
Opleiding Informatica

Investigating Grammatical Evolution’s Ability to

Reconstruct Mathematical Functions

L.J. Schreurs (s1987747)

Supervisors:
Hao Wang

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl August 15, 2022

www.liacs.leidenuniv.nl


Acknowledgements

I want to thank my supervisor, dr. Hao Wang, for providing me with his guidance and
support during this year long process. Due to the outbreak of COVID-19, I had certainly lost
all energy to finish my thesis, but dr. Wang was incredibly patient. Our weekly sessions, in
which we discussed many topics throughout the year, were very helpful and made me gain a
lot more understanding for Grammatical Evolution.

I also want to extend my thanks to my family and friends for their support. They helped
me gain motivation to study, worked as my rubber ducky when I was stuck on a problem and
proofread my thesis. Special thanks to Elise, for the very much needed (mental) support, and
to Jan, who certainly gave me some very helpful advice for the final stretch of the project.

2



Abstract

Grammatical Evolution (GE) is a Genetic Programming technique, that evolves a popula-
tion of individuals, each with its own genotype. The genotype is evolved into a phenotype, the
expression of its genes, making use of a supplied context-free grammar to restrict the search
space and a genotype-to-phenotype mapping process using this grammar. The phenotype
is then evaluated on its performance. Although GE has been succesfully applied in various
scenarios, its performance of accurately learning the underlying expressions is not often
questioned. This thesis examines the ability of GE to accurately capture the original form, the
complexity, and the feasibility rate of the created expressions, using datasets for four different
problems from the BBOB set: the Ellipsoidal, Rastrigin, Rotated Ellipsoidal, and Weierstrass
problems. The results show that, using its current supplied parameters, GE is not capable of
accurately capturing the original form of the underlying expressions very well.
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1 Introduction

Evolutionary algorithms (EA) are a set of heuristic optimisation algorithms that use evolutionary
processes similar to those found in nature. After initialising an initial population, it will determine
the fitness of all individuals in a population, then apply operators such as crossover and mutation.
After the fitness is evaluated again, this process will keep repeating over a number of generations.
The objective of these algorithms is to find a solution that, although it may not be optimal, comes
close to the correct solution in a reasonable amount of time. The advantages of EAs include their
flexibility and the limited amount of time needed to find a satisfactory solution [1].

In this study we focus on an EA called Grammatical Evolution (GE) [2], a Genetic Programming
(GP) [3] approach. The GP approach, and subsequently GE, operates on the structure of programs
and functions. Where GE differs from GP is that it operates with the help of a supplied Context-free
Grammar (CFG) in Backus-Naur Form (BNF), which is used to map a genotype, e.g., a list of
integers, to a phenotype, a derivation tree. The fitness of the individual is decided by evaluating
this phenotype. We can use GE to evolve a program for solving a specific task.

1.1 Research Question

Despite the successful application of GE systems in various scenarios [4, 5], its performance of
accurately learning the underlying expressions is seldom questioned. Particularly, when solving
the well-known symbolic regression problems, we are interested in its capability of reconstructing
the target mathematical form of those problems. This thesis aims to answer this question using
a set of widely-applied numerical benchmarking functions, namely the Black-Box Optimization
Benchmarking (BBOB) problems [6]. In detail, we will investigate the following research questions:

RQ-1 Does the landscape (e.g., the contour lines) of the final expression from GE resemble
the one of the target on a global scale?

RQ-2 Can a GE system capture the ruggedness in a high multi-modal problem given a
limited number of points sampled thereon?

RQ-3 What is the complexity of the final solution produced by a GE system, e.g., the
maximal depths of expression trees?

RQ-4 Given no prior knowledge of the set of input variables taken by a target problem,
how likely is a GE system to identify the correct set of input variables?

1.2 Thesis overview

The subject of the thesis and the research questions are introduced in this section. Section 2 aims to
provide a bird’s-eye overview of GE and includes a short introduction on PonyGE2 [7], the software
used to perform the experiments. Section 3 discusses which problems were used for benchmarks,
the manner in which the dataset was generated, and the rationale behind the choices for the
evolutionary parameters. Section 4 contains the experimental setup and the experiments. Section 5
contains the results for the experiments. Finally, Section 6 draws conclusions on the performance of
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GE based on experiments results and discusses possible further research.

