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Abstract

The analysis of biological structures on a macroscopic and microscopic scale can lead to
new insights in the biology research field. By gathering bioimages from microscope systems,
extracting the point cloud and converting it to a surface representation, computerized three-
dimensional (3D) models can be generated for measurement and visualisation. In this paper,
a pipeline is proposed to improve the quality of the 3D mesh derived from 3D bioimages.
This will in turn increase the accuracy of the 3D representation. For this research, a zebrafish
embryo model and a mouse mammary gland model are used. The contour stack derived from
the raw image data is first aligned and then converted to an oriented point cloud. Three surface
reconstruction algorithms (Screened Poisson, Alpha Shapes and Ball Pivoting) are then used
to generate the 3D models. The results are compared to determine which algorithm can be
best used for the pipeline. Looking at the zebrafish embryo it can be concluded that the model
generated by the Screened Poisson method adheres to the evaluation criteria the most. Aside
from creating a smooth watertight surface, the model contains the most preserved details.
Due to inconsistent orientation of the point cloud normals, the mammary gland model could
not be constructed optimally for two of the three algorithms. This is a point of improvement
that can be worked on in future development of the pipeline.
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1 Introduction

1.1 Problem statement

In biology, researchers aim to gain insights in the interrelations between structure, function and
evolution of organisms. To investigate the spatial assembly of biological structures on a macroscopic
and microscopic scale, three-dimensional (3D) models are derived [LIS+12]. An example of this
process includes collecting the data using microscope systems. The acquired stack of images can be
processed by performing segmentation or manual delineation [CV14]. The resulting contours can
be reconstructed to form a 3D model. A way to do this is by using a point cloud based surface
reconstruction method, as done by [CV14]. Here, a point cloud, which is a set of points in a 3D
space, is extracted from the contour stack. Subsequently, the point cloud can be converted to a
surface representation, which is composed of a 3D mesh. The issue is that the quality of the mesh
can be affected by noisy data. This also affects the accuracy of the 3D model in respect to the
object of interest. A possible consequence is that important details of biological structures are
compromised or not visible in the 3D model. Therefore, the goal of this research is to improve the
quality of the 3D mesh from image stacks, using an optimization strategy. The research question
is as follows: what kind of optimization strategy can be used for optimizing the mesh of 3D bioimages?

In this paper, a pipeline is proposed that aims to optimize the 3D mesh of models constructed from
bioimages. It is based on the point cloud based pipeline proposed by [CV14].

1.2 Related work

In the science research field, 3D reconstruction for analysis of biological structures is widely used.
For example, in neuroscience, a model for the 3D reconstruction of neuron structures was proposed
by [PRAS10]. More recently, [XLD+18] developed an automated pipeline which enables the 3D
reconstruction of synapses. 3D reconstruction is also used for plant phenotyping. In [Rav16], a point
cloud based method is developed for the reconstruction of apple trees. A recent study [DCMS+20]
shows that 3D phenotypes can potentially give new insights in the morphological characteristics
of plants that are influenced by interactions between the genotype and the environment. Another
contribution to the research field is the pipeline developed by [CV14]. The pipeline performs contour
interpolation on the collected contour stack and then applies the Poisson reconstruction method
on the derived oriented point cloud. Ultimately, it is used for phenotype measurement. Based on
previous work, it can be concluded that the 3D reconstruction of biological structures is important
for the life science research field.

Reconstruction methods can be categorized as an implicit or an explicit approach. Explicit techniques,
such as the ball-pivoting algorithm by [BMR+99], are usually straightforward. However, they do
not always generate a watertight surface [Cha21]. In contrast, implicit techniques do produce a
watertight mesh and are also robust against noise and non-uniformly distributed point clouds.
However, the produced models might be less accurate, depending on the voxel resolution [Cha21].
An example of such a method is Poisson reconstruction by [KBH06]. In this paper, both methods
are used and compared to observe their differences and efficiency in practice.
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1.3 Thesis overview

This paper proposes a 3D mesh optimization pipeline. An overview of the pipeline can be found in
figure 1. The paper is structured as follows. Firstly, the methodology, including the data acquisition
and steps of the developed pipeline, will be explained in Section 2. This section also contains the
selected criteria with which the optimization strategy will be evaluated. Then the resulting 3D
models will be analyzed and evaluated in section 3. The 3D models will also be compared for each
3D reconstruction method in order to formulate the limitations of the optimization strategy and
possible improvements. This is discussed in section 4. A conclusion and the answer of the research
question is presented in section 5.

