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Abstract

Currently, a shift in electricity production to more sustainable solutions is taking place. This
leads to challenges such as a mismatch between supply and demand, and an excess of electricity
on peak times in the power grid. A battery could help solving these issues, however, their high
prices make them less attractive. A trading strategy, which buys and sells electricity in favorable
times, makes batteries more profitable and appealing. One aspect of the trading strategy is
forecasting electricity prices to determine buy and sell signals. In this study, four artificial
intelligence principles are compared in two Dutch electricity markets. Most electricity is settled
on the day-ahead market, where all forecasts of electricity usage and generation are submitted
for every hour of the following day and at least 12 hours before transmission. Surpluses and
shortages in electricity are settled on the imbalance market, a real-time market system that
does not require any submission in advance. Contrary to the day-ahead market where prices
are settled every hour, prices in the imbalance market are settled every fifteen minutes. While
using an extensive search for the best performing hyperparameters, gradient boosting appeared
to be the best performing principle in the day-ahead market, achieving a mean absolute error
of 8.85 EUR/MWh. However, a simple baseline strategy consisting of day-ahead prices 168
hours prior to forecasted prices already outperformed the artificial intelligence model. That
is explained by the drop in electricity demand due to COVID-19. Due to real-time market
information for the imbalance market, several minutes of input data collection are investigated.
The best performing model with seven minutes of input data collection realizes a mean absolute
error of 15.72 EUR/MWh. The best performing model over all input collection minutes in the
imbalance market is the artificial neural network. This models outperforms all baseline methods
in terms of mean squared error. With a 15 kWh battery and a inverter power capacity of 10
kW, the best performing models achieve 16.67 EUR, 521 EUR, and 529 EUR in profits during
2020 with trading strategies in the day-ahead market, imbalance market or a combination,
respectively. These profits take into account the lifespan of the battery, which is set to a
fixed number of charge and discharge cycles depending on the battery type. Without the
lifespan restriction, a maximum profit of 650 EUR is achieved. This is already 65% of the
maximum achievable profit with perfect forecasts. The best performing trading strategy with
lifespan restriction from the imbalance market is applied in a real-world setting with a 15 kWh
battery and 10 kW inverter. Charge and discharge instructions were sent to an external battery
using modbus through a platform. This setting achieved a profit of 23.5 EUR in less than
two weeks, which is an improvement of the static models. A real-world setup leads to more
challenges, such as the difference in theoretically achievable charging power and the actual
charging power, an architecture to steer the battery that depends on multiple providers, and
errors in the software application. An even better performance is possible if these challenges are
mitigated. From these results, it is concluded that two artificial intelligence models have much
potential in forecasting the electricity markets and that the imbalance market is most profitable.
Improvement of the models could increase profits with 50% and may be achieved with a change
in input data. Moreover, profits could also increase by adding electricity markets that allow
value stacking. For a live implementation it is important to find the best architecture to steer
the battery, while maintaining a fast, well tested software application that finds trading signals
from the market. A recommendation for an organizational structure is given, which includes an
information communication department and an agile mindset.
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1. Introduction

This master research starts with an introduction to the research topic. First, the importance of
this research topic is given in the background subsection. Then the introduction continues with
the research objectives, research questions and gives an overview for the remaining sections in
this study.

1.1. Background

Energy consumption has been increasing in the world over the last few decades [28], which has
led to the global warming issues we currently face [52]. These issues include, among others,
loss of agriculture and species, air pollution, and natural disasters [17]. That is why countries
were forced to take actions to reduce climate change. The first global approach to tackle
climate change was made in 2015: the Paris agreement. 196 Parties agreed that the annual
average temperature cannot increase with more than 2 ◦C compared to pre-industrial times [48].
However, the world struggles achieving the goals mentioned in the agreement. Only half of the
agreed decarbonization is realized and parties are falling behind with other commitments as
well [39]. To achieve the goals mentioned in the Paris agreement, renewable energy sources
should be almost fully responsible for the production of electricity. In 2019, renewable energy
sources only contributed with 18.8% of the total electricity production in the Netherlands [10].
That is why a large transition in the electricity production is currently taking place. Note
that not only the electricity production should be transitioned, the total energy production
has to absorb as much CO2-equivalents as it produces in 2050. CO2-equivalents consist of
carbon dioxide, methane, nitrous oxide, and fluorine. However, this study will only focus on
the electricity production in the Netherlands. The share of electricity production in the total
energy production was 16.8% in 2019 for the Netherlands. The forecast is that this segment
will grow in the following years [21]. This growth can be explained by the increasing usage of
electric cars and electrical heating.

However, increasing usage of electricity and renewable production will lead to complications.
First of all, renewable electricity sources are not producing a constant amount of electricity
during a day or season. On a windy day, there will be more production of electricity by wind
farms. Furthermore, solar panels will not produce electricity at night. Second, an increasing
number of electrical devices will consume electricity at the same time. For example, electrical
heaters will use more energy during cold winters, and electric cars will mainly be charged at
6 PM when people get home from work. Both events lead to peaks in the power grid and an
imbalance between supply and demand. Three solutions are possible, where one only handles
the increasing peaks, while the others handle the increasing peaks and imbalance.

The first solution would be extension of the power grid. Renewable electricity that is produced
and not directly consumed locally, is transferred back into the power grid. The power grid needs
to be extended to handle the maximum power flow. This could for example be on an extremely
windy and sunny day. Disadvantages of a power grid extension are the high investment costs,
the long time to realize it, and the amount of space that is needed for the electricity network [8].
Furthermore, the extension of the power grid only handles the increasing peaks. The imbalance
between consumption and production remains unsolved. Another candidate is the demand
responsiveness. A reduction in demand peaks also ensures that the power grid needs less
extension. Instead of consuming much electricity in a short time frame, the same amount of
electricity is used over a longer time period. Moreover, high peaks in electricity production
lead to high consumption. Therefore, less electricity is sent back to the power grid. The
disadvantage of demand responsiveness is the loss of comfort, since the consumer has to change
its behaviour [8]. The last solution is the storage of unused electricity in batteries. When a
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peak in electricity production is realized, the electricity can be stored at the producer. This
ensures that the power grid has fewer high peaks, and the imbalance is solved locally. Battery
disadvantages are the space and weight required for storage, duration to charge and discharge,
and the high costs [8]. However, the price of batteries has dropped at a fast pace over the last
ten years, and is expected to drop even further [25].

While a combination of these three solutions will probably be required to achieve the goals for
2050, this study focuses on the storage of electricity in batteries. Several batteries are available
on the market. In general, batteries can be classified in lead acid, nickel-cadmium, nickel–metal
hydride, lithium-ion, and lithium polymer [40]. A battery is selected on several characteristics
such as costs, life time, self-discharge and density. Due to the high density, low self-discharge,
and a connection to solar panels, this study looks at lithium-ion batteries in Dutch companies
with solar energy production. The lithium-ion battery in this case is also known as the battery
energy storage systems (BESS). Local production and consumption of solar energy are often
not in balance. Since there is no possibility to consume solar electricity at night or on cloudy
days, electricity that is not directly consumed can be stored in a battery. In times when there is
a consumption surplus, the battery can be discharged. The battery ensures that the electricity
peak load can be reduced, which in turn leads to a decrease in costs [54].

Another cost reduction can be achieved by selling and buying electricity from electricity markets
when prices are high and low, respectively. Several markets are available in the Netherlands.
Most electricity is bought on the European power exchange (EPEX) day-ahead market (previ-
ously known as Amsterdam power exchange (APX)) [57]. Market participants are able to buy
and sell electricity one day before electricity is exchanged. Supply and demand settle to a single
price per hour in the next day. Due to a forecasting error in production and consumption of
electricity, a real-time market is introduced. This market is known as the imbalance market.
Here, the price is settled every 15 minutes. Both markets are researched and forecasted in this
study. The reason for those markets is the ease of implementation at small organizations. Both
the day-ahead and the imbalance market do not have a minimum requirement of volume to trade
on the market, while other markets have. Furthermore, much research is done in the day-ahead
market, which could be used to build even better performing forecasters [4, 5, 36].

According to Mulder & Sholtens [41], the electricity price is dependent on many variables. A
few examples are wind, sun, daylight and gas prices. Furthermore, the required balance between
production and consumption of electricity leads to large price differences in a short time frame,
making it a unique market [65]. That is not all, electricity prices show rare characteristics
that can only be explained with their physical features. That is why the price is influenced by
seasonality (e.g., annual, weekly or daily), has a long memory and price spikes, and is extremely
volatile [11]. Due to the high price fluctuations, price forecasting has become a need for many
participants in the electricity market [46]. Many approaches have been studied. These can
be classified in multi-agent, fundamental, reduced-form, statistical, and artificial intelligence
models [64]. Most of these approaches, however, have trouble forecasting highly volatile and
non-linear price processes such as the electricity market [64]. Except for artificial intelligence
(AI) models, as they excel in non-linear models. However, Weron [64] states that an optimal
AI model is hard to find, since there are many models that are difficult to compare due to
differences in errors. These errors contain, among others, the rare characteristics from the
in-sample dataset that are not applicable on other datasets, and the initial parameters from
the models. Only with identical in-sample, out-of-sample, and accuracy performance metrics,
different AI models can be compared.

2



1.2. Research Objectives

Due to the problems that arise with the comparison of AI models in different studies, this
study makes a contribution by comparing and improving AI models that forecast electricity
prices with the same in-sample, out-of-sample and accuracy performance metrics. State-of-the-
art models in electricity price forecasting, such as artificial neural network and support vector
regression, are compared to less popular electricity price forecasters, e.g., random forests and
gradient boosting. By looking at the less popular models too, a trade-off between using less
popular forecasters or continue with popular forecasters can easily be made by other researchers.
Both the popular and less popular AI models have their unique structure, leading to different
behaviour and other forecasts. Therefore, the models will be further referred to as principles
or approaches. On top of that, the AI models are applied and compared in a BESS trading
strategy by charging and discharging a battery. This could lead to a lower average electricity
price and stimulates companies to invest in solar energy sources, which in turn reduces the
global warming issues. That is why this study benefits both researchers and society.

1.3. Research Questions

To achieve the research objectives, the following research question needs to be answered.

Which AI principles are applicable to create arbitrage on Dutch electricity markets with
price forecasting by trading energy from a BESS?

To answer the main research questions, several sub-questions are composed. This study starts
with developing an understanding of several Dutch electricity markets to inventorize and define
the features and restrictions of the forecasting models. This defines the first sub question.

1) What are the characteristics of different Dutch electricity markets and which markets are
suitable for a trading strategy?

When the characteristics of the Dutch electricity market are defined, a collection and comparison
of established forecasting models is made. Several previous work and suppliers of electricity price
forecasting models are included. This sub-question is therefore defined as follows.

2) Which AI principles in electricity price forecasting are available and how do they differ?

Once an overview and comparison is made between several established forecasting principles,
the models are improved further. This is covered in the following sub question.

3) How can AI principles in electricity price forecasting be improved to reduce forecasting
errors?

After an AI model is built to forecast electricity prices on Dutch markets, it needs to be imple-
mented in a trading strategy. Therefore, the fourth sub-question is defined as follows.

4) How can an electricity price forecasting model be used in a trading strategy?

The final step of this study is to implement the trading strategy into a real-world setting, that
controls the flow of a battery energy storage system real-time. A comparison can then be made
between static models and the real-world setting. This is covered in the final sub question.

5) How do real-time AI electricity trading strategies with a BESS compare to static models?

3



1.4. Study overview

The remainder of this study is structured as follows. Section 2 discusses several studies that
have analysed the electricity markets and performed similar forecasts. Here, the background
information for Dutch electricity markets is given as well. Section 3 explains what methods are
used and the reasons for those methods. Section 4 continues with the experimental setup and
the results that are collected during this study. Section 5 discusses the results and explains
what they mean. Finally, Section 6 summarizes the study, answers the research question, shows
the relation between the results and the objectives and draws conclusions.

4



2. Literature review

The literature section gives an overview of previous work that has been done in the field of
electricity markets and electricity price forecasting. First, a thorough analysis of the Dutch
electricity market is performed to provide insights that could help in the selection of features
and the kind of trading model. Then, previous work of several AI forecasting principles in the
electricity market is compared and analyzed.

2.1. Dutch electricity markets

Tanrisever et al. [57] have performed an in-depth analysis on the Dutch electricity market. This
subsection provides a summary of the most important parts to understand the market for a
forecasting and trading model.

The Dutch electricity market is a liberalized market where participants can freely trade electri-
city in a competitive environment. However, not all participants of the Dutch electricity supply
chain need to fear competition. System operators have a natural monopoly since they are re-
sponsible for the maintenance of the grid, and only one grid is present per region. There are
two types of system operators in the Netherlands, namely, transmission system operator (TSO)
and distribution system operator (DSO). The primary function of the TenneT, the Dutch TSO,
is maintaining grid balance. This is achieved by the inspection of forecasted transmissions and
energy flows provided by market participants to ensure grid stability and balance, respectively.
While TenneT is responsible for the high voltage grid, DSOs are responsible for the medium
voltage grids. Nine DSOs transport and distribute electricity from the high voltage grid to the
customer, all in their own region.

In addition to the system operators, there are four more parties involved in the supply chain.
This includes the production company, program responsible party (PRP), metering company,
and supplier. Production companies contain all participants that generate electricity that is
sent to the grid. This could also be a non-energy company with many solar panels that sends
electricity back to the grid. PRPs have a physical connection with the grid and need to forecast
their difference between supply and demand. They send these forecasts to TenneT. If the actual
usage deviates from the forecast, the imbalance is settled in the imbalance market, explained
in Section 2.1.2. PRPs could also be seen as the traders of electricity. However, anyone is able
to trade on the electricity market, but they should have a contract with a PRP.

After a settlement on the markets, electricity is sent through the grid to the customer. The
customer has a contract with the supplier, who charges the customer based on their energy
usage. In the Netherlands, there are 47 suppliers of energy. They are competing with each
other in services and prices of electricity. The amount of energy that is passed through an
individual connection is monitored by the metering company. They collect and send metering
data to TenneT. An overview of the Dutch electricity supply chain can be found in Figure 1.
This study focuses on the trading aspect of the supply chain, in combination with the generation
of electricity with solar panels and BESSs.

Generation

Production

Trading

PRP

Transmission

TSO

Distribution

DSO

Metering

Metering

Supply

Supplier

Figure 1: Electricity supply chain of the decentralized market in the Netherlands [56].

5



2.1.1. EPEX day-ahead market

One of two markets investigated in this research is the EPEX market. The EPEX consists of
two different markets: The day-ahead market and the intraday market. Due to the significant
larger volume on the day-ahead market [53] and the importance of volume in trading [6], the
day-ahead market is selected for forecasting and trading.

On the day-ahead market, buyers and sellers place bids and offers for physical delivery of
electricity during the next day. There are 24 supply and demand settlements, one for each hour
of the delivery day. The market opens at midnight the day before, and closes 12 hours later at
noon. This means that the first delivery starts 12 hours after closure, while the latest delivery is
36 hours after closure. One hour before closure, the available transmission capacity is published,
which indicates the total capacity that is available during each hour of the day. Within one
hour after closure, the results of the auction are published on the website of EPEX.

2.1.2. Imbalance market

Since the grid should always be in balance, and forecasts of the PRPs have small deviations with
the actual consumption and delivery, a real-time balancing market is introduced: the imbalance
market. When a PRP consumes more electricity than forecasted, TenneT sells the difference
to that PRP at an unknown price. This electricity comes from another PRP that consumes
less than forecasted, or from a large producer that is obligated to have spare electricity ready
for the imbalance market. The imbalance price is determined after the settlement of supply
and demand and is calculated over the total imbalance in 15 minutes, the so-called program
time unit (PTU). Every PRP can make bids and offers to buy and sell their electricity on the
imbalance market, respectively. These bids and offers make up the bid price ladder that is used
as a reference for the actual imbalance price. An example of such a bid price ladder is shown in
Figure 2, and can be interpreted as follows. At PTU 20, when the total market adjustment is
+300 MW because of unforeseen extra electricity usage, the reference price upwards Pup for one
MWh is 112.7 EUR. If there is an excess of electricity and the total market adjustment at PTU
20 is -600 MW, the reference price downwards Pdown is equal to -118.51 EUR/MWh. Note that
a PRP has to pay money to deliver unforeseen electricity in the imbalance market in the latter
example. The bid ladder is updated every minute by TenneT, such that market participants
can update their bids and offers based on real-time market movement. This means that the bid
ladder changes during one PTU. However, the prices shown in Figure 2 are fixed, because the
data is constructed after the delivery day has ended. TenneT buys or sells electricity according
the bid ladder on behalf of the PRP that had a deviation in their consumption forecast.

The actual imbalance price that is used for settlement depends on the regulation states. Four
different regulation states are possible, which are summarized in Table 1. In regulation state
0, small errors are settled with a single average price of the bid ladder. This imbalance price
does not differ much from the EPEX day-ahead price. In regulation state +1 or -1 however,
the imbalance price is equal to the highest marginal bid to buy and the lowest marginal bid to
sell from the bid price ladder, respectively. These states are accountable for the high volatility
in the imbalance market. The final regulation state 2 is settled with two prices from the bid
price ladder. One price for the additionally bought electricity, and one for the additionally sold
electricity. The prices are formally summarized in Table 2.

Due to the real-time market, near real-time data could be used to forecast the imbalance price.
That arouses interest in the comparison between the day-ahead market, where a forecast for
12 to 36 hours ahead is made, and the real-time imbalance market, where a forecast for at
maximum 15 minutes is made.
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Figure 2: Dutch bid price ladder for 14/04/2021 published by TenneT [60]. The volume
indicates the adjustment upwards (+) or downwards (-) in the imbalance market. One PTU
equals 15 minutes.

