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1 Abstract

Machine learning-based methods have become de-facto standard in Android
malware detection. However, it is not sufficient to be able to correctly classify
a sample: human analysts also need some details (explanation) why this sam-
ple has been categorized as malicious or benign. Several black-box explanation
methods have been proposed in the literature. Still, to be useful, explanation
methods need to satisfy certain properties that are expected by the analysts in
the Android malware detection domain.

Based on the existing works in this area, in this thesis we propose two new
properties that a good Android malware explanation method must satisfy, and
two metrics to measure these properties. We have conducted experiments on a
dataset of Android apps, using 10 classifiers and evaluating 5 explanation meth-
ods: Morris Sensitivity, LIME, Anchors, EDC and SHAP. Our experiments show
that SHAP is the best explanation method according to both of the proposed
metrics.
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2 Introduction

With the rapid growth of Android users from five hundred million in 2012 to
around 6 billion in the year 2021, the interest of different threat actors in com-
promising the Android security has risen. With this, more malicious Android
applications are being discovered in the wild. Subsequently, the number of
sophisticated Android malware application has also increased. For this reason,
researchers devoted their time to develop new malware analysis techniques. One
of the recent approaches to analyze Android malware is the usage of classifica-
tion models. These models group Android application samples into a Malware
class or a Benign class by training on a dataset and leveraging a wide range
of algorithms used to classify future application samples. Modern approaches
allow also the explanation of such classifications using Explainable AI.
Explainable AI is considered to be a response to the lack of transparency nature
of AI models.This means that the output of AI models is increasingly difficult
to understand and explain. AI has many advantages but it is often poorly able
to explain its results on its own due to its complexity. Such approaches answer
questions including: Why did the classification model take a certain decision?
What features are responsible for that decision? The purpose of explainable AI
is to make decisions and results understandable and explainable for the largest
group as possible. A great example of how understanding results of AI can be
helpful is the Dutch childcare benefits scandal [43]. In this scandal AI models
were used that resulted in ”unlawful, discriminatory and improper” working
methods. This could be prevented in an early stage if the decisions made by the
AI models could be explained. Different stakeholder can benefit immensely from
researchers by knowing the reasons behind the classification. Researchers can
increase their understanding of the models and produce alternative models that
performs better. Regulators can increase their trust and be more transparent
about their decision. The consumer can also benefit from Explainable AI by
getting access to reports and analyses of such models to understand the impact
of the model and increase their trust in it.
Focusing more on Android applications, to analyse and detect malicious An-
droid applications, some features about the application located in the Android
manifest and the Dalvik executable files need to be extracted. A specific model
is used to classify the Android application (Malware/Benign) based on the ex-
tracted features. Using an explanation approach, the responsible features for
the classification can be identified. Figure 2 below illustrates the whole pro-
cess, from collecting data to finally evaluating the explanation approach. In
the light of the aforementioned explanation approaches, some important ques-
tions should be asked. How can we know that an explanation approach can be
trusted? What are the limitations of these explanations? We hereby propose
two evaluation metrics that provide a quantitative measure of the performance
of different explanation approaches.
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Figure 2: Evaluation process

3 Background

3.1 Classification algorithms

Some of the mentioned explanation approaches are black-box explanation. That
is, they are able to simulate a given classification model which makes them able
to explain any given classification model. A classification model groups objects
into a set of categories in order to train on datasets and leverage a wide range of
algorithms and classify future objects. In order to perform experiments on the
explanation approach (section 6.1 and 6.2) different classifiers are being used.
This section gives a short explanation on how the different classification model
function.

3.1.1 Decision Tree:

A decisiom tree [35] is an undirected, acyclic and connected graph. The set of
nodes can be divided into three categories:

• Root nodes: Access to the tree starts from this node.

• Internal nodes: Nodes that have descendants which are in turn nodes.

• Leaf nodes: last nodes of the tree that do not have any descendants.

Decision trees are a category of trees. They use a hierarchical representation of
the data structure in the form of sequences of decisions to finally predict the
class. Each given record which must be assigned to a class is described by a
set of features which are tested in the nodes of the tree. Testing is done in the
internal nodes and decisions are made in the leaf nodes.
The robustness of decision trees is relative to other other tree based models not
very good [8] The variance of class is relatively high. However, it is a good
building block for better performing classification models below.

3.1.2 Random Forest:

Random Forest was proposed by Leo Breiman in [6]. Random forest is an en-
semble learning method for classification and regression, where different models
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are combined to form a specific prediction. This classification model is an alter-
native to the basic decision tree classifier. The issue with decision trees is that
it can result to overfitting on the training data. By changing a record on the
dataset, it is possible that the model changes the decision tree completely be-
cause decision trees are in general highly sensitive to changes within the training
data.
The random forest classifier overcomes this issue by using multiple trees. This
classification model is based on bootstrap aggregation which creates a random
sample with replacement from the dataset. Some records may occur more than
once in each sample. Then, a decision tree is trained on each sample indepen-
dently. For each random sample, a random subset of features is generated to be
used for training a specific decision tree. The number of subsets of the original
dataset (i.e. the number of decision trees) is specified beforehand.
At this point a number of decision trees are trained and each of them generate a
specific classification given a specific record. As shown in figure 3, the results of
the decision trees are aggregated using the majority vote and used as the final
classification of the specific record.

Figure 3: Random Forest Classifier https://www.tibco.com/sites/tibco/

files/media_entity/2021-05/random-forest-diagram.svg

3.1.3 AdaBoost:

AdaBoost was proposed by Freund and Schapire in [15] AdaBoost is an ensemble
learning method which calls a given weak or base learning algorithm repeatedly
in an iterative manner. On each iteration a different model is being generated
and the bias is being decreased. In order to achieve this, a decision stump
is created for each feature. Then the Gini Index will be calculated for each
decision stump. The sample that results in a bad split (i.e. the tree with
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the lowest Gini Index) is given priority by increasing their weight and is being
forwarded as input to the following model. This process is repeated until the
specified number of trees is reached.

3.1.4 Support vector machine (SVM):

Support vector machine was proposed by Siegelmann and Vapnik in [4]. The
support vector machine is a binary classifier based on finding the optimal hy-
perplane. This hyperplane ultimately divides the dataset into 2 classes. In
one-dimensional space, the hyperplane is a point, in two-dimensional space, the
hyperplane is a line and in three-dimensional space, the hyperplane is a plane
that divides the the record into two parts. The closest data points to the hy-
perplane (the support vector) determine the position of the hyperplane. If the
support vectors are removed, the hyperplane will also change.
In order to create the best possible classification, the margin (i.e. distance be-
tween the two support vectors) must be maximized. In practice, datasets are
more complex and the hyperplane cannot be easily determined. To bypass this
problem, the dataset is transformed to be a three-dimensional space using a
kernel function that allows the use of three-dimensional data instead of a two
dimensional. Different types of kernels can be used such as polynomial kernels,
radial basis function kernels, neural network Gaussian process and much more.
From this perspective it can be easier to determine the hyperplane because some
points might be deeper than other data points. The higher the dimension, the
easier the classification. This is called ”the kernel trick”.