Figure 1: An overview of the pipeline.
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2 Methodology

2.1 Data Acquisition

The acquisition of the data used in this research was performed by specialists. Two models are
used in this thesis: a zebrafish (Danio rerio) embryo model and a mouse mammary gland model,
the latter of which is more complex. Imaging of the zebrafish embryo is performed using a confocal
microscope (see figure 2), while the raw image data of the mammary gland (see figure 3) is collected
using a bright field microscope. Afterwards, the images undergo delineation to extract the structures
of interest. For each slice, delineation is performed either manually or via automated segmentation.
In the case that it is performed manually, annotation software can be used. In this case annotation
software TDR [VdH+93] is used in combination with a WACOM digitizet tablet (WACOM, Cintiw
LCD-tablet) [CV14]. The derived contours will be used for the next step of the pipeline.

Figure 2: Image data of the zebrafish model. The size of the embryo images are 1300x1000. (a) the
original image taken with the confocal microscope. (b) the binary mask of the original image. (c)
the derived contour, which will be used for the rest of the pipeline.

Figure 3: Image data of the mouse mammary gland model. The size of the mammary gland images
is 768x574. (a) the original image taken with the bright field microscope. (b) the binary mask of
the original image. (c) the derived contour, which will be used for the rest of the pipeline.
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2.2 Image Alignment

The first step of this pipeline (after acquisition) is aligning the contour images. In some cases, the
contours are not aligned when stacked on top of each other. This can be observed in the case of the
zebrafish model. In figure 4, it can be seen that the center of the contours are in different positions
in the black image. This could have been caused during imaging when the samples are placed under
the microscope. In that case, the samples are not all placed in the exact same position.

Figure 4: Two contour images from the zebrafish model. The centers of the two contours are
different, therefore the contours need to be aligned.

Alignment is done using the OpenCV library [Bra00]. First, the center of each contour is identified.
This is done by converting the image to grayscale and then applying a Gaussian blur to reduce
the Gaussian noise in the image [Ope22]. Consequently, the image is thresholded after which the
contour can be found in the image. For each contour, we can compute the x and y coordinates
of the contour center. The next step is shifting the contour, so that the center of the contour is
aligned with that of the image. This is done by applying an affine transformation [Ope22] and

using a transformation matrix M =

[
1 0 tx
0 1 ty

]
. Here, tx, ty are the amount of pixels in the x, y

direction that the image must be shifted in [Ope22]. The verification of the alignment method can
be seen in figure 5. In the left-side image, an overlay of the contours before alignment is shown.
The right-hand image is the result of the alignment method, where the center of the contours are
aligned.
The image alignment step might be optional if the contours are already properly aligned. This was
the case for the mammary gland model, thus for that model this step was omitted.
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Figure 5: An overlay of all the zebrafish model contours before (a) and after (b) alignment.

2.3 Point Cloud Extraction

The second step is deriving the point cloud from the stack of contours. A point cloud is a collection
of data points in a 3D space. Extracting the point cloud is done by acquiring the x, y-coordinates of
the contour, for each aligned 2D contour image. Consequently, a z-coordinate is manually assigned
to each contour. For the zebrafish model, the distance between two neighborhood images is 10 pixels
in the z-direction. The optical cutting distance in this direction is 5 µm. For the x, y-direction, the
pixel to µm ratio is 0.821 µm [CV14]. For the mammary gland model, a distance of 10 was used as
well. Using the Open3D library [ZPK18], the coordinates are mapped to a 3D point cloud. This
can be seen in figure 6.

Figure 6: Point clouds of the zebrafish (a, b) and mammary gland (c) models.

