MDE in industry
[MGSF13]. In this paper, Stefanescu et al. studied four large companies aiming to discover the
most important reasons for adopting MDE. For this, data was collected covering tool evaluations,
interviews and a survey. It was found that perceived usefulness, ease of use and the maturity of the
tools were the key components to employ MDE.

The second paper covering the why-question proposes a potential future trend with regards to
MDE usage [MAB+14]. In order to test the relevance of MDE in the future, Mussbacher et al.
designed an experiment over the duration of a week. In this week, Mussbacher et al. united with
15 MDE experts to discuss challenges and future opportunities of MDE. In the end, four main
challenges of MDE were identified. These four challenges identified are: Cross-Disciplinary Model
Fusion, Personal Model Experience, Flexible Model Integration and Resemblance Modeling – From
Models to Role Models.

Firstly, Cross-Disciplinary Model Fusion explains that MDE knowledge should be used across
multiple disciplines. For example MDE should focus more on artificial intelligence, databases, the
semantic web and human-computer interactions. Secondly, Personal Model Experience explains the
task to make modeling and the use of models directly benefit the individual. Thirdly, Flexible Model
Integration depicts “how software models should be structured to provide value when developing
systems that flexibly address many concerns simultaneously” as stated by Mussbacher et al.. Lastly,
Resemblance Modeling – From Models to Role Models shows that modeling should not be done in
a too high level of abstraction.

7

2.4.2 MDE’s industries

Second, it has been studied in what industries MDE is beneficial. A paper by Mohagheghi et al.
does this by reviewing a case of three large industrial participants of a research project which
aims at finding new techniques to use MDE on the development of large and complex systems
[MGS+11]. As such, Mohagheghi et al. give a summary of the findings. As stated by Mohagheghi
et al. these findings are that the participants think MDE is primarily convenient in “providing
abstractions of complex systems at multiple levels or from different viewpoints, for the development
of domain-specific models that facilitate communication with non-technical experts, for the purposes
of simulation and testing, and for the consumption of models for analysis, such as performance-
related decision support and system design improvements.”

Not only did the participants find MDE useful for the development of domain-specific models,
they also found “a methodology useful and cost-efficient if it is possible to reuse solutions in
multiple projects or products from the industrial perspective.” On the other hand, developing
reusable solutions required extra effort and sometimes had a negative impact on the performance
of tools. Mohagheghi et al. conclude that merging different tools in a seamless development
environment requires several transformations which requires higher implementation effort and
increases complexity.

2.4.3 Users of MDE

The third topic to be covered is the users of MDE. This topic has been studied in two ways.
Firstly, an use case was studied of Motorola’s [BLW05]. Secondly, an industry-wide study was
performed to analyze the usage of MDE in practice [WHR14]. In the first paper studying Motorola,
Baker et al. convey their experiences within Motorola. Baker et al. do this by analyzing their ex-
periences gained over more than 15 years in deploying a top-down approach to MDE within Motorola.

Due to Motorola striving for lower development costs despite higher system complexity, Motorola
has been using MDE for a while. For this, rigorous models are created throughout the development
process in order to introduce automation. Baker et al. conclude that “through the coordinated
and controlled introduction of MDE techniques, significant quality and productivity gains can be
consistently achieved and the issues encountered can be handled in a systematic way.”

The second answer to the question included an industry-wide study to learn by whom and where
MDE is used. In this study, 450 MDE practictioners were surveyed. Interviews were also performed
with these practitioners and 22 other practitioners. Whittle et al. conclude that developers barely
ever user MDE to generate entire systems despite MDE being more commonly used than usually
believed. Instead, developers apply MDE to key parts of a system.

2.4.4 Challenges for MDE

The penultimate topic to be covered is the challenges of MDE. Primarily, a study done by Buc-
chiarone et al. [BCPP20] describes findings of two events in Germany and Italy where the state of
the art, research and practice were discussed. Experts from industry, academics and the open-source
community gathered in these events to discuss the changes over the last ten years of MDE at the

8

time of the meetings (2017 and 2018). The grand challenges found were split into two groups:
technical challenges and social and community challenges.

Under the technical challenges foundation challenges and domain challenges are the two main sub
challenges. Under the social and community challenges social aspects and community aspects are
the two main sub challenges. Bucchiarone et al. have illustrated the challenges found during the
events in the chart seen in Figure 12.

Figure 12: Challenges of MDE. Courtesy of Bucchiarone et al.

