Universiteit Leiden

ICT in Business and the Public Sector

A System for Preprocessing Requirements
Documents for Automatic UML Modelling

Name: Martijn B.J. Schouten
Student-no: 2670798

Date: 01/07/2022

1st supervisor: Dr. G.J. Ramackers
2nd supervisor: Dr. S. Verberne

MASTER'S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

Current approaches to natural language processing of software requirements
documents restrict their input to documents that are relevant to specific types
of models only, such as domain or process-focused models. Such input texts do
not reflect real-world requirements documents. To address this issue, we pro-
pose a pipeline for preprocessing such requirements documents at the conceptual
level, for subsequent automatic generation of class, activity, and use case models
in the Unified Modelling Language (UML) downstream. Our pipeline consists
of three steps. Firstly, we implement entity-based extractive summarization of
the raw text to enable highlighting certain parts of the requirements that are
of interest to the modelling goal. Secondly, we develop a rule-based bucketing
method for selecting sentences into a range of ‘buckets’ for transformation into
their corresponding UML models. Finally, in order to demonstrate the effective-
ness of supervised machine learning models on requirements texts, a sequence
labelling model is applied to generate meta data pertaining to the longstand-
ing problem of distinguishing classes from attributes in the context of domain
modelling. In order to enable this step of our pipeline, we address the lack
of available annotated data by labelling the widely used PURE requirements
dataset on a word level by tagging classes and attributes within the texts. Our
three-step solution has been implemented in the LIACS Prose to Prototype SE
development environment.

Acknowledgements

First of all, I would like to thank my first supervisor, Dr. Guus Ramackers for
supporting me throughout this project, for giving me the inspiration needed
for the topic of this research, and for the countless meetings we had to get
the content of my research just right. Second of all, I would like to thank my
second supervisor, Dr. Suzan Verberne, for providing me with much-needed
advice regarding my options for NLP in this project, getting me towards a
workable solution, and for the help with proofreading and improving the paper
that has been published about this research. Next to that, I would like to
thank Pepijn Griffioen en Willem-Pieter van Vlokhoven for their help with the
technical implementation of this work in the ngUML application. I also want to
extend my thanks to Prof. Dr. Michel Chaudron for his advice and perspectives
on the project over the course of the last year in our weekly meetings. Lastly, I
would like to thank my girlfriend, Malin Inzinger, for supporting me throughout
this whole project, especially at the end where I really needed someone to pull
me through the final stretch. This thesis ended with a bet between her and me:
she was allowed to decide my next haircut if I did not finish this thesis on time.
Luckily, T won the bet. I told you I could do it.

Contents

(1 _Introduction

2 Background|
[2.1 Unified Modelling Language (UML)
[2.1.1 Class modelling|.
2.1.2 ctivity modelling|
P13 Usecasemodelling]
[2.2 Natural Language Processing (NLP)
[2.2.1 Syntactic dependency trees
[2.2.2 Lexico-semantic analysis|.

2.2.3 Summarizationl

13.2.1 PURE: a Dataset of Public Requirements Documents| . .
822 Validationset/.
[3.3 Entity-based summarization|

3.4 Structural filtering| oo oL

[B5 Metadata tagging

[4 _System implementation
[T Tmplementation details

6 _Results|

b.1 Entity-based summarization|
5.2 Structural filtering]o
b.3 Metadata taggingo

[6_Conclusionl

[B_TInterface 45

[C Bucketing rules| 50

Parts of this work have been published in two research papers that have been
released during this thesis as a direct result of the research findings. The first pa-
per has been released in 2021 as part of the Proceedings of the 23rd ACM/IEEE
International Conference on Model-Driven Engineering Languages and Systems
and is titled “From Prose to Prototype: Synthesising Executable UML
Models from Natural Language” [80]. This paper describes the Prose to
Prototype project in more detail and gives a high-level overview of the context of
this thesis. The second paper encompasses all research findings of this thesis and
is published in 2022 as part of the Proceedings of the 27th International Confer-
ence on Natural Language & Information Systems. The title is “Preprocessing
Requirements Documents for Automatic UML Modelling” [89].

1 Introduction

When engineering software systems, the main assumption is that the computa-
tional environment is predictable and fully specifiable. However, in the current
world, systems are increasingly spread out over parts and layers built by many
organizations, in different environments, and require cooperation from human
operators. As a result, software engineering is increasingly confronted with un-
certainty and complexity [31].

Because of that, the process of defining software requirements, i.e. deciding
what to build, has become harder [14]. A good understanding of requirements
is the basis of creating systems that satisfy the expectations of stakeholders.
Early construction of a software-system architecture is helpful for the discovery
of further requirements and constraints, feasibility and determining alternatives
for implementation [69]. For this, stakeholder involvement is key. After all, a
lack of stakeholder involvement is the number one reason for software projects
to run into difficulties [73]. Therefore, achieving a higher level of stakeholder
involvement has been a much-researched topic in requirements engineering (RE).

Many possibilities to enhance communication and involvement have been
posed, ranging from wikis for stakeholder collaboration to gamification aspects
[22 55], but a definite solution to solidifying early requirements is not offered,
nor does current research answer the problem of bridging the gap between stake-
holders and system architects in the early stages of requirements engineering.
But what if the solution does not lie with the stakeholders but with the process
itself?

A new research area uses natural language processing (NLP) to assist soft-
ware requirements analysis. This can help plan out software projects early on
[49, 34, [80]. As requirements documents and domain descriptions are often-
times provided in natural language, structuring this knowledge can form the
basis for the software development process. This early-stage modelling allows
individual stakeholders to conceptualize their visions faster, and human error
in communicating requirements can be dealt with immediately. With this ap-
proach, stakeholders can intervene in the development process at a stage where
the detection of errors does not escalate exponentially, as it does in later stages
of development.

Several methods have been proposed for generating UML models from re-
quirements texts. However, most of these previous implementations rely on
structured input texts, which are not representative of real-world requirements
documents. In addition, real world-world requirements texts mix specifications
for different kinds of UML models in the same document. Furthermore, dis-
tinctions between UML elements, for instance, classes versus attributes in class
modelling, are not explicitly identified.

1.1 Research objectives

In this work, we address these limitations by creating an interactive preprocess-
ing pipeline for raw requirements texts that, with the intervention of the human
modeller, outputs structured and separated texts that can be used to generate
UML models.

To aid downstream model generation, the model suggest metadata alongside
the output text of the pipeline. For now, this metadata is limited to suggestions

for distinguishing classes and attributes, which is regarded as a longstanding
research problem within automatic class model generation [80]. However, with
this approach, we suggest an architecture to generate metadata to target specific
downstream NLP transformation modelling issues in the future.

In summary, the main research objective is as follows:

Develop a pipeline-like system that is able to preprocess
real-world requirements texts describing a system and pro-
cess it into uniform class, use case and activity texts as
input for downstream NLP to UML transformation.

More specifically, this main objective can be broken up into four sub-objectives:

Sub-objective 1 Process real-world requirements texts describing any system
in any context in a wide variety of expressions, specifically by removing
textual elements that do not carry any information useful for systems
design.

Sub-objective 2 Find patterns or keywords in sentences or paragraphs that
are useful for creating activity-, class-, and use case models, and can be
used to create buckets of useful sentences for each of these models.

Sub-objective 3 Utilize NLP techniques in combination with machine learn-
ing to aid in the generation of metadata useful for downstream modelling.

Sub-objective 4 Allow for a human-in-the-loop approach where users of the
pipeline are able to interact and steer decision-making at all steps of the
process.

1.2 Overview of our methodology

In this thesis, we apply natural language processing techniques to structure
raw requirements texts that are used in real-world modelling settings to use
this new structure for class-, activity- and use case modelling “downstream”,
i.e. in automated modelling activities in steps after the pipeline of this project.
Additionally, metadata is generated to assist class modelling.

This thesis follows the research by design methodology. According to Roggema
(2016), research by design is a type of academic investigation through which de-
sign is explored as a method of inquiry, through the development of a project.
The results of this project are inherently tangible: a pipeline is the main de-
livery, which can be used in a modern application landscape to preprocess and
structure requirements texts. This thesis project shows the various ways in
which design and research are interconnected when new knowledge is produced
by its implementation [82].

First, literature research is conducted to sharpen and extend the main re-
search objective and its sub-objectives mentioned in Section

To validate the effectiveness of the pipeline, the performance of the methods
is tested against 5 examples of real-world requirements texts from several sources
that can be found in Appendix[A] The validation requirements texts are selected
so that they are as close as possible to real-word requirements texts, and span
multiple contexts and industries, as laid out in the Sub-objective 1.

1.3 Outline

The structure of this thesis is as follows: in Section[2] a short overview of related
work on UML and NLP will be discussed to set the general stage for the context
of this research and provide readers with a short background in both disciplines.

Then, in Section a conceptual design of the system will be discussed.
In Section [4 the final system design will be discussed, including a technical
design and description of the used technologies. After that, in Section |5, the
findings of this research are shared through qualitative and quantitative results.
To conclude, Section [6] describes the results and how they satisfy the research
objectives and directions for future research.

2 Background

In this research, the intersection between natural language processing (NLP)
and software design is explored. Therefore, this section is structured as follows:
first, the unified modelling language and its application will be discussed. Then,
the field of NLP and its recent developments are explored. Finally, research on
the intersection of both concepts will be discussed.

2.1 Unified Modelling Language (UML)

Requirements define what stakeholders need from a potential new system and
what the system must do in order to satisfy that need [109]. When measuring
success in software systems as the degree to which it meets the purpose for
which it was intended [70], a system that fully implements all requirements is
a successful one. Therefore, a good overview of requirements forms the basis of
software analysis and design, which in turn ensures that planned systems will
truly reflect the requirements and achieve the quality desired by the stakeholders
[60].

These requirements are typically represented in natural language [45]. More
specifically, they are gathered in user requirements documents (URD), which
oftentimes serve as a contractual agreement between users and developers [87].
According to Schneider et al. (1992), “early detection and correction of faults
in the URD is the key to keeping development costs down and to building cor-
rect, reliable software”. This immediately highlights the main limitation of the
URD: requirements specified in natural language can be ambiguous, incom-
plete and inconsistent. Furthermore, the understanding and interpretation of
requirements can potentially be influenced by geographical, psychological and
sociological factors [23]. Because of this, the requirements analysis process in-
volves the creation of abstract models for visualization and comprehension of
requirements [90]. In this space of visualizing the design of systems, UML has
been the de-facto standard language [93].

UML is a graphically based notation developed by the Object Management
Group to standardize describing software-oriented designs [78]. The language
gives guidelines for modelling several different diagrams that contain a complete
representation of a system from a given modelling perspective [66]. These rep-
resentations can be made with a variety of available tools, such as IBM Rational
Software Architect, MagicDraw, and Papyrus [83].

The diagrams are divided into three categories: static structure, behaviour
and implementation diagrams. Static structure diagrams describe the structure
of a system, while behaviour diagrams describe the dynamic parts. The final
category, implementation diagrams, provides a lower level of abstraction by
including information about source code for software projects [96].

For this research, the focus is on the two categories of UML models with the
highest level of abstraction, namely static structure and behaviour diagrams.
Specifically, within these categories, class, activity and use case models will be
discussed, because of their favourability in describing systems [81], and because
these three models generally cover all aspects of system design [79, (911 [17].

Subject enrolled in Student

|-code : String name : String
1.7 1.
Honours Project] works on Honours Student Pass Student
-title : String h area : String -project : String
1 1

Figure 1: An example of a class diagram [61].

2.1.1 Class modelling

Using class diagrams, a modeller can describe the static structure of a system
[96]. Naturally, this puts the class model in the category of static structure
diagrams. This static structure is expressed through a collection of classes that
are interconnected by a relationship. The relationships are also categorized by
their multiplicity, which denotes how many objects are involved in the relation-
ship [63]. Additionally, a diagram can display attributes and, when modelling
software systems, operations of classes [96].

An example is shown in Figure Classes are shown as rectangles, with
relationships as lines between classes. These lines hold numbers on both lines
that describe the multiplicity of the relationship.