3.1.5 Multi-layer Perceptron (MLP):

Multi-layer Perceptron was proposed by Frank Rosenblatt in [36]. The multi-
layer perceptron is a type of neural network organized in multiple layers in which
information flows from the input layer to the output layer. This is called a feed-
forward network. Each layers consists of a number of neurons. The neurons of
the last the last layer (i.e. the output) produces the target classification. The
first version, the perceptron was a single-layer network and had a single output
to which all the perceptrons were connected. It was incapable of solving nonlin-
ear problems. This limitation was overcome by a supervised learning technique
called backpropagation.
Neurons in one layer of the multi-layer backpropagation perceptron are con-
nected to all neurons in adjacent layers.
A coefficient that affects these connections changes the effect of the information
on the destination neurons. Consequently, the weight of each connection is the
most important part of the network. Creating a multi-layer perceptron includes
determining the optimal weights which are applicable in every interneuronal
connection to solve a classification problem. This determination is performed
using a backpropagation algorithm through a method called chain rule.
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3.1.6 K-Nearest Neighbors:

K-Nearest Neighbors was proposed by Evelyn Fix and J. L. Hodges, Jr in [13].
k-nearest neighbors is a non-parametric classification/regression method. The
input consists of k closest training samples in the dataset. A record is classified
using multiple votes of its neighbors, where the object is placed in the most
occurring class among its k neighbors. If k=1, the record gets the same classi-
fication as its nearest neighbor.
The training records are vectors in a multidimensional space where each training
records includes its classification target. In the classification, k is a predefined
constant by the user and the unlabeled vector in question is classified based on
the most common label among its k nearest neighbors. For continuous data, the
Euclidean distance [10] can be used. Alternatively, for discrete variables such
as bitstrings, the Hamming distance [5] can be used. To improve the accuracy
of the classification, the distance between the data records can be normalized
in case the features have different measuring units.
Another aspect that needs to be taken into consideration is the possibility of the
class distribution being skewed. In this case, a new record can be dominated
by the most occurring class which have a higher probability of occurring in the
k nearest neighbors. To overcome this issue, the classification of record can
be done while taking the distance between the new record and the k nearest
neighbors into account.

3.1.7 Gaussian Naive Bayes:

Naive Bayes [23] classifiers are a family of probabilistic classification algorithms
based on the Bayes theorem. This classifier assumes strong independence be-
tween the features i.e. it assumes that the existence of a feature for a specific
class is independent of the existence of other features. Gaussian Naive Bayes is
an extension of Naive Bayes that calculates the mean and standard deviation
for the training data. In this case it specifically assumes normal/Gaussian dis-
tribution.
The advantage of the Naive Bayes classifier is that it requires relatively small
training dataset to estimate the standard deviation and the variance.

3.1.8 Gradient Boosting:

The basic idea of gradient boosting [16] is similar to bagging. Rather than
using a single model, several ones are used that are then aggregated to produce
a single result. To build the models, boosting works sequentially. It starts
by building a first model that is evaluated. From this evaluation, each model
is weighted according to the performance of the prediction. The objective is
to give a greater weight to models for which the value was poorly predicted
for the construction of the following model. Correcting the weights over time
makes it easier to predict difficult values. Gradient boosting uses the gradient
of the loss function to calculate the weights of the individual models during the
construction of each new model. Gradient boosting machines use in general
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classification and regression trees (CART). The algorithm is customisable as it
is possible to use different parameters and different functions.

3.1.9 Gaussian process:

For most machine learning models an input is provided and a single classifica-
tion is produced. Gaussian processes [37] instead produce a full distribution over
classes to reflect the uncertainty in the prediction. Suppose a two dimensional
dataset is provided. The goal is to produce a predictive distribution given a
specific record. This means that for a given record, there a certain probability
that class of that record lays between two classifications. In order to produce
this predictive distribution, linear regression can be used. Subsequently, the re-
maining noise variance can be estimated. However, in this case, the uncertainty
on linear model itself is missing. This can be solved using prior sampling.
First, samples of functions need to be produced before factoring the data. In
the case of Bayesian linear classification, the samples are random lines/planes in
the feature space. These lines/planes represent the prior samples. Now Bayes
theorem [17] can be used to update the model such that is produces samples
that agree with the data. These samples are called posterior samples. To get
the predictive distribution, noise variance is calculated for each sample which is
averaged over multiple (infinite) samples.
Gaussian processes use non linear samples instead of linear samples (in certain
cases linear function may also be used). In general, these models are smooth
functions.

3.2 Explanation methods

This research will mainly fixate on the following five explainers: Anchors, EDC,
LIME, MSE and SHAP. The current section will help demystify the mentioned
explainers.

3.2.1 Local Interpretable Model-agnostic Explanations (LIME)

The local Interpretable Model-agnostic explanation method is proposed by Ribeiro
et al. [32]. It provides explanations for the predictions of any machine learning
classifier in an interpretable and faithful manner, by learning an interpretable
model locally around the prediction. With locality in this context, local ex-
plainability is meant which identifies what features of a specific instance were
responsible for the models’ output. As mentioned before, LIME stands for Lo-
cal Interpretable Model-agnostic Explanations. This shows that it is based on
three basic properties which characterizes this model explainer.

Local fidelity:

Local fidelity describes how closely does the explanation reflect the outcome of
a black-box model. High fidelity is a crucial property of an explanation because
a low fidelity explanation is incapable of providing the right explanation for the
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Figure 4: The trade-off between interpretability and accuracy of some relevant
ML models. Highly interpretable algorithms such as classification rules, or linear
regression, are often inaccurate. Very accurate DNNs are a classic example of
black boxes. [30]

machine learning model. A few explanation approaches work well only on a
subset of the data or even on a single data instance (i.e. local fidelity). An
example of explanations that adhere to the property of local fidelity is Shapley
values which originates from the cooperative game theory [11]. Shapley values
assign a unique distribution among the players of a total surplus generated by
the coalition of all players.

Interpretability:

Interpretability is the degree to which the user is able to accurately and ef-
ficiently predict the method’s results i.e. how well a human can predict the
group it belongs to (accuracy) and how fast they can perform the task (effi-
ciency). [20]. Returning to the basic concept of classification, the goal is to
achieve the highest prediction accuracy as possible, while preserving this inter-
pretability property. Because of the nature of the both aspects, it is simply not
possible to have a fully accurate model that is highly interpretable. Consider
the one of the simplest models linear regression. This models is only capable to
generate linear functions which are considered restrictive and generally inaccu-
rate. Despite its restrictive property, this model is highly interpretable in the
sense that it is possible to reverse the relationship between both the response
variable and the explanatory variables i.e. interpreting the model. However, in-
terpreting the model becomes more difficult when using less restrictive models
such as polynomial models, non linear models and even more difficult with non
parametric models. Figure 4 shows a scatter plots that demonstrates the trade
off between interpretability and accuracy of a model.
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Model-agnostic:

A model-agnostic explanation is an explanation that is not tied to a specific
model and can thus be applied to any model. This can be achieved by learning
an interpretable model [3] which essentially restricts the usable models. This
can also be achieved by perturbing the inputs and measuring the variability of
the output [39]. This aims at extracting post-hoc explanations and treating the
original model as black-box which does not require any knowledge about the
mechanics of the model [33].