Some of the 3D reconstruction algorithms used in the next step require an oriented point cloud as
input. In order to accomplish this, the normals of the point cloud have to be estimated. The Open3D
library is used to estimate the normals. The normals are derived by fitting a plane per 3D point
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in a local manner [ZPK18]. Sometimes, the normals are not oriented consistently, thus an extra
pre-processing step is necessary. Using k-nearest neighbours, a Riemannian graph is constructed.
The orientation of the normals are then propagated using the minimum spanning tree [ZPK18].
To verify that the normals of the point cloud are properly oriented, the normals are observed in
MeshLab [CCC+08]. For the zebrafish model, the normals seem to be oriented correctly as they are
pointing outwards of the model. For the mammary gland model, this is not the case for all of the
points. Inconsistent orientation of the normals may influence the 3D reconstruction later on.

2.4 3D Surface Reconstruction

The next step of this pipeline is reconstructing a 3D model from our oriented point cloud. Three
reconstruction algorithms are used and compared in order to observe their advantages and disad-
vantages in generating a 3D model from a biological image stack. The best reconstruction algorithm
can then be selected to be part of the pipeline.

2.4.1 Screened Poisson reconstruction

The first method is Screened Poisson surface reconstruction [KH13]. This reconstruction method is
an extension of the original Poisson surface reconstruction method [KBH06]. The Poisson method
is an implicit surface reconstruction approach that generates a 3D mesh with a watertight surface
from an oriented point cloud. It does this by transforming the point cloud to a continuous vector
field and then solving the corresponding Poisson problem. This problem involves computing a scalar
function with gradients that match the vector field the best. After this the appropriate isosurface
can be extracted [KH13, KBH06]. While the Poisson method is robust against noisy data and
misregistration artifacts, it tends to oversmooth the data [KH13]. The screened poisson method
incorporates scale-independent screening and solves for a screened Poisson equation. It has been
proven to out-perform the Poisson method and to be computationally faster [KH13].

2.4.1.1 Parameters

PyMeshLab [MC21], a Python library that interfaces to MeshLab [CCC+08], is used to apply the
screened poisson surface reconstruction method to the oriented point cloud. The algorithm has
various parameters that need to be tuned in order to acquire an optimal model. This was done
manually. One of the important parameters is the depth parameter which determines the depth of
the octree used for reconstruction. The higher the value of the depth parameter, the more details
will be preserved. However computation time will also increase [KH13]. For this research, the default
value of 8 was used.
Another parameter is the minimum number of samples. During reconstruction, the octree is adjusted
according to the sampling density. Thus, this parameter denotes the minimum amount of points
that should be in an octree node during this process. The recommended value for noise-free samples
is between the range of 1.0 and 5.0 [CCC+08]. After tuning, this value is set to 5.
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2.4.2 Alpha Shapes reconstruction

The second algorithm that is used is Alpha Shapes surface reconstruction. Developed by [EM94],
alpha shapes are based on the concept of a convex hull. They are a generalized variant of the convex
hull of a set of points. Let S be the point set, or point cloud, and α be a real number in the range
between 0 and infinity. An α value of infinity generates the convex hull, and decreasing α results
in the disassembly of the shape [EM94]. An α value that is too low will leave holes in the model,
while a too large value causes details to disappear.

Alpha shapes have the advantage that it is an effective method for generating the shape of the point
cloud [BMR+99]. The method can be applied to a dense unorganized set of points [DLY22]. The
shape of S generated by the alpha shapes algorithm is a polytope, which is constructed from the
Delaunay triangulation of the point cloud [EM94]. A polytope is defined as a shape with flat faces.
To gain an intuition of how the alpha shapes algorithm works, we imagine a mass of ice cream in
the space of R3, which contains the points of S. We remove the ice cream that can be carved out
without bumping into S, using a metaphorical sphere-formed spoon with radius α [DLY22]. This
includes the parts we can reach inside of S. The resulting model is the alpha shape of S.

2.4.2.1 Parameters

Alpha Shapes reconstruction is done using PyMeshLab. The algorithm accepts a point cloud and
the α parameter as input. The α parameter controls the amount of detail the model has. As was
explained earlier, if α is too high details will be lost and if it is too low, there will be holes. Thus,
the α parameter has been manually tuned to acquire a 3D model with higher quality. Ultimately, α
= 70 (4.771%) was selected for the embryo model and α = 10 (1.430%) for the mammary gland
model.