This example describes a simple context of a university: the main class
“Student” has an inheritance relationship with the classes “Honours Student”
and “Pass Student”, describing the types of students that are available [61].

2.1.2 Activity modelling

Activity diagrams are intended for modelling computational and business or
organisational processes [104], and describe dynamic system behaviour. There-
fore, activity diagrams are considered as belonging to the category of behaviour
diagrams. In essence, they are flowcharts that give an overview of the flow of
control between sequential or concurrent activities of a process [13].

This sequential nature can be observed in the example shown in Figure
This is the activity diagram associated with an ordering process. Activities
that must be conducted by specific actors are modelled via action states in
their swimming lanes. The complete process models all actions between the
start state and the stop state. In this example, a focus is laid on controlling
the flow through forks and joins: the synchronization of two or more concurrent
flows of control, modelled using a thick black line [12].

When creating an activity model from requirements, the modeller should
look for activities that take place over time, and operations that are passed
among objects. These activities result in some action that results in a change
in the state of a system or return of a value [12].

2.1.3 Use case modelling

Use case diagrams are useful for modelling and describing interactions between
certain actors and a system from the actor’s point of view. It gives a visual
overview of what the actor does or gives the system and what it needs or gets

Customer Sales Warehouse

Request product

\;—V[Process order J»*)[Pull materials }
Ship order

:
| |

[Receive order] [Bill customers }
Pay bill
T~

Close order

Figure 2: An example of an activity diagram [12].

from the system [60]. In essence, a use case is a sequence of actions a system
can perform that creates an observable result with regard to a specific user [43].
Because use case diagrams capture and describe the dynamics of systems, they
belong to the category of behaviour diagrams.

S o
%/»@ CD‘//

uc2 ucs

A2

Figure 3: An example of a use case diagram [42].

In Figure 3} a very simple example of a use case diagram can be seen. Here,
the modeller has identified three actors, A1, A2, and A3, and they each are able
to perform certain use cases in System X, namely UC1, UC2 and UC3.

10

2.2 Natural Language Processing (NLP)

According to Liddy (2001), “Natural Language Processing is a theoretically moti-
vated range of computational techniques for analyzing and representing naturally
occurring texts at one or more levels of linguistic analysis to achieve human-
like language processing for a range of tasks or applications”. NLP has been
through major stages, starting with rule-based systems in the 80s, to statistical
methods, and currently, the extensive usage of neural networks and the domi-
nance of Transformer architectures [19]. Because of the sheer size of the research
field and the diversity of NLP applications, only techniques and developments
that are deemed useful for answering the research questions of this thesis are
described in the following sections.

2.2.1 Syntactic dependency trees

When processing text on a syntactic level using NLP methods, a representation
is outputted that revels the structural dependency relationships between words
[52]. One way of displaying these relationships is through the use of dependency
trees. An example of a dependency tree is given in Figure 4l This example has
been generated using the spaCy Python library [39).

These trees are oftentimes useful as part of a bigger solution to tackle NLP
problems. For example, they have been used for word reorderings in machine
translation [99, [75], to aid and replace the role of human labelling in the iden-
tification of domain terminology [53] and for more general tasks like opinion
mining and sentiment analysis [92].

For this project, the dependencies between words are used to formulate rules
to divide sentences into groups, together with lexico-semantic analysis.

2.2.2 Lexico-semantic analysis

Where syntax dependency trees only show grammatical structure, there are
also techniques to extract semantics from sentences. Semantics describes the
possible meanings of a sentence [52]. However, tackling meaning in sentences
has been one of the tougher challenges in NLP. WordNet is an online lexical
database that contains English nouns, verbs, adjectives and adverbs organized
into hierarchical sets of synonyms that are then linked through lexico-semantic
relations. These relations then determine the meaning of words [64]. At the top
of this taxonomy, supersenses (or semantic fields) are defined, which are a finite
set of top-level hypernyms. They are designed to be broad enough to encompass
all nouns and verbs [88].

An overview of all supersenses is shown in Figure Supersenses can be
seen as classes, which are useful for capturing generalizations: one can abstract

ﬁm\
A customer an pace - ater awa ok ™ ot st

oET NOUN AUX VERS oET NOUN ccony VERB oET NOUN NOUN

Figure 4: An example of a syntax dependency tree structure.

11

Noun Verb

GROUP 1469 place STATIVE 2922 is
PERSON 1202 people COGNITION 1093 know
ARTIFACT 971 car COMMUNIC.* 974 recommend
COGNITION 771 way SOCIAL 944 use
FOOD 766 food MOTION 602 go
ACT 700 service POSSESSION 309 pay
LOCATION 638 area CHANGE 274 fix
TIME 530 day EMOTION 249 love
EVENT 431 experience PERCEPTION 143 see
COMMUNIC.* 417 review CONSUMPTION 93 have
POSSESSION 339 price BODY 82 get...done
ATTRIBUTE 205 quality CREATION 64 cook
QUANTITY 102 amount CONTACT 46 put
ANIMAL 88 dog COMPETITION 11 win
BODY 87 hair WEATHER 0 —
STATE 56 pain all 15 VSSTs 7806
NATURAL OBJ. 54 flower

RELATION 35 portion N/A (see §3.2)
SUBSTANCE 34 oil a 1191 have
FEELING 34 discomfort * 821 anyone
PROCESS 28 process i 54 fried
MOTIVE 25 reason

PHENOMENON 23 result * COMMUNIC.
SHAPE 6 square is short for
PLANT 5 tree COMMUNICATION
OTHER 2 stuff

all 26 NSSTs 9018

Figure 5: A table containing all the supersenses for nouns and verbs [88)].

away from individual words because words or verbs with similar meanings will
be grouped in the same classes [46].

Supersenses have a broad application, specifically in aiding other NLP tasks:
they have been used to assist the training process of neural machine translation
[97], but also have shown to help in defining rules in a rule-based system for
coreference resolution [71] and generating document keywords [41].

2.2.3 Summarization

According to Paulus et al. (2017), “text summarization is the process of auto-
matically generating natural language summaries from an input document while
retaining the important points”. Automatic summarization is often used for
aiding legal research [62] 9], making patent filing more efficient [16] and in other
sectors like healthcare [58] 27 [86], 32] and media [21] [94] [1§]. Generally, these
algorithms are divided into two types: extractive summarization, where parts
of the input are copied, and abstractive summarization, where new phrases are
generated [74].

Currently, most state-of-the-art abstractive summarization models are based
on Transformer architectures [107, [51] [10§]. Transformer architectures focus on
attention mechanisms to create representations [98], making it incredibly useful
for sequence-to-sequence predictions such as summaries.

Traditionally, adjusting the output of these models by an end-user has been
largely impossible. However, there have been tries in research to allow for more
customization of outputs of these models [103] [6 [105]. One of these models is
the Customizable Abstractive Topic-based sequence-to-sequence Summarization
(CATS) model. The model allows for summarizating in an abstractive way,
while selectively focusing on a range of desired topics, chosen by the user. In
essence, this means that summarization happens in two stages: first, the model
retrieves a set of topics that are present in the text and presents those in the
user. Second, the user returns topics of interest to the model and the model uses

12

these topics to generate a summary. The model is based on the encoder-decoder
architecture combined with the concept of pointer networks, which enables a
combination of copying words from the source text and generate words from
a fixed vocabulary. Summarizations are produced using a novel concept called
topical attention: over encoder-decoder training steps, parameters adapt to learn
the topics of each document [6].

2.2.4 fastText

The representation of words has been a central topic in NLP. A word embed-
ding is a dense, distributed, continuous vector representation of a word, where
more similar words are closer to each other in the vector space than less sim-
ilar words. Preferably, this representation and its location in the vector space
captures semantic and syntactic similarities and differences between words [50].
Representing words on a continuous scale allows for methods to measure word
similarities, which are widely used in various information retrieval and NLP
tasks [54]. Next to that, word embeddings are used for classification tasks,
ranging from sentiment classification [106] [20] [85] [101] to cancer diagnosis [59],
fake news detection [102] and emotion detection [38].

One method of creating embeddings is fastText. fastText is an efficient
method to learn word representations useful for downstream tasks such as text
classification. The main idea behind the approach is to represent the internal
structure of the words through n-grams instead of learning a full word represen-
tation. Therefore, the model represents each word as a sum of vectors, where
each vector represents an n-gram [5]. This approach has two benefits: first,
morphological forms of a word are learned differently but will be very similar in
the vector space. Second, embeddings for unknown words will generally still be
informative, meaning that in all cases, we can use fastText to calculate semantic
similarity.

Under the hood, it works as follows: a window is slid over the input text
and the model either learns the center word from the remaining context, or all
the context words from the center one. Essentially, a neural network with two
layers of weights and three layers of neurons is trained, in which the two outer
layers have a neuron for each word or sub-part of words (character n-grams) in
the vocabulary, and the middle layer has as many neurons as dimensions in the
embedding space [84] [11].

The open-sourced fastText package also includes a language identification
model, which is a classification algorithm trained using fastText embeddings,
to recognize more than 170 languages. This language detection functionality
makes use of a simple linear model with rank constraint. Weights are set as a
look-up table over the words, which are then averaged into a text representation.
This representation is fed to a linear classifier. A softmax function computes
the probability distribution over the predefined classes, which are the languages
in this case [44]. The language with the highest probability is selected as the
output language.

13

2.3 NLP for UML modelling

Several previous research approaches have been made to assist UML modellers
by applying NLP techniques to requirements texts. For class modelling, mul-
tiple approaches have been proposed since the early 2000s to partly automate
the process of creating class models. Using hand-coded rules based on Part-
of-Speech (POS) tagging, the Linguistic assistant for Domain Analysis (LIDA)
by Overmeyer et al. [72] identifies objects, their attributes and methods. The
output can then be used for manually creating associations between the classes
and to refine the identified objects. The Graphic Object-Oriented Analysis Lab-
oratory (GOOAL) developed by Perez-Gonzalez and Kalita [76] takes a similar
rule-based approach but regulates the requirements document before construct-
ing a model. However, it can only handle simple problem domains and the
texts still need to be structured before being able to be processed by the sys-
tem. The Class Model Builder (CM-Builder) by Harmain and Gaizauskas [36]
and the Requirements Analysis to Provide Instant Diagrams (RAPID) by More
and Phalnikar [65] also suffer from this same limitation on input text, although
they make use of more sophisticated NLP techniques.

More recent developments in class modelling still make use of rules to rec-
ognize parts of class diagrams. In their Automatic Builder of Class Diagram
(ABCD), Azzouz et al. [8] use over a thousand hand-written patterns. Narawita
and Vidanage [67] extend this rule-based approach with Weka software for rec-
ognizing relationship types and multiplicity with their UML Generator, being
the first implementation to utilize machine learning in the effort of generating
a class diagram from text. Contrasting previous approaches, Tang [95] com-
bined parts of previous approaches to create a semi-automatic class modeller
that supports extensive interactivity with the end-user for refining and finaliz-
ing diagrams, but similar problems are still apparent: because the tool uses a
list of keywords to distinguish and link classes and attributes, the input text
needs to be structured before being used.

The research field for automatic activity and use case modelling is con-
siderably less extensive but has the same challenges as automatic class mod-
elling. Igbal and Bajwa [40] rely on the usage of natural language requirements
in a formal structure in order to extract basic UML elements of an activity
model. This approach is very similar to Nassar and Khamayseh [68], who spec-
ify clear guidelines for the requirements texts to follow before being able to
generate activity models, and the method proposed by Maatuk and Abdelnabi
[57], which requires input texts to follow a set of sixteen syntactic rules before
facilitating UML element extraction for activity and use case models. Most of
these implementations rely on POS tagging to identify usable sentences in re-
quirements texts, such as work by Gulia and Choudhury [33], which again limits
the input requirements text in terms of its structure.

For use case models, structuring raw text continues to be an apparent issue
as well. Three implementations by Deeptimahanti et al. [23 48] [24] normalize
incoming texts using NLP tools before automatically forming class and use case
models. The approach by Elallaoui et al. [26] relies on user stories, which
inherently provide a strict structure already. Finally, the process of going from
requirements texts to use case diagrams in the method developed by Hamza and
Hammad [35] involves an intricate preprocessing step, including spell checking,
and an approach is taken depending on structures in the text that indicate

14

whether the sentence is written in an active or passive voice.