In addition to these sections, an Appendix has been added which includes a short list of acronyms
and terms used throughout the text, the parameters and grammar used in the experiments, and
the rest of the results for Section 5 as to reduce clutter.

2 Background

To gain a better understanding of the experiments that are carried out in Section 4, it is important
to have at least some knowledge of how Grammatical Evolution (GE) works. This section aims to
introduce GE from a high-level perspective. It also includes a short introduction to PonyGE2, an
implementation of GE.

2.1 Grammatical Evolution

Grammatical Evolution [2] is a grammar-based variation of Genetic Programming (GP) [3]. GE
can either make use of a Context-free Grammar (CFG) in Backus-Naur Form (BNF) form and a
genotype-to-phenotype mapping to generate solutions or operate directly on the derivation tree, like
in traditional GP. The grammar used in GE can be represented by the tuple {N, T, P, S}, where:

N is the set of non-terminals (e.g., ⟨exp⟩ and ⟨int⟩), which can be expanded into terminals or
non-terminals

T is the set of terminals (e.g., x or 0− 9), which cannot be expanded further

P is a set of production rules (see Figure 1)

S is the start symbol and also a member of N (⟨exp⟩ in the example grammar)

The genotype used to map a BNF grammar to a phenotype is a set of codons (c) in a linear
representation (e.g., a list of integers or binary values). The value of each codon is mapped to a
production rule (r) in a left-first order (pre-order traversal), although other types of mappers have
been explored as well [8]. Exchanging codons between two individuals somewhere in the genotype
can have a ’ripple effect’ [9, 10], due to all codons to the right of the ripple site having to be
reinterpreted. This change in the value of the codon can cause the mapping process to choose a
different production rule subtree to follow, changing the form of the derivation tree being generated.

The phenotype of an individual is expressed as a derivation tree. This phenotype is evaluated to
determine the fitness of an individual.

The mapping function used in the genotype-to-phenotype mapping process uses the modulus rule:

Rule = c % r

This rule states that the value of the codon (c) being read is divided by the number of rules in the
current production rule (r). The remainder of this division will then be the rule (Rule) chosen to
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⟨exp⟩ ::= ⟨exp⟩ + ⟨exp⟩
| ⟨exp⟩ - ⟨exp⟩
| ⟨exp⟩ * ⟨exp⟩
| ⟨exp⟩ / ⟨exp⟩
| ⟨int⟩
| ⟨var⟩

⟨int⟩ ::= 0 | . . . | 9

⟨var⟩ ::= x0 | . . . | xn

Figure 1: A simple BNF grammar.

be expanded further.

In the case of our simple grammar from Figure 1, there are 6 options r when considering the first
production rule (⟨exp⟩ ::= . . .). Taking a codon integer value of 7, the value of Rule will be 7 % 6

or a remainder of (1) (⟨exp⟩ − ⟨exp⟩). This process will be repeated until either the set maximum
depth or a terminal symbol in one of the branches of the derivation tree is reached. An example of
this mapping process can be found in Figure 2.

Just like in GP, it is possible to directly manipulate the derivation tree (see [7], p. 7 (Derivation
Tree Initialisation)). Direct manipulation of the derivation tree allows for more fine-tuned control
when building the tree, such as limiting the depth to which a tree can grow.

7 10 3 3 . . .

7 10 3 3 . . .

7 10 3 3 . . .

7 10 3 3 . . .

7 10 3 3 . . .

7 10 3 3 . . .

7

7 10

7 10 3

7 10 3 3

7 10 3 3 . . .

⟨exp⟩

⟨exp⟩ - ⟨exp⟩

⟨int⟩ - ⟨exp⟩

3 - ⟨exp⟩

3 - (⟨exp⟩ / ⟨exp⟩)

. . .

7 % 6 = 1

10 % 6 = 4

3 % 10 = 3

3 % 6 = 3

. . .

Figure 2: An example of the genotype-to-phenotype mapping using the example grammar. The genotype-to-phenotype
mapping process works in a preorder fashion.
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Grammatical Evolution uses processes similar to those found in nature to train a model. After
the initialisation process, a population of individuals will evolve over a set amount of generations,
according to evolution rules set in the parameters. These parameters determine not only how a
population is initialised, the size of the population, or the number of generations, but will also
determine the techniques used for selection, crossover and mutation during the evolution process.
More on the choices for the parameters can be found in Section 3.

2.2 PonyGE2

There exist multiple implementations of GE in different languages. The experiments in this paper
have been performed using PonyGE2 [7], an open-source Python-based implementation of GE.