2.4.2.2 Post-processing

Post-processing was performed using PyMeshLab. As alpha shapes constructs a shape with flat
faces, we can apply a smoothing algorithm to smooth the surface. Vertex-based smoothing methods
are straightforward to implement, although they can inadvertently cause volume reduction. These
methods smooth the mesh based on spatial neighbourhood information [BCL21]. Two vertex-based
approaches are Humphrey’s Classes (HC) Laplacian smoothing [VMM99] and Taubin smoothing
[Tau95]. These methods are similar as they both correct shrinkage using forward and backwards
smoothing. However, in Taubin smoothing, both of these steps can be fine-tuned [BCL21]. Therefore,
the Taubin smoothing function is applied to the entire model.

2.4.3 Ball-Pivoting reconstruction

The last method that is used is Ball Pivoting surface reconstruction. First introduced by [BMR+99],
the ball pivoting algorithm (BPA) is an advancing-front algorithm that is related to alpha shapes
(see section 2.4.2). In contrast to screened poisson, which is an implicit surface reconstruction
method, BPA is an explicit surface reconstruction method [Cha21]. Thus, BPA was selected so we
can compare its performance to the related alpha shapes method and the implicit screened poisson
method. This way, we can observe where their advantages and disadvantages lay in practice. The
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algorithm is simple and works the best when applied to uniformly distributed point clouds [Cha21].
BPA uses a ball that pivots on the point cloud. Let S be the point cloud that will be used for
reconstruction. We assume that the density of S is sufficient enough that a ball of radius ρ cannot
fall through the S, without touching sample points of S. The ρ-ball connects sample points with
an edge when the ball touches two sample points. After this, the ball is pivoted until it comes in
contact with a third point. This results in the creation of a triangle. The ρ-ball continues to pivot
to find seed triangles, which are three points in S that the ball can touch without containing any
other data points [BMR+99]. This process is repeated and ultimately, an interpolating mesh is
formed.

2.4.3.1 Parameters

Ball pivoting reconstruction is done using the Open3D library in Python. The algorithm is based
on [BMR+99] and [Dig14], the latter of which is a parallel variant of [BMR+99]. The algorithm
accepts an oriented point cloud and the radii parameter. This parameter determines the radii of the
ball. Choosing a good radius can be difficult. A too-low radii value might cause the generation of
holes, while a too-large value might result in the loss of details [Dig14]. A solution to this problem
was suggested by [BMR+99]: We can perform multiple BPA runs, each time with a ball radii larger
than the last. The radius parameters have been manually tuned to acquire a 3D model with higher
quality. The selected radii are ρ = [20, 50, 80, 110].

2.4.3.2 Post-processing

Due to the nature of the ball pivoting algorithm, it is possible for the resulting 3D model to contain
holes. These holes can be caused by a too-low sample density or because the ball cannot reach
some of the sample points [BMR+99]. Therefore, extra post-processing steps might be necessary. In
this research, post-processing is done in PyMeshLab. First the borders of the faces and the edges
are selected on the boundary. The close holes function is then used to close any holes that might
have been produced. The threshold for the size of the holes to be closed is set to 70. This number
was chosen based on a trial-and-error procedure. Lastly, to smooth out the surface and remove any
residual noise, the Taubin smooth [Tau95] algorithm is applied to the entire model.

2.5 Evaluation criteria

To verify the performance of each algorithm and compare the quality of the resulting 3D models,
three evaluation criteria were determined. Firstly, we perform visual inspection to observe whether
certain details are preserved in the reconstructed models. Then, we look at the amount of holes the
3D models have. In the case of the embryo and mammary gland models, holes are inaccuracies we
want to prevent. And lastly, the smoothness of the surface of the 3D models will be observed.
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3 Results and Evaluation

3.1 Screened Poisson reconstruction

The 3D models constructed by the screened poisson reconstruction algorithm can be found in figure
7. In both cases, the 3D models have a smooth surface, which does not contain any holes. In the
case of the zebrafish model, some level of detail has been preserved (see figure 7a, 7b). However, as
highlighted in figure 7c, there is an incorrect feature. On the bottom of the model, a small ”bump”
is visible. This feature cannot be derived clearly from the point cloud, as the points there do not
indicate that there should be an inclination.
In the case of the mammary gland model (see figure 7d and 7e), the point cloud was reconstructed
incorrectly. Not all of the branches of the gland are visible and it is hard to recognize the structure.
Therefore, the level of detail preservation is low.