To conclude, existing implementations for automatic generation of class,
activity and use case models provide promising results, but share the same
problem: the input text is limited to following a certain, predefined structure,
and the implementations do not account for mixed model documents [80]. This
underlines the need for a unified approach for processing raw, real-world re-
quirements texts that can be used as a preprocessing step for (semi-)automatic
UML modelling downstream.

15

3 Methods

3.1 Architecture overview

Our three-step pipeline architecture makes use of the following NLP techniques:
i) entity-based summarization, ii) structural filtering, and iii) metadata tagging.
These three steps are discussed in detail below. An overview of the complete
pipeline is shown in Figure [6]

For the implementation of our preprocessing modules, we make use of BookNLP,
an NLP pipeline in Python 3 specifically developed for operations on long texts
[25]. BookNLP uses spaCy for POS tagging and dependency parsing. For the
more complex tasks, it uses BERT models fine-tuned on different datasets, de-
pending on the task at hand [7].

3.2 Datasets

3.2.1 PURE: a Dataset of Public Requirements Documents

The Public Requirements dataset is a dataset of 79 publicly available require-
ments documents covering a variety of domains and topics. This dataset only
contains text documents without attached UML models. A subset of these re-
quirements documents is ported to a common XML format with the goal of
facilitating replication of NLP experiments [28], resulting in 18 requirements
documents used in this project. Details on the amount of tokens, vocabulary
and lexical diversity can be found in Table

Because this subset is unlabelled, it cannot be used for supervised training.
To be able to train the sequence labelling model introduced in Section we
analyzed the requirements texts in this dataset with the BookNLP modules and
used coarse and fine-grained POS tags, lemmas, dependency relations, super-
sense categories, entity numbers, entity types and ACE 2005 entity categories
as features. In the running pipeline, these features used for predictions are
by-products of the previous two steps of the pipeline, and therefore require no
additional computing power. We manually added labels to each word in the
dataset, indicating the following:

Structural filtering

CRF model

Syntax T
|dependency Metadata tagging
rees
Fitering
GenMyModel
classes and
attributes

Entity extraction
‘model POS tags

Class text

Activiy text

r interface Use case text

Class list

Figure 6: Architecture pipeline for going from input to output.

[t

6

token_ token_ fine. . .
sentence- | ID_ m_ word lemma POS_ | L5 | dependency. | supersense_ entity | CPIEY- | entity 10B_
within_ within_ tag tag relation category type category | tag
sentence | document
28 21 908 Distributors | distributor | NOUN NNS nsubj noun.person 51.0 NOM PER B-class
28 22 909 keep keep VERB VBP ROOT verb.stative
28 23 910 a a DET DT det o
28 24 911 distribution | distribution | NOUN NN T 1 noun ion B-class
28 25 912 list list NOUN NN nmod noun. ion I-class
28 26 913 documenting | document VERB VBG | amod verl ion [§)
28 27 914 distributor distributor | NOUN NN dobj noun.person 52.0 NOM PER B-attr
28 28 915 s s PUNCT |, punct [
28 29 916 voucher voucher ADJ JJ amod noun.possession B-attr
28 30 917 number number NOUN | NN conj noun.. y T-attr
28 31 918 s s PUNCT |, punct [
28 32 919 date date NOUN NN conj noun.time B-attr
28 33 920 s s PUNCT |, punct 9
R 31 921 place place NOUN | NN Appos noun.location Batir
28 35 922 of of ADP IN prep T-attr
B3 36 923 sale sale NOUN | NN pobj noun.act T-attr
28 37 924 s s PUNCT |, punct [
28 38 925 and and CCONJ | CC cc o
28 39 926 name name NOUN NN conj noun. ication B-attr
28 40 927 and and CCONJ | CC cc
23 i1 928 place place NOUN | NN conj noun.location B-attr
28 42 929 of of ADP IN prep noun.location L-attr
23 13 930 Tiving Tiving NOUN | NN pobj noun.cognition T-attr
75 ! 931 of of ADP ™ prep]
28 45 932 the the DET DT det 53.0 NOM PER [§)
28 46 933 customer customer NOUN NN pobj noun.person 53.0 NOM PER B-class
28 47 934 - PUNCT | . punct [§)

Table 1: An example of a fully labelled sentence from the PURE dataset.
Everything from the “lemma” column to the “dependency_relation” column
are generated through spaCy, the “supersense_category” column and all entity
columns are created through the BERT models of BookNLP. The final column,
the “IOB_tag”, is manually added.

e B-class indicates the beginning of a word group that represents a class in
a class diagram.

e I-class indicates the continuation of a word group that represents a class
in a class diagram.

e B-attr indicates the beginning of a word group that represents an at-
tribute in a class diagram.

e I-attr indicates the continuation of a word group that represents an at-
tribute in a class diagram.

e O indicates that the word does not belong to any word group and therefore
does not represent either (a part of) a class group or attribute group.

An example of a fully labelled sentence from the dataset is displayed in Table
As part of this thesis, the PURE dataset with these labels in IOB format is
publicly accessible in the GitHub repository linked in the Section 4| and can be
used in machine learning tasks for the identification of classes and attributes in
requirements texts.

3.2.2 Validation set

To evaluate our approach on unseen data, we gathered a selection of five re-
quirements documents (without associated UML models) which are currently
being used as training material by a large American software company for their
software consultants and architects. All five texts are listed in Appendix [A] An
overview of the metrics of this validation set and how it relates to the training

17

Metric PURE (training set) | Validation
Tokens 187,649 2,722
Vocabulary size (original tokens) | 10,977 805
Vocabulary size (stems) 8,688 664
Number of sentences 7,928 147
Average sentence length (tokens) | 24 18

Lexical diversity 0.046 0.244
Number of class (groups) 4478 215
Number of attribute (groups) 2182 140

Table 2: Characteristics of the PURE dataset and the validation set.

set can be found in Table To validate the performance of the sequence la-
belling model introduced in Section we labelled this dataset with the same
1IOB tags as the PURE dataset.

3.3 Entity-based summarization

The first step of the preprocessing pipeline is a summarization step to condense
the incoming requirements into a more focused text. We propose a method for
performing extractive summarization where a user can select discovered entities
in the text and the pipeline only returns sentences that relate to these entities
of interest.

The benefit of the interactive, entity-based summarization step is two-fold:
firstly, by extracting sentences we omit the processing of the whole document
which often includes irrelevant parts such as tables of content, management
summaries, reasons for development, appendices etc. that are not useful for
modelling. Secondly, enabling the user to focus on specific parts of the software
allows for compartmentalized and incremental development, where big software
systems can be split into smaller parts.

We first extract all entities from the raw requirements texts using the entity
annotation module of BookNLP, which has been trained on an annotated dataset
of 968K tokens, combining public domain materials in LitBank with a dataset
of approximately 500 contemporary books.

From all discovered entities, two categories of entities are excluded: Geo-
political entities (GPE) and Organizations (ORG), together with all pronouns
[100]. These categories are excluded because they often refer to named entities,
which are typically not modelled in UML diagrams, leaving us with concepts
that are more likely to refer to UML objects.

The entity extraction step often results in duplicate entities: for example,
BookNLP classifies ‘customer’ and ‘each customer’ as separate entities. To
combine these into a set of unique entities, we rely on the POS tags of the
detected entities: we remove all words of the entity groups that are not a noun
or an adjective according to the POS tagging of spaCy and remove duplicates.

After performing these transformations, the user is presented with all the
extracted entities and makes a selection of entities that the modeller wants to
use in modelling downstream.

After this selection, the next substep is the filtering of relevant sentences
based on the relevant entities. Only sentences that contain (references to) the

18

selected entities of interest are returned to the user for further preprocessing in
the pipeline. Thus, sentences that do not contain entities of interest directly,
or have indirect links to the entities of interest via words such as “their” and
“this” will be removed from the running text before continuing to the next step
in the pipeline.

Alternatively, an abstractive approach could be feasible here. However, re-
search on abstractive summarization methods with human interaction is lim-
ited. Ome of these methods, Customizable Abstractive Topic-based sequence-
to-sequence Summarization (CATS), is an abstractive summarization method
with which text documents can be summarized while selectively focusing on a
range of desired topics. The model is based on the encoder-decoder architecture
combined with the concept of pointer networks, which enables a combination
of copying words from the source text and generating words from a fixed vo-
cabulary. Summarizations are produced using a novel concept called topical
attention: over encoder-decoder training steps, parameters adapt to learn the
topics of each document [6]. However, using this model for creating summaries
is not feasible in a production environment. The codebase is written in Python
2.7, and even after migrating the solution to Python 3, the model does not al-
low for extension to unknown topics due to its pretrained topic model. Next to
that, selecting and deselecting topics of interest are only showcased for research
purposes and not usable on scale, making our extractive summarization method
based on entity extraction the best choice for this thesis.

3.4 Structural filtering

The next step in the pipeline is forming three ‘buckets’ to put sentences in: one
for class modelling, one for activity modelling and one for use case modelling.
The output of these steps is three texts that are concatenations of the sentences
that belong in these buckets: a text for class modelling, a text for activity
modelling and a text for use case modelling.

One sentence can appear in multiple buckets, as long as it conforms to the
filtering rules that are defined for each of the buckets. These rules are based on
four characteristics of the sentences, or a combination of multiple characteris-
tics: keywords, syntax dependencies, supersenses and POS tags. For syntactic
dependency parsing, we use word-level information of spaCy. Supersenses are a
classification scheme for nouns and verbs that groups them based on the seman-
tic meaning of the words [46]. For supersense tagging, we use the supersenses
module from BookNLP, which was trained on SemCor. SemCor is a subset of
the Brown Corpus (360K tokens) that is annotated with supersenses [77]. The
combination of syntax dependencies and POS tags with supersenses allows us to
create rules that both target syntactic and semantic structures within sentences.

The filtering rules for the class and use case texts are based on this combina-
tion. Combinations are made based on manual observations of the requirements
texts in the PURE dataset, which is introduced in Section We manually
labelled all sentences of this dataset with whether they had indicators for class
and use case modelling, gathered all sentences for class and use case modelling,
generated their characteristics, and created rules that were as abstract as pos-
sible in order to keep the rules as high-level as possible, not focusing on edge
cases. This process resulted in 16 manually defined structural rules for class
texts and 4 rules for use case texts. Contrasting this approach, the filtering

19

rules for activity texts are based on keywords, extracted from previous research
conducted by Friedrich et al. [30] and Ferreira [29] in the Business Process
Model and Notation (BPMN) domain. All filtering rules are listed in Appendix
c

3.5 Metadata tagging

The last step of the process takes as input the class text gathered from the
previous step and identifies and labels classes and attributes that are present
in the text. For this purpose, we use a supervised sequence labelling model,
conditional random fields (CRF). As stated previously, the relatively limited
availability of publicly available training data for requirements engineering is a
limitation of this research field. By using a CRF model, we can classify elements
in a running text with only a small amount of training data.

For training the model, we use the labelled PURE dataset with the filtering
rules of the second step of the pipeline applied to it. This ensures that we limit
the training to patterns that we will be able to observe in the final implemen-
tation. Additionally, we experiment with extending this dataset in two ways.
First, we add fastText embeddings for each token [10]. Second, we extended
the dataset with class and attribute frequencies from the GenMyModel dataset,
which is a repository of UML model files.

The frequencies work as follows. For every token that belongs to a class or
attribute group, we retrieve how many times the word is used as a class and as
an attribute in the repository. This results in three additional values used in the
training process: the total amount of times the word is observed in classes and
attributes in the repository and two values that indicate the absolute counts of
how many times the word appears in class names and attribute names.