PonyGE2 implements different options for the evolutionary operators commonly used in GE, such as
for initialisation, mutation and crossover. All of the options available can be found in the PonyGE2
wiki1.

PonyGE2 was chosen as our GE implementation of choice for its ease of use, in no small part due
to its extensive documentation, implementation language, and its ease of extensibility of the code.
This choice is supported by [11], who compared two different implementations of GE.

3 Methodology

When using Grammatical Evolution, it is important to take into account factors that can have
an effect on its performance during the evolution process and its ability to generate effective
solutions. These factors not only include hyper-parameters, such as the type of initialisation used
and evolutionary parameters, but also include the maximum depth the derivation tree is allowed to
reach and the structure of the grammar.

This section aims to explain these factors and how they have been taken into account during the
design of the experiments.

3.1 Benchmark problems

The datasets used in the experiments were generated based on four functions defined in the
Black-Box Optimisation Benchmarking (BBOB) Test Suite [6]:

Ellipsoidal (f2):
D∑
i=1

(106 i−1
D−1

x2
i ) + fopt

Rastrigin (f3): 10

(
D −

D∑
i=1

cos(2πxi)

)
+ ||x||2 + fopt

Rotated Ellipsoidal (f10):
D∑
i=1

(106 i−1
D−1

x2
i ) + fopt

1https://github.com/PonyGE/PonyGE2/wiki
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Weierstrass (f16): 10

(
1
D

D∑
i=1

11∑
k=0

1/2k cos(2π3k(xi + 1/2))− f0

)3

+ fopt

We chose these functions based on the following considerations:

(1) these functions are widely studied and well-understood in the optimisation community;

(2) the form of these multimodal functions poses a major learning challenge for GE, due to its
local fluctuations on their landscape.

In these functions, D represents the dimensionality of the function, xi represents one of the input
variable and fopt represents a constant. This constant can be optimised by PonyGE22.

For each function, a separate training and test set were constructed using a simple loop in a small
custom script and IOHExperimenter [12]. IOHexperimenter implements the functions defined in
the BBOB Test Suite.

3.2 Dataset

Our data set consists of 50 000 points sampled uniform at random (u.a.r.) from the function
domain [−5, 5]2, where the 2 is the dimensionality, using the zero-instance of the BBOB function.
The meaning of problem instances can be found in [13]. We chose to test the GE system on the
two-dimensional problem due to the following considerations:

(1) we can easily visualize the landscape (e.g., by means of contour plots) of the target and the
learned functions, which provides an understanding of how GE performs on those BBOB
function (which are usually deemed very difficult to optimise);

(2) The resulting expression of the function can be comprehended by the user. We evaluated
each point in the data set with one of the selected objective function and the resulting
function values were normalised to the unit interval, which will make the error metric more
easily understandable to humans when interpreting the results. During evaluation of the
performance, we took into account that using a finite number of samples, the extent to which
a function is properly represented could be different to the original function.

After data generation, the dataset was split into a train and test set with a ratio of 80:203. This ratio
is considered standard for datasets in Machine Learning (ML). When evaluating the performance
of the model on our test data, the metric used was the mean squared error (MSE).

3.3 Hyper-parameters

PonyGE2 has a list of hyperparameters that can be set by the user. These hyperparameters configure
how the algorithm will behave during the learning process. An example of a hyperparameter is
iniatialisation. Choosing what type of initialisation is used has an influence on the performance

2https://github.com/PonyGE/PonyGE2/wiki/Example-Problems#regression#optimisation
340 000 : 10 000 in our train and test set
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of GE. Choices made for these parameters are explained in this section. A full list of parameter
settings for all benchmark problems can be found in Appendix C.

3.3.1 Initialisation

Position Independent (PI) Grow [14] is a form of position independent initialisation. PI Grow will
randomly choose a branch of the derivation tree to expand, instead of a left-first initialisation (of
the derivation tree), and will grow at least one branch to the depth limit set by the user. The type
of initialisation that directly controls the derivation tree is called ’Derivation Tree Initialisation’ [7]
and assures a larger amount of distinct derivation trees (read: larger genetic diversity) in the initial
population.