Table 1: Overview of regulation states in the Dutch imbalance market [57].

Regulation state Description

0 The consumption of electricity is equal to the forecast.
+1 More electricity is consumed than forecasted exclusively; TenneT mainly buys electri-

city.
-1 Less electricity is consumed than forecasted exclusively; TenneT mainly sells electricity.
2 Both more and less electricity is consumed than forecasted; TenneT buys and sells

electricity.

2.2. AI forecasting principles

Much research has been done in the field of electricity price forecasting, and an overview of the
state-of-the-art approaches is given by Weron [64] in 2014. According to that study, electricity
price forecasters can be classified into multi-agent, fundamental, reduced-form, statistical, and
artificial intelligence. This study will mainly focus on the AI forecasters. AI approaches could
be further classified into well-known classifiers in electricity price forecasting such as artificial
neural network (ANN) and support vector regression (SVR), and less popular classifiers such
as random forests (RF) and gradient boosting (GB).

The difficulties that arise with a comparison of different AI approaches from different research

Table 2: Overview of the settlement prices in the Dutch imbalance market by TenneT [61].
Pmid is the average price of the lowest price upwards and the highest price downward from the
bid ladder, where an example is given in Figure 2. Pup and Pdown reflect the prices from the
bid ladder given the upward or downward volume, respectively.

Regulation state Settlement prices from bid ladder

0 Pmid

+1 Pup

-1 Pdown

2 MAX(Pup, Pmid); if consumption is larger than forecast
MIN(Pdown, Pmid); if consumption is smaller than forecast
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papers are the differences in evaluation robustness error, different datasets to train and test the
approaches, and the absence of a statistical test for significance [64]. That is why several models
from previous work will be analysed, reconstructed, trained and tested with the same dataset,
and compared with each other, including a statistical test for significance. This section focuses
on the analyses of previous work, such that a selection can be made for reconstruction.

All AI approaches will be used to forecast both the day-ahead market and the imbalance market.
Most researchers try to forecast prices from the day-ahead market. Examples are one hour
ahead forecasts [11, 46, 22], h hours ahead forecasts [46, 4], and one day-ahead complete price
profiles [67]. Even though forecasts for prices in the longer term (h > 24) are less popular,
the economic value is of great importance. That is because a forecast of 25 to 36 hours ahead
is required to buy electricity for the last 12 hours of the delivery day in the Dutch day-ahead
market, as stated in Section 2.1.1.

In contrast to the day-ahead forecasting models, there has been limited research into the im-
balance market forecasting, especially with AI. However, some researchers have forecasted or
described the imbalance market thoroughly. Interestingly, researchers do not agree on the long-
term predictability of electricity balance markets. On the one hand, Klæbo et al. [32] claim that
balance markets can not be accurately forecasted one day ahead, since all available market in-
formation before market closure is already reflected in the day-ahead market. While Peters [45]
describes a model to forecast the long-term Dutch balance market. However, the latter study
does not forecast individual imbalance prices. Therefore, this study attempts to forecast the
imbalance market on short term (≤ 15 minutes).

2.2.1. Artificial neural network

ANN is the most widely used AI approach in forecasting electricity prices and electricity load [64,
42, 4, 11]. The architecture of the ANN defines the category that a model belongs to. One of
these architecture options is the number of output nodes. Most ANN models only have one
output and predict one value, e.g., a single price one hour ahead [22] or a single price 24 hours
ahead [4]. However, some researchers try to predict 24 consecutive hours, and provide an ANN
with 24 output nodes [67]. Another architecture option is the addition of a feedback loop.
ANNs with a feedback loop are called recurrent networks. Without a feedback loop, they are
called feed-forward networks. Feed-forward networks have three main advantages over recurrent
networks. First, a feed-forward network always produces the same output with the same input,
while a recurrent network is dependent on preceding inputs. For a comparison between several
AI models, the same output is preferred. Second, a feed-forward network is able to find the
best performing hyperparameters faster than recurrent networks, since recurrent networks go
through to the input data more than once. Thirdly, recurrent networks could oscillate too
much between values, such that no accurate forecast can be given [15]. Therefore, feed-forward
networks are used in this study.

Feed-forward networks can be further classified into several groups. However, all feed-forward
networks consist of layers. The most simple network, a single-layer perceptron, is similar to
linear regression models. Here, only one input layer and one output layer are present. It can
be used for forecasting by combining linear inputs. When a layer is added between the input
nodes and the output nodes, the so-called hidden layer, the non-linear multi-layer perceptron
is created. Multi-layer perceptrons solve a forecasting problem by using the output of one layer
as input in the following layer. The number of hidden layers in a multi-layer perceptron is
variable, and can be optimized. Every layer consist of a number of neurons. These neurons
determine how the input values affect the outcome. Several types in activation could be used in
an ANN, e.g., radial basis activation. A specific multi-layer perceptron with one hidden layer
and a radial basis activation is called the radial basis function. Two other activations are the
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sigmoid and piecewise linear. A previous study shows that the latter two are more favorable
by researchers [64]. The activation function determines if the value from one node is used as
input for another node in the next layer. Therefore, the sum of weights multiplied with node
values from the previous layer should exceed a certain threshold. The weights, numerical values
that belong to the connection between nodes from one layer to another, can be optimized using
several methods. The most popular training method is back-propagation, where continuous
valued functions and supervised learning is applied.

Cruz et al. [14] have used two different activation functions in their multi-layer perceptron with
one hidden layer. While the nodes in the hidden layer were activated using the hyperbolic
tangent, the output layer used linear function as its activation function. The ANN was used
to forecast all 24 hourly spot prices for day D + 1 on a given time in day D. In contrast
with Chaâbane [11], Cruz et al. [14] forecast all prices for the following day before market
closure. Therefore, this setting could be used for a trading strategy in real-world situations.
Interestingly, the ANN does not outperform dynamic regression models. However, Keynia [30]
and Amjady et al. [5] provide evidence that neural networks can outperform dynamic regression
models if a hybrid setup is used. This hybrid setup consist of three neural networks that execute
consecutively. The downside of the hybrid method is that the execution time triples, since three
neural networks are run. Furthermore, both hybrid models use input data from electricity
markets that can not be used in a forecast for real-world trading models, since that data is only
available after the electricity markets are closed.

The number of hidden layers is one of the architecture settings that defines an ANN. Besides
the number of hidden layers, many settings define the ANN and AI models in general. These
settings are called the hyperparameters. The hyperparameters could be optimized in an AI
model to get the most accurate forecast. Another hyperparameter for an ANN is the number
of nodes in the hidden layers. The example in Figure 3 has one hidden layer with three nodes
in the hidden layer. Not all related work provides this hyperparameter value. Cruz et al. [14]
indicate that they have tested several configurations regarding the number of nodes. However,
the final number of nodes where the results are based upon is not given. Neupane et al. [42] on
the other hand state that they have used 10 nodes in the hidden layer with a 3 layer network.
For the sake of reproducibility, it is important to know this hyperparameter configuration. That
also holds for the feature extraction and feature selection steps to come up with a list of selected
features. For example, Neupane et al. [42] have used many past price indicators from the last 24
hours and previous year, and used the wrapper method [34] to select a pool of features. Others
also used forecasted wind production, provided by the TSO [14, 63], forecasted solar energy
production [63], and electric load [63].

The ANN in this study will have one output node. While starting with a fixed configuration
of hyperparameters, the final ANN model will be optimized in their hyperparameters. Further-
more, the best performing AI approach will be applied in a real-world trading setting, where
energy from a BESS is used.

2.2.2. Support vector regression

Another popular AI approach is the SVR. SVR is also a non linear regression model that adds
new dimensions to the data points, such that the similar data points can be forecasted. Although
it is used less often than ANN in the electricity price forecasting [64], many applications are
researched [47, 68, 23]. An SVR works as follows. A regression function in high dimensional
space, the so-called hyperplane, tries to include as many data points as possible. The data
points are included if they fall within the margin from the hyperplane. This margin is variable
and can be optimized. Note that in SVR with classification, often referred to as support vector
machine, the goal is to maximize the margin of the hyperplane while separating the different
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Figure 3: Example of a multi-layer perceptron with one hidden layer and one output node.
Given the input vector x, three nodes in the hidden layer and the single output layer are
activated using an activation function a, which can differ per layer.

Table 3: Overview of SVR hyperparameter configuration from previous studies. The numbers
in brackets indicate the best performing value for that hyperparameter found in that study.

Literature kernel function C [best] γ

Guo et al. [23] radial basis function 1-500 [-] 0.01-50 [-]
Sansom et al. [47] - 0.1-5000 [0.5] - [-]

classes. Not all data points can be included using a single linear hyperplane. That is where
the kernel function is designed for. The kernel function maps non-linear data into a higher
dimensional space such that a simple linear function could include as many data points as
possible [23]. Different kernel functions are possible in an SVR. Guo et al. [23] have used one
of the most popular kernel functions, namely, radial basis function.

Next to the kernel function, another hyperparameter needs optimization. This hyperparameter
is expressed as C, and indicates the penalty that is given to regression errors. An infinite C
allows no errors in the forecasting model. This results in a high dimensional SVR where no
generalization is possible. A small C, on the contrary, generalizes much and creates a less
complex SVRs than an infinite C. However, a smaller C also indicates that more errors are
allowed, which could be seen in the accuracy. Sansom et al. [47] use a larger range of values,
from 0.1 to 5000, for the optimization of C than Guo et al. [23], where the range is from 1 to
500. Notably, Sansom et al. [47] find an optimum of hyperparameter C at 0.5, which could
not be found by Guo et al. [23] due to their range. Together with the hyperparameter γ, that
configures the differences in feature vectors, the overfitting of the SVR is determined. γ is not
available for all kernel functions, and that may explain why Sansom et al. [47] did not describe γ.
However, Guo et al. [23] set their γ range from 0.01 to 50. An overview of these hyperparameter
choices is given in Table 3.

An SVR differs much in the forecasting approach compared to ANNs. The consistent accuracy
of an SVR makes it faster and simpler to optimize the hyperparameters than to optimize the
architecture and hyperparameters of an ANN [47]. Since an ANN gets randomly assigned initial
weights at the beginning of the optimization, the consistency is missing. Furthermore, SVRs
are deterministic, thus create a single output with no option to create probability distributions.
Finally, the discussed literature with SVR do not include the feature selection step. This could
mean that feature selection decreases the performance, or it increases time with no significant
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increase in performance. However, ANNs and SVRs do not differ in every aspect. According
to Sansom et al. [47] the performance of an ANN and an SVR are comparable. Moreover, the
same features that are extracted for a forecast with an ANN could be used for SVRs too.

Instead of seven days ahead electricity price forecasting [47] or one year ahead load forecast-
ing [23], this study will predict the day-ahead prices before, and very close to, market closure.
This will be between 12 and 48 hours ahead. In the imbalance market, however, electricity can
be bought and sold in real-time, resulting in very short term price predictions.

2.2.3. Random forests

As mentioned before, RF are less popular in forecasting electricity prices. However, a few
examples are given. Lahouar & Slama [36] forecast the electricity load for one day ahead with
RF, and Ludwig et al. [37] use RF in electricity price forecasting and investigate the influence
of external variables. Before these researches are described, a general definition of RF is given.
RF are described as the collection of (weak) decision trees consisting of independent random
vectors, where each decision tree has the same number of vectors to label the output [9]. A
final regression forecast is generated by averaging the outputs of the individual decision trees.
Note that in RF classification, the final forecast is given by the output that is selected most in
the individual decision trees. The advantage of RF over ANN and SVR is that they are able
to produce the same accuracy, without the need to tune hyperparameters [36]. That does not
mean that there is no optimization possible for RF. Two important hyperparameters that could
be optimized are the number of individual decision trees (n estimators), and the number of
features that are considered in splitting one node (max features) [36].

In the case of load forecasting [36], 24 different RF are constructed, one for every hour of
the next day. All forecasts are constructed 24 hours before the given hour on delivery day.
Unfortunately, this approach is only applicable on the first 12 hours of the Dutch day-ahead
market, since the last 12 hours need predictions 25 to 36 hours ahead. Furthermore, many
input variables are generated according electricity load, such as morning load peak at day D−1
or load of day D − 1 at hour h. That makes sense in the case of load forecasting, however,
less in the case of electricity price forecasting. Moreover, load forecasting is given by the TSO
in the Netherlands and could be used as input for the forecasting model [63]. One noticeable
model input is the month number, which has not been used in the papers described above. Due
to the ease of implementation, this input will also be used in this study. Another interesting
finding is that Lahouar & Slama [36] provide results that the RF outperform the ANN and
SVR in terms of prediction error. All models had fixed hyperparameters, where RF was set
with n estimators = 100 and max features = 2.5.

On the contrary of Lahouar & Slama, Ludwig et al. [37] have forecasted electricity prices. Two
RF methods are compared in this case. The first method uses RF without external input
variables. The second method, however, includes external input variables and performs feature
selection as a byproduct of RF. As expected, the RF with more input variables than only price
indicators outperform the RF model without external input variables. The disadvantage of
many variables, however, is that the computation times increases. Therefore, a trade-off between
computation time and forecast accuracy should be made. That also holds for the optimization
of hyperparameters. In the described article, the hyperparameters are not optimized and the
n estimators is set to 500, for both RF. Finally, Ludwig et al. suggest RF for feature selection
in other forecast approaches such as ANN and SVR.

This study distinguishes from related work in electricity price forecasting with RF by optim-
izing hyperparameters and by forecasting all prices from the Dutch electricity markets before
closure. The extensive hyperparameter optimization should lead to better performing models
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than previous work. Moreover, the larger forecast horizon is required to use the forecast in a
real-world trading strategy.

2.2.4. Gradient boosting

In addition to RF, GB is also a forecasting model that consists of multiple individual trees that
are combined into one final forecast. However, the process of constructing the individual trees is
different. While RF construct independent individual trees, the trees from GB are constructed
sequentially and depend on its preceding trees. Every tree that is added to the GB should
minimize the error of a fitting criterion [20]. The error of a fitting criterion for combining
individual trees, also called the loss function, can be measured with several algorithms. For
example, Taieb & Hyndman [55] have used the quadratic loss function, also known as the L2 or
least squares. Besides the loss function, there is another algorithm that selects the right objects
using a criteria function. This algorithm splits the nodes in individual trees according to a
certain criteria. One of these splitting criteria is the mean squared error, which is comparable
to L2. However, other algorithms are possible and could be optimized.

Taieb & Hyndman show that two other hyperparameters are also important to optimize:
learning rate and n estimators. learning rate defines the contribution of every individual
tree, whereas n estimators controls the number of individual trees. Therefore, these hyperpara-
meters are correlated and control the degree of fit together. These values are set to 0.5 and 500
for the learning rate and n estimators, respectively, in the paper of Taieb & Hyndman.

In contrast to Taieb & Hyndman, Agrawal et al. [2] have used a hybrid method with GB and SVR
to forecast day-ahead electricity prices, instead of a single GB approach. With hyperparameters
learning rate set to 0.09 and n estimators set to 800, their proposed model outperforms SVR,
recurrent ANN and RF. Another difference between the two papers is that Agrawal et al.
forecast the electricity price, while Taieb & Hyndman forecast the electricity load.

Both papers have different forecast horizons than this study. The electricity load forecasting [55],
for example, has a forecasting horizon of one hour ahead. Electricity price forecasting [2], on
the other hand, derives 168 forecast models to predict every hour of the following week. In a
comparison of used features, there are also notable differences. Taieb & Hyndman use a holiday
indicator, previous demand data and generated forecasts of previous hours. Notably, Agrawal
et al. use crude oil prices in addition to price and calendar indicators. Unfortunately, both
papers do not apply the constructed AI approaches in a real-world market setting, making it
difficult to assess their economic value. Therefore, this study makes a contribution by, among
others, applying the AI models into real-world electricity markets.

2.3. Battery Energy Storage Systems

The forecasts of the electricity prices from different markets will be used in a trading model.
Generally, it is not possible to buy electricity at one point in time and sell it a later moment in
time, in contrast to other commodities such as gold. This is due to the fact that the physical
transfer of electricity is obligatory when a PRP trades on the market [57]. Therefore, some
kind of electricity storage is required to have a trading mechanism that could sell the electricity
that is bought earlier. Many applications of electricity storage are investigated and developed.
A few examples are pumped hydro storage, thermal energy storage, compressed air energy
storage, and chemical storage such as lithium-ion batteries [27]. Due to their high energy
density, discharge/charge efficiency, and long lifetimes, lithium-ion batteries lend themselves to
applications in the electricity grid [13].

An example of such an application is given by Jiang & Powell [29]. They apply a BESS in

12



the near real-time electricity market from New York, where a bid is placed one hour before
closure. By using an approximate dynamic programming algorithm, they achieved results that
outperformed regularly used trading policy, such as peak and off-peak determination. With a
battery of 1 MW, a yearly arbitrage of more than $75k is feasible. However, taking into account
the investments costs of a 1 MW battery, the net profit is negligible. That is why Jiang & Powell
suggest that an arbitrage should only be exploited in select, high revenue months. Fortunately,
the BESSs used in this study are not only used for an arbitrage on electricity markets, which
results in lower initial investment costs and a higher profit. Moreover, the price of batteries
has dropped over the last five years and is expected to drop even further [25]. However, using
electricity from the BESS for other purposes also comes along with other challenges, such as
the amount of electricity available. Even though that is already a constraint in trading with
BESSs, external usage and production makes it more complicated. Another difference between
the research of Jiang & Powell and this study is that the forecasts for electricity prices is
achieved with AI, instead of dynamic programming. On top of that, both the day-ahead and
the imbalance market determine the buy or sell strategy, where the former one is forecasted
12-36 hours ahead and the latter real-time (≤ 15 minutes).