The GenMyModel dataset is a dataset of 352,216 XML files containing UML
diagrams from GenMyModel, an online modelling tool through MAR, a search
engine for model files [56]. GenMyModel is a UML modelling tool, without
any specific focus on modelling areas, making it more suitable for this thesis.
The files make use of a shared UML namespace, making it relatively easy to
extract classes and attributes by extracting elements with the xsi:type attribute
uml:Class, which mark the class objects, and then searching for owned attributes
within this object, which are the attributes of the object. After stripping the
names of the extracted classes and attributes, this resulted in 344,981 unique
classes and 455,730 unique attributes.

Because we focus on the larger applications of UML within this project, we
apply some additional syntactic preprocessing steps to transform programmatic
class and attribute names:

1. Remove function calls, getters and setters, dot-separated widgets and file-
names, comma-separated attributes, HTML and XML tags, dollar signs at
the start of strings, digits attached to the end of words and all notions of
“my” before another word, left-over parentheses, dashes, square brackets,
hashtags, stars and slashes.

2. Transform all programmatic cases (snake case, camel case etc.) into space-
separated text in order to reflect running texts as best as possible.

20

3. Replace abbreviations for implementation, reference, and the ampersand
for their written-out version.

4. Remove duplicate spaces.

5. Remove all entries that contain non-Latin characters.

Because the collection of UML models are multi-lingual, the last cleaning
step is to remove all non-English files from the dataset. For this, we use fast-
Text’s language identification model [44].

As an alternative way to get frequencies from model files, the Lindholmen
Dataset of UML Models was considered. This dataset contains files extracted
from GitHub, with a focus on the development of software projects [37]. How-
ever, even though this is a valuable resource for this field, this particular focus
is not fitting for this thesis because it does not satisfy Sub-objective 1: require-
ments in any context and any system should be supported. Therefore, we only
use the GenMyModel dataset, but a transformed version of this dataset with
exactly the same preprocessing steps as described in this section can be found
in the repository of this project on GitHub.

The end result is a list of 908,946 English-language classes, of which 180,429
are unique, and 1,232,355 attributes, of which 203,154 are unique.

For example, the word ‘address’ appears 21,845 times as an attribute, and
1,287 times as a class. This results in a total amount of occurences of 23,132.
When extending the training data with this data, every time we use the token
‘address’, it will have the triplet (21845, 1287, 23132) added to it.

21

4 System implementation

The preprocessing pipeline as described in this thesis is implemented as part of
the Prose to Prototype project to prove its effectiveness in real-world scenarios.
The Prose to Prototype project aims to investigate how textual requirements
documents can be processed with NLP techniques to map them to UML mod-
els. The main focus of the project is to allow for all types of textual expressions
of requirements to be modelled automatically, or with a human-in-the-loop ap-
proach, resulting in sets of UML diagrams. Additionally, the project aims to
synthesise these models with the goal of executing them as prototypes imme-
diately [80]. Currently, the project is still in its prototype phase and therefore
not yet publicly available.

The pipeline is the first step of the journey of going from requirements text
to executable UML models within the project and aids the use case, class and
activity modelling modules of the project, which make use of the output of the
preprocessing in this thesis.

In addition to this integration, the code that powers the complete pipeline,
including the produced datasets, models and experiments is on GitHub for ref-
erence.

4.1 Implementation details

The Prose to Prototype project consists of two parts: the Backend and the
Editor. The Backend handles data storage and machine learning operations,
while the Editor handles user interactions and provides the user with informa-
tion about the project. The Backend and the Editor communicate through a
RESTful API, allowing the technological stacks to be different for each part.

Both the Editor and Backend run in Docker containers, isolated environ-
ments that package the applications and manage their lifecycles, allowing for
quick and easy deployment [2].

4.1.1 The Backend

The Backend consists of a Django application in Python 3, exposing API routes
to interact with the data model of the preprocessing pipeline, but also powering
the generation of activity, use case and class diagrams, and creating running
prototypes.

In this project, the existing API was extended by introducing a new archi-
tecture to manage the creation of diagrams. A class model showing this new
architecture is shown in Figure

To allow for compartmentalization of the requirements engineering process,
a user can create a project, which holds one or more requirements documents to
store the general requirements. In practice, requirements documents are often
documents with more than 20 pages, describing software in general. Therefore,
we introduce the notion of a system: a certain subselection of requirements from
the main requirements document that allows for compartmentalization of the
modelling process. A project can have many systems, each describing a certain
part of the document. A user can define this subset by selecting entities in the
main requirements document that are of interest for the system, together with
a selection of UML models that the user wants to create for the system. As a

22

https://github.com/MeMartijn/text2uml

RequirementsDocument Project
id id
ontains———14 o eated on oz has 1 created_on
content title
description
| i
contains
1 0.t o
EntitySet RequirementsSubset System Diagram
id id id id
created_on created_on 1..*——creates 11 created_on created_on
entities uml_type title uml_type
‘ content uml_types metadata

1

EntitySubset
id
1. creates.

0..*1 created_on

entities

Figure 7: A class diagram showing a high-level structure of the Prose to Proto-
type system.

result, up to three requirements subsets are generated per system: one for each
of the UML types that are currently supported, holding the content describing
only the entities that the user has defined.

These requirements subsets are then used in the UML generation and extrac-
tion processes for each of the different UML types, which are already present in
the Prose to Prototype project. In this research, these extraction and genera-
tion processes have remained largely untouched, except for the implementation
of the metadata extraction based on the CRF models introduced in this thesis
in the class model extractor.

4.1.2 The Editor

The Editor is created with React.js, a JavaScript library for building user in-
terfaces [3], in combination with TypeScript, an extension of JavaScript for
creating a more stable environment due to user-defined type definitions [4]. For
the purpose of reusability, the project makes use of IBM’s Carbon Components
library, which contains common components that keep the amount of code that
has to be written to create new functionalities to a minimum [1]. This tech-
nological stack was chosen so that there is a stable and modern development
workflow, allowing the project to grow and mature further in the future, even
when new research projects add to it.

During this research, several web pages have been added to the Editor to
facilitate interaction with the preprocessing pipeline. Screenshots of these web
pages can be found in Appendix [B. The general user flow is as follows: a user
finds the landing page (Figure and clicks the button to get the process
started. Then, the user is taken into a three-part process.

First, they can decide to choose an existing Project if the user has created
one before (Figure , or the user can click a button to create a new Project.
For creating a new Project, the user has to fill in a project name, description,
and requirements have to be provided. These requirements can either be written
in a textbox, or the user can upload a plaintext file, or an audio file, which is
converted into plaintext. Once the user is satisfied with the content of the

23

Project, the user can continue to step 2: creating a new System (Figure .

As stated earlier, a System contains a subselection of the requirements, fo-
cused on specific entities of interest and UML types. From the requirements
text that has been filled in by the user in the previous text, the preprocessing
pipeline extracts entities. Here, the user can select some of the detected entities
that they are interested in to proceed with automatic modelling. After choosing
a name for the System and picking entities of interest and UML types, the user
proceeds to the final step: reviewing the extraction (Figure .

In this last step, the subsets of the requirements are shown to the user for
each of the selected UML types, together with the generated metadata from
the pipelines for the generation of each of the diagrams. Dedicating a step
to reviewing the extraction allows the user to go back in the process via the
navigation elements at the bottom of each of the preprocessing steps and change
certain inputs to tune the end result.

After reviewing the extraction, the visual diagrams are generated, and the
user is redirected to a built-in UML editor, where they can change, extend and
improve the generated models. Next to that, the system has the capability of
generating a runnable prototype of a system. This is done by taking the created
class model and use it as a database model for a sample web application. In
this generated web application, the user can read and write data to the system
so that they can test out a system and validate it immediately.

24

5 Results

To evaluate the results of our pipeline, we run one text out of our validation
set through the steps outlined above. Where possible, we provide quantitative
results to accompany our qualitative example.

5.1 Entity-based summarization

The contents of the validation text are shown in Figure The named entity
extraction model discovers the following entities in this text: small truck trailer,
rental office, vehicle various type truck, customer, customer ready possession,
vehicle, rented vehicle, central office, office, single home office, different type
vehicle, truck, individual customer, individual, company, home, driver, single
individual company, more vehicle, truck trailer and open trailer.

The results of selecting the entities customer, vehicle and truck for the entity-
based summarization are also shown in Figure |8 The selected text is displayed
in green, the discarded text is not highlighted. Because of our efforts of grouping
(semi-)duplicate entities together, we achieve good qualitative results in this step
for this sample text, allowing the user to effectively select parts of the system for
further modelling while keeping in mind the user experience by not presenting
the complete list of detected entities in the text.

5.2 Structural filtering

In Figure[9] the filtered output texts of the first step of the pipeline are shown.
The usage of a broad range of rules for the class text results in the longest text
of the three (a). Due to the limitations of the use of keywords to find sentences
related to processes, the activity text only consists of two sentences. Finally,
our rules result in a use case text that contains sentences that always involve
an actor in an active way, giving us a satisfactory result overall.

To provide a benchmark for future research, we have labelled all sentences
in our validation set with the type of modelling the sentence is useful for. This
validation set comprises 5 texts, which can be found in Appendix[A] As displayed
in Table [3| each text has a main focus, but we also labelled each sentence for

The Right-Way Rental Truck Company rents small moving trucks and trailers for local and one-way usage. We have 347 rental offices
across the western United States. Our rental stock includes a total of 5,780 vehicles including various types of trucks and trailers. We need
to implement a system to track our rental agreements and our vehicle assignments. Each rental office rents vehicles that they have in stock
to customers ready to take possession of the vehicle. We don't take reservations, or speculate on when the customer will return rented
vehicles. The central office oversees the vehicle distribution, and directs transfers of vehicles from one rental office to another. Each rental
office has an office name like “Littleton Right-Way”. Each office also has a unique three digit office number. We also keep each office’s
address. Each office is a home office for some of our vehicles, and each vehicle is based out of a single home office. Each vehicle has a
vehicle id, state of registration, and a license plate registration number. We have five different types of vehicles: 36 trucks, 24’ trucks, 10"
trucks, 8’ covered trailers, and 6’ open trailers. Yes, we do have a vehicle type code. For all our vehicles, we need to track the last
i date, and expiration date of its registration. For our trucks, we need to know the current odometer reading, the gas tank

capacity, and whether or not it has a working radio. For long moves, customers really prefer a radio. We log the current mileage just before
we rent a truck, and then again when it is returned. Most of our rental are for indivi but a rental can
either be for an individual or for a company. We do rent a small percentage of our trucks to companies. We assign each company an
identifying company number and track the company’s name and address. No, we don't need to worry about any additional information
about a company. Our corporate sales group handles all that i i For each indivi we record the
customer’s name, home phone, address, and driver’s license state, number, and expiration date. We like to keep track of all our

If a customer a vehicle, it, or didn’t fully pay the bill, then we tag the customer as a poor risk, and won't
rent to that customer again. We only allow a single individual or company for a given rental agreement, and we write a separate rental
agreement for each vehicle. Yes, we do have customers rent two or more vehicles at the same time. Each rental agreement is identified by
the originating rental office number and a rental agreement number. We also need to track the rental date, the anticipated duration of the
rental, the originating rental office, the drop-off rental office, the amount of the deposit paid, the quoted daily rental rate, and the quoted
rate per mile. Of course for the trailers, there isn't a mileage charge. No, we don’t need to automate the financial side of our business, just
our rental agreement tracking and vehicle assignment functions.

Figure 8: Applying the entity-based extractive summarization step on the vali-
dation text.

25

Each rental office rents vehicles that they
have in stock to customers ready to take
possession of the vehicle.

We don't take reservations or speculate on
when the customer will return rented
vehicles.

The central office oversees the vehicle
distribution and directs transfers of vehicles

We don't take reservations or speculate on
when the customer will return rented
vehicles.

If a customer damaged a vehicle,
abandoned it, or didn't fully pay the

bill, then we tag the customer as a poor risk,
and won't rent to that

customer again.

We don't take reservations or speculate on
when the customer will return rented
vehicles.

For long moves, customers really prefer a
radio.

If a customer damaged a vehicle,
abandoned it, or didn't fully pay the

bill, then we tag the customer as a poor risk,

and won't rent to that

customer again.