We chose PI Grow for our experiments among all implemented initialisation methods in PonyGE24,
due to its capability of initialising a diverse population and wide usability in the GE community.
Although recent works exploring alternatives, e.g. [15], have reported excellent results on some test
problems, we do not intend to implement and investigate each of these alternatives. The major
research question here is not to find the most optimal hyperparameters, but to figure out GE’s
overall performance for the types of problems in our benchmark set.

3.3.2 Depth of the derivation tree

Both the maximum initialisation depth and maximum tree depth5 are set to allow generated
functions to grow deeper than the depth of the derivation tree of the original benchmark problems.

The maximum initialisation tree depth of 10 and the maximum tree depth of 17 were chosen to
allow generated functions to not be limited by the depth of the original functions, but also to put a
limit on the complexity of the inferred functions. An example of a derivation tree for the Ellipsoidal
(f2) function, with its depth denoted by the numbers on the right side of the figure, can be found in
Figure 3.

3.3.3 Mutation, Crossover and Selection

Since there is no intention of hyper-parameter tuning, we took the default setting of the mutation,
crossover, and selection parameters in PonyGE2.

PonyGE2 uses the following options for these parameters:

Mutation Integer flip per codon

Crossover Variable onepoint crossover with a probability of 75%.

Selection Tournament selection with a tournament size of two

4https://github.com/PonyGE/PonyGE2/wiki/Initialisation
5The parameters for these values are [MAX INIT TREE DEPTH] and [MAX TREE DEPTH] respectively.
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+

+

exp

C ∗

/

−

1 1

−

2 1

x2
0

exp

C ∗

/

−

2 1

−

2 1

x2
1

fopt

(0)

(1)

(2)

(3)

(4)

(5)

(6)

Figure 3: The derivation tree for the Ellipsoidal function (f2) in the BBOB Test Suite with D = 2.

3.4 Context-free Grammar

The grammar used in GE is a context-free grammar (CFG) expressed in the Backus-Naur Form
(BNF). In our experimentation, we used a simple recursive structure of the grammar to prevent
possible bias for (non-)terminals when adding any additional symbols to the grammar (e.g., nth-
root). This grammar covers the target mathematical forms provided in Section 3.1, without further
optimisation of the grammar itself.

Since our grammar features a 10:4 split between non-terminal and terminal symbols, it is also
called an explosive grammar [9, 16]. According to [16], the definition of an explosive grammar is “a
grammar where, if there is a choice between non-terminals and terminal, a non-terminal expansion
is more likely to be chosen”. This explosiveness makes the derivation trees more likely to grow
larger, not terminating until all codons in the genotype have been read or until the maximum depth
has been reached, hence realising more complex candidate solutions.

3.5 Feasibility of derivation trees

In each experiment, we recorded the feasibility of the derivation trees in each run of PonyGE2. Here,
by feasibility, we mean: ”the candidate solution takes on the same set of non-constant terminal
symbols as the target function”.

Although we did measure the feasibility of all the formulas during the run, we did not take
feasibility into account when evaluating the fitness of a generation of individuals due to the
following considerations: (1) the final solution was generated without knowledge of the function

7



used to generate the function values in the dataset and is based on inference. GE can make
well-performing models, with a low MSE, using only a single input variable; (2) Giving these
’invalid’ individuals a low fitness during the evaluation process, would constrict the search space.
An ’invalid’ individual can evolve and in a matter of a few generations a ’valid’ individual could be
found again with an even higher fitness than those individuals evolved from ’valid’ individuals.

4 Experiments

In order to give an answer to our research questions described in Section 1.1, we designed three
experiments. Through these experiments, we aimed to gain a better understanding of the ability of
GE to accurately reconstruct the target mathematical forms of our symbolic regression problems,
which can be found in Section 3.1.

This section is split up into the following subsections:

(1) a visual comparison of contour plots, comparing the original BBOB function to the best,
median and worst performing ’best’ individuals inferred over 20 runs.

(2) a comparison of the mean of the average depths of each benchmark problem.

(3) a section on the feasible formulas found with GE, separated into:

(i) a comparison of ratio of feasible to non-feasible solutions between inferred individuals
for our four benchmark problems.

(ii) a visual comparison of contour plots, comparing the original BBOB function to the
best, median and worst performing ’best’ feasible individuals inferred over 20 runs.

4.1 Experimental set-up

PonyGE2 facilitates easy data gathering and experimental setup through a simple experiments
manager. This experiment manager can be used to start n runs at the same time through a setting
in the parameter file 6. Every run of PonyGE2 produces a list of stats in a tab-seperated values
(TSV) format and a separate .txt file containing the best performing individual in that run. These
best performing individuals in each run have been ranked from best to worst performance for the
first and third experiment.