Furthermore, a study done by Mohagheghi et al. reviewing quality control in MDE might be of
particular interest when analyzing challenges for MDE [MA07]. In this study, Mohagheghi et al.
both lay out quality goals in MDE and emphasize that the quality of models is affected by the
quality of modeling languages, tools, modeling processes, the knowledge and experience of modelers
and the quality assurance techniques applied. They also state that well-formedness and precision

9

are key factors in MDE.

Due to quality control being such a main component MDE, Mohagheghi et al. think that more
research on quality control may aid in the adoption of MDE for complex system engineering. Using
this reasoning, it is clear to see that quality control is a fundamental challenge in MDE. Properly
tackling this challenge may induce the promotion of adoption of MDE.

2.4.5 Usage of MDE

Finally, the question of how MDE can be used will be reviewed. The first paper that does this
uses MDE for model-checking tools [BTJ+21]. Besnard et al. use a UML model interpreter so
software requirements can directly be translated into UML. In the approach of Besnard et al.,
formal requirements are encoded as UML state machines. As such, it is stated that executable
UML specifications are able to model “either a Büchi automaton or an observer automaton, and is
synchronously composed with the system, to follow its execution during model-checking. Formal
verification can continue at runtime for all deterministic observer automata used during offline
verification by deploying them on real embedded systems.”

A second study displaying the usage of MDE has set out a framework for MDE [Ken02]. A distinc-
tion was made first between Model Driven Architecture (MDA) and MDE. The paper’s framework
for MDE aims at creating a point of reference within MDE and MDA. The most important topics
covered by this article are the organisation of the modelling space and how to locate models in
that space, different kinds of mappings between models, why process and architecture are tightly
connected, the importance and nature of tools, the need for defining families of languages and
transformations and for developing techniques for generating/configuring tools from such definitions.

The third article discussing the usage of MDE looks at software estimation [GGN94]. Namely,
Gong et al. present a software estimator which measures execution time, program memory size and
data-memory size for a specification execituting on a processor. The main idea of using a software
estimator was to enable quicker exploring of large design spaces in software/hardware systems.
Designers or partitioning tools have a trade off between hardware with software implementation for
the entire part or only a part of the system under design. As such, automatic software estimation
is central in this process.

The last paper tackling the usage of MDE aims to translate specifications in natural language to
executable specifications [SF96]. For this, Schwitter et al. use Attempto Controlled English (ACE).
ACE is a subset of natural language which is still expressive enough to be able to use for natural
language, but can be accurately and efficiently processed by a computer. ACE is used to translate
specifications discourse representation structures and Prolog. As a result, a knowledge base is
generated which can be queried in ACE and executed for simulation, prototyping and validation of
the specification.

10

2.4.5.1 MDE usage and prototype execution

This project slots in the MDE usage in such a way that a new fashion of MDE is studied. Namely,
this project analyzes MDE usage at runtime. That is, by creating software which is able to interpret
data entered into an activity diagram model. An user generates an activity diagram and creates
pages after which the created pages can be displayed in the correct order according to the nodes of
the activity diagram. As such, the need to manually generate and display pages is removed and
executing a prototype is made more effective and simple.

3 System Design

This section will examine the design of the system created to execute prototype specifications
at runtime. This will be done by dissecting the system design into two subjects. Firstly, the
logical design will be reviewed. Secondly, the technical design will be discussed. The logical design
subsection will analyze the logical aspects behind the code written. That is, an explanation on the
design of the system will be given on the level of the code to understand how parts of the software
relate to each other and cooperate. In the technical design component, the same will be done as for
the logical design, but for a more high-level view of the system.

3.1 Logical Design

3.1.1 Requirements

The requirements of the logical design lie in the execution of the prototype. The most important
requirements is the ability for a user to automatically go through the pages they assign nodes in an
activity diagram. For example, a user may create an activity diagram with two connected action
nodes and link two page to these action nodes. Then, the required functionality is that the user is
able to go through the pages as indicated by the activity diagram.

Furthermore, the software must be able to handle the desired functionality for the nodes explained
in section 2.1.1. However, this project does not implement functionality for the decision, fork and
join nodes. One of the key requirements is that the pages which the user linked to nodes are
shown in the correct order and take the user’s input to execute the prototype. As such, taking the
user’s input from the page creation and linking should lead to the execution of the prototype. The
switching between pages can be done through a “next page” button.

3.1.2 Overview

View the activity diagram given in Figure 1. A user creates pages and links them to the nodes. For
example, the user assigns page 1 to the Enter Order node, page 2 to the decision node, page 3 to
the approve order node and page 4 to the allocate stock node. When the user clicks start prototype
and the button communicates with the backend to show page 1. When the user is finished on page
1, they can click the next page button to go the next page. Now, a decision node is reached and the
user must determine whether their condition is satisfied or not.