Yes, we do have customers rent two or more
vehicles at the same time.

from one rental office to another.

Each office is a home office for some of our
vehicles, and each vehicle is based out of a
single home office.

Each vehicle has a vehicle id, state of
registration, and a license plate registration
number.

For all our vehicles, we need to track the last
maintenance date and expiration date of its
registration.

If a customer damaged a vehicle,
abandoned it, or didn't fully pay the bill, then
we tag the customer as a poor risk, and
won't rent to that customer again.

(a) Class text. (b) Activity text. (c) Use case text.
Figure 9: Applying the structural filtering step on the summarized text to create

3 ‘buckets’.

which type of modelling it is useful. The validation set contains 145 sentences,
and each sentence can be labelled as useful for more than one type of modelling.
The length of the texts is between 300 and 549 words, and they span a range
of industries in order to make the findings of this research applicable to a large
number of scenarios.

Even though this is only a small collection, we show the classification result
in Table |4 Because we want to be able to effectively use the filtering rules to
take out positive cases, we look at the recall on the “useful* classes. Unfortu-
nately, the recall here is relatively low. For the rules for class models and use
case models, this can be explained by the difference in sparsity of useful infor-
mation between the training set and the validation set: in the validation set,
very focused texts with lots of useful information is present, while the training
data on which the rules are based has a relatively low amount of useful infor-
mation, resulting in highly specific rules to catch sparse patterns. For the rules
for activity models, we can observe that only using the keywords defined by
Friedrich et al. [30] and Ferreira [29] do not result in a satisfying performance.

5.3 Metadata tagging

Table [5] displays all gathered classification results of the trained CRF model on
the validation set. The scores are displayed in four stages in order to approxi-

Title Word count | Modelling focus
Dental clinic 300 Class, activity
Restaurant 549 Class, activity, use case
Observations on geological samples | 413 Class, activity

Law firm 494 Class

Rental truck company 520 Class, activity

Table 3: An overview of characteristics of the used requirements texts in the
validation set.

26

Precision | Recall | Fl-score | Support | Accuracy
Useful for class modelling 0.79 0.56 0.66 110 0.56
Not useful for class modelling 0.28 0.54 0.37 35 ’
Useful for activity modelling 0.60 0.41 0.49 22 0.87
Not useful for activity modelling 0.90 0.95 0.92 123 ’
Useful for use case modelling 0.38 0.44 0.41 27 0.76
Not useful for use case modelling 0.87 0.83 0.85 118 '

Table 4: Classification scores of the structural filtering step.

mate the influence of each group of features on the end result. For each training
stage, we tuned the hyperparameters cl and c¢2 using randomized search. The
first stage entailed a minimal training setup: we trained the CRF model us-
ing our base features, which only included the base information for each token
(POS tag, dependency relation, supersense, entity type, entity category, sur-
rounding words and POS tags, etc.). In the second stage, we added information
from the GenMyModel dataset: training was conducted on the base information
in combination with the frequency of occurrences of the token in the GenMy-
Model dataset, and how many of those occurrences were labelled as classes or
attributes. The third stage combined the base information with fastText em-
beddings for each token. Finally, in the last stage, all of the additional features
were combined.

By default, the training materials were sparse in terms of classes and at-
tributes as compared to the validation materials. As a result, the related F1
scores are generally not very high and differ only slightly between the four differ-
ent test scenarios. As is often the case in machine learning, we can observe that
having more data results in the best performance: all features combined gives
the best scores across the board. Only frequencies alone score slightly higher,
and only on the B-class tag. Frequencies and embeddings separately hardly
pass the default experimental set-up in performance, indicating that a histori-
cal lookup still requires context-level information for disambiguating aspects of
class models in requirements texts.

To finalize the qualitative evaluation of the validation text, we display the
results of running the class text from the previous step through the model in

B-class | I-class | B-attr | I-attr
Precision | 0.622 0.382 0.681 0.722
Default Recall 0.473 0.310 0.320 0.361
F1l-score | 0.537 0.342 0.435 0.481
Precision | 0.627 0.382 0.721 0.792
With frequencies Recall 0.496 0.310 0.310 0.352
Fl-score | 0.554 0.342 0.434 0.487
Precision | 0.608 0.353 0.681 0.750
With embeddings Recall 0.457 0.286 0.320 0.361
Fl-score | 0.522 0.316 0.435 0.487
Precision | 0.633 0.394 0.744 0.750
Everything combined | Recall 0.481 0.310 0.320 0.361
Fl-score | 0.546 0.347 0.448 0.487

Table 5: Classification scores for the CRF model in the final step of the pipeline.

27

Each rental office rents vehicles that they have in stock to customers ready to take possession of the vehicle.

We don't take reservations or speculate on when the customer will return rented vehicles.

The central office oversees the vehicle distribution and directs transfers of vehicles from one rental office to another.
Each office is a home office for some of our vehicles, and each vehicle is based out of a single home office.

Each vehicle has a vehicle id, State of registration, and a license plate registration number.

For all our vehicles, we need to track the last maintenance date and expiration date of its registration.

If a customer damaged a vehicle, abandoned it, or didn't fully pay the bill, then we tag the customer as a poor risk, and
won't rent to that customer again.

Figure 10: Applying the metadata tagging step on the validation text.

Figure This is the result of using the full feature set, so with frequencies
and embeddings. The blue highlighted groups are classified as classes and the
purple highlighted groups are classified as attributes.

The most important classes, such as the customer class and the vehicle
class, are consistently classified the right way throughout the text. However,
the model does not accommodate for less common classes. For example, in the
second sentence, we would expect “reservations” to also be a class. Next to
that, it seems that attributes listed in a sentence structure that deviates from
the standard format “each <class> has a <enumeration of attributes>" are not
picked up by the model.

To conclude, from a quantitative point of view, the model seems to perform
best when there is information about historical occurrences and word embed-
ding, but the F1 scores are not satisfactory. From a qualitative point of view, it
seems like the model performs its basic functions well and offers a good basis for
adjusting the outcomes of the classification downstream. Especially considering
the user has plenty of options to adjust the model outcome downstream, we can
safely say the system is usable even with the relatively low F1 scores.

28

6 Conclusion

6.1 Main findings

In previous sections, this paper laid out a pipeline for preprocessing real-world
requirements texts into structured texts for the purpose of generating class,
activity, and use case models, including metadata for class modelling specifically.

We defined four sub-objectives for the development of the pipeline. Sub-
objective 1 focused on the ability to preprocess systems in any context. The
entity-based extractive summarization method developed in this thesis allows
a user to select entities of interest. These entities are extracted in a context-
agnostic way, and can therefore be applied in any circumstance. In the end, with
this pipeline, the user is responsible for selecting entities that are of interest,
and we can assume that the user selects entities that are useful for the specific
context of the UML model. As an alternative to the CATS model that we
experimented with in the beginning, but which was unable to function in a
production environment, we used the entity extraction model of the BookNLP
package to replicate the same effect in an extractive approach. We ended up
with a method that is predictable and easily tunable by the end user, which
shows good qualitative results.

Sub-objective 2 focused on the ability to find and recognize patterns for
bucketing texts for specific UML models. Our approach combines findings in
research with linguistic techniques such as supersenses and syntax dependencies
to define patterns that are useful for determining for which type of UML model a
sentence is useful. The main challenge of this step was bridging the gap between
the sparse PURE dataset, which formed the basis for our rules, and the dense
validation set. This gap resulted in subpar recall scores. However, because of
the interpretable nature of the rules, we ended up with a method that allows
for easy extension of the rules in the future.

Sub-objective 3 focused on the application of novel machine learning and
NLP techniques to generate metadata. To develop our class model metadata
extractor, we created a novel dataset of classes and attributes, and the classifi-
cation results provide both a model for future development of metadata models,
but also put out a benchmark for the classification task of distinguishing classes
and attributes in running texts.

Lastly, sub-objective 4 focused on the option of human intervention in the
output of the preprocessing pipeline. Through the developed interface and the
summarization where user interaction lies at its core, the user can freely control
both the input and output of the preprocessing pipeline and tweak results before
even generating a visual diagram.

To conclude, our experimental results set a benchmark for future work, pro-
vide new training material, and provide a new direction of methods for the
analysis of requirements texts, including the novel use of entity extraction to
gather entities of interest for UML modelling. Next to that, this paper forms
a basis for a more uniform approach to preprocessing requirements texts, with
the goal of advancing research in this area.

29

6.2 Future work

Looking at the limitations of our research, future work is needed on automati-
cally locating parts of requirements texts that are useful for systems design. We
especially see opportunities in a more context-aware method of distinguishing
classes and attributes from each other, but more research on the difference be-
tween classes and attributes on the word level is also welcomed. Furthermore,
the preprocessing pipeline developed in this thesis is focused on “traditional” re-
quirements engineering. However, the business environment is rapidly changing,
challenging these approaches, and favouring agile methods in certain industries,
such as software development [15]. With agile methods, user stories are often-
times used to communicate system requirements. These user stories are written
on a value level, as opposed to a type level which is currently supported in
the pipeline. Support for user stories in this pipeline should be explored, al-
lowing for example to go from “as a user, I want my aeroplane to be pink” to
“the aeroplane has a colour”. To conclude, the lack of datasets on this topic
remains a limitation for future research. Even though considerable work went
into creating labelled datasets to support this thesis, independent validation of
our data, or extension of this work into, for example, attributes and methods
versus classes and subclasses would be a valuable addition to this research.

30

References

1]

[2]

[12]

[13]

[14]

[15]

Carbon Design System. https://carbondesignsystem.com/. Accessed:
2022-05-29.

Docker overview. https://docs.docker.com/get-started/overview/|
Accessed: 2022-05-29.

React.js: A JavaScript library for building user interfaces. https:
//reactjs.org/. Accessed: 2022-05-29.

TypeScript: JavaScript with syntax for types. https://www.
typescriptlang.org/. Accessed: 2022-05-29.

Ben Athiwaratkun, Andrew Gordon Wilson, and Anima Anandkumar.
Probabilistic fasttext for multi-sense word embeddings. arXiv preprint
arXiw:1806.02901, 2018.

Seyed Ali Bahrainian, George Zerveas, Fabio Crestani, and Carsten Eick-
hoff. CATS: Customizable Abstractive Topic-based Summarization. ACM
Transactions on Information Systems, 2021.

David Bamman. Booknlp, a natural language processing pipeline for
books. https://github.com/booknlp/booknlp, 2021.

Wahiba Ben Abdessalem Karaa, Zeineb Ben Azzouz, Aarti Singh, Nilan-
jan Dey, Amira S. Ashour, and Henda Ben Ghazala. Automatic builder
of class diagram (abcd): an application of uml generation from functional
requirements. Software: Practice and Experience, 46(11):1443-1458, 2016.

Paheli Bhattacharya, Kaustubh Hiware, Subham Rajgaria, Nilay Pochhi,
Kripabandhu Ghosh, and Saptarshi Ghosh. A comparative study of sum-
marization algorithms applied to legal case judgments. In Furopean Con-
ference on Information Retrieval, pages 413-428. Springer, 2019.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. arXiv preprint
arXiv:1607.04606, 2016.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the
Association for Computational Linguistics, 5:135-146, 2017.

Grady Booch. The unified modeling language user guide. Pearson Educa-
tion India, 2005.

Egon Borger, Alessandra Cavarra, and Elvinia Riccobene. An asm seman-
tics for uml activity diagrams. In International Conference on Algebraic
Methodology and Software Technology, pages 293-308. Springer, 2000.

John W Brackett. Software requirements. Technical report, Carnegie-
Mellon University Software Engineering Institute, 1990.

Lan Cao and Balasubramaniam Ramesh. Agile requirements engineering
practices: An empirical study. IFEE software, 25(1):60-67, 2008.

31

https://carbondesignsystem.com/
https://docs.docker.com/get-started/overview/
https://reactjs.org/
https://reactjs.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://github.com/booknlp/booknlp

[16]

[17]

[18]

[19]

[20]

[21]

[24]

[25]

[26]

[27]

Silvia Casola and Alberto Lavelli. Summarization, simplification, and
generation: The case of patents. arXiv preprint arXiv:2104.14860, 2021.