On the other end, Nizami et al. [43] propose a novel trading algorithm that sends excess energy
from a BESS to the grid, while external usage and supply reduce and increase the electricity
level, respectively. An optimal trading strategy takes into account several constraints when a
BESS is also used for consumption and production. A few examples are the depth of charge
(DoC), depth of discharge (DoD), number of charge/discharge cycles, and the impossibility
to charge and discharge at the same time. Their paper formulates the bidding strategy as a
non-linear programming problem that minimizes the cost of electricity. They consider that the
supply and demand rates are fixed and known at the time of bidding. As mentioned before,
both the day-ahead price and the imbalance price are not known before the bidding takes place.
Therefore, the actual cost reduction resulting from this study will likely be smaller due to the
forecasting error.
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3. Methodology

The methodology section describes what methods are used to retrieve the results and why those
methods are suitable. First, the methods of four AI approaches are explained, which also include
the input variables and target. The input variables differ per target, whereas the target has two
cases: the day-ahead price and the imbalance price. Then, the methodology section continues
with the explanation of several trading strategies.

3.1. AI forecasting principles

This subsection contains the methods of four AI principles, namely artificial neural network
(ANN), support vector regression (SVR), random forests (RF) and gradient boosting (GB).
All four methods are used to forecast the same targets with the same input variables. In
general, an AI approach is trained such that the input vector x maps to a function f(x), which
closely represents the target value y. The input vector x is given by all D hyperparameters as
(x1, ..., xD).

The first target discussed is the EPEX day-ahead price at time t, which is formulated as P tda.
To ensure that the AI approaches could be applied in a real-world setting, the input variables
x should be available at the previous day D− 1, before noon (t mod 24 < 12), to forecast all 24
hourly prices (t ∈ {0, 1, .., 22, 23}+24∗D) of P tda at day D. Due to the market closure, the price
of the previous day, same hour P t−24

da is only known for the first 12 hours. Therefore, the last 12
hours get the value 0 assigned. Other input variables are price indicators, date characteristics,
generation forecasts and weather forecasts. A complete overview of the input variables that are
used in the day-ahead forecast is given in Table 4.

Table 4: Overview of the input variables that are used to forecast the EPEX day-ahead market.

Description Definition Condition Unit Data
source

Price previous day same hour P t−24
da t mod 24 < 12 EUR/MWh -

Price two days ago same hour P t−48
da - EUR/MWh -

Price previous week same hour P t−168
da - EUR/MWh -

Day of week tweek - {0, 1, . . . , 5, 6} -

Is workday twork - {0, 1} -

Month number tmonth - {0, 1, . . . , 11, 12} -

Forecasted solar power psolar - MW [18]

Forecasted wind power pwind - MW [18]

Forecasted load pload - MW [18]

Forecasted temperature Tk - K [66]

Forecasted u wind speed vu,wind - m/s [66]

Forecasted v wind speed vv,wind - m/s [66]

Forecasted humidity H - % [66]

Forecasted cloud cover CC - % [66]

Forecasted solar radiation R - W/m2 [66]

The second target is the imbalance price for every PTU. As stated in Table 2, the selling price
could be different from the buying price in regulation state 2. However, SVR, RF and GB
are not able to forecast two targets. Since this only happens in one of four regulation states,
an average of these two prices will be the target of the forecasting models. The imbalance
price target is defined as Pimb. Since researchers state that all information before day-ahead
market closure is included in the day-ahead prices and not in the imbalance price [32], other
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Figure 4: Splitting of the total dataset into training, testing and validation using hold-out and
k-fold cross validation.

input variables and forecast horizon are required. These input variables are near real-time and
updated every minute. Hence, the imbalance price Pimb will be forecasted during the PTU itself
and accounts for the remaining minutes of the PTU. For example, when the first 5 minutes are
used for data collection and forecasting, the target is forecasted for the remaining 10 minutes.
The complete list of input variables is showed in Table 5. Eventually, the imbalance price is
equal for the first 5 minutes and the last 10 minutes, however, the first 5 minutes can not be
exploited with a trading strategy.

As discussed in Section 2, all AI principles have several hyperparameters that needs optimiz-
ation. In the selection of hyperparameters, one should be careful for over-fitting. Over-fitting
occurs when the selection of hyperparameters are performing too well on the training set, such
that the generalisation is lost and the model performs bad for other datasets. Therefore, the
total dataset is split into a training, validation, and a testing set. The results are based on the
testing set, whereas the hyperparameters are optimized in the training set and validated with
the validation set. The testing set is separated from the other data with the hold-out method,
while retaining the date order. That means that the samples in the training and validation set
take place before the samples in the testing set. The testing and validation set are split using
k-fold cross validation. In this method, the dataset is split into k equal sizes. One set is selected
for the validation, and the other k− 1 are used for training the AI model. This step is repeated
k times, where each set is used as the validation set once. The performance is then given by
the average of k runs. An overview of the splitting process of the total dataset into training,
validation and testing is given in Figure 4.

Since many hyperparameter configurations are possible for training, a selection should be made
to make it computationally acceptable. This selection is made using the random search al-
gorithm [7]. With random search, random configurations in the hyperparameter configuration
space are selected during model training and validated using k-fold cross validation as described
above. The advantage of random search above grid search is that it is more likely to find the
best performing hyperparameters when the same amount of hyperparameter configurations are
used [7]. However, the assumption that not all hyperparameters are equally important needs
to hold.

Most AI approaches rely on the fact that the input variables are normalized and distributed
around the mean. That is why all input variables are transformed using the following for-
mula

zti =
xti − µi
σi

(1)

15



Table 5: Overview of the input variables that are used to forecast the real-time imbalance
market. Ts in this case is the number of minutes from one PTU that is used to derive the input
variables.

Description Definition Unit Data
source

Upward IGCC volume
∑Ts

t=1 IGCC
t
up MW [59]

Downward IGCC volume
∑Ts

t=1 IGCC
t
down MW [59]

Upward regulating volume
∑Ts

t=1REG
t
up MW [59]

Downward regulating volume
∑Ts

t=1REG
t
down MW [59]

Upward reserve volume
∑Ts

t=1RES
t
up MW [59]

Downward reserve volume
∑Ts

t=1RES
t
down MW [59]

Emergency activation max(EMER1, . . . , EMERTs) {0, 1} [59]

Highest price upward max(P 1
up, . . . , P

Ts
up ) EUR [59]

Lowest price downward min(P 1
down, . . . , P

Ts
down) EUR [59]

Mid price Pmid EUR [59]

where xti is the i-th input variable at sample t, µi is the mean, and calculated with

µi =
1

T

T∑
t=1

xti (2)

with T , the number of samples. σi is the standard deviation, with

σi =

√√√√ 1

T

T∑
t=1

(xti − µi)2 (3)

Furthermore, not all input variables are equally important, and too many variables could de-
crease the accuracy in the testing set due to overfitting. However, this study does not emphasize
the input selection process. Therefore, only the inputs with the same values for every sample
will be removed from the input selection.

3.1.1. Artificial neural network

Section 2.2.1 explained that an ANN can have multiple shapes, based on their architecture.
This study focuses on the multi-layer perceptron (MLP), with N hidden layers and one target
output. The total number of layers M is then described as the number of hidden layers and the
target output. Formally, M = N + 1. An example of an ANN with one hidden layer and one
output node is given in Figure 3.

For every layer in the MLP, except for the input layer, the nodes have an activation a. For the
first layer, a in node j is formalised as

a1,j =
D∑
i=1

wj,ixi + wj,0 (4)

where wj,i is the weight between nodes j and i, xi is the input value, and wj,0 gives the bias.
Given the activation of a node, the output of the node is provided by activation function h

zm,j = h(am,j) (5)
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where m is the layer number. For every layer where m > 1, the output layer depends on the
output of the nodes from the previous layer, instead of the input nodes. In the example of
Figure 3, the activation of layer 2, which is also the activation of the output, is given by

a2,j =
D∑
i=1

wj,iz1,i + wj,m−1 (6)

Several activation functions are possible in an ANN. Two of the most popular are described
and used in this study. The first activation function is the hyperbolic tangent function and is
given by

tanh(am,j) =
ea − e−a

ea + e−a
(7)

The second activation function is the rectified linear unit function, which outputs zero if the
activation is smaller than zero and the activation itself otherwise. More formally

ReLu(am,j) =

{
0, if am,j ≤ 0

am,j , if am,j > 0
(8)

The goal of an ANN is minimizing the forecasting error on a given validation set. This is
achieved by assigning an optimal weight vector w to minimize the loss function. The loss
function is based on a stochastic gradient descent and in this case given by

L(w) =
K∑
k=1

{f(xk,w)− yk}2 (9)

where K is the number of samples in the validation set, f(x,w) is the activation function for
the output node, and y is the actual price. Since the loss function is computationally expensive
for large datasets, a stochastic gradient descent based optimizer is used, called Adam [31].
The pseudo-code of Adam is shown in Algorithm 1. Since the weights from the initial weights
vector are assigned randomly, a small difference in forecasting error is possible between several
runs.

3.1.2. Support vector regression

In addition to the ANN, SVR also construct its regression estimation by minimization. To
formalize the SVR, the simple linear case is taken as a starting reference. The linear form is
described as

f(x) = 〈x • w〉+ b, with w ∈ x (10)

where 〈x •w〉 denotes the dot product of x and w. The optimization is achieved by minimizing
〈w • w〉, while keeping the error below the allowed error ε

minimize 〈w • w〉

subject to

{
yt − 〈w • xt〉 − b ≤ ε
〈w • xt〉+ b− yt ≤ ε

(11)

With a fixed allowed error ε, there is assumed that all f(x, α) fall within this error margin.
Since that assumption does not always hold, two additive error margins are introduced, namely,
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Algorithm 1: Adam algorithm for stochastic gradient descent optimization, adapted from
Kingma & Ba [31]. All operations on vectors are element-wise. g2

t denotes the element
wise square gt � gt. β1 and β2 to the power of t is represented as βt1 and βt2, respectively.

Input : α: Penalty parameter
β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
L(w): Loss function with parameters w
w0: Initial weights vector
m0 ← 0: Initialize first moment vector
v0 ← 0: Initialize second moment vector
t← 0: Initialize timestamp

Output: optimized weight vector w
1 while wt not converged do
2 t← t+ 1 (set updated timestamp)
3 gt ← ∇0Lt(wt−1) (set updated slope of loss function)
4 mt ← β1 ·mt−1 + (1− β1) · gt (set updated bias first moment estimate)
5 vt ← β2 · vt−1 + (1− β2) · g2

t (set updated bias second moment estimate)
6 m̂t ← mt/(1− βt1) (set updated first moment estimate corrected for bias)
7 v̂t ← vt/(1− βt2) (set updated second moment estimate corrected for bias)
8 wt ← wt−1 − α · m̂t/(

√
v̂t + ε) (set updated parameters)

9 return wt (return optimized weight vector)

ξ and ξ∗. These error margins are not fixed and are optimized with penalty parameter C by
the SVR as follows

minimize 〈w • w〉+ C
T∑
t=1

(ξt + ξ∗t )

subject to


yt − 〈w • xt〉 − b ≤ ε+ ξt

〈w • xt〉+ b− yt ≤ ε+ ξ∗t
ξt, ξ

∗
t ≥ 0

(12)

This objective function with constraints can be rewritten as a Lagrange function, by introducing
Lagrange multiplier variables α, α∗, η, η∗

L :=〈w • w〉+ C
T∑
t=1

(ξt + ξ∗t ) +
T∑
t=1

(ηtξt + η∗t ξ
∗
t )

−
T∑
t=1

αt(ε+ ξt − yt + 〈w • xt〉+ b)

−
T∑
t=1

α∗t (ε+ ξ∗t + yt − 〈w • xt〉 − b)

(13)

Due to the constraints, substitution of the partial variables while optimizing, and Equation 13,
w can be rewritten as

w =
T∑
t=1

(at − a∗t )xt (14)

which could be substituted in Equation 10 as

f(x) =

T∑
t=1

(at − a∗t )〈xt • x〉+ b (15)
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Note that the SVR started with a linear expression. Especially AI approaches are able to handle
non-linearity. That is why the 〈xt • x〉 expression is transformed into a non-linear expression
using the kernel function. For non-linear SVR

〈xt • x〉 = k(xt,x) (16)

Fore a more in-depth constructing of the formulas, examine the research of Smola & Schölkopf [49].
In this study, two kernel function are applied in the SVR and described by Chang & Ling [12].
The first kernel is the radial basis function, also known as rbf, which takes the form

k(xt,x) = e−γ‖xt−x‖2 (17)

where γ is the kernel coefficient that could be optimized in the hyperparameter setting. The
second kernel function is the sigmoid kernel

k(xt,x) = tanh(γ〈xt • x〉+ r) (18)

where r is also a kernel coefficient that needs optimization.

3.1.3. Random forests

The following AI approach is a form of decision tree regression, namely RF regressor. First, the
decision tree regression methodology is explained. Given the example in Figure 5, every node
has a selection criteria based on input x. The top node, also called the root node, contains
all data points from the training set. Every decision node is split into two sub-nodes with a
splitting criteria on the input x. The splitting criteria in every decision node uses the impurity,
which in this study is set to the mean absolute error (MAE) and mean squared error (MSE).
More formally, the MAE in node n1 from Figure 5 is defined as

1

N1

N1∑
i=i

|yi − µ| (19)

and MSE as

1

N1

N1∑
i=i

(yi − µ)2 (20)

where N1 is the number of instances in node n1, yi is the value of an instance, and µ is given
by

1

N1

N1∑
i=i

yi (21)

The split is set to the variable and criteria that achieves the highest information gain, which is
defined as the impurity of the parent node minus the impurity of the child nodes. For Figure 5,
the information gain for the root node is stated as

I(D0)− (
N1

N0
I(D1) +

N2

N0
I(D2)) (22)

where I(D0) is the impurity function, given by MAE or MSE, for the dataset in the root node.
Eventually, all nodes are split using the information gain and the forecast is given by the average
of all instances in the leaf node.

RF on the other hand, is an extension of the decision tree regressor. Here, multiple decision trees
are built that all have their own forecast. The final forecast is then given by the average of all
individual decision trees. Therefore, the number of decision trees n estimators is an important
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Figure 5: Example of a random forests regressor with 2 individual decision trees, 5 nodes, one
root node, 2 decision nodes, and 3 leaf nodes per decision tree. The trees have a depth of 2.

hyperparameter. The difference in the individual tree construction is that each tree takes a
subset of the training set, leading to different splitting criteria and different trees. However, the
hyperparameter bootstrap could ensure that the whole dataset is used when constructing every
single decision tree. Then, the only difference in tree construction could be made by randomly
selecting features for a split when the maximum number of features max features is smaller
than the total number of features.

Normally, a decision tree adds new nodes until every leaf node only holds equal values. This
could lead to a large tree that is time consuming to construct and sensitive to overfitting.
Therefore, several stopping criteria are added in the RF regressor. Two example are the min-
imum number of samples that is required to split a decision node min samples split, and the
minimum number of samples that is required to be at a leaf node min samples leaf . These
hyperparameters are optimized in this study using the random search algorithm.

3.1.4. Gradient boosting

In addition to RF, GB also constructs its forecast using trees. However, instead of bagging,
where trees are constructed individually, GB uses boosting, where trees are dependent on their
predecessor. The approach starts with a weak individual tree that only contains a constant
value, called the base learner. The base learner is defined as

F0(x) = arg min
γ

n∑
i=1

L(yi, γ) (23)

where n is the number of samples in the training set, and L(yi, γ) is the loss function with yi as
the actual value and γ as the base learner forecast value. In this study, two loss functions are
used to get the best performing GB model. The loss function are the MAE and the MSE, given
by Equations 19 and 20, respectively. After the first base learner is defined, the algorithm adds
new decision trees until the maximum number of trees n estimators is achieved. For every tree,
Equations 24, 25 and 26 are executed. Given the forecast of predecessor trees, a new tree starts
with calculating pseudo-residuals, which are constructed from the partial derivative of the loss
function

rim = −
[
∂L(yi, Fm−1(xi))

∂Fm−1(xi)

]
for i = {1, . . . , n} (24)

where m is the index for the three that is constructed. After that, an individual decision tree
algorithm, such as the one given in Section 3.1.3, is trained to forecast the pseudo-residuals r.
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Note that this setup is different, since decision trees generally forecast the y-values. The trained
single tree contains Jm leaves, where each leaf node is addressed as Rjm with j ∈ {1, . . . , Jm}.
Then for each node j ∈ {1, . . . , Jm}, the forecast value is computed with

γjm = arg min
γ

Jm∑
xi∈Rij

L(yi, Fm−1(xi) + γ) (25)

When all γjm forecasts are calculated, the forecast of the m-th tree is given by

Fm(x) = Fm−1(x) + ν

Jm∑
j=1

{γjm if x ∈ Rjm} (26)

with learning rate ν as the contribution of a single tree in the total forecast. Finally, the GB
regression forecast is given by the n estimators-th tree following Equation 26.

3.1.5. Significance

Since the best performing AI approach will be used in the trading strategies, a significance test
is run to select the best performing forecaster on the imbalance market. A significance test is
only required for the imbalance markets due to the different Ts setups that are used. With a
changing Ts, the input variables, and therefore the datasets, changes. The post-hoc Nemenyi
test [16] is suitable for this comparison. First, the AI approaches get a rank assigned for each
dataset, which is based on their performance. In case of a tie, an average rank is given. This
procedure is based on the Friedman test [16]. Once the ranks are assigned, the critical distance
(CD) is calculated with the following equation

CD = qα

√
k(k + 1)

6N
(27)

where k is the number of models to compare, N is the number of datasets, i.e., number of
different Ts, and qα is based on the Studentized range statistic divided by

√
2 [16], which

depends on the significance level α. If two models differ at least the CD from each other, it is
safe to say that the models are significantly different.