11

Depending on the user’s input, either page 3 is reached or the merge node. If the user reaches page
3 and they approve the order, the merge node is reached and the user reaches page 4. If the user
disapproves the order the finish of prototype is reached. Else, the merge node is reached in the
case of order approval or no need for validation and page 4 is shown. After allocating stock the
user reaches the finish of the prototype. Due to the fact that there is a decision node, the software
designed in this project is unable to handle this specific prototype.

3.2 Technical Design

The technical design consists of html files and Python files communicating with eachother. Also, the
entire project is built with Django. Mainly, the python files use functions calling upon each other as
a result of receiving a request from a user pressing the start prototype button from Figure 32. When
the request is sent from the button, a function is called to handle this request. In this function, three
main functions are called. Firstly, a function called page node rela() which creates a dictionary of
node ids and their corresponding page ids, where the keys are the node ids and the values the page ids.

Secondly, a function called node order() is called. This function returns a dictionary of node ids
and the type of the node this node is, where the keys are the ids of the nodes and the values are
the types. For this, finding the initial node of the activity diagram is done first. From the initial
node, the edge from the initial node is checked and the adjacent node is found. This node is added
to the dictionary and now the adjacent node for this node is found. This process goes on until the
final node is found.

Lastly, a function called node has page() is called. This function takes the dictionaries obtained
from the page node rela() and node order() functions and checks for the nodes in the node order
dictionary whether they have a page linked to them. If a node has no page linked to them, the
node is removed from the node order dictionary because there is no page which has to be shown
for that node. Currently, only functionality for the action, merge, initial and activityfinal nodes
have been implemented.

When all of this has been determined, the main function checks whether the request it got from
the html was get or post. If the request was get it means that the start button was pressed and
it shows the first page by looking up the first node in the node order dictionary. If the request
was post the user has clicked the next page button. The index of which page is looked up in the
node order is increased by one and the next will be shown by resetting the request method to get.

4 Worked Examples

To illustrate how the system works, two worked examples will be shown. First, worked example
created by Bram van Aggelen of the creation of a page will be viewed. Then, an illustration of the
workflow will be depictured. As a result, a clear understanding of the created software should be
obtained.

12

4.0.1 Page creation

First view the worked example for the creation of pages. Remember that users start by entering
their requirement text into the backend metadata extractor (see Figure 8). Consequently, users
can create a class diagram from the metadata (see Figure 9). However, the class diagram which
is automatically created without human intervention looks like the one seen in Figure 13. This
diagram does not necessarily guarantee that the final application will work in the way it is supposed
to. As such a few changes need to be made.

Figure 13: Class diagram directly created from metadata extraction

Namely, some relationships which are now modelled as many to many need to be modelled as many
to one, due to the lack of implementation of many to many relationships currently. As such these
changes must be made where the 1 in the changes showcases the 1 in the relationships:

• order – customer (1)

• order – deliverycompany (1)

• lineitem – product (1)

Now, view the backend again. Here, the relations ans classes can be viewed and edited too (see
Figure 10). The most important part in the backend to create pages, is the applications part. For
this example, two applications were created. One application was created for a client and one

13

application was created for a business (see Figure 14). After the creation of the applications, the
corresponding classifiers were added to the applications. In the applications, categories were created.
Under the business application the category creation was created (see Figure 15) and 2 pages called
product and delivery company were made (see Figure 16) in this category.

Figure 14: The business and client applications

Figure 15: Category “creation” for the business application

Now that the pages have been created, the query tab from Figure 16 was accessed. In the query
tab, the main model can be chosen, the toggle for “page for data insert” can be checked and a
query can be specified to narrow down results (see Figure 17).
For this page, product was selected and the page creation option was chosen. After this was saved,
the properties tab from Figure 16 was selected. In here the properties of product were used (see

14

Figure 16: Product and delivery company pages created for the business application

Figure 17: Query page

Figure 18).
Next, the html structure of the page was created through the edit tab of Figure 16. On this page
(see Figure 19) there is the ability to insert data, insert a data table, insert an input field, insert an
input model and insert a submit button.