All plots in Section 5 were generated using matplotlib [17]. All contour plots were generated with
values in the range [−5, 5] for both x0 and x1, using a delta of 0.002 between each value in this
range. All data for experiment 2 (Section 4.3) and experiment 3 (Section 4.4) was gathered using
pandas [18].

6https://github.com/PonyGE/PonyGE2/wiki/Scripts#basic-experiment-manager
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Parameter Value

Number of experiment runs 20
Generations 100
Population 500
Initialisation PI Grow
Max initialisation depth 10
Max tree depth 17

Table 1: List of parameters relevant for the experiments.

4.2 Experiment 1: Visual comparison

Through the first experiment, we attempted to gain insight into the ability of GE to infer the form
of our four different benchmark problems. This was achieved by doing a visual comparison between
the contour plots of the original BBOB functions with the best (rank 1), median (rank 10) and
worst (rank 20) performing functions inferred by GE.

The contour plots provide a 2D representation of a 3D surface through lines joining points with an
equal elevation (z-value). The ranking of the functions was done by taking the best solutions for
each run, which are saved to a separate file by PonyGE2, and ordering them from lowest to highest
mean squared error (MSE). In this ranking, feasibility was not taken into account.

The consideration for plotting these three solutions was as follows:

1. the median performing individual gives the least biased view of the overall ability of GE to
predict our target functions;

2. the worst and best performing individuals can be used to gauge the minimum and
maximum performance of individuals made by GE. The worst performing was especially
important, because knowing how an algorithm performs at minimum was useful to gauge
what performance can be expected for the other runs.

4.3 Experiment 2: Solution Complexity

The purpose of the second experiment was to determine the complexity of solutions inferred by GE
for each benchmark problem. This was achieved by measuring the mean of the average depth per
generation over 20 runs for each problem. Each non-terminal has at least one child node, but can
have more depending on the type of mathematical operation. Each additional level of nodes adds
another layer of complexity to the function.

The average depth per generation was read from the stats.tsv file in each respective run’s results
folder. The mean of the stats over 20 runs was then taken using the pandas.Dataframe.mean

function.
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4.4 Experiment 3: Feasibility of solutions

The third experiment consists of two parts:

(i) a comparison between the ratio of feasible to non-feasible solutions generated by GE for each
benchmark problem.

(ii) a visual comparison between contour plots, similar to those in Experiment 1 (Section 4.2).

The purpose of part (i) was to see the how likely GE was to identify the number of input variables
of the target problem without any prior knowledge of this problem. This was achieved by taking
the mean of the feasibility of each generation over 20 runs. The initialisation step (generation 0)
was not taken into account for this test.

The purpose of part (ii) was to see if, when comparing feasible solutions to each other, they were
better at predicting the form of the problems than when feasibility was not taken into account.
Again, the best, median and worst solutions were taken, choosing from the pool of feasible
solutions found in 20 runs. The number of feasible solutions found for each benchmark problem can
be found in Table 3.

5 Results

5.1 Experiment 1: Visual comparison

Ellipsoidal (see Figure 4) Although the contour lines in the upper part of each plot appears
similar to those of the original function, the worst individual misses the lower part of the landscape
since the upper part has relatively higher function values, which seem to dominate the loss function.
The best and median individuals manages to capture the lower parts, but the range of the function
value is significantly smaller than that of the original BBOB function, going from around 0.000
to around 0.2500 in the best and median individuals and 0.000 to around 0.6700 in the original
BBOB function between −5 and −2 on the x1 axis.

Rastrigin (see Figure 8) The colour bar for the plot of the worst individual shows a maximum
height almost double that of the original BBOB function. Furthermore, this individual focuses too
much on the upper part of the landscape, losing all the detail in the region under 4 on the x1 axis.

The plots for the best and median individuals show a form more akin to the plot of the original
BBOB function, although they both do not reach the same maximum height as the original BBOB
function. Of these plots, the plot of the median individual has a more uniform shape and has
seemingly captured the form of the original function better than the best individual, in which the
higher function values dominate the loss function.