3.2. Trading strategies

There are many trading strategies possible with a BESS. In this subsection, several are discussed
and formalized. The trading strategies are expressed in EUR, which refers to the energy bill
over a period of time, without taxes and subsidies. A negative outcome means that the user
should pay that amount to the energy supplier. It is assumed that the electricity consumption
minus the electricity production through solar, further referred to as net consumption Cn in
MWh, is known before the day-ahead market closure. Normally, there is a deviation between
the forecast and the actual net consumption. However, all trading strategies are constructed
with the same assumption, which makes the comparison adequate. Note that the assumption
is only required when the electricity is traded on the day-ahead market. That is why the the
trading strategies with a large share of imbalance trading are more accurate than the trading
strategies with a small share of imbalance trading. Another assumption is that the battery has
zero energy loss. Thus, the electricity that is sent that to battery can be fully reused in the
future.
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3.2.1. Baseline strategies

First, three baseline methods are given. The baseline method B1 is the electricity bill if
everything is bought from the day-ahead market, without the battery. More formally, the
first baseline method for one day is

B1 =
T∑
t=0

P tda · −Ctn (28)

where T is the last cumulative hour of the final trading day. The second baseline B2 is com-
parable to B1, however, the net consumption is calculated with the imbalance price Pimb

B2 =

T∑
t=1

P timb · −Ctn (29)

where T is 96, the number of PTUs in one day. Note that P timb is different from the imbalance
price that is forecasted, since P timb is different for buying and selling at regulation state 2. P timb
is therefore dependent on the buy or sell signal.

While the two baseline methods do not include the battery, the third baseline method and
the remaining trading strategies do include the battery. As such, the third baseline method
includes the battery without a reaction to market movements. The battery flow is given by the
optimization of self-consumption. If the net consumption is negative, i.e., the solar generation
is larger than the consumption, the electricity is stored in the battery as long as the maximum
capacity BTdoc is not achieved. The maximum electricity that could be transferred to the
battery until the maximum capacity is achieved is defined as

BTmax,c = BTdoc −BTsoc (30)

where BTsoc is the electricity that is stored in the battery. When the net consumption is
positive, i.e., the consumption is larger than the solar generation, the electricity is used from
the battery as long as the minimum capacity BTdod is not achieved. The maximum electricity
that could be transferred from the battery until the minimum capacity is achieved is then given
by

BTmax,d = BTsoc −BTdod (31)

Note that the battery also has a maximum power flow per PTU BTmax,p, which means that the
battery flow BT in B3 is formalized as

BT =

{
−min(−Cn, BTmax,c, BTmax,p), if Cn ≤ 0

min(Cn, BTmax,d, BTmax,p), if Cn > 0
(32)

where a negative BT means that the battery is charged, and conversely. Then the third baseline
method is given by

B3 =

T∑
t=0

P tda · (−Ctn +BT t) (33)

Since P tda is only defined for 24 values {0, . . . , 23} per day, the price set is enlarged to 96 values
{1, . . . , 96} by adding 3 values per single price. Those added prices are equal to the last known
day-ahead price, i.e., for t1 ∈ {1, 2, 3}, P t1da = P t=0

da .

22



3.2.2. State of the art strategies

Generally, all other trading strategies are formalized as

G =
∑
t1∈S1

P t1da · −C
t1
n +

∑
t2∈S2

P t2da ·BT
t2 +

∑
t3∈S3

P t3imb · −C
t3
n +

∑
t4∈S4

P t4imb ·BT
t4 (34)

where S1, S2, S3, S4 ∈ S and S is the set of PTUs in one day {1, . . . , 96}, S1 is the set of PTUs
to trade the net consumption on the day-ahead market, S2 is the set of PTUs to trade the
battery BT on the day-ahead market, S3 is the set of PTUs to trade the net consumption on
the imbalance market, S4 is the set of PTUs to trade the battery BT on the imbalance market,
with S1 +S3 = S, S1∩S3 = ∅, S2∩S4 = ∅. The trading strategies are then defined by selecting
the PTU sets S1, S2, S3, S4 and the battery electricity flow BT .

The first strategy G1 only considers the day-ahead market. The net consumption is settled
on the day-ahead market such as Equation 28. However, the difference is made by adding
the battery flow BT on the day-ahead market, where BT is dependent on the forecasted day-
ahead price Fda. The battery is charged if the forecasted day-ahead price for a certain PTU is
smaller or equal to Xc

da times the daily average of the forecasted day-ahead prices Fµda, where
0 < Xc

da < 1. The battery is discharged when the forecasted day-ahead price is larger or equal
to a threshold with Xd

da > 1. BT, S1, S2, S3, S4 are formalized for G1 as

BT =


−min(BTmax,c, BTmax,p), if Fda ≤ Xc

da · F
µ
da

min(BTmax,d, BTmax,p), if Fda ≥ Xd
da · F

µ
da

0, if Xc
da · F

µ
da < Fda < Xd

da · F
µ
da

S1 = S, S2 = S, S3 = ∅, S4 = ∅

(35)

The second state of the art strategy G2, also settles its consumption on the day-ahead market
such as G1. However, the battery flow BT is settled on the imbalance market instead. Since
the actual day-ahead price is known before the imbalance forecasting, the forecasted imbalance
price Fimb is compared to the day-ahead price. Another difference is that on the imbalance
market, a setup time is required to collect the information for forecasting. Therefore, the
BTmax,p should be compensated for the setup time. This is achieved by multiplying BTmax,p
with the compensation factor, which depends on the setup time in minutes Ts and the total
number of minutes in one PTU, 15. Furthermore, there is a three minute delay between the
occurrence and the publication of the input data. Therefore, three minutes are added to Ts in
order to calculate the battery flow for real-world scenarios. With the same constraints for Xc

imb

and Xd
imb as Xc

da and Xd
da, respectively, G2 is given by

BT =


−min(BTmax,c, BTmax,p · 15−(Ts+3)

15 ), if Fimb ≤ Xc
imb · Pda

min(BTmax,d, BTmax,p · 15−(Ts+3)
15 ), if Fimb ≥ Xd

imb · Pda
0, if Xc

imb · Pda < Fimb < Xd
imb · Pda

S1 = S, S2 = ∅, S3 = ∅, S4 = S

(36)

The final strategy, G3, is a combination of Equation 35 & 36. Here, the battery is charged
in the day-ahead market for the Xmin

da lowest forecasted day-ahead prices, and discharged for
the Xmax

da highest forecasted day-ahead prices. The set containing the PTUs with the Xmin
da

lowest prices will be further referred to as Sl, while the set with the Xmax
da highest prices will be

written as Sh. All residual hours are settled on the imbalance market. Formally, G3 is described
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by

BT =

{
BT from Eq. 35, if Fda ∈ Sl, Sh
BT from Eq. 36, if Fda /∈ Sl, Sh

S1 = S, S3 = ∅

S2 =

{
S, if Fda ∈ Sl, Sh
∅, if Fda /∈ Sl, Sh

, S4 =

{
∅, if Fda ∈ Sl, Sh
S, if Fda /∈ Sl, Sh

(37)

In addition to the profit in EUR that is used to measure the performance of a trading strategy,
the number of cycles in a battery NBT is also an important measure. This is due to the fact
that a battery does not have an unlimited lifespan. In general, the lifespan of the battery is
limited to a fixed number of cycles. The number of cycles is defined as follows

NBT =

∑
t2∈S2

|BT t2 |+
∑

t4∈S4
|BT t4 |

BTdoc −BTdod
(38)

Another interesting result is the profit of the trading machine divided by the number of cycles.
More formally,

YPN =
Profit

NBT
(39)

where profit is defined as the electricity costs of the trading strategy, minus the electricity costs
of B1. In conclusion, the performance of the trading strategy performance is defined as the profit
in EUR, the number of battery cycles and their ratio. The findings of the trading strategies
and AI approaches are shown in the following section.

3.3. Implementation within organizations

Given the forecasts and trading strategies from the previous subsections, a live implementation
within an organization is the next step. Logically, the best performing trading strategy is used
for implementation. However, a preference for ease of use and costs within an organization
could lead to another selection of strategy. For example, trading strategy G3 requires both the
input data of the day-ahead market and the imbalance market. This could lead to a connection
with multiple data providers who may charge fees for their data. Trading strategy G2 could
then be less expensive within the live implementation.

Nonetheless is the selection of the trading strategy a small step towards the live implementation
of the trading strategy within organizations. The main issue is to provide the battery a charge,
discharge or hold command within every PTU, such that the electricity is bought and sold at
the correct time. Commands are given to the battery by writing correct values in the registers
of the inverter. The values are sent to the inverter via a communication standard called modbus
serial. Modbus serial is based on the interaction between master and slave devices, where the
master device is reading and writing values from and to the slave device, respectively [26].
In this study, the inverter is the slave device and the master device is a smart energy meter
with an ability to connect to the internet. The master and slave devices are connected with
RS-485.

Since the energy meter is in control of the inverter, the energy meter should be controlled
remotely. This is achieved by custom software on the energy meter and a connection to an
internet of things (IoT) platform. The values from the inverter are then sent via the energy
meter to the platform using the message queue telemetry transport (MQTT) protocol. MQTT
is a publish-subscribe protocol, where updates from the energy meter are received by the IoT
platform instantaneously. The advantages of MQTT are low network overhead and low power
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Figure 6: Architecture and communication protocols of battery and devices setup for the
implementation of the trading strategy within an organization.

consumption [51]. Moreover, values that can be changed on the platform, i.e., actuators, are
also sent to the energy meter and change the value in inverter registers. In turn, values from the
platform can be controlled with any kind of application that allows an application programming
interface (API) and obeys the representational state transfer (REST) constraints. An overview
of these devices and their connections is shown in Figure 6.

With the physical architecture that allows the battery to be controlled remotely, another soft-
ware application is required to send signals to the battery. This application contains the con-
siderations from this study and converts it to a real-world application. Generally, the AI model
receives real-time input data and transforms it into a forecast, which is used in an advice for
the battery. Several steps are needed to apply this at a real-world battery. First, the input data
for the AI models should be collected regularly. Then, a forecast is made with the AI model
and transformed to an advice with the trading strategy. The frequency of an advice depends
on the market. For the day-ahead market, 24 forecasts with an advice are made once every
day. However, the advice is made every PTU for the imbalance market. An advice from the
market could not always be transformed into an action for the battery, due to the capacity of
the battery. Therefore, the application needs to check whether BTsoc is in range with BTdoc
and BTdod. If all constraints are met, the advice can be put into action. Organizations with
multiple batteries could separate this final step from the forecasting step. The pseudo code of
the written software application to steer the battery is given in Algorithm 2.

Algorithm 2: Pseudo code for the real-world implementation of the trading strategy.
The results from the next section are based on this pseudo code.

Input : t: frequency in minutes to run the algorithm
Output: battery steering that keeps responding to market signals

1 train AI model on selected historical data
2 for every t minutes until application is terminated do
3 get input data for imbalance market
4 get BTsoc and charging mode from battery
5 if BTsoc out of range or time of input data outside trading time then
6 stop with charging and discharging
7 continue to end of loop

8 if time of input data inside trading time and not traded in current PTU yet then
9 forecast imbalance price with AI model

10 get Pda
11 convert forecast to advice with trading model
12 set battery charging mode equal to advice
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The first step in the pseudo code uses a selection of historical data. This selection is important
for the performance of trading strategies within organizations. Moreover, the frequency in
which AI models are updated with new training data could also improve the performance of
trading strategies when the live implementation is used for a long time period. Selecting the
frequency to update the AI model with new training is out of range in this study, and also less
important due to the small window of live trading. Therefore, the training data is set for a fixed
time period without an update. However, it is important to take this into account when the
implementation is used for a longer time span. Two other notable rows in the pseudo code are
the if statements. The first if statement in the pseudo code ensures that the battery stops with
charging and discharging if the conditions for trading are not met. The second if statement in
the pseudo code ensures that the most time consuming steps are only executed when necessary.
This leads to a fast software application, even with high frequencies.
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4. Findings

This section presents the used data, the experimental setup, and the achieved results. Even
though Section 3 already discussed some data with their sources, this chapter expands the data
understanding with graphs and figures. Furthermore, the data cleaning steps are also considered.
The configurations for the AI approaches are shown in the experimental setup. This includes,
among others, the hyperparameter configuration space and the number of iterations to search
for the best performing hyperparameters. Finally, the results of several AI approaches, setup
configurations and trading strategies are given.

4.1. Data

The first target, EPEX day-ahead, is provided by Entsoe [18]. Although the day-ahead price
fluctuates over time, 2019 was a rather typical year for electricity prices. Therefore, the data
visualization of 2019 also represent other years. The distribution is given in Figure 7a. As can
be seen, the prices follow a right-skewed distribution. The imbalance prices, the second target,
is retrieved from TenneT [62]. These prices are also right-skewed, as can be seen in Figure 7b.
Table 6 shows the mean, median, minimum value and maximum value of both the day-ahead
market and the imbalance market. Notably, the mean of the two markets are close to each
other in 2019, while the minimum and maximum differ significantly. Furthermore, the median
shows that more than half of the values from the imbalance market are smaller than the mean
of the day-ahead market. However, the mean of the imbalance market is slightly higher than
the mean of the day-ahead market. This can be explained by the significant amount of values
above 100 EUR/MWh.
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(a) Distribution of EPEX day-ahead prices in 2019
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(b) Distribution of imbalance prices in 2019

Figure 7: Distribution of the EPEX day-ahead (a) and the imbalance market (b) for 2019.
The y-axis shows the probability that a price falls within that bin. Both distributions are
right-skewed, since the mean (orange line) is more to the right than the median (yellow line).
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Table 6: An overview of the statistics for the EPEX day-ahead market and imbalance market
in 2019. The AI approaches are trained on this dataset.

Statistical measure EPEX day-ahead Imbalance Unit

Mean 41.19 41.47 EUR/MWh

Median 39.7 31.66 EUR/MWh

Minimum -9.02 -487.65 EUR/MWh

Maximum 121.46 936.12 EUR/MWh
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Figure 8: The average price per PTU for the EPEX day-ahead market and the imbalance
market in 2019.

On average, the day-ahead and imbalance prices fluctuate during the day as shown in Figure 8.
The highest prices in the day-ahead market are achieved in the morning hours, between 7 AM
and 10 AM, and in the evening hours, between 6 PM and 9 PM. This could be explained by
the average working schedule of people. The imbalance market on the other hand, shows a
different pattern. While the imbalance prices fluctuate around the day-ahead prices, the price
often jumps from a large value to a small value and reversed after one PTU. Prices from the
previous PTU are therefore less valuable in the imbalance market than they would be in the
day-ahead market. Furthermore, the prices from the previous PTU can not be used in the
imbalance market, since they are not known by then.

Other pricing indicators that are available in the day-ahead forecasting are shown in Table 4.
The forecasted load pload, forecasted wind power pwind, and forecasted solar power psolar, are
retrieved from Entsoe [18]. pload is the total load per hour, forecasted by the TSO. The forecast
is submitted two hours before market closure. Only when a ≥ 10% change in forecast is realized,
the forecast is updated. pwind and psolar are the forecasted wind and solar power, respectively,
submitted by the TSO. While the pload is always known before closure, pwind and psolar are
sometimes only known after market closure. This is due to the latest submission time of 6
PM, six hours after market closure. However, the forecast is often submitted before market
closure. Furthermore, the intraday forecast, which is submitted fourteen hours after the day-
ahead forecast, is often equal to the day-ahead forecast. Therefore, it is safe to say that the
submission six hours after market closure closely represents the forecast that could be available
before market closure. Note that a live implementation requires another data provider that
submits the data before market closure. The forecasted wind is given for both offshore and
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inshore. In this model, pwind is defined as the sum of the offshore and inshore. In addition,
pload, pwind and psolar are forecasted for one PTU. Since the day-ahead price only differs per
hour, the quarterly values are summed into one hour. Finally, the few missing values for pload
and psolar are filled using time interpolation.

Other input variables include weather forecasts from the KNMI [33], which is the Dutch national
weather forecasting provider. These weather forecasts are made 48 hours before the occurrence.
An average is taken from 90,000 data points, representing all locations in the Netherlands and
the North Sea. The forecast is made every six hours. Since the day-ahead market is forecasted
for every hour, the missing hours of weather forecasts are set to the last known hour, e.g., for
t ∈ {1, 2, 3, 4, 5}, F t = F t=0.

The forecasting of imbalance prices uses other input variables than the day-ahead prices. An
overview is given by Table 5. Since the imbalance price is settled after the PTU is passed,
real-time information from other electricity markets could provide more insights to get a fore-
cast within the PTU itself. Four of these markets are discussed. The real-time information of
these markets has a three minute delay for processing and presentation, and contains data for
every minute. The first market, IGCC, states the amount of electricity power that is retrieved
from or send to external parties other than TenneT, with their upward or downward quantity
respectively. The regulating market shows the regulating capacity that is activated by the na-
tional load frequency control. Both upward and downward adjustments are presented. Thirdly,
there is the reserve market. There is always an amount of electricity available in the reserve
market. For this setting, the amount that is actually send to or taken from the grid is shown
in the reserve capacity. Finally, there is the emergency activation, which states whether the
emergency capacity is activated. This market is upwards only and used to prevent a power
shortage. In addition to the quantities in imbalance forecasting, the corresponding prices are
used too. The highest price upward is the highest bid price from the the above mentioned
markets excluding the IGCC, while the lowest price downward is the lowest bid price. The mid
price Pmid is explained by Table 2. Since the highest price upward and lowest price downward
could be empty in the dataset, they are filled with -10 and 125, the minimum and maximum
of the day-ahead price in 2019, respectively. Note that these prices should not be filled with
zero, since those prices could actually be zero. Therefore, a zero could provide false information.
Filling the prices with values that would be less achieved lead to a more accurate forecast.