Figure 7: MeshLab snapshots of the zebrafish embryo (a, b, c) and mammary gland (d, e) models
generated by the screened poisson reconstruction method. Models are shown from different angles.
While the embryo model contains a high level of detail preservation (a, b), the algorithm also
generated a seemingly incorrect feature on the bottom of the model (c). The mammary gland model
was not reconstructed correctly.
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3.2 Alpha Shapes reconstruction

The 3D models constructed by the alpha shapes surface reconstruction algorithm can be seen in
figure 8. For the zebrafish model, there is a severe loss of detail. The round protruding feature
(figure 8a) is less clear in terms of shape. A similar conclusion could be drawn about the feature in
8b. Aside from the lost of detail, the model contains a hole on the bottom, which can be seen in
figure 8c. Despite the Taubin smoothing step, the surface of the model consists of flat faces and
sharp edges.
As for the mammary gland model, the shape of the mammary gland was preserved, as were the
branches. The model does contain multiple holes. While the smoothing step did round out some
parts of the model, the model is still composed of flat faces and sharp edges.

Figure 8: MeshLab snapshots of the zebrafish embryo (a, b, c) and mammary gland (d, e) models
generated by the alpha shapes reconstruction method. Models are shown from different angles.
The magenta circles in (a) and (b) indicate details (comparable to those in figure 7a and b) that
are hard to see due to the color of the surface. The magenta circle in (c) indicates the hole in the
bottom of the model.
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3.3 Ball Pivoting reconstruction

The 3D models constructed by the ball pivoting surface reconstruction algorithm are shown in
figure 9. Both models contain small holes, even after the post-processing steps as described in
section 2.4.3.2. Both models have a smooth surface and the embryo model has a high level of
detail preservation. The mammary gland model suffers from the inconsistent normal orientation, as
big parts of the surface are incomplete. This resulted in a loss of details and causes the model to
be harder to identify. Furthermore, branches of the model that are supposed to be unjoined are
connected (figure 9d).

Figure 9: MeshLab snapshots of the zebrafish embryo (a, b, c) and mammary gland (d, e) models
generated by the ball pivoting reconstruction method. Models are shown from different angles.
Both models contain small holes. While the embryo model exhibits high detail preservation, the
mammary gland model is largely incomplete.
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4 Discussion

4.1 Comparison

In figure 10, a comparison of the zebrafish embryo models constructed by the three reconstruction
methods is shown. Each of the three reconstruction algorithms has its advantages and disadvantages.
The screened poisson method is able to produce a watertight surface, meaning a model with a
lack of undesirable holes. Aside from also producing a smooth surface, the algorithm is able to
preserve a high level of details (see figure 10a). However, the ”bump” in the model (figure 10d)
appears to be an incorrect feature as it seemingly cannot be derived from the point cloud, nor
does it appear in the model generated by the ball pivoting algorithm (figure 10f). The bump
smooths out with an increasing number of samples per octree node. At a number of samples equal
to 20, the bump is barely visible. However, a high number of samples results in a loss of surface detail.

The ball pivoting algorithm has a model similar to that of the screened poisson algorithm. It
preserves the details and has a smooth surface due to the Taubin smoothing that was done.
However, it does contain holes that could not be closed even after an extra post-processing step. A
characteristic of the ball pivoting algorithm is that it is very sensitive to the selected radius ρ of the
ball [Dig14]. Correctly choosing the radius can be difficult. The holes were likely formed because
the sampling density was too low or the curvature of the manifold was too large [BMR+99] for the
ball.
A naive heuristic of choosing the ball radii was suggested by [Dig14]. The method is based on
the size of the bounding box s and the number of points N in the point cloud. It is assumed
that the averaged amount of points per range neighborhoods is approximately 20. Therefore, the

radius ρ is defined as ρ =
√

20
N
s. Although it is a rough estimation, such a method can be tried in

the future to possibly generate a generalized set of radii that can be used for multiple types of models.