LIME explanations are produced by the following formula:

ξ(x) = argming∈GL(f, g, πx) + Ω(g)

where
G : the class of a potentially interpretable models.
Ω(g): Complexity of the explanation g in G.
f(x): Model to be explained. In our scope it is the probability that x belongs
to a class.
πx(z): To define locality around x, πx is the distance between z and x.
L: Degree of faithfulness of g in approximating f with respect to
the locality around x (πx)

3.2.2 Anchors

This explanation method is a rule-based variant of the LIME explainer and is
also proposed by Ribeiro et al. [34]. Rule-based explanation produce rules like:
if features x has a certain value and feature y has a value greater than another
value, then the instance has a certain classification. Anchors is also model-
agnostic which means that is can be useful when it operates on interpretable
models as well as less interpretable models as mentioned in section 3.2.1.
Anchors and LIME focus on a single instance which is more efficient in contrary
to interpreting the model globally which is considered to be complex and simply
unfeasible. Anchor is a rule based explainer, which means that it presents certain
conditions in a way that if they hold, the prediction of the model on a specific
instance can be explained by those specific conditions with high accuracy. The
used rules are if-then rules which are called Anchors. The anchors are formally
defined by Ribeiro et al. [34] as follows:

ED(z|A)[1f(x)=f(z)] ≥ τ,A(x) = 1

where
x: Instance
f: Black box model
A: Rule that consists of set of predicated
Dx: Perturbation distribution on instance x
D(.|A): Conditional distribution when A is applicable

12



D(z|A): Conditional distribution on sample z when A is applicable
τ : Preselected degree of precision

The Anchors explainer takes an incremental bottom-up approach to construct
the individual anchors. Firstly an empty rule A is initialized, then on each
iteration a candidate rule is generated and added to A. We end up with the
following rule set A = {A∧ai∧ai+1∧ai+2∧ ...∧an}. A is then replaced by the
candidate rule with the highest estimated precision. This precision is calculated
using a pure exploration multi-armed bandit [19] where A represents the arm
and the true precision of A on D(.|A) represents the latent reward [22]. Each
action in the environment represents checking whether a sample z from D(z|A)
can be predicted as true. The iteration terminates on a certain rule candidate
if the following anchor definition holds:

P (prec(A) ≥ τ) ≥ 1− δ

with:

prec(A) = ED(z|A)[1f(x)=f(z)]

It is a recurrent scenario that multiple anchors satisfy this requirement. In this
case, the anchor that covers the largest part of the input space should be se-
lected.

3.2.3 Morris Sensitivity Explanation (MSE):

The Morris Sensitivity Explanation utilizes a method proposed by Max D. Mor-
ris in [31] currently called the Morris method. The Morris method is suitable
for models whose input features and output features are quantitative. It is part
of the OAT (One At a Time) methods, meaning a process of exploration of the
domain of definition by varying the factors one step at a time. In the case of
a model that is costly in execution time, or a model with a large number of
features, the method is a simple way of making an initial sorting among the
factors according to their influence.
Consider a model consisting of n features whose output is denoted Y = Y (X1,
..., XK). The exploration of Y is performed on a grid overlayed on the domain
of definition of the model. ”Side” effects and variations of Y are calculated by
the trajectories defined on the nodes of the grid by changing each feature on
each trajectory only once.
Let di,j(Y ) be the variation of Y on a trajectory i with i < r relative to the
variation of the feature Xj . The statistic µj is defined as

µj =
1
r

∑r
i=1 di,j

In order to guarantee a uniform sampling of the different levels of each factor, it
is advised to construct a grid with an even and identical number of levels. The
desirable variation step of a factor is half the number of levels.
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3.2.4 Shapley Additive Explanation (SHAP)

This explanation approach proposed by Lunderberg Lee [25] is based on feature
importance estimations (i.e. SHAP values). SHAP is defined as an additive
feature attribution method, which means that it has a linear function model
of binary variables: g(z′) = ϕ0 +

∑M
i=1 ϕiz

′
i, with z′ ∈ {0, 1}M and ϕ0 ∈ R

Lunderberg Lee defined three desirable properties of Shapley value estimation
methods which are:

Local accuracy:

Describes the match between the explanation model g(x′) and the original model
f(x). Following the local accuracy property, it can be said that there is a match
if x = hx(x

′). This expression can be formulated as follows:

f(x) = g(x′) = ϕ0 +
∑M

i=1 ϕix
′
i

Where
hx: Maps simplified inputs to the original input space
f : Prediction model
ϕ0: The model output when all simplified inputs are missing (i.e. f(hx(0)))
M: Number of simplified input features

Missingness:

This property suggests that if there is a missing feature from the original input,
it should not have an effect on the explaining features.

x′
i ⇒ ϕi = 0

Consistency:

This property says that if the model changes so that the contribution of a specific
feature value increases or stays the same, the Shapley value also increases or
stays the same.
Let fx(z

′) = f(hx(z
′))z′ \ i denotes that z′i = 0.

∀f, f ′ and z′ ∈ {0, 1}M
f ′
x(z

′)− f ′
x(z

′ \ i) ≥ f ′ x(z′)− fx(z
′ \ i)=⇒ ϕi(f

′, x) ≥ ϕi(f, x)

Shap uses Shapley sampling methods [40] and Kernel SHAP to approximate
the SHAP values. The Kernel SHAP works as follows. Different permutation
samples are passed to the model while excluding certain feature(s) each time.
For each sample, the average model output for the newly created instances
is calculated. Subsequently, a weighted linear regression can be formulated
based on the averages over all the samples. This forms the basis of the Kernel
Shap. Besides Kernel Shap, there are more model-specific approximations such
as Linear SHAP, Low-order SHAP and Max-SHAP. Nevertheless, the focus for
this research will be on Kernel SHAP due to its applicability on every model.
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3.2.5 Explaining Document Classification (EDC)

EDC was proposed by Martens et al. in [29] This explanation approach is
used mainly for explaining classifications of text documents based on words and
phrases. These classifications perform sentiment analysis, spam identification,
web page classification, and document classification for topical web search. Typ-
ically, this explainer is used on instances with high dimensionality.
EDC constructs the explanation as follows:
Given a document vocabulary with m words, let the mask vector µ be a bi-
nary vector of length m with each element in µ is a word in the vocabu-
lary. An explanation is a mask vector µE with µE(i) = 1 ⇐⇒ wi ∈ E and
µE(i) = 0 ⇐⇒ wi /∈ E. D\E is the Hadamard product of the feature vec-
tor of document D with the 1’s complement of µE . Thus, the goal is to find
µE such that CM (D\E) ̸= CM (D), if any bit of µE is zero form E’ such that
CM (D\E′) ̸= CM (D).
Martens et al. proposed also metrics that measure the performance of an algo-
rithm that searches for an explanation that matches the aforementioned formula.
Such algorithm may do the following:

• Find a minimal explanation such that no other explanation of smaller size
exists.

• Find all minimal explanations.

• Find all explanations of size smaller than a given k.

• Find l explanations, as quickly as possible (l = 1 may be a common ob-
jective).

• Find as many explanations as possible within a fixed time period.

Concerning the metrics, Martens proposed the following:

• Search effectiveness: Defined by the percentage of test instances explained
(PE)

• Explanation complexity: Defined by the average number of words in the
smallest explanation (AWS)

• Problem complexity: Defined by two metrics namely the average num-
ber of smallest explanations given (ANS) and average number of total
explanations given (ANT)

• Computational complexity: Defined by two metrics: the average dura-
tion to find first explanation (ADF) and the average duration to find all
explanations (ADA)

Martens et al. proposed in their paper an algorithm shown in figure 5 that
uses Best-first search with pruning to find an algorithm that searches for an
explanation that matches the aforementioned formula.
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Figure 5: Search algorithm for Explanations for Document Classification [29]

4 Datasets

In order to perform some experiments using the aforementioned evaluation met-
rics (6.2) of different explanation approaches, we used a dataset that was made
publicly available for researchers. It concerns Investigation of the Android Mal-
ware (CIC-InvesAndMal2019) dataset [41]. This dataset was also used in the
paper Extensible Android Malware Detection and Family Classification Using
Network-Flows and API-Calls [42].

4.1 Malware families:

This dataset consists of four categories: Adware, Ransomware, Scareware and
SMS Malware. The Adware and Ransomware categories contain each 10 mal-
ware families. The Scareware and SMS Malware each consist of 11 malware
families.
Table 1 describes the behavior of all collected malware families. This informa-
tion is used to understand, interpret and potentially confirm the accuracy of
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explanations. Due to the lack of a description for some malware families, the
behavior cell of those malware families is left empty.