4.2. Input variables analysis

This subsection analyses the input variables by finding autocorrelations on the target variable
and correlations between the input variables and the target variables. Before the autocorrela-
tions of the target variables are explained, an introduction to correlation is given. Correlation
defines the relation between two variables and is formalized as

ρ(X,Y ) =
cov(X,Y )

σXσY
(40)

with the standard deviation σ defined in Equation 3, and the covariance cov(X,Y ) as

cov(X,Y ) = E[(X − µX)(Y − µY )] (41)

where µ is defined as the mean with Equation 21 and E as the expected value, which is in this
case also defined as the mean. Then, the autocorrelation can be defined as

ACF (yt, yt+1) = ρ(yt, yt+1) (42)

Informally, the autocorrelation defines what the correlation is between the target and its lagged
values, e.g., the correlation between target y1 and target y3. The autocorrelation of the day-
ahead market is shown in Figure 9.
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Figure 9: The autocorrelation of the EPEX day-ahead market in 2019. The cone indicates the
95% confidence interval that the null hypothesis is true. If the data point at a certain lagged
hour falls outside the confidence interval, it is highly likely that there is a correlation.
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Figure 10: The autocorrelation of the imbalance market in 2019. The cone indicates the 95%
confidence interval that the null hypothesis is true. If the data point at a certain lagged hour
falls outside the confidence interval, it is highly likely that there is a correlation.

As can be seen, the correlation with lagged hour 0 is equal to 1. Since the lagged hour 0 is equal
to itself, the value 1 is according the definition of correlation. Furthermore, lagged hour 1, which
is 1 hour apart from the target variable, also has a high correlation with the target variable.
However, the previous day-ahead price is not known when the forecast should be submitted,
which makes that value inoperable. The first value with a high correlation that is known for
half of the target values is the price 24 hours before the target value occurs. That is why the 24
hours lag is included in the input variables for the target variables where this price is known.
In addition, the correlation on a daily basis is seen everyday, where two large correlations are
found at 48 hours and 168 hours, exactly 2 days and 1 week, respectively. Those two values are
included in the input variables too.

In contrast to the autocorrelation of the day-ahead market, the autocorrelation of the imbalance
market shows less temporal correlations, which is shown in Figure 10. The only interesting
correlations between the target variable and its lagged values is at the previous PTU, 4 PTUs
ago, and 96 PTUs ago. Likewise the day-ahead market, the previous imbalance price is not
known before the forecast of the imbalance price. Therefore, this variable is not used as an
input. Note that the confidence interval of the null hypothesis from the imbalance market is a
smaller area than from the day-ahead market. This is due to the number of observations, which
is four times as many in the imbalance market as the day-ahead market.

In addition to the autocorrelation, the input variables correlate with the target variable and the
other input variables. For the day-ahead target variable, the heatmap of the correlation is shown
in Figure 11. The first column indicates the correlation between the input variables and the
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Figure 11: The correlation heatmap of the input variables in respect to the EPEX day-ahead
market in 2019. The input variables follow the definitions from Table 4.

day-ahead price. As shown, the three lagging values, P−24
da , P−48

da , and P−168
da all have a strong

positive correlation. Note that for the correlation of P−24
da , only the hours 0 up to and including

11 are used to calculate the correlation. From the input variables that are not a pricing indicator
correlates the forecasted load pload the most with the day-ahead price. Another noteworthy
input variable is the forecasted temperature Tk. Their negative correlation indicates that an
increasing value of Tk, leads to a decreasing value of Pda. This is according to expectations,
since a higher temperature indicates more sun and more solar generation. Furthermore, the
marginal costs of solar panels are low, which leads to lower prices. The heatmap does not only
show the correlations between input variables and target variable, it also shows the correlation
between input variables. A remarkable correlation is found at the day of the week and the
value to indicate a workday or weekend day. This is not surprisingly, since they both provide
calendar information. Moreover, the forecasted weather input variables show relatively strong
correlations with each other too.

The features from the imbalance market also correlate to some extent with each other. However,
the features and their correlation depend on the variable Ts, which indicates the number of
minutes in one PTU that is used to derive the input variables. Even though the results will
reflect several values for Ts later on, the correlation heatmap is shown with Ts at 7. The full
correlation heatmap is shown in Figure 12. The two strongest positive correlations with the
imbalance target price can be found at the Pup and the Pdown. Interestingly, Pmid has a weak
correlation with the target variable, while the imbalance price is equal to Pmid in regulation
state 0. One explanation could be the relative low presence of regulation state 0 compared to the
other three regulation states. Another interesting strong correlation is found between the highest
price upward Pup, and the upward regulating volume REGup. That strong correlation could
also explain why they both strongly correlate with the imbalance price. The final correlation
discussed is the one between the lowest price downward Pdown and the downward regulating
volume Regdown. As expected, their strong negative correlation shows that an increasing volume
lowers the price.

4.3. Experimental setup

This subsection discusses the configurations of the methods explained in Section 3. This holds
for both the AI approaches and the trading strategies. First, the AI setup is explained.
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Figure 12: The correlation heatmap of the input variables in respect to the imbalance market
in 2019. The input variables follow the definitions from Table 5. The number of minutes to
derive the features Ts is set to 7.

4.3.1. AI approaches

Given the four AI approaches from Section 3.1, the hyperparameters require optimization. In
this study, the number of iterations for random search to select the best performing hyper-
parameters from the hyperparameter configuration space is set to 100. The random search
algorithm uses a random state of 0, to ensure reproducibility. This also holds for the three AI
approaches that use randomization. ANN, RF, GB all have their random state set to 1. Within
one iteration of random search, the dataset is split and validated using 5-fold cross validation.
All AI approaches are constructed and trained using the Python library Scikit-learn [44]. The
hyperparameter configuration spaces for the approaches can be found in Appendix A. Note that
the terminology differs from the variables in Section 3. That is due to the terminology used by
Scikit-learn.

As stated in Section 3, a hold-out method is used to split the training from the testing set. In
this study, the AI models in the forecasting of the day-ahead prices are trained with the full
year 2019, while the imbalance pricing models are trained on the last three months of 2019.
Since there are four times as many imbalance prices as day-ahead prices, the dataset for training
is equally sized. All results are based upon the full year 2020. Then, the best performing AI
model from the results in 2020 is used in the trading models. Another decision that affects the
results and the trading performance is the setup minutes of the imbalance market Ts. Since
there is also a three minute delay between the occurrence and the publication, small numbers
of Ts are required to be able to trade with the remaining minutes. Therefore, several setup
minutes are tested, with Ts ∈ [2, 3, 4, 5, 6, 7]. The number of datasets N to calculate the CD for
the significance test is therefore automatically set to 6. In addition, the significance level α is
set to 0.05. 100 Iterations of random search are run parallel on an Amazon AWS server with
32 vCPUs and 128 GiB memory.

4.3.2. Trading models

With the trading models from Section 3.2, several setups are possible. For this study, a single
use case is taken to calculate the profit in several configurations. The user data is received from
a real-world user with consumption and solar generation. Profits are based on 2020 without the
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Figure 13: Average daily consumption and generation of a real-world use case in 2020. The
generation comes from a 236 kWp solar installation.

leap day. In this year, the consumption was equal to 361912 kWh and there was a total solar
generation of 236695 kWh. The daily average of consumption and generation from 2020 can be
seen in Figure 13. The figure clearly shows the night and day cycle through the solar generation.
Moreover, the start of the working day also shows an increase in consumption. Therefore, this
use case represents an average business, such that the results also indicate profits for other
businesses.

The results are based upon an installation with one battery and one inverter. The battery has
a capacity of 15 kWh, a depth of charge BTdoc of 0.8 ∗ 15 = 12 kWh, and a depth of discharge
BTdod of 0.2 ∗ 15 = 3 kWh. The inverter has a power limitation of 10 kW, which is 2.5 kWh
per PTU. BTmax,p is therefore fixed to 2.5. At the start of the trading model, the state of
charge BTsoc is set to 7.5. In addition to the battery installation, Xc

da, X
d
da, X

c
imb, X

d
imb should

also be assigned. To see the effect of those variables, several values are researched and set
as follows: Xc

da, X
c
imb ∈ [1.01, 1.1, 1.2, 1.3, 1.4, 1.5] and Xd

da, X
d
imb ∈ [0.99, 0.9, 0.8, 0.7, 0.6, 0.5].

These variables affect both the profit and the number of battery cycles. Since the number of
battery cycles is important for the lifespan of the battery, that value is taken into account too.
Even though the strategy performs worse in terms of profit, a strategy could be assigned the
best if the number of cycles is significantly smaller. Finally, the number of highest and lowest
prices used in G3 are set to Xmax

da , Xmin
da ∈ [2, 3].

4.4. Results

This subsection shows the results of the four AI approaches and the performance of several
setups in the trading strategies. At the end, the outcome of two weeks live trading with a BESS
is given too. The results of the price forecasting are compared to some baselines and external
forecasters. Moreover, the trading strategy is compared to external suppliers, which provide
buy and sell signals.

4.4.1. AI approaches

The results of the AI approaches is split into the day-ahead price Pda forecasting and the
imbalance price Pimb forecasting. Both targets have two accuracy performance metrics, MAE
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Table 7: An overview of the performance with the AI approaches in the day-ahead market
compared to a baseline for 2020. The numbers in brackets indicate the achieved scores if the
model is applied on the training set.

AI approach MAE [training] MSE [training] Run time (s)

Baseline: P t−168
da 7.95 138.14 -

ANN 9.41 [3.99] 151.01 [28.65] 314

SVR 13.26 [0.79] 293.87 [0.70] 236

RF 9.21 [2.09] 151.93 [9.43] 1498

GB 8.85 [3.41] 143.65 [21.76] 41

Table 8: The best performing hyperparameters of GB on the day-ahead forecasts. These
hyperparameters are used in the trading strategies. The terminology is consistent with Scikit-
learn [44].

Hyperparameter Value

learning rate 0.15817811851184635
loss ′ls′

max leaf nodes 759
min samples leaf 18
n iter no change 16
tol 1e− 07
validation fraction 0.3620134054564678

and MSE, given by Equation 19 & 20, respectively. Informally, MAE measures the average
absolute difference between the forecasted value and the actual value. MSE on the other hand,
assigns an extra penalty for large differences in the forecast by squaring the error. Along with
the accuracy, the duration to find the optimal hyperparameters with 100 iterations of random
search is given too.

Day-ahead price forecasting An overview of the performance metrics for the forecasting of
day-ahead prices is found in Table 7. The baseline for model comparison is set to the day-ahead
price 168 hours before the forecasted day-ahead price. This value is known before the market
closure for all targets and has a strong correlation, which can be seen in Figure 11. Therefore,
P t−168
da is set as the baseline forecaster.

As shown in Table 7, the baseline forecaster performs best in terms of MAE and MSE. GB
on the other hand, is the best performing AI approach. While RF achieves the third place in
terms of MAE, ANN is performing slightly better with the MSE. Finally, SVR performs worst
for both the MAE and MSE. The differences in forecasters can also be seen in Figure 14. As
shown, the shape of all forecasters is often similar to the actual day-ahead price graph.

Furthermore, the run time statistics show some interesting findings too. The best performing
model, GB, is also the fastest model to find the optimal hyperparameters with random search.
RF on the other hand, is more than 35 times as slow as GB. Notably, that did not result in a
bad forecasting model. Due to its performance, GB will be used in the trading strategy. Here,
the used hyperparameters are set to the ones that perform best and are shown in Table 8.

Imbalance price forecasting An overview of the performance metrics for the forecasting of
imbalance prices is found in Table 9. Instead of P t−48

da , the baseline is set to the mid price
Pmid. According to the definition of Pmid, this value is known before the start of the PTU
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Figure 14: Forecasts of the day-ahead market for three days (Thursday, Friday, Saturday) in
June 2020. The blue line represents the actual day-head price. Furthermore, the baseline and
four AI approaches are shown.

and is used in one out of four regulation states as the actual imbalance price. Therefore, the
Pmid could be an indication of the imbalance price Pimb. Furthermore, two external forecasting
suppliers are added as a baseline to compare the results. The first external forecaster is called
Ibti. Ibti is a linear model, which requires seven minutes of setup time. The model is retrieved
from a subsidy project within Friday Energy [50]. The exact details on the linear model are
not publicly available yet. Another party in the project is EP. EP also forecasts the imbalance
market and made the results available. However, the results of EP reflect another date range,
namely, from 2021/03/24 up to and including 2021/05/31. Both the model type and Ts are
unknown for this model. However, multiple forecasts are made within one PTU, indicating
that multiple Ts are used too. An average is taken from the forecasts if multiple forecasts were
available in one PTU.

An example of how the forecasts fluctuate in one day can be seen in Figure 15. The results
show that every AI approach is performing better than the baseline Pmid with all setup times.
Moreover, there is a strong negative correlation between Ts and the performance metrics, i.e.,
an increasing Ts leads to better performing models. Furthermore, two AI approaches have at
least one Ts where they perform best in terms of MAE. For ANN this is at Ts = 4, 5, 6, and
for GB this is at Ts = 2, 3, 7. Even though SVR and RF do not perform best for any Ts in
terms of MAE, they are often close to the others. That is why the Nemenyi test from Figure 16
provides more insights on the best performing AI approach over multiple datasets. It can be
seen that ANN outperforms the other models and achieves the highest ranking in terms of MAE.
However, there is no significant difference between all AI approaches. Only ANN, RF, and GB
differ significantly from the baseline methodology. Interestingly, RF and GB get the same rank
on their performance, while RF is never the best performing AI approach.

On the contrary of MAE, MSE from Table 9 shows a more clear winner. In 5 out of 6 Ts
values, ANN is performing the best. However, Figure 17 also shows that the difference is not
significant compared to RF and GB. ANN is the only AI approach that is outperforming both
the baseline and the SVR with a significant difference. Another interesting finding is that the
best performing AI approach with Ts is not performing better than the model of Ibti in terms of
MAE. However, the AI approaches outperform the model of Ibti with the MSE. Furthermore,
most AI principles outperform EP when Ts is larger than 2. Finally, an increase in Ts often
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Table 9: An overview of the performance with the AI approaches in the imbalance market
compared to a baseline. The numbers in brackets indicate the achieved scores if the model is
applied on the training set.

AI approach Ts MAE [training] MSE [training] Run time (s)

Baseline: Pmid - 30.52 5792.41 -

Baseline: Ibti 7 14.28 2258.32 -

Baseline: EP - 24.97 3259.24 -

ANN 2 27.19 [20.49] 3382.70 [1577.51] 289
3 24.56 [17.69] 3183.50 [1274.56] 311
4 23.26 [16.64] 2844.62 [1159.73] 289
5 20.93 [14.33] 2611.22 [997.89] 302
6 19.38 [13.21] 2337.38 [890.23] 304
7 17.08 [11.59] 1982.65 [719.86] 286

SVR 2 27.11 [13.19] 4389.77 [1393.17] 6065
3 25.25 [12.66] 4275.88 [1290.95] 7253
4 23.47 [11.51] 3806.24 [1114.94] 7355
5 22.35 [10.32] 3528.91 [946.39] 7848
6 20.53 [9.17] 3224.24 [821.12] 8025
7 18.59 [7.94] 2901.32 [646.09] 8462

RF 2 26.79 [15.94] 3439.94 [1107.99] 1066
3 24.90 [14.61] 3188.63 [968.09] 1072
4 23.50 [13.37] 2911.87 [859.90] 1101
5 22.25 [12.02] 2691.01 [746.12] 1104
6 19.72 [11.03] 2362.59 [683.05] 1133
7 15.86 [7.04] 2019.17 [534.58] 1333

GB 2 26.45 [18.53] 3426.48 [1371.93] 12
3 24.53 [17.45] 3160.03 [1249.52] 13
4 24.05 [16.05] 2958.70 [1123.90] 14
5 22.74 [14.52] 2697 [930.49] 14
6 19.74 [13.39] 2363 [890.67] 15
7 15.72 [9.50] 2014.57 [704.11] 17
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(a) Forecasts of imbalance prices with Ts = 2
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(b) Forecasts of imbalance prices with Ts = 3
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(c) Forecasts of imbalance prices with Ts = 4

00:00
Jun 4, 2020

03:00 06:00 09:00 12:00 15:00 18:00 21:00

−100

0

100

200

300

400 Models
Actual
Baseline
ANN
SVR
RF
GB
Ibti

Forecasts of imbalance prices for one day with four AI approaches and two baselines for T s  = 5

Time

Pr
ic

e 
(E

U
R
/M

W
h)

(d) Forecasts of imbalance prices with Ts = 5
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(e) Forecasts of imbalance prices with Ts = 6
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(f) Forecasts of imbalance prices with Ts = 7

Figure 15: Forecasts of the imbalance prices for one day in June 2020. The blue line represents
the actual day-head price. Furthermore, the two baselines and four AI approaches are shown.
Each graph differs in the number of setup minutes Ts.
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Figure 16: A ranking of the AI approaches in terms of MAE for the different Ts values in the
imbalance market. The best performing AI approach achieves the lowest and rank and is the
rightmost value. A Nemenyi test determines the significant performance differences between
several models, i.e., if they are at least the critical distance (CD) apart.
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Figure 17: A ranking of the AI approaches in terms of MSE for the different Ts values in the
imbalance market. The best performing AI approach achieves the lowest and rank and is the
rightmost value. A Nemenyi test determines the significant performance differences between
several models, i.e., if they are at least the critical distance (CD) apart.

Table 10: The best performing hyperparameters of ANN on the imbalance price forecasting.
These hyperparameters are used in the trading strategies. The terminology is consistent with
Scikit-learn [44].