Rotated Ellipsoidal (see Figure 9) We have observed that the maximum height for the
learned functions is between half to almost three times smaller than that of the original function.
Furthermore, the rotation of the landscape is not learned in the worst and median functions. A
rotation is learned in the best individual, which shows a discontinuity of the gradient at x0 = 0.
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(b) best inferred Ellipsoidal function
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(c) median inferred Ellipsoidal function
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(d) worst inferred Ellipsoidal function

Figure 4: The contour plot of the original Ellipsoidal BBOB function can be compared to the best, median, and
worst feasible functions inferred by PonyGE2 over 20 runs.

Although the maximum height is lower and rotation is missing in the plot of the median individual,
the overall form of this individual looks the most like plot of the original BBOB function. Both
the best and worst individuals have learned more contour changes in the upper part of the plot,
which are not there in the plot of the original BBOB function.

Weierstrass (see Figure 10) The colour bars of all three learned functions show that both
the minimum and maximum height of the original BBOB function have not properly been learned.
Although a ridge shape slightly akin to that of the original BBOB function can be seen in parts
of the plot of the best and worst individual, the plot of the worst individual seems to be a
plateau.
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5.2 Experiment 2: Solution complexity

The goal of Experiment 2 was to determine the complexity of solutions inferred by GE for each
benchmark problem by measuring the mean of the average depth per generation over 20 runs for
each problem.

Function name Mean depth Standard dev.

Ellipsoidal (f2) 11.078 0.599
Rastrigin (f3) 11.054 0.477
Rotated Ellipsoidal (f10) 11.130 0.508
Weierstrass (f16) 11.185 0.566

Table 2: The mean depth and the standard deviation over 20 runs of the average depth at generation 100.

The results of this experiment, which can be found in Figure 5, show that the initialisation is
consistent for each function. Each function shows small differences between growth rate and standard
deviation, but the complexity seems to grow at roughly the same rate per generation. In the last
generation, the mean depth is comparable between all problems (see Table 2).

5.3 Experiment 3: Feasibility

5.3.1 Part I

The ratio of feasible functions in a population of 500 individuals grew at a slow pace for the
Ellipsoidal (Figure 6(a)), Rastrigin (Figure 6(b)), and Rotated Ellipsoidal (Figure 6(c)). The ratio
for the Ellipsoidal function experienced larger growth in the first 40 generations and then leveled
out, while the ratio of feasible functions for the Rastrigin and Rotated Ellipsoidal function kept
growing between the 0th and 100th generation.

However, as can be observed in the figure, the ratio of feasible functions for the Weierstrass
(Figure 6(d)) function grew slightly in the first 10 generations and then decreased thereafter.

Function name Nr. feasible best
solutions

% feasible solu-
tions

Standard dev.

Ellipsoidal (f2) 6 43.97 8.27
Rastrigin (f3) 17 44.72 10.97
Rotated Ellipsoidal (f10) 14 47.13 6.34
Weierstrass (f16) 11 31.04 12.83

Table 3: The number of feasible best solutions and the mean percentage and standard deviation of feasible formulas
for each function at generation 100.

5.3.2 Part II

Ellipsoidal (see Figure 7) The colour bar shows that the maximum height for the learned
functions is around 25% smaller than that of the original BBOB function.
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(b) Rastrigin function
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(c) Rotated Ellipsoidal function
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(d) Weierstrass function

Figure 5: The mean over 20 runs of the average depth per generation of a run. Through the depth, the complexity of
a solution can be measured.

Furthermore, although the contour lines in the upper part of each plot for the inferred functions
look similar to the original BBOB function, the lower part of the landscape in the best and median
does have changes in elevation, but not as large as those in the original function, with the median
individual having a slight rotation in the lower part. The worst individual has relatively higher
function values, which seem to dominate the loss function.

Rastrigin (see Figure 11) These feasible functions are the same as those described in Section 5.1.

Rotated Ellipsoidal (see Figure 12) The colour bars shows that the maximum height for the
learned functions is around twice as small as the maximum height of the original BBOB function.
The best individual is the same one as the one described in Section 5.1, possessing an increasingly
large negative slope in the range −5 to 0 on the x0 axis, with a sudden change at 0 to a smaller
negative slope.
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(a) Ellipsoidal function
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(b) Rastrigin function
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(c) Rotated Ellipsoidal function
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(d) Weierstrass function

Figure 6: The percentage of the mean number of feasible functions per generation over 20 runs of GE.

The median individual looks more like the original BBOB function, but does not have any rotation.
The contour lines in the lower parts of the landscape also have the shape of a wave, of which the
amplitude seems to increase the further down on the landscape they are positioned.