In comparison to the screened poisson and ball pivoting models, the alpha shapes algorithm
performed worse (see figure 10b, e). While screened poisson had a ”bump”, the alpha shapes model
had a hole. Certain features of the model were less detailed and seemed to have a more generalized
shape. Lowering the α might bring some of those details back, but could also have the generation
of more holes as a consequence.
However, the alpha shapes algorithm did perform the best at reconstruction of the mammary gland
model. Figure 11 shows a comparison of the three reconstruction methods and the surface model
produced by [CV14]. Likely due to incorrect orientation of some of the point normals, the screened
poisson and ball pivoting algorithm are unable to correctly reconstruct the model. While screened
poisson does show some of the details of the branches in the big surface it generated, the general
shape of the mammary gland is not visible nor easily identifiable. The ball pivoting algorithm has
holes and is missing sections of structure. Comparing it to the surface model from [CV14], we
can also see that the bottom two branches are connected in the ball pivoting model. A reason for
this inaccuracy occurring could be that the radius of the ball was too large for that section of the
mammary gland. The ball might have come in contact with sample points of both of the branches,
which caused the generation of triangles there.
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Research by [Cha21] has shown that, given a uniformly distributed point set, the ball pivoting
method is robust. Thus, a possible way to increase the quality of the ball pivoting algorithm is by
applying poisson-disk sampling. This was also suggested by [CCC+08]. The poisson-disk sampling
method generates a uniformly random distribution. Here, the neighborhood distance between the
points is 2r. If we imagine a disk with radius r and place the center of the disk on each point, none
of the disks will overlap each other [CCS12]. Using this pre-processing step, we could generate a
more uniformly distributed point cloud.

Figure 10: MeshLab snapshots of the zebrafish embryo models constructed by the screened poisson
(a, d), alpha shapes (b, e) and ball pivoting (c, f) methods. The model by screened poisson adheres
the best to the evaluation criteria, though it does contain an apparent inaccurate feature (figure
(d), shown in magenta circle).
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Figure 11: MeshLab snapshots of the mouse mammary gland models constructed by the screened
poisson (a), alpha shapes (b) and ball pivoting (c) methods. (d) shows the surface model generated
by [CV14]. The model produced by the alpha shapes method resembles (d) the closest, though it
does miss details in the branches.

Lastly, we compare the computation time of the three algorithms for each model. These results can
be found in table 1. For both models, the screened poisson reconstruction method is the fastest. For
the embryo model, the alpha shapes algorithm is with 150.627 seconds significantly slower than the
other two algorithms. For the mammary gland model, the alpha shapes algorithm is faster than the
ball pivoting algorithm. The difference in computation time for alpha shapes between the models
is likely caused by the amount of points in the point cloud. The embryo model has significantly
more points than the mammary gland model. For the ball pivoting algorithm, the difference is
likely caused by both the amount of points in the point cloud and the amount of triangles the
algorithm was able to form. As shown in figures 10 and 11, the algorithm was able to generate a
more complete model for the embryo than for the mammary gland.

Algorithm Zebrafish embryo runtime (s) Mammary gland runtime (s)
Screened Poisson 1.825 0.706
Alpha Shapes 150.627 1.010
Ball Pivoting 45.134 14.726

Table 1: Runtime of each reconstruction algorithm in seconds.

4.2 Limitations

The functionality of the image alignment step in the pipeline was verified in figure 5, which shows
the alignment of the contours for the zebrafish embryo. This method relies on the notion that the
contours need to be aligned based on their center point. However, this might not be the case for all
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models. In those cases, alignment by searching for common key features in the contour stack might
be a more suitable solution.

As could be seen in the 3D mammary gland model, inconsistent orientation of the normals in the
point cloud can lead to major inaccuracies in the reconstructed 3D model. The reason for this
inconsistency could be that the models are undersampled in the z-direction. This might have caused
incorrect calculation of the normals. As two of the three tried algorithms rely heavily on correctly
oriented point clouds, this could be a limitation in the case that consistently orienting the normals
is not straightforward and needs extra pre-processing steps. This could especially be the case for
more complicated models.
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5 Conclusion