Hyperparameter Value

activation ′relu′

alpha 0.09755215294813809
early stopping True
hidden layer sizes (32, 32, 32)
learning rate init 0.005955870684082486
n iter no change 32
solver ′adam′

tol 0.0001
validation fraction 0.1

leads to an increase in run time too. Except for ANN, there is no clear correlation between Ts
and the run time.

Since ANN is the best performing AI approach, albeit insignificant, that model is used in the
trading strategies. The best performing hyperparameters that have been found with randomized
search at Ts = 5 are shown in Table 10.

4.4.2. Trading strategies

Given the best forecasts for 2020 with GB in the day-ahead market and ANN in the imbalance
market, the trading strategies from Section 3.2 are run with several setups. All trading results
are shown in Appendix B. First, the results from the trading strategies are analyzed with
Figure 18, which shows an overview of the influence of the parameters with the profit and
YPN . Strategy G2 earns the highest profit, followed by G3 and G1, respectively. However,
the differences in strategies in respect to YPN is less clear. The highest YPN is seen at G3.
However, many G3 trading strategies also perform worse in terms of YPN than G2. Since G3

has more data points, these two trading strategies are hard to distinguish in terms of YPN . A
much clearer difference is visible at the influence of Ts on the profit. It seems that there is an
optimum at Ts = 4. At Ts = 2 and Ts = 3, the profit could be increased by adding one minute
to Ts. At Ts = 4, there is a turning point, where an increase of Ts would lead to lower profits.
That turning point is not visible for the correlation between Ts and YPN . A higher Ts leads
to higher YPN too. An interesting finding can be seen by comparing Figure 18e & 18f, and by
comparing Figure 18g & 18h. While the profit increases with a higher Xc

da or Xc
imb, the YPN

decreases. Finally, small Xmax
da values lead to both higher profits and better performance in

terms of YPN , although the outperformance in YPN is less clear.
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Figure 18: Plots of several inputs in the trading strategies and the results (profit or YPN ).
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Table 11: An overview of the best performing trading strategies, which is a shorter version of
Appendix B. The profit is calculated by subtracting the electricity costs of the strategy from
the electricity costs of base line B1. The numbers in brackets indicate the performance that
could be achieved if the forecast was equal to the actual value.

Strategy Ts Xc
da Xd

da Xc
imb Xd

imb Xmax
da Xmin

da

Electricity
costs
[perfect]

Profit
[perfect]

NBT

[perfect]
YPN

[perfect]

B1 - - - - - - - -5672.04 - -

B2 - - - - - - - -7648.67 -1976.63 - -

B3 - - - - - - - -5661.07 10.97 790 0.014

G1 - 0.99 1.01 - - - -
-5655.37
[-5627.84]

16.67
[44.2]

1350
[1398]

0.012
[0.032]

G2 4 - - 0.99 1.01 - -
-5021.67
[-4837.58]

650.37
[834.46]

2820
[2247]

0.231
[0.371]

G2 2 - - 0.99 1.01 - -
-5035.95
[-4673.74]

636.09
[998.3]

3449
[2671]

0.184
[0.374]

G3 7 0.5 1.5 0.5 1.5 3 3
-5326.94
[-5389.63]

345.1
[282.41]

653
[575]

0.528
[0.491]

G2 5 - - 0.6 1.4 - -
-5151.05
[-4966.65]

520.99
[705.39]

1347
[1139]

0.387
[0.619]

G3 4 0.7 1.3 0.7 1.3 2 2
-5142.98
[-5126.1]

529.06
[545.94]

1677
[1443]

0.316
[0.378]

Secondly, the trading strategies are analyzed on an individual level, where the highlighted
strategies in this paragraph are also shown in Table 11. The highest profit of 650 EUR is
achieved with G2, using the settings Ts = 4, Xc

imb = 0.99, Xd
imb = 1.01. However, NBT is high

as well, leading to a relative low YPN . Compared to the highest profit with perfect forecasts of
998 EUR, the AI approaches are able to take 65% of the profit. G3 with Ts = 7, Xc

da, X
c
imb =

0.5, Xd
da, X

d
imb = 1.5, Xmax

da , Xmin
da = 3 performs best in terms of YPN . Here, the profit and

battery cycles ratio is equal to 0.528. Interestingly, the profit that is achieved with that trading
strategy and setup is higher than the perfect profit that would be achieved with the actual
imbalance and day-ahead prices. That also led to a higher NBT than the perfect setup would
achieve.

While YPN could be the only parameter for the optimization of the trading model, the battery
should also be paid back in an acceptable period of time. Therefore, the minimal amount
of profit is set to 500 EUR for selecting the final trading model. Then, the model with the
highest YPN is used in live trading. Using this criteria, the best performing trading model is
G2 with Ts = 5, Xc

imb = 0.6, Xd
imb = 1.4. For trading strategy G3, the same criteria leads to a

setup of Ts = 4, Xc
da, X

c
imb = 0.7, Xd

da, X
d
imb = 1.3, Xmax

da , Xmin
da = 3. This setup is mentioned

too, because the best performing setup for all three general trading strategies are compared in
Figure 19. The settings for G1 are selected on NBT , shown in Figure 19, which should be close
to the selected G2 and G3. That led to the trading strategy G1 with Xc

da. = 0.99, Xd
da = 1.01.

G2 and G3 have a similar cumulative profit curve, which is close to a linear line. As already
seen in Table 11, G3 achieves a slightly higher profit than G2. Note that NBT and YPN are
both higher in this case, leading to a worse performing strategy.

4.4.3. Live trading

Since the best performing trading strategy only trades on the imbalance market, organizations
do not have a trade off between implementation costs and profit. However, other selections
still remain, which are based on the software application provided in Algorithm 2. First of all,
the time window to train the model is set from 2021/01/01 to 2021/06/01 for the real-world
scenario. Secondly, the frequency in which BTsoc is checked and the input data is collected is
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Figure 19: A graph representing the cumulative profit of three general trading strategies. The
input variables are discussed in Section 4.4.2.

Table 12: A performance overview of the live trading strategy. Two separate weeks are tested
and shown. The number in brackets at the profit column indicates the profit that would have
been achieved if the profit from the given period is achieved a full year.

Strategy Ts Xc
imb Xd

imb Date from Date to
number
of days

MAE MSE
Profit
[year]

NBT

[year]
YPN

G2 5 0.6 1.4
2021/07/26
17:00

2021/07/30
23:45

4.3 48.81 6068.99
9.63
[817.76]

15.2
[1292]

0.633

G2 5 0.6 1.4
2021/08/25
17:15

2021/09/01
17:00

7.0 40.23 11781.30
13.87
[723.22]

12.6
[656]

1.10

equal to one minute. Thirdly, two data providers are selected due to their free of charge real-
time data [59, 18]. Finally, the requirements for the architecture from Figure 6 and Algorithm 2
led to Amazon’s web services (AWS) as the web server to host the software application.

An overview of live trading results is shown in Table 12. In both weeks, the performances in
terms of MAE and MSE are worse than the performances at the imbalance forecasting with the
testing set, shown in Table 9. However, the trading results in terms of profit and YPN show
opposite performances. Here, the profit that would have been achieved in one year is increased
with 1.5 and 1.4 times in the first and second week, respectively. Moreover, YPN is increased
with 1.6 and 2.8 times in the first and second week, respectively. Figure 20 shows how the
performance statistics are achieved. The bottom two figures show the energy prices from the
imbalance and day-ahead market over time. As can be seen here, the forecasted imbalance price
is often in line with the actual prices. However, the forecast predicts an average of the feed
and consume price. In some rare cases, the consume price differs significantly from the feed
price. Other findings are the extreme negative prices in the first week, while the second week
shows more extreme positive prices. The top two figures show the reaction of the battery to the
market signals, by charging and discharging, as shown with the red line. BTsoc is in this case
expressed in percentage. The cumulative profit is also shown in this graph with the blue line.
In both weeks, the profit increases steadily over time, with few drops. This is in line with the
findings from Figure 19, where the cumulative profit for one year of trading is shown. Figure 20
also shows that BTsoc movements almost always lead to an increase in profit.
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Figure 20: Four graphs that represent several statistics of two weeks live trading in a real-
world setting. The left two graphs reflect 5 days of real-world trading, while the right two graph
reflect a full week.

5. Discussion

This section continues with the meaning of the results from the previous section. Several findings
were given for the AI approaches in two markets, the results of the static trading model and
the results of the live trading model. Here, an analysis of these results is given.

5.1. AI approaches

Notably, all AI approaches perform worse in forecasting the day-ahead market price compared
to the baseline, while the shape of the forecasting graphs is similar to the actual prices. One
explanation for the large forecasting errors is the pandemic called COVID-19. In 2020, COVID-
19 entered the Dutch borders and affected the economy. This led to a decrease in electricity
demand and a drop in electricity prices [24]. The average day-ahead prices in 2020 dropped
with 8.95 EUR/MWh compared to 2019. This is also visible in the average hourly prices in
2020 compared to 2019, shown in Figure 21. The two years show a visible shape. However, the
day-ahead prices in 2020 are significantly lower. That also explains why the baseline forecaster,
P t−168
da , performs better than the other models. The baseline method does not construct its

forecast on the higher prices from 2019.

Besides the lesser performance of the AI approaches due to differences in prices from 2019 and
2020, one AI approach is not performing well at all. The performances of the models on the
training sets show that SVR overfits its model to the 2019 dataset, such that is less applicable
on the dataset of 2020. Even 5-fold cross validation is not preventing overfitting in this setup.
Another interesting finding is the comparable performance of ANN and RF. While RF performs
better in terms of MAE, ANN performs better in terms of MSE. This indicates that the RF
is more often closer to the actual day-ahead price than the ANN. However, the ANN has less
often large errors in the forecast than the RF.

In accordance with day-ahead market forecasting, the SVR performs worst with imbalance
pricing in terms of both MAE and MSE. However, for imbalance pricing, the model shows
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Figure 21: A comparison of the average hourly EPEX day-ahead prices in 2019 and 2020.

Table 13: An overview of the statistics for the EPEX day-ahead market and imbalance market
in 2020. The prices of these two markets were forecasted with the AI approaches.

Statistical measure EPEX day-ahead Imbalance Unit

Mean 32.24 34.55 EUR/MWh

Median 31.67 21.98 EUR/MWh

Minimum -79.19 -561.17 EUR/MWh

Maximum 200.04 797.23 EUR/MWh

less sensitivity to overfitting. Furthermore, SVR has a larger run time in the forecasts of
the imbalance prices, while the other models are faster on the imbalance market. Since the
randomized search algorithm tried the same hyperparameters in both the day-ahead market
and the imbalance, it could not depend on a time expensive hyperparameter. Moreover, the
number of input variables in the day-ahead market is larger than in the imbalance market. That
could explain why all other AI approaches are faster. It seems that for SVR, the run time is
dependent on the values of the input variables. That could also explain the increasing run time
with a larger Ts for SVR, RF and GB.

Due to the larger price fluctuations in the imbalance market, the larger errors of the AI ap-
proaches in the imbalance market is in accordance with expectations. In addition, the imbalance
market in 2020 showed different characteristics than in 2019, which was also seen for the day-
ahead market. Table 13 shows that the average imbalance price in 2020 is smaller than the
average imbalance price in 2019, which is shown in Table 6. Furthermore, the minimum and
maximum are both smaller too. However, Figure 22 shows that the average price peak at certain
PTUs are larger.

Since the AI approaches in the imbalance market outperform the baseline with ease, these
models look more promising than the forecasts of the day-ahead, where the AI approaches do
not outperform the baseline. However, from Figure 14 can be seen that the trend of the day-
ahead market is forecasted accurately. This could be exploited in a trading strategy, even when
the errors are relatively high.
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Figure 22: A comparison of the average imbalance prices per PTU in 2019 and 2020.

5.2. Trading models

This subsection continues with highlighting several interesting findings from the trading results.
First of all, the results have shown that G2 is performing best in terms of profit and performs
equally good with G3 in terms of YPN . Therefore, G2 is assigned the best performing trading
model. That means that the imbalance market is more profitable than the day-ahead market.
Even the most promising hours from the day-ahead market could not lead to a better trading
model than a trading strategy which settles the electricity from the battery exclusively on the
imbalance market. That is interesting, since the electricity costs were higher in B2, where the
user electricity is settled on the imbalance market, than B1, where the user electricity is settled
on the day-ahead market. Furthermore, the forecasting errors in the imbalance market are larger
than in the day-ahead market. One explanation for the higher profits could therefore be that
the exact imbalance price is less important than a correct indication if the price will be at least
the threshold higher or lower than the day-ahead price. That could also explain the relatively
high profits compared to the profits made with perfect forecasts. Even though the MAE is half
the average imbalance price, the profits and YPN are often close to the theoretically achievable
profits and YPN with perfect forecasts. Another explanation for the better performance in the
imbalance market is the presence of extremely large and extremely small values in the imbalance
that could be exploited. These values are never seen in the day-ahead market.

A closer look at the strategies with imbalance trading also reveals that a wrong forecast could
lead to more profit and a higher YPN . An example that led to higher profit and YPN is
G3, with Ts = 7, Ccda, X

c
imb = 0.5, Xd

da, X
c
imb = 1.5, Xmax

da , Xmin
da = 3. This indicates that

the input selection of G3 were not the best, otherwise the perfect forecast should outperform
the forecasted model. Furthermore, small Xc

imb, and therefore large Xd
imb, led to large YPN .

However, investments should be earned back in a acceptable period of time. Therefore, the
absolute profit and YPN should both be considered to select the final trading strategy. In this
study, the best trading strategy achieved an annual profit of 521 EUR and an YPN of 0.387.
This was also shown in the cumulative profit curve from Figure 19. An interesting finding in
this profit curve is the increasing linear line. The linear line indicates that almost all decisions
to buy or sell electricity are correct. One explanation could be the threshold in the trading
strategy. For G2 to get a sell signal, the forecasted price must be at least 1.4 times the day-
ahead price. A buy signal is triggered if the forecasted price is smaller or equal to 0.6 times the
day-ahead price. Therefore, the threshold ensures that only the forecasts with large differences
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in respect to the day-ahead price are used to trade. The large difference could increase the
likelihood that at least the correct side of the day-ahead price is chosen, i.e., the imbalance
price is smaller than the day-ahead price on a buy signal and higher on a sell signal. This
would then still lead to a profitable trade, even though the threshold would not have been met
with the actual imbalance price. That also explains why the achieved profit is smaller than
the achievable profits with perfect forecasts. If the forecasts indicate a price that meets the
threshold even though the actual price would not meet the threshold, the battery is charged
or discharged with less favorable prices. The capacity of the battery is then already used and
that could lead to a scenario where the battery cannot be exploited in times when the threshold
would have been met.

5.3. Live trading

From the MAE and MSE in the live trading strategy compared to the static models can be
concluded that the AI model performs worse in live trading. One explanation could be the
difference in pricing during the training of the AI model and the prices in the live trading
period. In other words, the prices in the training set do not reflect the prices in the live
trading set. Another explanation is the extreme fluctuation in pricing during two weeks of live
trading. The distribution of imbalance prices, visible in Figure 7b, show that extreme values
which occurred during live trading were scarce in 2019. This could indicate that the imbalance
market is changing over time and extreme values are achieved more often. That also explains
the larger error in 2021 compared to 2020. A wrong forecast at extreme imbalance prices could
rapidly lead to a larger MAE and even larger MSE. This is in line with the profits that are
achieved in two weeks. More extreme values allow for a larger profit with the same amount of
trades. G2, which is used during live trading, could not even make the same profits with perfect
forecasts as the live trading weeks made. However, it is hard to draw final conclusions with two
weeks of live trading, whereas the static models are run for a year.

In contrast to static models, live trading results also reflect performances of the implementa-
tion within an organization. One finding during live trading was the mismatch between the
hypothetical power of the inverter and the actual power of the inverter. As such, the real-world
scenario often achieved a maximum charging power of 6 kW, instead of 10 kW that was used
in static models. Nonetheless, the real-world strategy performed well. One explanation is the
extreme prices described above. In that case, live trading would have performed even better
in terms of profit and YPN when the theoretically charging power of 10 kW was met. Another
explanation is that the prices are often low in consecutive PTUs. Missing charging power from
one PTU is then compensated in the next PTU. This scenario holds for week one, where BTsoc is
often close to BTdoc. However, week two shows that BTsoc is often close to BTdod, which means
that an improvement is possible if the battery is charged with more power. A second real-world
implementation issue that was discovered during live trading is a jump in BTsoc. This jump led
to a scenario where the battery discharged for at maximum one minute, before it was stopped
by the software application. An improvement in the software application that only stops the
battery from charging or discharging if BTsoc is above or below BTdoc and BTdod, respectively,
would lead to even higher profits. Whether YPN also would have increased in this scenario
is hard to say. However, the problem occurred during extreme high imbalance prices, which
could have ensured a larger value. One final difficulty that was encountered in this study is the
operability of the architecture given in Figure 6. Since the architecture depends on separate
devices and communication standards, it is highly likely that the communication flow will be
interrupted. In this study, the communication flow was interrupted at the IoT platform. Due
to a licensing problem, market signals from the software application did not reach the inverter.
Therefore, the results for live trading is based on a shorter time period than expected.
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Figure 23: A recommendation for a future organizational architecture that combines business
and IT by adding an information communication layer. The model is adapted from Maes [38]
and added with roles within the organization.

5.4. Future organizational structure

On top of the findings in terms of MAE, MSE, profit and YPN , a future organizational structure
to maintain the live trading system is also a result of this study. First of all, the maintenance of
the system concerns both information technology (IT) and business departments. From a high
level perspective, IT should maintain AI models, software application and IoT platform, while
business should focus on changing market environments and model selection criteria. The two
departments should together discuss what architecture is required for the best implementation.
From the experiences in this study, a suggestion is made for a future organizational structure
to implement and maintain the trading system.