The worst individual has focused on the higher part of the landscape, where no large elevation
are present in the original BBOB function. There is also a negative dip in the lower parts of the
landscape with its deepest point as 0 on the x0 axis, which increases in depth the lower the value
of x1 is.

Weierstrass (see Figure 13) The colour bars of the three learned functions show that the
minimum and maximum height of the original BBOB function have not properly been learned.
Furthermore, the only individual that looks slightly similar to the original BBOB function is the
best individual, having a slight rotation just above 0 on the x1 axis.
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(c) median inferred feasible Ellipsoidal function
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Figure 7: The contour plot of the original Ellipsoidal BBOB function can be compared to the best, median and
worst feasible function inferred by PonyGE2 over 20 runs. Not all of the 20 functions generated by GE per run
are feasible.

15



6 Conclusions and Future Research

6.1 Overview

In this work, we investigated the capability of GE to accurately reconstruct the target mathematical
forms of our well-known symbolic regression problems. To this end, we designed three experiments
to answer our four research questions proposed in Section 1.

Answer to RQ-1 First, we performed an experiment that compared a contour plot of the best,
median, and worst performing individuals to a contour plot of the original BBOB function, to
see if the landscape of the learned functions resembled those of the original. We observed that the
same height as the original BBOB functions were not learned well for any function. Many of the
learned functions seemed to have an overall shape similar to that of the original functions, but they
missed a lot of the details (i.e., local landscapes) in the plots of the original functions. Many of the
learned functions also seemed to have favoured only certain parts of the function in their plots.
One of the best examples of this can be found in Figure 8(d).

Repeating this test in Experiment 3, comparing only feasible formulas to the original BBOB
function, no improvement in similarities between the learned functions and the original BBOB
function could be observed.

Answer to RQ-2 The first experiment was also used to gauge if GE could capture the ruggedness
of a high multi-modal problem given a limited number of points sampled thereon. We observed that,
especially for the Rastrigin and Weierstrass, GE was not able to correctly capture the ruggedness
of the original function. GE was able to capture the form of the Ellipsoidal function and, although
the rotation was not learned, it did manage to learn the overall form of the Rotated Ellipsoidal
function.

Although the overall shape of the original Rastrigin function could be seen in the best and median
individuals, a lot of the smaller peaks and valleys found in the plot of the original function were
not present in the plots of those learned functions.

GE was also not successful in learning the ruggedness of the Weierstrass function. Due to the
rugged nature of this function, the learned functions were not successful in finding both minimum
and maximum points of the original function.

Answer to RQ-3 We performed an experiment (Experiment 2) to determine the complexity of
a formula by measuring the mean of the average depth of the derivation trees. Our observation was
that no discernible difference could be found between the mean average depths for each problem,
which were all around the same value (see Table 2).

Answer to RQ-4 Finally, we investigated how likely a GE system identifies the correct set
of input variables. According to our findings, the empirical probability, taking into account the
standard deviation, ranged from around 20% at the least to around 50% at the most, depending on
the function that was learned.
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To summarize the answers to our research questions, using our current setup, GE is not capable of
accurately learning the underlying expression, in this case the mathematical form of well-known
regression problems, very well.

6.2 Future work

Although our findings seem to suggest that GE is not capable of accurately learning the underlying
expression very well, there are a number of ideas to be explored to improve the performance of GE
in this regard. More research into limiting the complexity of expressions even further could also be
done, to see if there is any significant drop in performance.

To limit the complexity of a function, there are a few options to consider. Firstly, a complexity
value could be assigned to symbols in the grammar, allowing the user to select operators they want
to take priority when building the tree. In our grammar, this could mean giving more complex
operators, such as cos, sin, or tan, a smaller priority or bias.

Another direction to take is to research the effect of optimising the grammar design in our GE
system. As described in [9], there are “specific design principles that can be applied when attempting
to solve any problem using GE, which do not require domain knowledge”. Applying these design
principles could lead to improved performance for GE on our benchmark problems.