Images acquired from bioimaging can be converted to a 3D model, which in turn can be used
for analysis, measurement and visualization. However, the accuracy of the 3D model can be
compromised by noisy data. To this end, an optimization strategy was proposed in this research
which aims to optimize the 3D mesh. Based on the pipeline constructed by [CV14], the optimization
strategy consisted of multiple steps including image alignment, point cloud extraction and 3D surface
reconstruction (see figure 1). The functionality and performance of three surface reconstruction
algorithms was analyzed and compared to each other. While the ball pivoting algorithm and the
screened poisson method were able to produce a smooth zebrafish embryo model with preserved
details, they suffered from the inconsistently oriented point normals in the mouse mammary gland
model. In contrast, the alpha shapes models lacked detail but did produce a identifiable mammary
gland model. Nevertheless, the screened poisson method did not contain any holes and complied the
best to the evaluation criteria. Additionally, it had the fastest computation time. The pipeline could
be further built upon to improve on its shortcomings and continue optimization of the resulting 3D
mesh. Extra pre- or post-processing steps could be added in order to increase the accuracy of the
3D model. In particular, poisson-disk sampling could be applied to create a point cloud with less
noise to increase the quality of models generated by the ball pivoting algorithm. Another important
improvement would be to develop a method that ensures consistent orientation of the point cloud
normals. In addition, other reconstruction methods from other libraries such as the Computational
Geometry Algorithms Library (CGAL) could be tried and analyzed to see if they could be possible
candidates for this pipeline.
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Trans. Graph., 13(1):43–72, jan 1994.

[KBH06] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson Surface Reconstruc-
tion. In Alla Sheffer and Konrad Polthier, editors, Symposium on Geometry Processing.
The Eurographics Association, 2006.

[KH13] Michael Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM
Transactions on Graphics (TOG), 32(3):29, 2013.

17

https://doi.org/10.5201/ipol.2014.81
https://doi.org/10.5201/ipol.2014.81


[LIS+12] Christian Laforsch, Hannes Imhof, Robert Sigl, Marcus Settles, Martin Heß, and
Andreas Wanninger. Applications of Computational 3D-Modeling in Organismal
Biology. 03 2012.

[MC21] Alessandro Muntoni and Paolo Cignoni. PyMeshLab, January 2021.

[Ope22] OpenCV. The OpenCV Reference Manual, 4.6.0-dev edition, June 2022.

[PRAS10] Hanchuan Peng, Zongcai Ruan, Deniz Atasoy, and Scott Sternson. Automatic re-
construction of 3d neuron structures using a graph-augmented deformable model.
Bioinformatics (Oxford, England), 26:i38–46, 06 2010.

[Rav16] Jayakumaran Ravi. Spatial reconstruction of biological trees from point cloud. Open
Access Theses, 1190, 2016.

[Tau95] Gabriel Taubin. A signal processing approach to fair surface design, 1995.

[VdH+93] F. J. Verbeek, M. M. de Groot, D. P. Huijsmans, W. H. Lamers, and I. T. Young.
3d base: a geometrical data base system for the analysis and visualisation of 3d-
shapes obtained from parallel serial sections including three different geometrical
representations. Computerized medical imaging and graphics, 17(3):151–163, 1993.

[VMM99] J. Vollmer, Robert Mencl, and Heinrich Müller. Improved laplacian smoothing of
noisy surface meshes. Computer Graphics Forum, 18, 1999.

[XLD+18] Chi Xiao, Weifu Li, Hao Deng, Xi Chen, Yang Yang, Qiwei Xie, and Hua Han. Effective
automated pipeline for 3d reconstruction of synapses based on deep learning. BMC
Bioinformatics, 19, 2018.

[ZPK18] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D
data processing. arXiv:1801.09847, 2018.

18


	Introduction
	Problem statement
	Related work
	Thesis overview

	Methodology
	Data Acquisition
	Image Alignment
	Point Cloud Extraction
	3D Surface Reconstruction
	Screened Poisson reconstruction
	Parameters

	Alpha Shapes reconstruction
	Parameters
	Post-processing

	Ball-Pivoting reconstruction
	Parameters
	Post-processing


	Evaluation criteria

	Results and Evaluation
	Screened Poisson reconstruction
	Alpha Shapes reconstruction
	Ball Pivoting reconstruction

	Discussion
	Comparison
	Limitations

	Conclusion
	References