The aforementioned dataset contains only Malware sample. In order to
classify Android application into Malware and benign, another dataset was ad-
ditionally used. It concerns the CICMalDroid 2020 dataset [27] which was used
in the papers [26] and [28]. This dataset contains different malware and benign
Android applications. Only the subset of benign Android applications was used
from this dataset. It contains over 1700 application samples from which 600 ap-
plications were used due to hardware limitations which are discussed in section
10. From the CIC-InvesAndMal2019, 426 Android malware samples were used.
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Category Families Behavior

Adware

Dowgin Display advertising content and gather data
Ewind Show ads and inserts ads in browsers
Feiwo Gather phone number, IMEI and list of apps.
Gooligan Steal Gmail credentials, install apps and rate them, install adware
Kemoge Access camera, hardware details, phone state, network connection...
koodous –
Mobidash Display aggressive advertisements.
Selfmite Spread through SMS and display adds
Shuanet Root devices and obtainsystem-level persistence.
Youmi Gather GPS and cell tower location, IMEI, phone number

Ransomware

Charger Copy data from agenda, messages, etc., and obtain root permission
Jisut Delete user data
Koler Display fake notice and demand payment
LockerPin Steal PINs, locks Android devices
Simplocker Collect sensitive information and encrypt files
Pletor Encrypt files with AES and decrypt after receiving certain message
PornDroid Download LockerPin and lock user out.
RansomBO –
Svpeng Obtain root permissions, intercept paid services
WannaLocker Encrypt files of external storage

Scareware

AndroidDefender Urge users to buy antivirus
AndroidSpy Infect Windows machines linked to the device
AV –
AVpass –
FakeApp Pretends to be a legitimate app or to be an app that solves a problem
FakeApp.AL –
FakeAV Simulate antivirus software or parts of the operating system security
FakeJobOffer Display image of a (fraudulent) job offer
FakeTaoBao Pretends to be legitimate Taobao app
Penetho Pretends to generate password for a WiFi router
VirusShield Pretends to be an Android antivirus app

SMS Malware

BeanBot Send premium-rate SMS messages from the infected device
Biige –
FakeInst pretend to be app installer, send premium-rate SMS
FakeMart Pretend to be black market app and SMS messages to short numbers
FakeNotify Send SMS messages to premium-rate numbers, redirect to website
Jifake Pretends to be messaging app, sends SMS messages to premium-rate numbers
Mazarbot Launch MITM, take control over Android functionalities
Nandrobox Send premium-rate messages and delete response
Plankton Forward information about the device to a remote location
SMSsniffer –
Zsone Send SMS messages to premium-rate numbers related for subscription

Table 1: Behavior of malware families per category contained in the dataset
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4.2 APK file components:

Focusing on an individual Android application, there are mainly seven compo-
nents [2] of which an Android application consists:

• META-INF: directory which contains information about the files of the
APK file

• CERT.SF: Contains a list of resources and a of the corresponding lines
in the MANIFEST.MF file

• AndroidManifest.xml: An additional Android manifest file, describing
the name, version, access rights, referenced library files for the application.
(Elababorated more in the following paragraph)

• The certificate of the application

• lib: Directory with compiled native libraries used by your app. Contains
multiple directories, one for each supported CPU architecture

• resources.arsc: File containing precompiled resources, such as binary
XML for example

• classes.dex: The classes compiled in the dex file format executed by
Android Runtime

Our focus lays mainly on two file types that allow simple static analysis,
namely the Android Manifest file and the Dalvik Executable File.

Android Manifest file:
Contains all components of the application such as activities, services, broad-
cast receivers and content providers. This file also contains permissions the app
needs in order to perform specific actions such as accessing the memory or the
camera. Moreover, this file contains device compatibility information such as
the minimum hardware and software requirements to run the application.

Dalvik Executable File:
Android applications are commonly written in Java. In most cases, Java pro-
grams run on the Java Virtual Machine (JVM) which requires a lot of recources
and is thus not efficient. That is why an Android optimised virtual machine is
used or the Dalvik VM. The application is built and compiled to a JVM byte-
code and converted to a Dalvik Executable file (classes.dex).
For this research, we only focussed on the Android Manifest file because of the
complexity and the amount of the Dalvik Executable files.
The malware and benign apps of the two dataset should also be unpacked. In
order to do this, a Python script was created (unpack.py). This script crawls
through the dataset files and extracts each APK file that it finds. Because of
the huge amount of APK files, this is done in a multi-threaded manner. For the
actual APK extraction, APKtool [9] was used. It is a tool for reverse engineering
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third party, closed, binary Android apps. It disassembles APK files to nearly
original form and rebuild them after making some modifications, including al-
most all the aforementioned components of an APK file. For more information
about the tool itself and the installation instructions, visit the website [9].

4.3 Extracted features:

After extracting each APK file, the significant features should be extracted. For
this project, we focused on permissions, activities and actions.
Permissions:
The permissions located in the Android Manifest file represent systems permis-
sions such as Android.permission.ACCESS WIFI STATE or
Android.permission.CAMERA that must be granted by the user to allow all
functionalities that use those permissions to function properly.
Activities:
The activities located in the Android Manifest file represent parts of the ap-
plication’s visual user interface such as com.paktor.activity.HelpActivity and
com.abs.MainActivity. They must be included in the Android manifest file and
represented by <activity>for the system, in order to display those activities.
Actions: Different actions are added to the intent filters which declares the
capabilities of its parent components in terms of what an activity or service
can do and what types of broadcasts a receiver can handle. Such intent filters
(<intent-filter>) must contain the actions (<Action>) to be accepted by an
Intent object.
To exctract the aforementioned features from the Android Manifest file, a Python
script has been created that analyzes the Android Manifest file of every malware
APK and benign APK. Subsequently, all features are listed in one file.

4.4 Data preprocessing:

To simplify the classification and explanation of the Android applications, each
application was converted to a bitstring of the same length as the total number
of features present in all the applications. Bit 1 means the presence of a certain
feature in the Android application and bit 0 means the absence of the Android
application.
This creates an issue for training the classification model which is the huge
amount of features that the model has to train on. There are in total 18531
unique features present in all the application samples, so the classification model
has to train on apps consisting of bitstring of 18531. Because most of the features
were always absent in most applications, in exception to some applications, they
had to be removed. In order to remove certain features, we resorted to feature
selection. This reduces then number of input variables and subsequently reduces
the computational cost of training the model and probably improve the accuracy
of the classification model and the explanation approach.
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5 Related work

Multiple metrics to evaluate explanation approaches have been proposed. The
metrics proposed in this research were build upon metrics proposed by Ming
Fan et al. in the paper [12]
Here, three metrics are proposed that evaluate Android application classifica-
tions: Stability, Robustness and Effectiveness. Stability refers to the stability in
the generated explanations which must not influenced by fluctuation techniques
used in the explanation approaches. Robustness refers to the similarity in the
produced explaining features for similar instances. Ajay Chander Ramya Srini-
vasan also proposed the Effectiveness metric [7] which describes the ability of
an explanation approach to support faster and better user decision-making. To
measure the effectiveness of an explanation, the same classifier should be tested,
with and without explanation facility and evaluate if instances who receive ex-
planations end up with a classification more suited to the properties of its class.
In contrary to changing fluctuation techniques or the input data generally, we
propose two evaluation metrics that measure the effect on the produced expla-
nation. The first metric measures the dependency on the classification model
using the same input data. The second metric measures the effect of irrelevant
features on the explanation. Detailed information will be given later on.
Different evaluation metrics were proposed in other papers. Kindermans et al.
proposed the Sensitivity metric [21] which describes the capacity of an explana-
tion approach to reflect the sensitivity of the underlying model with respect to
variations in the input feature space. This metric states that if for every input
and baseline that differ in one feature but have different predictions, then the
differing feature should be given a non-zero attribution.
Freitas Alex A proposed also an evaluation metric which is Monotonicity [14].
This evaluation metric proposed that the relationship between a numerical pre-
dictor and the predicted class that occurs when increasing the value of the
predictor leads to either always increase or decrease the probability of an in-
stance’s membership to the class. For example, when predicting whether or not
a customer will buy a product, the probability of class “buy = yes” tends to
decrease monotonically with an increase in the product’s price.
Alvarez et al. proposed the Faithfulness metric [1] which describes the ability of
an explanation approach to select truly relevant features. To measure this met-
ric, some features are removed. Then, the drop in probability of the predicted
class. In other work, Lipton proposed Informativeness[24], which describes the
ability of an explanation approach to provide useful information to end-users.