As mentioned, business and IT should cooperate in the maintenance of the trading system. One
mentality that disturbs the cooperation between two departments is silo thinking. With silo
thinking, departments within organizations, e.g., business, IT and administration, are organized
into separate groups. Communication flows between those groups are hardly present. This often
leads to inefficient workarounds, undermining of other groups or even duplicate work [35]. Silos
often arise from the organizational structure in a company, where people within a department
only focus on their own job [35]. Silo thinking between business and IT can be broken down by
introducing a third department called information communication [38].

This third department connects the business aspects to the IT or technology aspects by struc-
turing the communication flow on three organizational levels: strategy, infrastructure and op-
erations. The framework that arises with the introduction of a information communication
column is shown in Figure 23. As can be seen, every junction between the organizational level
and department is filled with a role. These roles all have their own responsibility in maintaining
and developing the trading system, which is shown in Table 14.

In addition to the organizational structure with roles and responsibilities, a suggestion for the
mindset within the organization is also given. As discussed with the live trading results, fast
movements in market prices has been spotted in 2021. This indicates fast changing market
structures within the electricity segment. Moreover, new electricity markets are introduced
that require new technology and methods. Grid operators platform for congestion solutions
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Table 14: Overview of roles and responsibilities regarding the recommendation for a future
organizational structure.

Role Responsibility

CEO Determines the focus of optimization in the trading strategy. In this study,
a strategy was selected on the highest YPN , with a profit minimum. The
CEO determines future selection criteria.

CIO Communication between the CEO and CIO, and the architects from all
three departments. Desires of the CEO may not be technologically achiev-
able, which should be communicated clearly. Furthermore, new policies from
strategy level should be implemented in the structure level.

CTO Look forward to new technologies to implement the trading strategy more
effectively, efficiently and make future implementations possible.

Business architect Determines which markets could lead to high profits or any other selection
criteria that the CEO has set. This study only looked at two markets due
to market restrictions, while a future implementation with more batteries
could meet requirements from other markets too.

Information architect Communication between the business architect and the technical architect,
and the communication with operations. The electricity markets that are
selected by the business architect have a great influence on the technical
architecture. Moreover, the information architect is responsible for the us-
ability of the actual implemented trading system.

Technical architect Adjustments to the IT architecture that is shown in Figure 6 for this study.
Adjustments are desirable if that leads to more stable or faster trading sys-
tems. Moreover, new markets could require adjustments too.

Business monitor Checks whether the achieved results are in line with the expected results.
Explains the difference in theoretically achievable results and the actual
achieved results. An example in this study was given with the difference
in theoretically achievable inverter power and actual inverter power.

Functional support Handles the communication with the customer and between the business
monitor and IT support. Complaints or improvements from customers or
employees should be communicated with the architects.

IT support Actual implementation of the IT architecture. This consist of the software
and hardware to run the AI models and the software to steer the battery
externally.
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Table 15: Overview of roles and responsibilities for scrum. The responsibilities are adapted
from Abrahamsson et al. [1].

Role Responsibility

Product owner Final responsibility for the whole software development. Determines the prioritization of the
backlog. Keeping the development within budget.

Scrum master Bridge between product owner and scrum team. Removes obstacles for software develop-
ment, both within the team and due to external factors. Managing scrum framework.

Scrum team Deliver increments of functional software within a sprint. Define when an increment is
functional and finished. Keep track of progress and sprint planning.

is such a market that was first introduced in 2019 [58]. Therefore, a mindset that adapts to
changing environments and allows fast and efficient software development is desirable. This can
all be realized with agile, namely, one of the four main values from the manifesto is described as:
”Responding to change over following a plan” [19]. Another value that is applicable in this study
is the importance of working software. Instead of spending much time in documentation, time
is spent in getting a software product to work. This is beneficial for future implementations,
since fast changing electricity markets may only be profitable for a short period of time.

Several methods are available to implement agile, such as extreme programming, scrum and
crystal [1]. For this study, several requirements to the method could lead to better perform-
ances. First of all, the implementation of future requirements need a high level planning. Even
though fast changing markets could change the requirements in the near future, a planning that
covers the current requirements is helpful. The difference in requirements with more traditional
project management is that they come from all stakeholders, such as the customer, IT support
or architects. Secondly, planning variables such as resources, time frame and tools should be
determined regularly, instead of only at the beginning. Changing market environments may
require new hardware to implement software, or a requirement may take much time to imple-
ment. These requirements for a method are enclosed in scrum [1]. Planning and re-planning
is achieved with a backlog, where requirements are prioritized. Re-planning is possible due to
so-called sprints, a period of two to four weeks in which a functional increment is added to the
product. The advantage of these sprints is that a functional software could already be imple-
mented. Furthermore, if market conditions change, requirements are adjusted within one sprint.
Another advantage with scrum is testing. In each sprint, software is tested carefully before it
is defined as functional. This could prevent an error that stops the battery from discharging
which was encountered in this study by a jump in BTsoc.

Scrum also introduces new roles and responsibilities to software development. These include the
product owner, scrum master and scrum team. Optimally, the scrum team consists of employees
from multiple departments and layers. From the structure recommendation in Table 14, this
would be employees from the business monitor, functional support, IT support and three archi-
tects from business, information communication and technology. The scrum master could be
one person from the same six clusters as the scrum team. Finally, the product owner would be
one person from higher management. This could be the CIO, which has both knowledge of the
business and technology side. The responsibilities for the scrum roles is shown in Table 15.

One method to prioritize the requirements from the backlog is with MoSCoW, where each
requirements is labeled as must have, should have, could have or will not have this time [3]. For
must have requirements, the requirements must be implemented in the current sprint. Should
have requirements, however, should also be implemented in the final product but may be delayed
to a future sprint if there is no time left. Could have requirements are only implemented when
there is much time left and little effort is needed. Finally, will not have this time requirements
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will not be implemented in the current release of the final product. They are still added to
the backlog to let the stakeholders know that the requirement is taken into consideration. A
recommendation for a future planning with the scrum and MoSCoW methodology is given in
the conclusion, when future work is identified.
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6. Conclusion

Due to an increasing generation of renewable energy, a change in electricity provisioning is
required. One solution is a BESS, where locally generated solar energy is temporarily stored.
This leads to smaller peaks in the power grid and solves the mismatch between supply and
demand. However, the costs of a BESS are often high, which makes the investment less inter-
esting. Therefore, this study tried to find a trading model based on electricity price forecasting
with AI principles to increase the profit. In order to find that model, several questions were
defined.

First of all, two Dutch electricity markets were investigated. The most volume is traded on the
day-ahead market. In here, participants should submit their bids one day before delivery. The
bids and offers settle to a single price for every hour of the delivery day. Although the day-ahead
bidding limits the usage of real-time information, the market is suited for a trading strategy.
Especially since the price fluctuates often in one day, while adhering to a certain pattern. That
pattern was not shown in the imbalance market. In this market, real-time imbalance between
supply and demand is settled. The imbalance price reflects the imbalance of 15 minutes and
is determined afterwards. This market also showed potential for a trading strategy, due to its
large fluctuations and simple market access. Furthermore, the range of imbalance prices is large
compared to its mean.

Secondly, four AI principles were selected to apply in electricity price forecasting. Two of them,
ANN and SVR, were often seen in literature on electricity price forecasting. Interestingly, these
two models were only applied on the day-ahead price forecasting in several countries. The
imbalance market was never discussed. The comparison in this study is also made with two
more recent AI principles, namely, RF and GB. The difference between these four models is the
architecture and algorithms to forecast the electricity prices. All principles were trained with
supervised learning. However, ANN builds a network of nodes that are activated if a certain
threshold is met. SVR on the other hand, minimizes a non linear function while keeping below
a certain error margin. Both RF and GB build multiple decision trees, whereas RF takes an
average of the individual outcomes and GB builds the individual trees based on the predecessor
trees.

Thirdly, most related work do not optimize the hyperparameters of the AI principles extensively.
Some try a few different settings, while others only use fixed hyperparameters. This study
improves the AI principles with an extensive search of the best performing hyperparameters.
This is achieved by 100 iterations of random search in a comprehensive configuration space,
while using 5-fold cross validation to prevent overfitting. For the day-ahead market, this led
to an MAE of 8.85 and an MSE of 143.65 with GB; the best performing AI principle in the
day-ahead market. Unfortunately, the simple baseline forecaster outperformed all AI principles.
One explanation is the COVID-19 pandemic, which caused demand differences and price drops.
The imbalance price forecasting on the other hand, showed more promising results. All AI
principles outperform the simple baseline Pmid with ease in terms of both MAE and MSE, even
with a small Ts. ANN is the best performing AI approach over all Ts, although the differences
are insignificant. As expected, an increasing Ts leads to a decreasing forecasting error. The best
performing forecasting model in terms of MAE achieved a remarkable score of 15.72, while the
best performing model in terms of MSE achieved a score of 1982.65 at Ts = 7. Ibti, the other
baseline method, was only outperformed in terms of MSE. That indicates that Ibti is often close
to the actual values, except when large price fluctuations occur. EP on the other hand, is often
outperformed by the AI principles if Ts is larger than 2.

Fourthly, several trading strategies are tested and optimized in their parameters. These strategies
had three base scenarios. B1 and B2 did not include the battery and bought the net user
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consumption from the day-ahead and imbalance market, respectively. B3 settled the net con-
sumption on the day-ahead market, while using the battery for solar generated energy if the
production was larger than the consumption. From the baseline methods, B3 performed the
best, although the difference with B1 is small. The three general trading strategies included
the forecasts of the best performing AI principle. The strategies showed that the imbalance
market has the most potential for a trading strategy. That strategy, G2, has three parameters
that affect the profit and number of cycles, namely, Ts, X

c
imb, and Xd

imb. Ts shows an optimum
around Ts = 4 in profits, while the YPN keeps increasing with a larger Ts. Furthermore, while
an increasing Xc

imb leads to higher profits, the YPN decreases. Therefore, both outcomes need
to be considered when selecting the best performing parameters. The highest profit achieved in
one year is 650 EUR, using a 15 kWh battery with 10 kW power. Compared to a profit of 998
EUR when there are no errors in the forecasts, the forecasts are performing well in the trading
strategy. However, that trading strategy is not classified as best performing. That is due to the
large NBT and small YPN . Since the number of cycles is also important, the trading strategy
that is classified as best achieves a profit of 521 EUR and an YPN of 0.387.

Finally, the best performing trading strategy is implemented in an organization, which led to
the following results. Both MAE and MSE showed a decrease in performance in two weeks
of live trading. It is highly likely that the worse performance is achieved due to high fluctu-
ations in imbalance prices. Although the AI models performed worse, the profit and YPN have
increased. On average, the profit would have increased with a multiplier of 1.45 in one year,
compared to the best performing static model. Moreover, YPN has increased with a multiplier
of 2.2. Although the live implementation showed much potential and outperformed the static
models, a few problems were encountered. Firstly, the theoretically charging power was not
met. Secondly, a mismatch between actual and received values in combination with an error in
the software application led to missed profit. Thirdly, a software architecture that depends on
multiple parties showed instability, causing a shorter time period to run the live implementa-
tion. When these problems are mitigated, the live implementation could perform even better
and a conclusion can be drawn over a longer time span.

All in all, two AI principles showed much promising results in forecasting electricity prices,
namely, GB and ANN. Even though GB is less used by previous studies, its potential is dis-
covered. Furthermore, the AI principles achieve high profits on the imbalance market. A real-
world implementation also showed that the static models are applicable on real-time electricity
markets in combination with a BESS. Therefore, an arbitrage is possible on Dutch electricity
markets by trading energy from a BESS using price forecasts from GB.

6.1. Future work

Although the results look promising already, a few recommendations are given. First of all, the
input of the imbalance forecasting models could be expanded. Currently, the sum, maximum
or minimum price is taken from all Ts values, leading to omitted information. An improvement
could be the separation of the input variables for every Ts. For example, IGCCup would have
five values if Ts = 5. Furthermore, more markets can be added to the forecasting and trading
models. In this study, the day-ahead and the imbalance markets were researched, where the
battery can only be active in one market at a time. However, some markets allow for value
stacking, i.e., the battery is active in two or more markets, while the electricity from the battery
is used in at most one market. The Dutch frequency containment reserves (FCR) market is such
an example. Here, a compensation is given when electricity is offered, even if the electricity
is not consumed. However, a fine is received if the offer is activated and the supplier fails to
deliver the electricity. This could happen if the electricity is then used in another market or the
battery is empty due to other markets. Therefore, the forecasting model could change the target

51



Input 
expansion 
imbalance 
forecast 

Product backlog

Input expansion imbalance 
forecast 

Adding markets to trading
model

Adjusted inverter power

Threshold values 
expansion 

Separate forecast from 
individual battery steering

Notify on system failure

Apply on different inverter 
and battery setups 

Must have

Could have

Should have

Will not 
have have
This time

Notify on 
system failure

Adding 
markets to 

trading model

Adjusted 
inverter 
power

Separate 
forecast from 

individual 
battery 
steering

Threshold 
values 

expansion 

Apply on 
different 

inverter and 
battery setups 

1-2 sprints 4-5 sprints 2 sprints 2 sprints 1 sprints 4 sprints

High level planning
New

product 
delivery

Figure 24: Road map of future work with scrum and MoSCoW methodology. Scrum methods
allow deviation from the planning and is checked regularly due to incremental workflows.

to the activation of the FCR. Another recommendation can be made at the trading strategies.
In this study, the power of the battery to charge and discharge is fixed to 10kW. However, the
power is adjustable and could depend on the forecasted price. If the forecasted price exceeds the
threshold with a small amount, the power is set to a smaller level than in times the forecasted
price exceeds the threshold with ease. This could ensure that the battery is not at its maximum
or minimum capacity when extremely low or high prices occur, respectively. Furthermore, the
threshold values for the strategies could also be further investigated. Currently, both Xc and
Xd decrease and increase at the same time, respectively. The strategies may improve if these
values are not connected, i.e., one parameter is relatively far apart from value one, while the
other is not.

Improvements for live implementation within organizations are also possible. In this study, the
software application handles both the market signals with their forecasts and the interaction
with the battery. In a setup with multiple batteries, market signals and forecasts should be
separated from the battery interaction, since the former is only required once, while the latter
differs per battery. What architecture is needed for this setup could be researched further. This
architecture could also include an alarming system to notify the maintainer when the system is
down. Furthermore, the influence of difference between theoretically achievable power from the
inverter and the actual power could be researched more in-depth.

Besides the improvement for this research, it is important to take into account the threats as
well. One threat is a change in imbalance market prices, such that an arbitrage is less profitable.
The live implementation showed that the market changes over time. In 2021, this led to higher
profits. However, it is also possible that the market changes the other way around. Then, there
are less extreme prices and an arbitrage is less profitable. Another threat is the scalability of
this study. If the number of batteries is limited, the batteries do not contribute to the imbalance
price. However, the price could be influenced when many batteries participate. The effect of
scalability can be further researched.

Finally, a recommendation for a planning is given with the scrum and MoSCoW methodology,
based on the future work that could be done. The planning is given for a team of 6 people
with a sprint period of two weeks. At the end of a sprint, a functional increment should be
added. When a requirement is finished after a given number of sprints, it should be added to the
product. Both the sprint deliveries and the requirement deliveries should be tested thoroughly.
A planning recommendation is given in Figure 24.
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Appendix

A. Hyperparameter configuration spaces

Hyperparameter configuration space for 100 iterations of random search with ANN. The hyper-
parameters follow the definition from Scikit-learn [44].

hyperparameter lower bound upper bound default value log

alpha 1e− 7 1e− 1 1e− 4 true

learning rate init 1e− 4 0.5 1e− 3 true

hyperparameter value

n iter no change 32

validation fraction 0.1

tol 1e− 4

solver ′adam′

hyperparameter choices default

hidden layer sizes (16), (32), (64), (128),
(256), (16,16,16), (32,32,32),
(64,64,64), (128,128,128),
(256,256,256)

(32)

activation ′tanh′,′ relu′ ′tanh′

early stopping true, false true

Hyperparameter configuration space for 100 iterations of random search with SVR. The hyper-
parameters follow the definition from Scikit-learn [44].

hyperparameter lower bound upper bound default value log

C 0.03125 32768 1 true

epsilon 0.001 1 0.1 true

degree 2 5 3 true

gamma 3.0517578125e− 05 8 0.1 true

coef0 -1 1 0

tol 1e− 5 1e− 1 1e− 3 true

hyperparameter value

max iter -1

hyperparameter choices default

kernel ′rbf ′,′ sigmoid′ ′rbf ′

shrinking true, false true
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Hyperparameter configuration space for 100 iterations of random search with RF. The hyper-
parameters follow the definition from Scikit-learn [44].

hyperparameter lower bound upper bound default value

max features 0.1 1 1

min samples split 2 20 2

min samples leaf 1 20 1

hyperparameter value

min weight fraction leaf 0.

min impurity decrease 0.0

hyperparameter choices default

bootstrap true, false true

Hyperparameter configuration space for 100 iterations of random search with GB. The hyper-
parameters follow the definition from Scikit-learn [44].

hyperparameter lower bound upper bound default value log

learning rate 0.01 1 0.1 true

min samples leaf 1 200 20 true

max leaf nodes 3 2047 31 true

n iter no change 1 20 10

validationfraction 0.01 0.4 0.1

hyperparameter value

tol 1e− 7

hyperparameter choices default

loss ′ls′,′ lad′,′ huber′ ′ls′
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B. Trading results

An overview of the performances with the trading models using the forecast of the best perform-
ing AI approaches. The profit is calculated by subtracting the electricity costs of the strategy
from the electricity costs of base line B1. The numbers in brackets indicate the performance
that could be achieved if the forecast was equal to the actual value.