Jayeeta Chanda, Ananya Kanjilal, Sabnam Sengupta, and Swapan Bhat-
tacharya. Traceability of requirements and consistency verification of uml
use case, activity and class diagram: A formal approach. In 2009 Pro-
ceeding of International Conference on Methods and Models in Computer

Science (ICM2CS), pages 1-4. IEEE, 20009.

Fan Chen, Christophe De Vleeschouwer, and Andrea Cavallaro. Resource
allocation for personalized video summarization. IEEE Transactions on
Multimedia, 16(2):455-469, 2013.

Anton Chernyavskiy, Dmitry Ilvovsky, and Preslav Nakov. Transformers:”
the end of history” for nlp? arXiv preprint arXiv:2105.00813, 2021.

Abdelghani Dahou, Shengwu Xiong, Junwei Zhou, Mohamed Houcine
Haddoud, and Pengfei Duan. Word embeddings and convolutional neural
network for arabic sentiment classification. In Proceedings of coling 2016,
the 26th international conference on computational linguistics: Technical
papers, pages 24182427, 2016.

B Davis et al. The role of cnl and amr in scalable abstractive summariza-
tion for multilingual media monitoring. In Controlled Natural Language:
5th International Workshop, CNL 2016, Aberdeen, UK, July 25-27, 2016,
Proceedings, volume 9767, page 127. Springer, 2016.

Bjorn Decker, Eric Ras, Jorg Rech, Pascal Jaubert, and Marco Rieth.
Wiki-based stakeholder participation in requirements engineering. IEEFE
software, 24(2):28-35, 2007.

Deva Kumar Deeptimahanti and Muhammad Ali Babar. An automated
tool for generating uml models from natural language requirements. In
2009 IEEE/ACM International Conference on Automated Software Engi-
neering, pages 680-682. IEEE, 2009.

Deva Kumar Deeptimahanti and Ratna Sanyal. Semi-automatic genera-
tion of uml models from natural language requirements. In Proceedings of
the 4th India Software Engineering Conference, pages 165-174, 2011.

Ryan Dubnicek, Ted Underwood, and J Stephen Downie. Creating a dis-
ability corpus for literary analysis: Pilot classification experiments. iCon-
ference 2018 Proceedings, 2018.

Meryem Elallaoui, Khalid Nafil, and Raja Touahni. Automatic transfor-
mation of user stories into uml use case diagrams using nlp techniques.
Procedia computer science, 130:42—49, 2018.

Andre Esteva, Anuprit Kale, Romain Paulus, Kazuma Hashimoto, Wen-
peng Yin, Dragomir Radev, and Richard Socher. Covid-19 information
retrieval with deep-learning based semantic search, question answering,
and abstractive summarization. NPJ digital medicine, 4(1):1-9, 2021.

32

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. Pure: A
dataset of public requirements documents. In 2017 IEEE 25th Interna-
tional Requirements Engineering Conference (RE), pages 502-505, 2017.

Renato César Borges Ferreira, Lucinéia Heloisa Thom, and Marcelo Fanti-
nato. A semi-automatic approach to identify business process elements in
natural language texts. In ICEIS (3), pages 250-261, 2017.

Fabian Friedrich, Jan Mendling, and Frank Puhlmann. Process model gen-
eration from natural language text. In International Conference on Ad-
vanced Information Systems Engineering, pages 482—496. Springer, 2011.

David Garlan. Software engineering in an uncertain world. In Proceedings
of the FSE/SDP workshop on Future of software engineering research,
pages 125-128, 2010.

Christian Gulden, Melanie Kirchner, Christina Schiuttler, Marc Hinderer,
Marvin Kampf, Hans-Ulrich Prokosch, and Dennis Toddenroth. Extrac-
tive summarization of clinical trial descriptions. International journal of
medical informatics, 129:114-121, 2019.

Sarita Gulia and Tanupriya Choudhury. An efficient automated design to
generate uml diagram from natural language specifications. In 2016 6th

international conference-cloud system and big data engineering (Conflu-
ence), pages 641-648. IEEE, 2016.

Ashok Kumar Gupta Gupta and Aziz Deraman. A framework for software
requirement ambiguity avoidance. International Journal of Electrical and
Computer Engineering, 9(6):5436, 2019.

Zahra Abdulkarim Hamza and Mustafa Hammad. Generating uml use case
models from software requirements using natural language processing. In
2019 8th International Conference on Modeling Simulation and Applied
Optimization (ICMSAO), pages 1-6. IEEE, 2019.

Harmain Mohamed Harmain and R Gaizauskas. Cm-builder: an auto-
mated nl-based case tool. In Proceedings ASE 2000. Fifteenth IEEE In-
ternational Conference on Automated Software Engineering, pages 45-53.

IEEE, 2000.

Regina Hebig, Truong Ho Quang, Michel RV Chaudron, Gregorio Robles,
and Miguel Angel Fernandez. The quest for open source projects that use
uml: mining github. In Proceedings of the ACM/IEEFE 19th International

Conference on Model Driven Engineering Languages and Systems, pages
173-183, 2016.

Jonathan Herzig, Michal Shmueli-Scheuer, and David Konopnicki. Emo-
tion detection from text via ensemble classification using word embed-
dings. In Proceedings of the ACM SIGIR international conference on
theory of information retrieval, pages 269-272, 2017.

33

[39]

[46]

[47]

[48]

[49]

Matthew Honnibal and Mark Johnson. An improved non-monotonic tran-
sition system for dependency parsing. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1373—
1378, Lisbon, Portugal, September 2015. Association for Computational
Linguistics.

Usama Igbal and Imran Sarwar Bajwa. Generating uml activity diagram
from sbvr rules. In 2016 Sizth International Conference on Innovative
Computing Technology (INTECH), pages 216-219. IEEE, 2016.

Rubén Izquierdo, Armando Sudrez, and German Rigau. Using semantic
classes as document keywords. In International Conference on Application
of Natural Language to Information Systems, pages 225-229. Springer,
2011.

Ivar Jacobson. Basic use-case modeling (continued). The Road to the
Unified Software Development Process, 18:183, 2000.

Ivar Jacobson, Ian Spence, and Brian Kerr. Use-case 2.0. Communications
of the ACM, 59(5):61-69, 2016.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759, 2016.

Mohamad Kassab, Colin Neill, and Phillip Laplante. State of practice
in requirements engineering: contemporary data. Innovations in Systems
and Software Engineering, 10(4):235-241, 2014.

Karin Kipper, Anna Korhonen, Neville Ryant, and Martha Palmer. Ex-
tending verbnet with novel verb classes. In LREC, pages 1027-1032, 2006.

Frans Knibbe and Alejandro Llaves. Spatial Data on the Web Use Cases
& Requirements: W3C Working Group Note 25 October 2016. https:
//www.w3.org/TR/sdw-ucr/#0bservationsOnGeologicalSamples. Ac-
cessed: 2021-11-08.

Deeptimahanti Deva Kumar and Ratna Sanyal. Static uml model gener-
ator from analysis of requirements (sugar). In 2008 Advanced Software
Engineering and Its Applications, pages 77-84. IEEE, 2008.

Mathias Landh&ufler, Sven J Korner, and Walter F Tichy. From require-
ments to uml models and back: how automatic processing of text can
support requirements engineering. Software Quality Journal, 22(1):121-
149, 2014.

Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In
Proceedings of the 52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 302-308, 2014.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel-
rahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer.
BART: denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. CoRR, abs/1910.13461, 2019.

34

https://www.w3.org/TR/sdw-ucr/#ObservationsOnGeologicalSamples
https://www.w3.org/TR/sdw-ucr/#ObservationsOnGeologicalSamples

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Elizabeth D Liddy. Natural language processing. In Encyclopedia of Li-
brary and Information Science, 2nd Ed. Marcel Decker, Inc., 2001.

Yanyan Lin and Jieping Lu. Research on domain terminology recognition
based on dependency tree-conditional random field. In Journal of Physics:
Conference Series, volume 1213, page 052076. IOP Publishing, 2019.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong Sun. Topical word
embeddings. In Twenty-ninth AAAI conference on artificial intelligence,
2015.

Philipp Lombriser, Fabiano Dalpiaz, Garm Lucassen, and Sjaak
Brinkkemper. Gamified requirements engineering: model and experimen-
tation. In International Working conference on requirements engineering:
foundation for software quality, pages 171-187. Springer, 2016.

José Antonio Hernandez Loépez and Jesis Sanchez Cuadrado. Mar: a
structure-based search engine for models. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems, pages 57-67, 2020.

Abdelsalam M. Maatuk and Esra A. Abdelnabi. Generating uml use case
and activity diagrams using nlp techniques and heuristics rules. In In-
ternational Conference on Data Science, E-learning and Information Sys-
tems 2021, pages 271-277, 2021.

Sean MacAvaney, Sajad Sotudeh, Arman Cohan, Nazli Goharian, Ish Ta-
lati, and Ross W Filice. Ontology-aware clinical abstractive summariza-
tion. In Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 1013-1016,
2019.

Andrés Alejandro Ramos Magna, Héctor Allende-Cid, Carla Taramasco,
Carlos Becerra, and Rosa L Figueroa. Application of machine learning
and word embeddings in the classification of cancer diagnosis using patient
anamnesis. leee Access, 8:106198-106213, 2020.

Dian Sa’adillah Maylawati, Muhammad Ali Ramdhani, and Ab-
dusy Syakur Amin. Tracing the linkage of several unified modelling lan-
guage diagrams in software modelling based on best practices. Inter-
national Journal of Engineering & Technology (UEA), 7(2.19):776-780,
2018.

Matthew John McGill. Uml class diagram syntax: An empirical study of
comprehension. 2001.

Kaiz Merchant and Yash Pande. NLP based latent semantic analysis for
legal text summarization. In 2018 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), pages 1803~
1807. IEEE, 2018.

Farid Meziane, Nikos Athanasakis, and Sophia Ananiadou. Generating
natural language specifications from uml class diagrams. Requirements
Engineering, 13(1):1-18, 2008.

35

[64]

[65]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

George A Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39-41, 1995.

Priyanka More and Rashmi Phalnikar. Generating uml diagrams from
natural language specifications. International Journal of Applied Infor-
mation Systems, 1(8):19-23, 2012.

Robert J Muller. Database design for smarties: using UML for data
modeling. Morgan Kaufmann, 1999.

Chamitha Ramal Narawita and Kaneeka Vidanage. UMI generator —use
case and class diagram generation from text requirements. International
Journal on Advances in ICT for Emerging Regions (ICTer), 10:1, 1 2018.

Ibrahim N Nassar and Faisal T Khamayseh. Constructing activity dia-
grams from arabic user requirements using natural language processing
tool. In 2015 6th International Conference on Information and Commu-
nication Systems (ICICS), pages 50-54. IEEE, 2015.

Bashar Nuseibeh. Weaving together requirements and architectures. Com-
puter, 34(3):115-119, 2001.

Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: a
roadmap. In Proceedings of the Conference on the Future of Software
Engineering, pages 35-46, 2000.

Brendan O’Connor and Michael Heilman. Arkref: A rule-based corefer-
ence resolution system. arXiv preprint arXiv:1310.1975, 2013.

Scott P Overmyer, L Benoit, and R Owen. Conceptual modeling through
linguistic analysis using lida. In Proceedings of the 23rd International
Conference on Software Engineering. ICSE 2001, pages 401-410. IEEE,
2001.

Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engi-
neering and agile software development. In WET ICE 2003. Proceedings.
Twelfth IEEFE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, 2003., pages 308-313. IEEE, 2003.

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced
model for abstractive summarization. arXiv preprint arXiv:1705.04304,
2017.

Ru Peng, Zhitao Chen, Tianyong Hao, and Yi Fang. Neural machine
translation with attention based on a new syntactic branch distance. In
China Conference on Machine Translation, pages 47-57. Springer, 2019.

Hector G Perez-Gonzalez and Jugal K Kalita. Gooal: a graphic object
oriented analysis laboratory. In Companion of the 17th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications, pages 38-39, 2002.