6 Evaluation

In this section of research, the focus will lay on the evaluation of the differ-
ent aforementioned explanation approaches (Anchors, EDC, LIME, MSE and
SHAP). Based on the evaluation of these explanations, improvements may be
applied to them in order to get more accurate explanation of the decisions made
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by the used models, subsequently improvements to the classification models can
also be made for example to remove bias and improve their performance.
Essentially, an explanation can be defined as the result of a classification in
combination with a feature set. So there exists an explanation for a certain
classification and a certain feature set. Based on this definition of an explana-
tion, some properties can be deduced.

6.1 Explanation properties

Property 1:

Notice that an explanation is the result of a classification and not the model
used for the explanation. Which means that the explaining feature set should
be identical for the same feature set and different classification models.
So regardless of the model, the explanation remains the same. What defines a
malicious application is the different malicious behaviors of that specific appli-
cations. For example gathering user data and storing them in a sqLite databse
(GingerMaster Malware family). Each of these behaviors can be expressed as a
set of features. When a classification model classifies this application samples,
it should be able to identify the set of features that represent this malicious
behavior. Of course, an application sample cannot adhere completely to this
property without any caveats which will be discussed in chapter 10. This prop-
erty can be summarized in the following formula:

Exp(ci, F ) = Exp(cj , F )

where
ci, cj : ci, cj ∈ C2, where C is the set containing all classification models
F: The original feature set of the application sample
Exp(.): Exp is the explanation function with Exp: C × P(F ) −→ P(F )

Another property can be deduced based on the definition which focuses on
the feature set part.

Property 2:

Irrelevant features do not change the explaining feature set of an application
sample substantially.

Exp(ci, F ) = Exp(ci, F ∪ S)

With S being a set of irrelevant features. The irrelevant features can be ex-
tracted using feature selection. For feature selection we use variance of features
across the applications present in the dataset. The most irrelevant features are
features with low variance.
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A feature can be for example a permission, intent or action. Thus, each fea-
ture describes a part from a certain behavior of an application sample. So a
combination of features can fully describe a behavior of an application which
probably makes the classification model classify the application as malware. By
adding irrelevant features, some behavior could be added to the application (a
behavior in terms of features and what the possible actions can be based on the
added feature). But these irrelevant features only add a behavior to the already
existing set of behaviors of the application and can not remove the fact that
another set of features results the application to be classified as malware. On
the other hand, irrelevant features are most of the time standard permissions,
actions and intents, thus they do not contribute to the classification of the ap-
plication.
For property 2, we assume that the classification model is the same for both
explanations to remove any external noise from the explanation not adhering
to the first property. Irrelevant features only add noise to the dataset thus the
core explanation remains the same regardless of the added irrelevant features.
Irrelevant features could for example be features that were removed during the
preprocess phase which do not add any contribution to the classification of the
application sample.

Based on the aforementioned two properties, we can deduce a metric for
each of the two properties.

6.2 Evaluation metrics

Consistency Rate (CR):

This metric expresses the degree to which an explanation approach adheres to
the first explanation property. That is, how much the resulting explaining fea-
tures change if different classification methods where used on the same feature
set?
Consistency Rate can formally defined by the following:

Let C = {C1, C2, C3, ..., Cn} be a set of classification models and S = {E1, E2, E3, ..., En}
a set of explanations, where Ei is the explaining feature set produced by an ex-

plainer using classification model Ci. We define set Z as Z =
n⋃

i=1

Ei. In other

words, Z contains all individual features produced by the explanations contained
in S. CR is formulated as follows:

CR =
∑
i∈Z

∑
s∈S

f(i,s)
|S|

|Z|
(1)

With:
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f : Z × S ⇒ [0, 1]

f(i, s) =

{
1, i ∈ s

0, i /∈ s

We elaborate more on the functionality of each term of the CR formula above as
follows. f(i, s) controls the presence of feature i in the explanation feature set s.
It returns 1 if it is present, otherwise, it returns 0. The presence of feature i is
being checked in each explanation features sets produced by the explainer using
different classifiers. Subsequently, this value is normalized over the number of
classifiers. Again, this is summed up over all produced features and normalized
by the total number of features.
As an example for this metric, the following situation can be presented:
An explainer produces the features {a, b, c} using classification model c1 and
features {b, c, f} using classification model c2.

feature
Feature presence
over classifiers

a 1/2

b 2/2

c 2/2
d 1/2

Feature presence over classifiers represent the the subformula:
∑
i∈Z

∑
s∈S

f(i,s)

|S| .

The values of the feature presence over classifiers are then summed up and
divided by the number of total number of features |Z| giving the total value of
CR=(1/2+2/2+2/2+1/2)/4=0.75.
The higher the CR value is, the more the identical the produced futures are
between different classification models. Conversely, the lower the CR value is,
the less identical the features are between different classification models. Ideally,
this value would be 1 (i.e. if all the features are present in all explanations
produced using different classification models). The worst case of the CR value
of an explanation is the case where all features are present in a single set of
produced features, namely their original set resulting in

∑
s∈S

f(i, s) = 1. If we

take the fraction of this value over the number of classifiers |S| we get
∑
s∈S

f(i,s)

|S| =
1
|S| . Then if we sum up these fractions over the total number of features we get∑
i∈Z

∑
s∈S

f(i,s)

|S| = |Z|
|S| Finally to calculate the CR value we still have to divide this

value over the number of features getting CR= 1
|S| .
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Soundness Rate (SR):

This metric expresses the degree to which an explanation approach adheres to
the second explanation property. That is, how much does the resulting explain-
ing features change if irrelevant features (features filtered out from the original
feature set in the preprocess stage) were to be added to the feature set?
Now, two probably different feature sets should be compared. The explaining
feature set produced by the explanation approach using the original feature set
with the explaining feature set produced by the explanation approach using the
feature set including the irrelevant features. In addition to the existing irrele-
vant features (if any) with the added irrelevant features to the original feature
set.
We hereby propose the metric Soundness Rate (SR) as follows:
Let F1 be the original feature set and S1 the explaining feature set produced by
an explanation approach using a certain classification model Ci and feature set
F1. Let F2 be the added irrelevant features to the original feature set F1 such
that F1 ∩ F2 = ∅ and S2 the produced features by the explanation approach
using the irrelevant features. As mentioned in 6.1, irrelevant features are the
features with the lowest variance across the dataset. For that, 50% of the fea-
tures were relevant features (all features excluding irrelevant features) and 50%
of the features are irrelevant features. This is to ensure that the both parts have
the the same probability to be influenced by the other (relevant features may
be influenced by relevant features and vice versa)
In other words, without adding irrelevant features: Exp(ci,F1) = S1 and by
adding the irrelevant features: Exp(ci,F1 ∪ F2) = S2. Additionally, let Rirr

the set of irrelevant features present in S2 and Ror the original features present
in S2. Original features are features that are present in the explaining fea-
ture set produced by the explainer without using the irrelevant features. So
Exp(ci,F1 ∪ F2) = S2 = Ror ∪Rirr with Ror ⊆ F1 and Rirr ⊆ F2.
To illustrate this, figure 6 shows a simplified version of the explanation in action.
This explanation was performed using the original features set. Additionally,
figure 7 shows a simplified version of the explanation in action using the original
feature set and the irrelevant feature set.