For this example, insert input was chosen (see Figure 20) and the data of product was selected (see
Figure 21).
Afterwards a save button was added to the page resulting in the final page seen in Figure 22. The

15

Figure 18: Properties page

Figure 19: HTML page creator

add more button may be used in case there is need for more data to be entered. Remember, this
page was created for the product (as seen in Figure 16). As such, the same steps were done for the
delivery company afterwards. Next, a new category called overview was created (see Figure 23). In
this category the order-overview page was created. The main model of this page was Order. The
following properties were selected:

• All of Order

• Name of Customer

• Quantity from LineItem

• Name, price and product number from Product

16

Figure 20: Inserting data in the HTML page creator

Figure 21: Inserting the product data in the HTML page creator

• All of Delivery Company

As such, the page in Figure 24 was created. Lastly, the Client application was accessed and the
Order, Customer, LineItem and Product classifiers were added. Also, the category Order was made.
In this Order category, a page create-order was made. For the main model, the Order classifier was
used and inserted as data page. All possible properties were linked and the final page was created
as seen in Figure 25.

4.0.2 Workflow example 1

Next, view an example of the workflow. For the workflow, the activity diagram from Figure 26 was
created in the editor.
As visible, one initial node was created after which two consecutive action nodes come. The first
thing to do in the editor is to create page names for the nodes of the activity diagrams. By assigning

17

Figure 22: The page created after selecting the product data and creating a save button

Figure 23: Addition of the category for overview

Figure 24: Page for the order overview

a page name to nodes, nodes can later be linked to pages created as seen in example of chapter 4.0.1.
In Figure 27 and 28 page names were assigned to the nodes.
Following, a category called cat1 was created (see Figure 29) and two pages were created within
this category. Next, the page1 and page2 were linked to pagename1 and pagename2 respectively
(see Figure 30 and Figure 31). As such, action node 1 and page 1 are effectively linked to each other
as well as action node 2 and page 2.
In order to run the prototype, the run prototype button (see Figure 29) must be clicked leading the

18

Figure 25: Creation of the create-order page

Figure 26: The nodes connected by edges

user to a page with a button to start the prototype execution (see Figure 32). As a result, the page
linked to the first action node after the initial node will be shown. Since action node 1 was linked
to pagename1 and pagename1 to page 1, page 1 will be shown for action node 1 (see Figure 33).
When the next button is clicked, the page corresponding to action node 2 will be displayed. Since
both the pages for action node 1 and 2 are empty, the pages will look like Figure 33. However, the
id of the page is still different for both nodes. If a page has some data entered onto it, the difference
between the pages can easily be spotted.

19

Figure 27: Addition of a page name for action node 1

Figure 28: Addition of a page name for action node 2

20

Figure 29: Addition of a category

Figure 30: Linking page 1 to pagename1

21

Figure 31: Linking page 2 to pagename2

Figure 32: Page to start the prototype execution

22

Figure 33: Page which is shown for the first action node. Note, since the page is empty the same
page will be displayed for action node 2.

4.0.3 Workflow example 2

For the second example of the workflow, assume the same activity diagram as example 1 (see
Figure 26. However, now page 1 must take the properties of the Order model and let the user fill
in the data for these properties. The creation of this page can be seen in Figure 34. The second
page must show the text “page number 2” and a submit. This page is created in the way seen in
Figure 35. When going back to the start prototype execution page and clicking the start button
the first page linked to the first action node will be displayed (see Figure 36). On this page, users
are able to enter data for the properties of the Order model. Clicking the next page button sends a
user to the second page (see Figure 37). Here, the text “page number 2” and the submit button are
present.

Figure 34: Page which must be shown for the first action node. The page must show data entry
fields for the properties of the order model.

23

Figure 35: Page which must be shown for the second action node. This page must show the text
“page number 2” and a submit button.

Figure 36: Page which is shown for the first action node. The page shows data entry fields for the
properties of the order model which can be filled in by the user.

Figure 37: Page which is shown for the second action node. The page shows the text “page number
2” and a submit button.

5 Conclusion

This paper is part of ngUML at the Leiden Institute of Advanced Computer Science and looked
at adding behavioural aspects to static pages in an UML interpreter to automatically execute
prototypes at run time. Whereas previous research has already looked at the rationale, industries,
users, challenges and usage of Model Driven Engineering and Executable Specifications (MDE)
this paper adds to this by creating a run time prototype executor from metadata obtained by
user requirements. The way this was done was by creating Python functions calling each other to
showcase pages at run time.

This was done by extending a current existing project by the ngUML team existing of an editor and
a backend. In the editor users are able to enter activity diagrams or class diagrams. This data is
then sent to the backend and users can create pages. However, the activity diagrams were not able
to be performed automatically yet. As such, Xue Jun Wang’s paper and this paper collaborated to

24

create the ability to execute prototypes. Whereas Wang’s work focused on linking pages to nodes
of an activity diagram, this paper worked on the automatic execution of the flow of pages for an
activity diagram.