Finally, [19] proposes a way to optimise the hyper-parameters of a GE system, using an Efficient
Global Optimization (EGO) algorithm. According to this study, the performance of GE in regression
problems is significantly improved using this algorithm. This study also suggests doing more research
into including the population size of GE in its tuning process.
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Appendices

A Definitions

List of common acronyms

BNF Backus-Naur Form

CFG Context-free Grammar

GE Grammatical Evolution

GP Genetic Programming

ML Machine Learning

MSE mean squared error

List of common terms

codon A building block of the genotype that carries the genetic information for a single rule in the
grammar. In GE, the codon is represented as an integer or a set of bits that can be translated
to an integer.

context-free grammar A formal grammar in which a non-terminal can be expanded into all its
different production rules, regardless of the context in which it is placed.

derivation tree Also called a parse tree, it is a graphical representation of the structure of a
string that can be derived from applying the rules of a Context-free Grammar (CFG).

dimensionality The dimensionality of a mathematical function represents the number of input
values needed to generate an output value y.

genotype The genetic makeup of an individual, which can be expressed as a phenotype through a
genotype-to-phenotype mapping process. The genotype is a set of codons.

phenotype The visible characteristics of an individual, determined by the genotype of an individ-
ual.

i



B Figures

B.1 Experiment 1: Visual Comparison
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(a) BBOB Rastrigin function
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(c) median inferred Rastrigin function
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Figure 8: A set of contour plots for the Rastrigin function. The contour plot of the original BBOB function can be
compared to the best, median, and worst function inferred by PonyGE2 over 20 runs.
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(a) BBOB Rotated Ellipsoidal function
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(b) best inferred Rotated Ellipsoidal function
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(c) median inferred Rotated Ellipsoidal function.
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Figure 9: The contour plot of the original Rotated Ellipsoidal BBOB function can be compared to the best, median,
and worst function inferred by PonyGE2 over 20 runs. Not all of the 20 inferred functions are feasible.
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(a) BBOB Weierstrass function
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Figure 10: The contour plot of the original Weierstrass BBOB function can be compared to the best, median, and
worst function inferred by PonyGE2 over 20 runs. Not all of the 20 inferred functions are feasible.
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B.2 Experiment 3: Feasibility
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(a) Original BBOB Rastrigin function
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(c) median inferred feasible Rastrigin function
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Figure 11: The contour plot of the original Rastrigin BBOB function can be compared to the best, median, and
worst feasible function inferred by PonyGE2 over 20 runs. Not all of the 20 functions generated by GE per run
are feasible.
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(a) Original BBOB Rotated Ellipsoidal function

4 2 0 2 4
x0

4

2

0

2

4

x 1
0.0000

0.0528

0.1056

0.1583

0.2111

0.2639

0.3167

0.3694

0.4222

0.4750

(b) best inferred feasible Rotated Ellipsoidal function
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(c) median inferred feasible Rotated Ellipsoidal function
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Figure 12: The contour plot of the original Rotated Ellipsoidal BBOB function can be compared to the best,
median, and worst feasible function inferred by PonyGE2 over 20 runs. Not all of the 20 functions generated by
GE per run are feasible.
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(a) Original BBOB Weierstrass function
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Figure 13: The contour plot of the original Weierstrass BBOB function can be compared to the best, median, and
worst feasible function inferred by PonyGE2 over 20 runs. Not all of the 20 functions generated by GE per run
are feasible.
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C Parameters
CACHE: True

CODON_SIZE: 100000

CROSSOVER: variable_onepoint

CROSSOVER_PROBABILITY: 0.75

DATASET_TRAIN: [...]

DATASET_TEST: [...]

DEBUG: False

ERROR_METRIC: mse

GENERATIONS: 100

MAX_GENOME_LENGTH: 500

GRAMMAR_FILE: [...]

INITIALISATION: PI_grow

INVALID_SELECTION: False

MAX_INIT_TREE_DEPTH: 10

MAX_TREE_DEPTH: 17

MUTATION: int_flip_per_codon

POPULATION_SIZE: 500

FITNESS_FUNCTION: supervised_learning.regression

REPLACEMENT: generational

SELECTION: tournament

TOURNAMENT_SIZE: 2

VERBOSE: False

OPTIMIZE_CONSTANTS: True

EXPERIMENT_NAME: [...]

RUNS: 20
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D Grammar

<e> ::= np.sin(<e>) |

np.cos(<e>) |

np.tanh(<e>) |

np.exp(<e>) |

psqrt(<e>) |

plog(<e>) |

<e>+<e> |

<e>-<e> |

<e>*<e> |

aq(<e>,<e>) |

<c><c>.<c><c> |

<c> |

x[0] | x[1]

<c> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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