Figure 6: Simplified illustration of the explanation using the original feature set
F1 that produces explaining feature set S1
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Figure 7: Simplified illustration of the explanation using the original feature set
F1 and including irrelevant feature set F2 that produces explaining feature set
Ro ∪Ri = S1

The Soundness Rate is formally defined as follows:

SR = 0.25.(1− |Rirr|
|F2|

) + 0.75.CR

The goal is to measure the presence of irrelevant features in the produced feature
set in addition to the effect of the irrelevant features on the original feature set.

So ∥Rirr∥
∥F2∥ describes the ratio of the produced features over the added features.

The closer this value is to 1, the more features from the irrelevant features are
present in the produced feature set. After adding the irrelevant features to the
original set, it might be the case that the explanation approach decides that the
original explaining features are not relevant anymore for the explanation. To
counter this the term CR was added to measure the difference between original
explaining features and the original features present in the produced features by
the explaining using the irrelevant feature. In other words, we want to measure
the effect of the irrelevant features on the explaining original feature set.
Concerning CR, we use formula 1 with Z = Ror ∪ S1 and S such that S =
{Ror,S1}. With this, CR is only used to measure in feature sets and not the
influence of classification models on an explanation approach.
As an example of this metric, the following situation can be presented: A certain
explanation approach uses features F1 = {a, b, c, d, e} to produce an explanation
containing features S1 = {b, d, e}. We now add a set of irrelevant features
F2 = {x, y, z} to the original feature set and get F1 ∪ F2 = {a, b, c, d, e, x, y, z}.
The same explanation approach uses this new feature set and produces the new
set of explanation features {b, d, y} with Ror = {b, d} and Rirr = {y}.
If we calculate the Soundness rate we get SR=0.25*2/3 + 0.75.5/6≈0.8
Dependent on the performance of an explanation approach, the value fluctuates
between 0.25∗0+0.75∗1/2 = 0.375 and 0.25+0.75=1. Explanation approaches
that produces feature sets that contain all the added irrelevant features and
totally different features from the features produced by the explainer using the
dataset without irrelevant features have the lowest SR value which is 0.375.
Alternatively, explainers that produce exactly the same features as the feature
set produced without adding the irrelevant features.
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7 Experiment setup

In this section, the experiments of the proposed metrics are described. First
we specify the goals of the performed experiments. Afterwards, we describe
the performed experiments and then present the pseudocode of each performed
experiment.

7.1 Experiment 1: Consistency Rate

As mentioned in section 6.2, Consistency Rate refers to the degree to which the
explaining features change if the classification models mentioned in section 3.1
were used. In other words, the questions that we want to answer are:

1. Is there any difference in the explaining features when different classifica-
tion models are used?

2. If there is a difference in the explaining features when different classifica-
tion models are used, how big is it?

3. Is this difference the same for other explanation approaches? Or is it
bigger/smaller?

4. What is according to this metric the best performing explanation ap-
proach?

5. What is according to this metric the worst performing explanation ap-
proach?

To answer these questions we have to run each of the explanations on different
classifiers. The used classifiers are mentioned in section 3.1 in addition to the
BaggingClassifier() provided by scikit-learn package and the explanation ap-
proaches mentioned in section 3.2. So the relevant features are first selected to
reduce the amount of features and improve the accuracy of the classifiers. Each
time, a new classification model is trained. Based on this classification and the
type of classifier, a record will be given to the explainer (in case it is a local
explainer) The explanation approach then produces an explanation in the form
of a feature set.
To answer the first question, the explaining feature set is stored in a list. After
running the explanation approach on the ten classification approaches, 10 fea-
tures sets are stored in the list. These sets are then compared with each other
to determine whether there is a difference between them.
To answer the second question, the Consistency Rate metric can determine how
big the difference is between these feature sets are. This also answers question
three.
To answer question four and five, we run this experiment on different expla-
nation approaches. As mentioned in section 3.2, we focused for our scope of
research on LIME, Anchors, EDC, SHAP and Morris sensitivity, but this met-
ric is also applicable on some other explanation approaches. After running the
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explanations, we can determine the best performing explanation approach and
the worst performing explanation approach based on their Consistency Rate
value. The explanation approach with highest Consistency Rate is the worst
performing and the explanation approach with the lowest Consistency Rate is
the best performing one.

7.2 Pseudocode:

Algorithm 1 Pseudocode Consistency Rate experiment

1: Initialize:
2: Explainers, list containing all the explainer objects
3: explanation, a list of explaining features
4: Classifiers, list containing all the classifier objects
5: App, a list of 0’s and 1’s describing the state of the features of the applica-

tion to be classified and explained
6: CR, a list of Consistency rate values of the given list of Explainers
7:

8: for explainer in Explainers do
9: Initialize: ExplainingFeatures, an empty list

10: for classifier in Classifiers do
11: classification ← classifier(App)
12: explanation ← explainer(classifier, App)
13: Append explanation to ExplainingFeatures
14: end for
15: Append CRValue(ExplainingFeatures) to CR
16: end for
17:

18: Return CR

7.3 Experiment 2: Soundness Rate

As mentioned in section 7.4, the Soundness Rate refers to the degree to which
the explaining features of a certain explanation approach if irrelevant features
were added to the original feature set. Here the following questions should be
asked:

1. Does adding irrelevant features effect the explaining feature set?

2. Are the added irrelevant features present in the explaining features set?

3. Are there any new relevant features present in the explaining features?

4. How much effect does adding irrelevant features have to the explaining
feature set
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5. Is the same effect present in the explaining feature sets of the other ex-
plainers?

6. What is according to this metric the best performing explanation ap-
proach?

7. What is according to this metric the worst performing explanation ap-
proach?

To answer all these questions, we run each explanation approach twice. On the
first run, the explainer works on the original features set were the most relevant
features are selected. This will generate an explaining feature set that is stored
as a list. On the second run, the explainer works with the original feature set in
addition to a randomly selected subset of the irrelevant features. The explaining
features in this case are also stored in a list.
Now, we compare the first and second explaining feature sets. If the two are
the same it can be said that adding irrelevant feature set does not any effect on
the explainer. Otherwise, there will be clearly an effect. Question two can be
answered by looking into the explaining feature set produced on the second run.
If the added irrelevant features are present, the answer to the second question
will be trivial.
For question three, we will compare the produced relevant features of the sec-
ond run with the feature set produces on the first run. If there is a difference
between the two, there is clearly an effect on the original features.
The fourth question can be answered by the Soundness Rate value defined in
section 7.4. The higher this value is, the more effect the irrelevant feature have
on the explainer. The lower this value, the less effect these feature have on the
explainer.
Question four can be answered by comparing the Soundness rate of the explain-
ers. For the last two question hold that the explanation approach with highest
Soundness Rate is the worst performing and the explanation approach with the
lowest Soundness Rate is the best performing one.
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7.4 Pseudocode:

Algorithm 2 Pseudocode Soundness Rate experiment

1: Initialize:
2: Explainers, list containing all the explainer objects
3: Apps ← training data
4: ReleventFeatures ← selectFeatures(Apps)
5: IrrelevantFeatures ← Random sample from the features not present in

ReleventFeatures
6: Classifier, used classification model
7: explanation, a list of explaining features
8: App, a list of 0’s and 1’s describing the state of the features of the applica-

tion to be classified and explained
9: SR, a list of Soundness rate values of the given list of Explainers

10:

11: for explainer in Explainers do
12: Train classifier on ReleventFeatures
13: explanation1 ← explainer(classifier, App)
14:

15: Train classifier on ReleventFeatures+IrrelevantFeatures
16: explanation2 ← explainer(classifier, App)
17: Append SRValue([explanation1, explanation2]) to SR
18:

19: end for
20:

21: Return SR

The classification models were called as follows:
AdaBoostClassifier()

SVC(probability=True)

RandomForestClassifier(n estimators=50, n jobs=5)

BaggingClassifier()

MLPClassifier(alpha=1, max iter=1000)

KNeighborsClassifier(1)

GaussianNB()

GradientBoostingClassifier()

GaussianProcessClassifier()

DecisionTreeClassifier(max depth=5)

Concerning the irrelevant features, the number of relevant features and irrel-
evant features were equal as mentioned in . For more information about the
the implementation of the following: extraction of the apk files in the dataset,
collecting features from AndroidManifest files, training the classification models
and implementing the five aforementioned explanation approaches as well as the
experiments refer to the source code of this research [38] Concerning SHAP, this
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explanation approach produces explanations in form of rulesets. Each rule in
the produced ruleset is a combination of a certain feature and a specific value of
that feature. In order to perform measurements on this explanation approach,
each possible ruleset (each occuring feature with its value) is encoded as an array
of characters which is perceived by the proposed metrics as a single feature.
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7.5 Hardware

All the experiments including training the classification models and generating
their explanations were run on the Duranium server of the LIACS (Leiden In-
stitute of Advanced Computer Science ) Data Science Lab. Duranium has the
following specifications:

CPU 20 Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz cores

GPU 2x GeForce GTX TITAN X and 6x GeForce GTX 980 Ti

Storage 3TB local storage
RAM 256GB
OS CentOS Linux 7 (Core)
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8 Experiment results

In this section, the results of the two experiments are presented.

8.1 Experiment 1: Consistency Rate

Here, we want to check if there is a difference between the explaining features
when different classification models are used. This difference is illustrated by
the presence of different colors. When performing the explanations for different
classification models, we get the following results:

Figure 8: Most occuring features for the MorrisSensitivity explanation approach
for a single application instance.

Cells with the same color represent the same feature. Each row is specified
for a certain feature. The dominance of a specific color in a certain row means
the consistency of that explanation on that feature. The opposite holds also. If
a specific color is present in just a few cells of a certain row, then the explanation
approach is not consistent on that specific feature over different classification
models. Why certain explanation approaches are performed on just a few clas-
sification models will be discussed in section 10.

The tables shown before, present just a small subset of the explaining features.
They are certainly not enough to evaluate the explanation. We need to evaluate
the explanation approaches based on all produced explaining features by using
their Consistency Rate value. The calculated Consistency rate value for each
explanation is shown in figure 13 This allows us to compare the performance of
different explanation approaches an evaluate their consistency.

33



Figure 9: Most occuring features for the EDC explanation approach.

Figure 10: Most occuring features for the SHAP explanation approach.

8.2 Experiment 2: Soundness Rate

In this section, we want to know whether the produced explaining features are
truly the reason behind the explanation. In order to test this, we add irrelevant
features to the original dataset and check their effect on the explaining features.
Tables 14 and 15 are presented to describe the output of different explanation
approach before and after adding the irrelevant features. The green colored
features show features that are present in both explanations: the explanation
using the original explaining features and the explanation that also includes the
irrelevant features. The orange colored features are features from the original
dataset but different from the original explaining features. The red features are
irrelevant features the appear as explaining features.

Concerning the Soundness rates for the different explanation approaches, the
produced values are shown in figure 16
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Figure 11: Most occuring features for LIME explanation approach.

Figure 12: Most occuring features for the Anchors explanation approach.
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Figure 13: Consistency rate for different explainers
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Figure 14: Explaining features of MorrisSensitivity and LIME before and after
adding irrelevant features
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Figure 15: Explaining features of Anchors, EDC and SHAP before and after
adding irrelevant features

Figure 16: Soundess rate for different explainers
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9 Discussion

9.1 Experiment 1

At this point, we have mentioned the explanation approaches to be evaluated
in section 3.2 which are performed on the classification models mentioned in
section 3.1. We also proposed two evaluation metrics in 6.2 and 7.4. Based on
these two metrics, experiments 7.1 and 7.3 are performed. The results of these
two experiments are presented in sections 10 and 8.2.
Concerning table 8, we observe that there are some similarities in terms of the
produced explaining features between multiple runs of MorrisSensitivity on dif-
ferent classifiers. The feature ”androi.gms.ads.AdActivity” is produced in all
runs of the explainer except to the run where GaussianNB is used as classifier
as well as GaussianProcess. In contrary, the feature
”permission.WRITE SECURE SETTINGS” is only present in 4 out of 10 runs:
AdaBoost, svc, Bagging and gaussianNB. Overall, this explainer shows big dif-
ference between the runs. Most features differ from classification model to the
other, others are not even present. This can also be seen by the different colors
that were used.
The Consistency rate value reflects this observations greatly. From figure 13,
the CR value for MorrisSensitivity is 0.2, which is quite low. This shows that
the produced explanation features depend on the classification model used. This
explainers is relatively inconsistent.
Concerning table 9, we observe that the difference in colors (features) for the
EDC explainer is slightly less than the difference of MorrisSensitivity. Fea-
ture ”Android.c2dm.intent.RECEIVE” is only present in a single run (Decision-
TreeClassifier) and ”permission.ACCESS COARSE LOCATION” is present in
3 out of 6 runs of the explainer. Namely in AdaBoost, MLPClassifier and Gra-
dientBoosting. In contrary, feature
”Android.permission.WRITE EXTERNAL STORAGE” is present in all runs
of the explainer.
The Consistency rate value of EDC greatly agrees with this observation. The
CR value of EDC is approximately 0.28 which is higher than MorrisSensitivity.
For table 10, we observe that feature ”permission.ACCESS NETWORK STATE”
and ”Android.permission.WRITE EXTERNAL STORAGE” are present in all
three runs of the SHAP explainer. We also observe that 4 other features are
present in 2 out of 3 runs. This explainer has a Consistency Rate value of ap-
proximately 0.59 which shows that the explainer is relatively not dependent on
the classification model used.
The experiment on the LIME explainer is the most interesting one. Table 11
shows relatively small difference in color between different runs of the explana-
tion approach. Thus most of the features are relatively consistent among the
runs of the explainer with different classification models. The Consistency rate
of this explainer from 13 is reflects this observation. The CR value of LIME is
0.57 which is relatively high.
Concerning table 12, it is clear that illustrated colors on each run with different
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classification model vary. Overall, the presence of each feature in different runs
of the explainer is very low. Multiple features are only present in a single run,
others are present in 3 out of 10 runs of the explainer. The CR value from figure
13 proves this observation. Anchors has the lowest CR value among all the used
explanation approaches.