(a)

Strategy Ts Xc
da Xd

da Xc
imb Xd

imb Xmax
da Xmin

da

Electricity
costs
[perfect]

Profit
[perfect]

NBT

[perfect]
YPN

[perfect]

B1 - - - - - - - -5672.04 - -

B2 - - - - - - - -7648.67 -1976.63 - -

B3 - - - - - - - -5661.07 10.97 790 0.014

G1 - 0.99 1.01 - - - -
-5655.37
[-5627.84]

16.67
[44.2]

1350
[1398]

0.012
[0.032]

- 0.9 1.1 - - - -
-5632.19
[-5612.53]

39.85
[59.51]

756
[1106]

0.053
[0.054]

- 0.8 1.2 - - - -
-5643.09
[-5604.85]

28.95
[67.19]

308
[818]

0.094
[0.082]

- 0.7 1.3 - - - -
-5662.97
[-5617.51]

9.07
[54.53]

70
[510]

0.129
[0.107]

- 0.6 1.4 - - - -
-5670.36
[-5634.6]

1.68
[37.44]

6
[294]

0.258
[0.127]

- 0.5 1.5 - - - -
-5671.79
[-5649.28]

0.25
[22.76]

0
[168]

0.492
[0.135]

G2 2 - - 0.99 1.01 - -
-5035.95
[-4673.74]

636.09
[998.3]

3449
[2671]

0.184
[0.374]

- - 0.9 1.1 - -
-5045.57
[-4680.83]

626.47
[991.21]

3004
[2242]

0.209
[0.442]

- - 0.8 1.2 - -
-5077.45
[-4698.89]

594.59
[973.15]

2582
[1897]

0.23
[0.513]

- - 0.7 1.3 - -
-5120.49
[-4710.83]

551.55
[961.21]

2178
[1669]

0.253
[0.576]

- - 0.6 1.4 - -
-5169.75
[-4752.95]

502.29
[919.09]

1765
[1477]

0.285
[0.622]

- - 0.5 1.5 - -
-5221.15
[-4812.12]

450.89
[859.92]

1352
[1297]

0.333
[0.663]

3 - - 0.99 1.01 - -
-5040.55
[-4753.03]

631.49
[919.01]

3146
[2465]

0.201
[0.373]

- - 0.9 1.1 - -
-5060.49
[-4757.61]

611.55
[914.43]

2685
[2072]

0.228
[0.441]

- - 0.8 1.2 - -
-5076.28
[-4774.04]

595.76
[898]

2271
[1755]

0.262
[0.512]

- - 0.7 1.3 - -
-5103.45
[-4785.79]

568.59
[886.25]

1949
[1546]

0.292
[0.573]

- - 0.6 1.4 - -
-5124.4
[-4820.84]

547.64
[851.2]

1679
[1371]

0.326
[0.621]

- - 0.5 1.5 - -
-5151.61
[-4870.4]

520.43
[801.64]

1455
[1209]

0.358
[0.663]
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(b)

Strategy Ts Xc
da Xd

da Xc
imb Xd

imb Xmax
da Xmin

da

Electricity
costs
[perfect]

Profit
[perfect]

NBT

[perfect]
YPN

[perfect]

G2 4 - - 0.99 1.01 - -
-5021.67
[-4837.58]

650.37
[834.46]

2820
[2247]

0.231
[0.371]

- - 0.9 1.1 - -
-5041.16
[-4838.8]

630.88
[833.24]

2441
[1893]

0.258
[0.44]

- - 0.8 1.2 - -
-5062.72
[-4856.29]

609.32
[815.75]

2114
[1603]

0.288
[0.509]

- - 0.7 1.3 - -
-5080.86
[-4866.57]

591.18
[805.47]

1837
[1414]

0.322
[0.57]

- - 0.6 1.4 - -
-5109.19
[-4893.9]

562.85
[778.14]

1593
[1258]

0.353
[0.619]

- - 0.5 1.5 - -
-5148.23
[-4935.01]

523.81
[737.03]

1378
[1112]

0.38
[0.663]

5 - - 0.99 1.01 - -
-5081.59
[-4923.11]

590.45
[748.93]

2466
[2023]

0.239
[0.37]

- - 0.9 1.1 - -
-5091.28
[-4925.28]

580.76
[746.76]

2129
[1705]

0.273
[0.438]

- - 0.8 1.2 - -
-5107.14
[-4938.8]

564.9
[733.24]

1826
[1446]

0.309
[0.507]

- - 0.7 1.3 - -
-5126.68
[-4945.6]

545.36
[726.44]

1564
[1276]

0.349
[0.569]

- - 0.6 1.4 - -
-5151.05
[-4966.65]

520.99
[705.39]

1347
[1139]

0.387
[0.619]

- - 0.5 1.5 - -
-5178.13
[-5000.01]

493.91
[672.03]

1167
[1012]

0.423
[0.664]

6 - - 0.99 1.01 - -
-5123.22
[-5011.59]

548.82
[660.45]

2224
[1788]

0.247
[0.369]

- - 0.9 1.1 - -
-5134
[-5014.2]

538.04
[657.84]

1888
[1509]

0.285
[0.436]

- - 0.8 1.2 - -
-5147.66
[-5025.73]

524.38
[646.31]

1603
[1281]

0.327
[0.504]

- - 0.7 1.3 - -
-5164.7
[-5029.7]

507.34
[642.34]

1365
[1131]

0.372
[0.568]

- - 0.6 1.4 - -
-5185.95
[-5043.73]

486.09
[628.31]

1165
[1013]

0.417
[0.62]

- - 0.5 1.5 - -
-5212.55
[-5071.29]

459.49
[600.75]

999
[902]

0.46
[0.666]

7 - - 0.99 1.01 - -
-5167
[-5106.86]

505.04
[565.18]

1883
[1540]

0.268
[0.367]

- - 0.9 1.1 - -
-5176.41
[-5110.18]

495.63
[561.86]

1612
[1301]

0.307
[0.432]

- - 0.8 1.2 - -
-5192.1
[-5119.05]

479.94
[552.99]

1364
[1106]

0.352
[0.5]

- - 0.7 1.3 - -
-5206.67
[-5123.07]

465.37
[548.97]

1163
[975]

0.4
[0.563]

- - 0.6 1.4 - -
-5216.4
[-5131.26]

455.64
[540.78]

1005
[876]

0.454
[0.617]

- - 0.5 1.5 - -
-5235.84
[-5150.66]

436.2
[521.38]

857
[783]

0.509
[0.666]

G3 2 0.99 1.01 0.99 1.01 2 2
-5113.46
[-5014.46]

558.58
[657.58]

3584
[2962]

0.156
[0.222]

0.99 1.01 0.99 1.01 3 3
-5158.59
[-5141.51]

513.45
[530.53]

3400
[2671]

0.151
[0.199]

0.9 1.1 0.9 1.1 2 2
-5119.89
[-5018.52]

552.15
[653.52]

3133
[2419]

0.176
[0.27]

0.9 1.1 0.9 1.1 3 3
-5164.33
[-5143.72]

507.71
[528.32]

2960
[2149]

0.172
[0.246]

0.8 1.2 0.8 1.2 2 2
-5141.37
[-5028.33]

530.67
[643.71]

2546
[1970]

0.208
[0.327]

0.8 1.2 0.8 1.2 3 3
-5186.41
[-5144.93]

485.63
[527.11]

2371
[1731]

0.205
[0.304]
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(c)

Strategy Ts Xc
da Xd

da Xc
imb Xd

imb Xmax
da Xmin

da

Electricity
costs
[perfect]

Profit
[perfect]

NBT

[perfect]
YPN

[perfect]

G3 2 0.7 1.3 0.7 1.3 2 2
-5181.6
[-5033.8]

490.44
[638.24]

1983
[1600]

0.247
[0.399]

0.7 1.3 0.7 1.3 3 3
-5223.95
[-5150.22]

448.09
[521.82]

1826
[1372]

0.245
[0.38]

0.6 1.4 0.6 1.4 2 2
-5235.09
[-5058.75]

436.95
[613.29]

1540
[1280]

0.284
[0.479]

0.6 1.4 0.6 1.4 3 3
-5272.12
[-5163.87]

399.92
[508.17]

1413
[1089]

0.283
[0.467]

0.5 1.5 0.5 1.5 2 2
-5276.08
[-5103.02]

395.96
[569.02]

1165
[1003]

0.34
[0.567]

0.5 1.5 0.5 1.5 3 3
-5310.14
[-5197.03]

361.9
[475.01]

1062
[847]

0.341
[0.561]

3 0.99 1.01 0.99 1.01 2 2
-5094.55
[-5060.87]

577.49
[611.17]

3333
[2814]

0.173
[0.217]

0.99 1.01 0.99 1.01 3 3
-5149.08
[-5178.7]

522.96
[493.34]

3167
[2553]

0.165
[0.193]

0.9 1.1 0.9 1.1 2 2
-5105.52
[-5064.24]

566.52
[607.8]

2877
[2305]

0.197
[0.264]

0.9 1.1 0.9 1.1 3 3
-5161.14
[-5179.84]

510.9
[492.2]

2719
[2062]

0.188
[0.239]

0.8 1.2 0.8 1.2 2 2
-5124.94
[-5074.71]

547.1
[597.33]

2281
[1879]

0.24
[0.318]

0.8 1.2 0.8 1.2 3 3
-5178.19
[-5181.32]

493.85
[490.72]

2126
[1664]

0.232
[0.295]

0.7 1.3 0.7 1.3 2 2
-5160.48
[-5078.54]

511.56
[593.5]

1762
[1523]

0.29
[0.39]

0.7 1.3 0.7 1.3 3 3
-5212.92
[-5186.44]

459.12
[485.6]

1614
[1314]

0.284
[0.37]

0.6 1.4 0.6 1.4 2 2
-5194.79
[-5099.76]

477.25
[572.28]

1443
[1215]

0.331
[0.471]

0.6 1.4 0.6 1.4 3 3
-5234.69
[-5198.25]

437.35
[473.79]

1314
[1037]

0.333
[0.457]

0.5 1.5 0.5 1.5 2 2
-5219.82
[-5140.25]

452.22
[531.79]

1233
[947]

0.367
[0.562]

0.5 1.5 0.5 1.5 3 3
-5260.8
[-5228.17]

411.24
[443.87]

1122
[801]

0.367
[0.554]

4 0.99 1.01 0.99 1.01 2 2
-5069.81
[-5110.09]

602.23
[561.95]

3025
[2657]

0.199
[0.212]

0.99 1.01 0.99 1.01 3 3
-5124.34
[-5218.07]

547.7
[453.97]

2880
[2428]

0.19
[0.187]

0.9 1.1 0.9 1.1 2 2
-5080.68
[-5112.67]

591.36
[559.37]

2657
[2182]

0.223
[0.256]

0.9 1.1 0.9 1.1 3 3
-5135.52
[-5218.24]

536.52
[453.8]

2524
[1969]

0.213
[0.23]

0.8 1.2 0.8 1.2 2 2
-5108.93
[-5121.8]

563.11
[550.24]

2163
[1782]

0.26
[0.309]

0.8 1.2 0.8 1.2 3 3
-5161.82
[-5218.67]

510.22
[453.37]

2013
[1591]

0.253
[0.285]

0.7 1.3 0.7 1.3 2 2
-5142.98
[-5126.1]

529.06
[545.94]

1677
[1443]

0.316
[0.378]

0.7 1.3 0.7 1.3 3 3
-5191.96
[-5224.89]

480.08
[447.15]

1536
[1252]

0.313
[0.357]

0.6 1.4 0.6 1.4 2 2
-5180.08
[-5145.1]

491.96
[526.94]

1370
[1144]

0.359
[0.461]

0.6 1.4 0.6 1.4 3 3
-5221.32
[-5236.63]

450.72
[435.41]

1249
[979]

0.361
[0.445]

0.5 1.5 0.5 1.5 2 2
-5209.08
[-5180.34]

462.96
[491.7]

1166
[886]

0.397
[0.555]

0.5 1.5 0.5 1.5 3 3
-5249.6
[-5264.89]

422.44
[407.15]

1056
[750]

0.4
[0.543]
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(d)

Strategy Ts Xc
da Xd

da Xc
imb Xd

imb Xmax
da Xmin

da

Electricity
costs
[perfect]

Profit
[perfect]

NBT

[perfect]
YPN

[perfect]

G3 5 0.99 1.01 0.99 1.01 2 2
-5118.2
[-5159.24]

553.84
[512.8]

2746
[2495]

0.202
[0.205]

0.99 1.01 0.99 1.01 3 3
-5167.26
[-5257.67]

504.78
[414.37]

2633
[2301]

0.192
[0.18]

0.9 1.1 0.9 1.1 2 2
-5125.44
[-5161.74]

546.6
[510.3]

2405
[2055]

0.227
[0.248]

0.9 1.1 0.9 1.1 3 3
-5173.49
[-5256.41]

498.55
[415.63]

2296
[1874]

0.217
[0.222]

0.8 1.2 0.8 1.2 2 2
-5148.93
[-5170.61]

523.11
[501.43]

1926
[1681]

0.272
[0.298]

0.8 1.2 0.8 1.2 3 3
-5196.9
[-5257.7]

475.14
[414.34]

1797
[1516]

0.264
[0.273]

0.7 1.3 0.7 1.3 2 2
-5180.29
[-5175.02]

491.75
[497.02]

1445
[1360]

0.34
[0.366]

0.7 1.3 0.7 1.3 3 3
-5226.41
[-5264.64]

445.63
[407.4]

1317
[1188]

0.338
[0.343]

0.6 1.4 0.6 1.4 2 2
-5221.35
[-5193.69]

450.69
[478.35]

1159
[1068]

0.389
[0.448]

0.6 1.4 0.6 1.4 3 3
-5264.61
[-5277]

407.43
[395.04]

1050
[916]

0.388
[0.431]

0.5 1.5 0.5 1.5 2 2
-5240.98
[-5223.84]

431.06
[448.2]

984
[822]

0.438
[0.545]

0.5 1.5 0.5 1.5 3 3
-5282.02
[-5304.08]

390.02
[367.96]

893
[696]

0.437
[0.529]

6 0.99 1.01 0.99 1.01 2 2
-5146.47
[-5214.01]

525.57
[458.03]

2528
[2320]

0.208
[0.197]

0.99 1.01 0.99 1.01 3 3
-5193.88
[-5301.33]

478.16
[370.71]

2420
[2162]

0.198
[0.171]

0.9 1.1 0.9 1.1 2 2
-5156.28
[-5214.91]

515.76
[457.13]

2186
[1921]

0.236
[0.238]

0.9 1.1 0.9 1.1 3 3
-5200.11
[-5297.99]

471.93
[374.05]

2091
[1774]

0.226
[0.211]

0.8 1.2 0.8 1.2 2 2
-5173.99
[-5222.41]

498.05
[449.63]

1726
[1574]

0.288
[0.286]

0.8 1.2 0.8 1.2 3 3
-5217.49
[-5299.2]

454.55
[372.84]

1614
[1437]

0.282
[0.259]

0.7 1.3 0.7 1.3 2 2
-5207.83
[-5226.67]

464.21
[445.37]

1276
[1270]

0.364
[0.351]

0.7 1.3 0.7 1.3 3 3
-5252.24
[-5306.47]

419.8
[365.57]

1165
[1118]

0.36
[0.327]

0.6 1.4 0.6 1.4 2 2
-5247.33
[-5245.59]

424.71
[426.45]

1003
[985]

0.423
[0.433]

0.6 1.4 0.6 1.4 3 3
-5283.56
[-5320.22]

388.48
[351.82]

912
[849]

0.426
[0.415]

0.5 1.5 0.5 1.5 2 2
-5271.29
[-5272.14]

400.75
[399.9]

839
[752]

0.478
[0.532]

0.5 1.5 0.5 1.5 3 3
-5306.04
[-5345.68]

366
[326.36]

761
[637]

0.481
[0.512]

7 0.99 1.01 0.99 1.01 2 2
-5179
[-5270.91]

493.04
[401.13]

2249
[2137]

0.219
[0.188]

0.99 1.01 0.99 1.01 3 3
-5224.03
[-5347.11]

448.01
[324.93]

2169
[2018]

0.207
[0.161]

0.9 1.1 0.9 1.1 2 2
-5190.08
[-5269.71]

481.96
[402.33]

1957
[1780]

0.246
[0.226]

0.9 1.1 0.9 1.1 3 3
-5234.36
[-5342.52]

437.68
[329.52]

1888
[1667]

0.232
[0.198]

0.8 1.2 0.8 1.2 2 2
-5209.56
[-5275.87]

462.48
[396.17]

1535
[1462]

0.301
[0.271]

0.8 1.2 0.8 1.2 3 3
-5249.23
[-5343.01]

422.81
[329.03]

1443
[1350]

0.293
[0.244]
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(e)

Strategy Ts Xc
da Xd

da Xc
imb Xd

imb Xmax
da Xmin

da

Electricity
costs
[perfect]

Profit
[perfect]

NBT

[perfect]
YPN

[perfect]

G3 7 0.7 1.3 0.7 1.3 2 2
-5250.62
[-5281.39]

421.42
[390.65]

1107
[1174]

0.381
[0.333]

0.7 1.3 0.7 1.3 3 3
-5286.69
[-5350.32]

385.35
[321.72]

1014
[1041]

0.38
[0.309]

0.6 1.4 0.6 1.4 2 2
-5277.63
[-5299.89]

394.41
[372.15]

868
[898]

0.455
[0.414]

0.6 1.4 0.6 1.4 3 3
-5310.95
[-5365.15]

361.09
[306.89]

787
[776]

0.459
[0.396]

0.5 1.5 0.5 1.5 2 2
-5292.44
[-5324.79]

379.6
[347.25]

721
[676]

0.527
[0.513]

0.5 1.5 0.5 1.5 3 3
-5326.94
[-5389.63]

345.1
[282.41]

653
[575]

0.528
[0.491]
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