Since the existing project was coded using Django, the software delivered in this paper consists of
html files communicating with Python functions. The prototype execution was done by using three
main functions. The first function determines all nodes in an activity diagram and the pages linked
to them. The second function returns the order of the nodes. The third function removes all nodes
without pages linked to them. Lastly, the first page is shown and if the user clicks the next page
button the index of the node order dictionary is increased by one and the next page is shown.

Nevertheless, the prototype execution does not have full functionality yet. Namely, functionality for
decision, fork and join nodes have not been implemented yet. As such, future research should focus
on adding the functionality for these nodes. Another limitation of this paper’s research was the lack
of proper testing. Even though all errors have been removed, more potential options for prototypes
should be tested to see whether they break the code. Furthermore, future research should focus
on making cleaner code. For example, the current code takes all activity nodes in the database
without looking at the id of the activity diagram they are part of.

Another problem with the execution engine is the inability to interpret the data on edges. For
example, if an edge between nodes says “check for completeness” the user has to decide whether
they want to move on the next page manually. The user clicks on the next page button so they
have to check whether their condition is satisfied themselves. Future research may enable automatic
interpretation. The last limitation is the lack of response when an activity diagram is incomplete
for example. Future research should return a page which says that an user’s activity diagram is
incorrect if it is missing edges for example.

References

[act] Uml activity diagram tutorial.

[BCPP20] Antonio Bucchiarone, Jordi Cabot, Richard Paige, and Alfonso Pierantonio. Grand
challenges in model-driven engineering: an analysis of the state of the research. Software
and Systems Modeling, 19:1–9, 01 2020.

[BLW05] Paul Baker, Shiou Loh, and Frank Weil. Model-driven engineering in a large industrial
context — motorola case study. In Lionel Briand and Clay Williams, editors, Model
Driven Engineering Languages and Systems, pages 476–491, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[BTJ+21] Valentin Besnard, Ciprian Teodorov, Frédéric Jouault, Matthias Brun, and Philippe
Dhaussy. Unified verification and monitoring of executable uml specifications: A
transformation-free approach. Softw. Syst. Model., 20(6):1825–1855, dec 2021.

[GGN94] Jie Gong, Daniel D. Gajski, and Sanjiv Narayan. Software estimation from executable
specifications. J. Comput. Softw. Eng., 2(3):239–258, mar 1994.

25

[Ken02] Stuart Kent. Model driven engineering. In Michael Butler, Luigia Petre, and Kaisa Sere,
editors, Integrated Formal Methods, pages 286–298, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[MA07] Parastoo Mohagheghi and Jan Aagedal. Evaluating quality in model-driven engineering.
In International Workshop on Modeling in Software Engineering (MISE’07: ICSE
Workshop 2007), pages 6–6, 2007.

[MAB+14] Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty H. C. Cheng,
Philippe Collet, Benoit Combemale, Robert B. France, Rogardt Heldal, James Hill, Jörg
Kienzle, Matthias Schöttle, Friedrich Steimann, Dave Stikkolorum, and Jon Whittle.
The relevance of model-driven engineering thirty years from now. In Juergen Dingel,
Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Insfran, editors, Model-
Driven Engineering Languages and Systems, pages 183–200, Cham, 2014. Springer
International Publishing.

[MGS+11] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, Miguel Angel Fernández, Bjørn
Nordmoen, and Mathias Fritzsche. Where does model-driven engineering help? experi-
ences from three industrial cases. Software & Systems Modeling, 12:619–639, 2011.

[MGSF13] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, and Miguel Fernández. An
empirical study of the state of the practice and acceptance of model-driven engineering
in four industrial cases. Empirical Software Engineering, 18:89–116, 02 2013.

[SF96] Rolf Schwitter and Norbert E. Fuchs. Attempto - from specifications in controlled
natural language towards executable specifications, 1996.

[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in model-
driven engineering. IEEE Software, 31(3):79–85, 2014.

26

	Introduction
	Introduction
	Task definition
	Approach
	Goal
	Contribution
	Thesis overview

	Background and Related Work
	Unified Modelling Language
	Activity diagrams

	Current state
	Desired state
	Related work
	Rationale behind MDE
	MDE's industries
	Users of MDE
	Challenges for MDE
	Usage of MDE

	System Design
	Logical Design
	Requirements
	Overview

	Technical Design

	Worked Examples
	Page creation
	Workflow example 1
	Workflow example 2

	Conclusion
	References