9.2 Experiment 2

The second experiment shows the variability of the explaining features if irrel-
evant features were to be added.
Table 14 shows that by adding the irrelevant feature set to the input set of Mor-
risSensitivity, the explaining features change. Six new features appear in the
explaining features. These six features are all irrelevant features. However, the
remaining 14 original features are still present in the second explaining feature
set. This explains the Soundess Rate shown in figure 16.
The presence of these irrelevant features shows that this explanation approach
can be effected by adding irrelevant features which by property 6.1 should not
be the case.
For LIME (figure 14), no irrelevant features were present. However six new
features from the original feature set are present in the explaining feature set
that was produces by adding the irrelevant features to the input. 14 features
remain untouched. The SR value of this explainer comes near to the SR value
of MorrisSensitivity with 0.81.
Anchors shows in table 15 to be the most sensitive explanation approach among
the five explanations to irrelevant features. Just a single feature
”Android.permission.INSTALL PACKAGES” is still present in the produced
explaining features where the irrelevant features were added to the input. The
remaining features are all features from the original feature set. This is also
expressed by the SR value of Anchors. This explainer has the lowest SR vaue.
In this explanation, similar to LIME, no irrelevant features were present.
EDC and SHAP explainers are the most impressive explainers in terms of per-
formance. EDC shows just a single alternating feature. For SHAP all the ex-
plaining features ramained the same. Their Soundness rates were outstanding
compared to the rest of the explainers. EDC has an SR value of approximately
0.95 and SHAP earning the perfect value 1.
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10 Limitations

This section describes some limitations of the performed experiments and the
proposed properties/metrics.

Firstly, we assumed that the explanation approach do not produce random
features. This is not completely the case as LIME for example produces random
pertubations around the training records. This produces a slight randomness in
the produced features. However, because this variability is very small it can be
neglected.
Another limitation is that we assumed that the apps contained in the dataset
are correctly labeled. Kaspersky estimated that there will be over 6 billion An-
droid users by 2020 [18]. This rise in Android users leads to the rise of Android
malware. Subsequently, the number of sophisticated Android malware applica-
tions will also rise which makes their classification more complex.

Another limitation for the second metric (Soundess Rate) is that the irrel-
evant features are selected randomly. The effect of the irrelevant features on
the explaining features may change dependent on which irrelevant features were
selected. Features with high variance across the application may be more likely
to appear in the explaining features. The opposite holds also, features with low
variance are likely to appear in the explaining features.

Concerning property 1, it is mentioned that a certain application behavior
can be expressed as a set of features and the explainer should be able to identify
these features that this malicious behavior consists of.
The issue with this point is that a malicious behavior can also be expressed
by alternative features which end up by the same behavior. If the size of the
training data is large enough, this limitation may be overcome, but for the size
of training data used for this research, it is not clear whether this happens or not.

Concerning the Explanation approaches, due to some implementation limi-
tations of the used libraries, the explanation approaches did not work on every
proposed classification models as can be noticed in the experiment results . A
typical error that would occur with EDC for example is A sparse matrix was

passed, but dense data is required. Use X.toarray() to convert to

a dense numpy array. With this, the proposed solution was tried but other
errors would occur.
Additional to the aforementioned limitations, the first metric tends to be inaccu-
rate for white box models. That is, explainers do not work on every classification
model, subsequently, there will be less classifiers that the metric can take into
account. If there are less classifiers to be considered, features are more likely
to appear in the feature sets of the explanations generated using the different
classification models.

The last limitation concerns a hardware limitation. All the classification
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models used for this research had an accuracy over 85% on the test set. This
accuracy could increase if we used a larger dataset. This dataset has to be
extracted, preprocessed, classified and explained. In order to perform all these
tasks on a larger scale, the hardware specification need to be better in order to
make it feasible.
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11 Conclusion and future work

There some points that need more research which may help to improve the
accuracy of the metrics:

• In addition to the extracted features from the Android Manifest file, we
can use the features from the Dalvik executable files. These may reveal
important information which the Dalvik executables did not.

• We focused on static analysis to extract features but also dynamic analysis
may be utilized. Dynamic analysis is performed while the application is
running. This may reveal new information about the application which
was not captured before with static analysis. with Code obfuscation for
instance, dynamic analysis may be more applicable and somewhat easier
to perform than static analysis. A combination of both static and dynamic
analysis can be used.

• Range the CR value over multiple application instances. With a single
instance it might be the case that for the used application sample the
model was more dependable on the classification model then with other
application instance, which is why more research on this part is worth.

• Research the experiment results on better performing hardware. With
better performing hardware, the classification model can use more data
to be trained on, which improves its accuracy and probably the accuracy
of explanations. The precise effect on the explanations and the evaluation
metrics is for now still unknown.

• Use bigger dataset. As mentioned before, with a bigger dataset the accu-
racy of the classification models can increase. However, it is still unknown
if the explanation approaches will behave differently or not.

• Experiment on alternative datasets. All the experiments were performed
on two fixed datasets. It is also unknown if the explanation approach
will perform the same on new datasets and if ranking according to the
Soundness Rate and Consistency Rate will remain the same.

• Investigate deeper the proposed properties and metrics to have a better
understanding of their theoretical underpinnings (basically, how and why
they work).

• Concerning CR value, this metric evaluates a local explanation approach
based on a single instance. Other application instances may reveal differ-
ent behavior. In order to overcome this, averaging over multiple applica-
tion instances may be result more accurate estimations of the performance
of the explanation approaches. This is definitely a point that needs further
study.
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• Currently, the implemented explanation approaches work on different num-
ber of classification models due to some occurring errors in implementa-
tion, which was mentioned in the limitations. In this case, the Consistency
Rate may penalize explanation approaches that work on fewer classifica-
tion models.

These are all point that may or may not reveal more information about the
proposed metrics.

In conclusion, we proposed to properties that explanations need to adhere to.
Based on these properties we proposed one evaluation metric for each property.
The illustrated tables contain the generation of the explaining features from
different sources. These tables demonstrate the strength and accuracy of the
proposed metrics. The experiments revealed that, on the basis of the Consis-
tency Rate, SHAP performs the best, following LIME, EDC, MorrisSensitivity
and lastly Anchors. Based on the Soundness Rate, SHAP performed the best,
following EDC, MorrisSensitivity, LIME and lastly Anchors.So, the SHAP ex-
plainer seems to be the best choice according to the proposed two evaluation
metrics.
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https://ibotpeaches.github.io/Apktool/.

[10] Per-Erik Danielsson. Euclidean distance mapping. Computer Graphics and
image processing, 14(3):227–248, 1980.

[11] Elkind, Edith and Rothe, Jörg. Cooperative game theory, 2016.

[12] Ming Fan, Wenying Wei, Xiaofei Xie, Yang Liu, Xiaohong Guan, and Ting
Liu. Can we trust your explanations? sanity checks for interpreters in
android malware analysis. IEEE Transactions on Information Forensics
and Security, 16:838–853, 2020.

[13] Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis. nonpara-
metric discrimination: Consistency properties. International Statistical Re-
view/Revue Internationale de Statistique, 57(3):238–247, 1989.

[14] Alex A Freitas. Comprehensible classification models: a position paper.
ACM SIGKDD explorations newsletter, 15(1):1–10, 2014.

45



[15] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and
system sciences, 55(1):119–139, 1997.

[16] Jerome H Friedman. Greedy function approximation: a gradient boosting
machine. Annals of statistics, pages 1189–1232, 2001.

[17] James Joyce. Bayes’ theorem. 2003.

[18] Kaspersky. Android mobile security threats.
https://www.kaspersky.com/resource-center/threats/mobile.

[19] Emilie Kaufmann and Shivaram Kalyanakrishnan. Information complexity
in bandit subset selection. In Conference on Learning Theory, pages 228–
251. PMLR, 2013.

[20] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are
not enough, learn to criticize! criticism for interpretability. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016.

[21] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber,
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