Tommaso Petrolito and Francis Bond. A survey of wordnet annotated
corpora. In Proceedings of the Seventh Global WordNet Conference, pages
236—245, 2014.

36

[78]

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

Rob Pooley and Peter King. The unified modelling language and perfor-
mance engineering. IEE Proceedings-Software, 146(1):2-10, 1999.

Guus Ramackers. Personal communication.

Guus Ramackers, Pepijn Griffioen, Martijn Schouten, and Michel Chau-
dron. From Prose to Prototype: Synthesising Executable UML Models
from Natural Language. In Proceedings of the 23rd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems,
pages 380-389, 2021.

Gianna Reggio, Maurizio Leotta, Filippo Ricca, and Diego Clerissi. What
are the used uml diagrams? a preliminary survey. EESSMOD@ MoDELS,
1078(10), 2013.

Rob Roggema. Research by design: Proposition for a methodological
approach. Urban science, 1(1):2, 2016.

Safdar Aqeel Safdar, Muhammad Zohaib Igbal, and Muhammad Uzair
Khan. Empirical evaluation of uml modeling tools—a controlled experi-
ment. In European Conference on Modelling Foundations and Applica-
tions, pages 33-44. Springer, 2015.

Igor Santos, Nadia Nedjah, and Luiza de Macedo Mourelle. Sentiment
analysis using convolutional neural network with fasttext embeddings. In
2017 IEEE Latin American conference on computational intelligence (LA-
CCI), pages 1-5. IEEE, 2017.

Prathusha K Sarma, Yingyu Liang, and William A Sethares. Domain
adapted word embeddings for improved sentiment classification. arXiv
preprint arXiv:1805.04576, 2018.

Max Savery, Asma Ben Abacha, Soumya Gayen, and Dina Demner-
Fushman. Question-driven summarization of answers to consumer health
questions. Scientific Data, 7(1):1-9, 2020.

G Michael Schneider, Johnny Martin, and Wei-Tek Tsai. An experimental
study of fault detection in user requirements documents. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 1(2):188-204,
1992.

Nathan Schneider and Noah A Smith. A corpus and model integrating
multiword expressions and supersenses. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1537-1547, 2015.

Martijn B.J. Schouten, Guus J. Ramackers, and Suzan Verberne. Pre-
processing Requirements Documents for Automatic UML Modelling. In
Proceedings of the 27th International Conference on Natural Language &
Information Systems. Springer Nature, 2022.

Richa Sharma, Pratyoush K Srivastava, and Kanad K Biswas. From nat-
ural language requirements to uml class diagrams. In 2015 IEEE Second
International Workshop on Artificial Intelligence for Requirements Engi-
neering (AIRE), pages 1-8. IEEE, 2015.

37

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Keng Siau and Lihyunn Lee. Are use case and class diagrams comple-
mentary in requirements analysis? an experimental study on use case and
class diagrams in uml. Requirements engineering, 9(4):229-237, 2004.

Shafaq Siddiqui, M Abdul Rehman, Sher M Daudpota, and Ahmad
Waqas. Opinion mining: An approach to feature engineering. In-
ternational Journal of Advanced Computer Science and Applications

(IJACSA), 10(3), 2019.

Perdita Stevens. On use cases and their relationships in the unified mod-
elling language. In International Conference on Fundamental Approaches
to Software Engineering, pages 140—155. Springer, 2001.

Milan Straka, Nikita Mediankin, Tom Kocmi, Zdenék Zabokrtsky, Vojtéch
Hudecek, and Jan Hajic. Sumeczech: Large czech news-based summariza-
tion dataset. In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018), 2018.

Tiantian Tang. From natural language to uml class models: An automated
solution using nlp to assist requirements analysis. Master’s thesis, Leiden
University, 2020.

Takuya Uemura, Shinji Kusumoto, and Katsuro Inoue. Function-point
analysis using design specifications based on the unified modelling lan-
guage. Journal of software maintenance and evolution: Research and
practice, 13(4):223-243, 2001.

Eva Vanmassenhove and Andy Way. Supernmt: neural machine transla-
tion with semantic supersenses and syntactic supertags. In Proceedings
of ACL 2018, Student Research Workshop, pages 67-73. Association for
Computational Linguistics (ACL), 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is
all you need. In Advances in neural information processing systems, pages
5998-6008, 2017.

Sriram Venkatapathy, Rajeev Sangal, Aravind Joshi, and Karthik Gali. A
discriminative approach for dependency based statistical machine trans-
lation. In Proceedings of the 4th Workshop on Syntax and Structure in
Statistical Translation, pages 66—74, 2010.

Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki
Maeda. Ace 2005 multilingual training corpus. Linguistic Data Con-
sortium, Philadelphia, 57:45, 2006.

Jeng-Haur Wang, Ting-Wei Liu, Xiong Luo, and Long Wang. An Istm
approach to short text sentiment classification with word embeddings. In
Proceedings of the 30th conference on computational linguistics and speech
processing (ROCLING 2018), pages 214-223, 2018.

William Yang Wang. ”liar, liar pants on fire”: A new benchmark dataset
for fake news detection. arXiv preprint arXiv:1705.00648, 2017.

38

[103]

[104]

[105]

106

[107]

[108]

[109]

Zhengjue Wang, Zhibin Duan, Hao Zhang, Chaojie Wang, Long Tian,
Bo Chen, and Mingyuan Zhou. Friendly topic assistant for transformer
based abstractive summarization. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages
485-497, 2020.

Petia Wohed, Wil MP van der Aalst, Marlon Dumas, Arthur HM ter
Hofstede, and Nick Russell. Pattern-based analysis of the control-flow
perspective of uml activity diagrams. In International Conference on Con-
ceptual Modeling, pages 63—78. Springer, 2005.

Shweta Yadav, Deepak Gupta, Asma Ben Abacha, and Dina Demner-
Fushman. Question-aware transformer models for consumer health ques-
tion summarization. Journal of Biomedical Informatics, 128:104040, 2022.

Xiao Yang, Craig Macdonald, and Tadh Ounis. Using word embeddings in
twitter election classification. Information Retrieval Journal, 21(2):183—
207, 2018.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. Big bird: Transformers for longer sequences,
2021.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus:
Pre-training with extracted gap-sentences for abstractive summarization,

2019.

Didar Zowghi and Zhi Jin. Requirements engineering. Springer, 2011.

39

Appendices

A Validation set of requirements texts

A.1 Dental clinic

The clinic basically schedules patients, provides services for them, and bills them
for those services.

New patients fill out a form listing their name, address, telephone numbers,
allergies, and state of mind prior to scheduling their first appointment. Existing
patients are normally scheduled for their next appointment as they depart from
their current appointment. When the office staff forget to do this, a desk worker
has to call the patient to set up a date. Schedules are entered into a central
appointment book; patient records (including contact information) are kept in
paper files.

Appointments are for one of three procedures: dental hygiene, cavities and
fillings, and oral surgery (including root canals and tooth extractions). For each
procedure the patient needs to be prepared and supplies need to be collected
(e.g., probes, drill bits, cements, resins, etc.). For a hygienist’s appointment,
preparation could be as simple as seating the patient in dental chair and putting
a bib around his or her neck. For oral surgery, anesthesia of various strengths are
normally administered prior to operation. Only for oral surgery procedures is it
necessary to ask the patient to wait for up to twenty minutes before performing
a post-operative check.

Billing is always done by the month, and bills are always sent by mail to
patients’ contact addresses. Checks are received by mail. HMO-funded pa-
tients are asked to make a copayment at the time that they leave the office.
Each patient also generates a reimbursement request to an insurance company.
Insurance companies and HMOs send their checks by mail three months after
receiving a reimbursement request.

The clinic maintains a supplies inventory file that a worker fills out once a
week by physically inspecting each of the three procedures rooms. Supplies and
tools are stored in a standard layout in each room.

A.2 Restaurant

Romano’s is the finest Italian restaurant in the city. Unless you are a celebrity
or a good friend of Romano you will need a reservation. A reservation is made
for a specific time, date and number of people. The reservation also captures the
name and phone number of the person making the reservation. Each reservation
is assigned a unique reservation number. There are two categories of reserva-
tions at Romano’s: individual reservations and banquet reservations. Addi-
tional reservation information captured when an individual makes a reservation
includes seating preference (inside or patio) and smoking preference (smoking or
nonsmoking). Additional reservation information captured for banquet reserva-
tions includes the group name and the method of payment. Seating at Romano’s
is limited. Romano’s has a fixed number of tables. Each table is identified by
a unique table number. Each of the tables is further described by a unique free
form description such as ”located by the North window”, ”located in front of the

40

fountain”, " by the kitchen door”. Each table is classified as a 2-person, 4-person
or 6-person table. When a reservation is made, Romano associates a specific
tald number(s) to the reservation. A table can be utilized many times over
the evening by many reservations. Romano tends to overbook tables. There-
fore, there can be overlapping table reservations. The management structure
at Romano’s is hierarchical. There are several restaurant managers who report
to Romano. The managers are responsible for managing the Maitre’d and the
chefs as well as ensuring that the guests have a pleasant dining experience. The
Maitre’d is responsible for managing the waiters, bartenders and bus personnel.
The Chefs are responsible for managing the cooks and dishwashers. Each person
working for Romano’s must be classified as either a manager, Maitre’d, waiter,
bartender, chef, cook, bus person or dishwasher. Additional information main-
tained by Romano’s for each person includes the persons name, date of birth
and drivers license number. When the reservation party arrives at Romano’s the
reservation is assigned to one waiter. A waiter can be assigned to many reser-
vations during the course of the evening”. The menu at Romano’s is exquisite.
There are many exciting and exotic items. Each menu item is identified by a
unique menu item number. Information maintained by Romano’s for each menu
item includes an item description of (e.g. ”chicken marsala”, ”fish soup”, ”en-
dive salad”,”1988 Merlot wine”, etc.), and item prep time. Each menu item is
classified by Romano’s as ”appetizer”, "entree”, ”dessert” or ”"beverage”. The
price of each menu item can vary based on the time of day. For example, some
of the menu items have different lunch and dinner prices. Some of the menu
items change prices for happy hour. In order to calculate the check at the end
of the dinner, the waiter maintains a list, by reservation number, of the menu
items ordered and the time that the menu item was ordered. In other words,
each reservation can be associated with many menu items and a menu item can
be associated with many reservations. In addition to menu items, Romano’s
maintains a list of the food items that are utilized by the restaurant such as
chicken, mushrooms, bread sticks, red sauce, cream sauce, etc. Food items are
utilized in the preparation of menu items. Each food item-is identified by a
unique food item number.

A.3 Observations on geological samples
Retrieved from [47].

Geological samples are retrieved from the field and then processed in the
laboratory to determine various properties, including chemistry, mineralogy,
age, and petrophysical properties like density, porosity, permeability.

Samples obtained as part of economic activities, such as mineral exploration,
are usually processed in commercial assay and chemistry labs. For QA/QC
purposes, each batch of samples will have a number of control samples inserted,
for which the concentration of particular chemical species are already known.
For confidentiality reasons the location information associated with each sample
is not provided to the lab, but must be re-attached during the interpretation
phase. During processing, many derived samples will be generated by various
physical and chemical procedures. In some cases the derived samples are strict
sub-samples, whose intensive properties are intended to be the same as the
parent. In other cases, the split is ’biased’, with the derived sample intended

41

to select a specific sub-sample, defined by a particular particle size, density,
magnetic properties, etc. The link from the derived sample to the parent sample
must be preserved, and the link from the parent to the location from which it was
obtained also. In some cases the location is associated with another sampling
artifact, such as a drill-hole or traverse or cruise, with the latter carrying the
detailed location information.

In a research context some samples have a particularly high-value, having
been obtained by an expensive process (involving drilling or ships or spacecraft)
or from a location that is hard to visit (remote, offshore, in space). These
samples are sometimes sub-divided and distributed to multiple research teams
or labs for different specialized observations. Each lab will run its own LIMS
system, which will usually assign a local identifier for the sample. When the
results of these observations are reported, it is necessary that observations from
different labs can be correlated with each other, so that the complete picture
around each sample can be assembled.

These stories focus on sensing applications involving ex-situ sampling, where
a location is visited and a specimen obtained using some sampling process, then
transported to one or more laboratories where it is processed into one or more
sub-samples and various observations made. Sample identity is usually key, and
the relationships between samples, between samples and other artifacts of the
sampling process, and also with other geographic features or locations. The
sampling time and analysis and reporting time are all different.

Similar process apply to botanical sampling, and to environmental sampling
(water, air, dust).

A.4 Law firm

Analyst: Do you run into any challenges with international addresses, given the
wide variation in address formats?

AP: Actually, that is a constant source of confusion and pain. We have had
several situations where, due to an incorrect address format, the client did not
receive correspondence.

Analyst: Can you give me some examples of this?

AP: Yes, one happened recently. Sometimes, addresses start with a house
name or number, but some overseas clients put the city or town first. Imagine
the confusion of sending something to Paris which we thought was the city but
was in fact the house name!

The other issue is that overseas zip codes or postal codes, as they are some-
times called, are not always numeric—they can be a combination of numbers
and letters.

Analyst: Tell me about the process when you take on a new client. What
information do you initially record about that person?

AP: Remember, it’s not always an individual; it could be an organization.

Analyst: When it’s an organization, do you always need to know the contact?

AP: Yes, and sometimes there are more than one. For each client or rep-
resentative of an organization, I need to write down their full name and how
they prefer their honorific: Mr., Ms., Mrs., Dr., etc. And of course, their email
address, phone number, and postal address, and sometimes we have a primary
mailing address that could be different from the billing address.

42

Analyst: Could you have a situation where multiple people have the same
address?

AP: This does happen, for example, when we contact different employees in
the same office.

Analyst: What are your other responsibilities, apart from creating cases?

AP: As a case progresses, I need to record all the individuals and organiza-
tions that take part in the case activities and the specific role they play.

Analyst: Is it possible for an individual or organization to participate in
multiple actions or events in different cases?

AP: Yes. Not only that, but some may play different roles within the same
case. For example, the same party can be both the defendant and witness in
the same case.

Analyst: So, what are these different types of roles a party can play?

AP: Plaintiff, witness, defendant, judge, an expert in some field, or an at-
torney.

Analyst: Can your firm’s attorneys or judges be considered as parties to the
case?

AP: Absolutely. And I must record the information about their involvement
as well.

Analyst: Please tell me about events that occur. What information do you
record?

AP: All attorneys and legal assistants record their own activities, which
include the date and time when an activity occurred, a short description, and
a duration, and in the case of witnesses, defendants, and judges, a list of who
was involved. We also need to indicate if this event is billable or not.

Analyst: Is there anything else you record for cases?

AP: Yes, we need to know which documents were used in a case.

A.5 Rental truck company

The Right-Way Rental Truck Company rents small moving trucks and trailers
for local and one-way usage. We have 347 rental offices across the western
United States. Our rental stock includes a total of 5,780 vehicles including
various types of trucks and trailers. We need to implement a system to track
our rental agreements and our vehicle assignments. Each rental office rents
vehicles that they have in stock to customers ready to take possession of the
vehicle. We don’t take reservations, or speculate on when the customer will
return rented vehicles. The central office oversees the vehicle distribution, and
directs transfers of vehicles from one rental office to another.

Each rental office has an office name like “Littleton Right-Way”. Each office
also has a unique three digit office number. We also keep each office’s address.
Each office is a home office for some of our vehicles, and each vehicle is based
out of a single home office.

Each vehicle has a vehicle id, state of registration, and a license plate regis-
tration number. We have five different types of vehicles: 36 trucks, 24’ trucks,
10’ trucks, 8’ covered trailers, and 6’ open trailers. Yes, we do have a vehicle
type code. For all our vehicles, we need to track the last maintenance date,
and expiration date of its registration. For our trucks, we need to know the
current odometer reading, the gas tank capacity, and whether or not it has a

43

working radio. For long moves, customers really prefer a radio. We log the
current mileage just before we rent a truck, and then again when it is returned.

Most of our rental agreements are for individual customers, but a rental
agreement can either be for an individual or for a company. We do rent a small
percentage of our trucks to companies. We assign each company an identifying
company number and track the company’s name and address. No, we don’t need
to worry about any additional information about a company. Our corporate
sales group handles all that information separately.

For each individual customer, we record the customer’s name, home phone,
address, and driver’s license state, number, and expiration date. We like to keep
track of all our customers. If a customer damaged a vehicle, abandoned it, or
didn’t fully pay the bill, then we tag the customer as a poor risk, and won’t
rent to that customer again.

We only allow a single individual or company for a given rental agreement,
and we write a separate rental agreement for each vehicle. Yes, we do have
customers rent two or more vehicles at the same time. Each rental agreement is
identified by the originating rental office number and a rental agreement number.
We also need to track the rental date, the anticipated duration of the rental,
the originating rental office, the drop-off rental office, the amount of the deposit
paid, the quoted daily rental rate, and the quoted rate per mile. Of course for
the trailers, there isn’t a mileage charge. No, we don’t need to automate the
financial side of our business, just our rental agreement tracking and vehicle
assignment functions.

44

B Interface

ngUML User portal

Generate UML diagrams, ot
Create UML diagrams from requirements texts using
natural language processing techniques.
How it works
Create UML diagrams from requirements texts using natural language processing techniques.
Generate your models and
prototypes
Gather your requirements Generate UML models Interact with your prototype
Write your requirements directly using our text editor, The you provided will ically be ngUML allows you to generate a running prototype of
upload an audio file for automatic text to speech turned into UML class, activity and use case models. your class model, so that you can immediately start
transliteration, or upload a plain text document to start You keep in control of the modelling, we just make it working with an application as if it was already built.
with the process. easier to get a head start

Figure 11: Landing page for the Prose to Prototype project.

45

¥

Generating a new model

Choose a project
Step 1

O Create a new system
Step 2

O Review extraction
Step 3

ngUML Requirements preprocessing Home Manage requirements Runnable prototype

Choose a project

A project holds your main requirements document that you can then use to generate various diagrams
and prototypes. You can reuse the main requirements text and split it up into smaller portions when
creating your diagrams and prototypes.

Your projects

Start from your existing projects or create a new one.

Project Description
This project just works A descriop
Order delivery project This project describes the ordering process of a large manufacturer.

Figure 12: A user has the ability to select projects to get started.

Q Create a new project +

Ly

ngUML Requirements preprocessing Home Manage requirements Runnable prototype

Generating a new model

Create a new project

Choose a project
w1 Before we can start generating your models, we need to have access to your requirements. Type or paste
them into the box below or upload a plaintext file that we can use from the get-go, or a sound file that we
O Create a new system
Step 2 can convert to text.

O Review extraction
Step 3 Project name

Customer orders

Project description

This project describes the various ordering flows that we have for fulfilling customer orders

Write requirements
An order is placed by a specific customer. A customer has a first name, last name, address, and birth date.
The order consists of multiple line items. Each order has an order number, an entry date, a delivery status, and a
description.
A delivery company consists of multiple orders.
A line item consists of a product.

A line item specifies a particular product, and defines the quantity that is ordered.

A product is characterized by a name, a description, a product number, a price, a location.
Restricted products and flammable products are types of products.

Each order is shipped by a delivery company. The delivery company has a name and an address.

Back 1<

Figure 13: A user can also create new projects.

OR

Upload requirements

Max file size is 500kb. Only .txt or
.wav files are supported.

Drag and drop your file here or click
to upload

Save and continue >l

87

ngUML Requirements preprocessing Home Manage requirements Runnable prototype

Generating a new model
Create new system

Choose a project

et Systems are a subset of your requirements document, focused on specific entities that are of interest for

Create a new system modelling purpf)ses, and wnh a specific typ'e of UML model. Working with systems mea'ns that yc'Ju can

Step 2 compartmentalize your requirements, allowing for incremental development and better intermediate

feedback.

O Review extraction

Step 3

System name

Ordering system

Select entities of interest
[central office
Company
Customer

[Truck trailer

Select UML types

o

Class model &3

Activity model 3s Use case model

Back 1<

Figure 14: A system can be created to zoom in on specific UML types and entities of interest.

Save and continue

>l

ngUML Requirements preprocessing

Generating a new model

Choose a project
Step 1

Create a new system

Home Manage requirements Runnable prototype

Review extraction

Step 2 metadata here before we start generating a graphical diagram.

Review extraction
Step 3

67

With the properties you selected for Customer system, we have made a subselection of your
requirements text for your selected UML models. You can review the subselections and their associated

The UML elements that we identify from your requirements text can be changed in the editor after

this step.

Requirements subselection

Each rental office rents vehicles that they have in stock to customers ready
to take possession of the vehicle . We do n't take reservations , or
speculate on when the customer will return rented vehicles . Each office is
a home office for some of our vehicles , and each vehicle is based out of a
single home office . Each vehicle has a vehicle i d, state of registration ,
and a license plate registration number . For all our vehicles , we need to
track the last maintenance date , and expiration date of its registration . For
our trucks , we need to know the current odometer reading , the gas tank
capacity , and whether or not it has a working radio . We log the current
mileage just before we rent a truck , and then again when it is returned . We
do rent a small percentage of our trucks to companies . If a customer
damaged a vehicle , abandoned it , or did n't fully pay the bill , then we tag
the customer as a poor risk , and wo n't rent to that customer again . Yes ,
we do have customers rent two or more vehicles at the same time .

Back 1<

Metadata for class modelling Metadata for activity modelling

Metadata for use case modelling

Metadata

Class: Rental office Attribute: [] Class: Vehicle Attribute: ['vehicle id, ‘state
of registration’, 'license plate registration number’, ‘last maintenance date’,
‘experiation date of its registration’] Class: Customer Attribute: ['poor risk']
Class: Reservation Attribute: [] Class: Office Attribute: [] Class: Truck
Attribute: [‘current odometer reading’, ‘gas tank capacity’, ‘has a working
radio’, ‘current mileage'] Class: Company Attribute: [] Class: Bill Attribute: []

Confirm and generate diagrams D>

Figure 15: Before generating diagrams, a user can review the extraction.

09

C Bucketing rules

Below, all bucketing rows are listed for class diagrams, activity diagrams and use case diagrams.

Rule number

Syntax dependency level

Has a verb.

Social supersense

Supersense level POS level Lemma level

General rules | 1 Has at least two nouns (NN/NNP/N
2 Has (passive) auxiliary and conjuct dependency relations Has a verb.cognition supersense
3 Tas an_object of a preposition, a preposition and a nominal subject Tas a verbstative and a noun.relation supersensc
1 Tas an object of a preposition and a numeric modifier Tas a verb.stative and a nounartifact supersense and more than one verb.stative supersenses
5 Has a nommal subject, a direct object and an adjectival modifier Has a verbsta Has an adjective (JJ)
[Tas a determiner, nominal subject and a direct object Tas a Verb.posscssion Supersense
7 Tas a determiner, a nommnal subject, an object of a preposition and an awxliary Tas a verb.stative superscise
g Has a determiner, a nominal subject, an object of a preposition and an auxiliary Has a verb cati

" 9 Tas a determiner, a nominal subject, a direct object and a coordination relation Has a verb.change superscise

Specific rules d : - . : .
10 Has a determiner, a nominal subject and a direct object Has a verb.perception and a noun.artifact supersense
11 Has a preposition, a passive nominal subject, a passive auxiliary, a numeric modifier and a coordination relation
12 Tas a_passive nominal subject and a passive auxiliary Tas the lomma “require”
13 Has a passive nominal subject, a passive auxiliary, a determiner and an auxiliary Has a verb.change superscnse
T Tas a detorminer, a passive nominal subject, an auxiliaty, a passive auxiliary and an object of a preposition Tas a verb.contact supcrsense
15 Tas a determiner, a_nominal subject, an object of a proposition and a preposition Tas a verb.stative superseuse
16 Has a preposition and more than one object of a preposition Has a verb.stative and a noun.artifact supersense
7 Tas a determiner, a nominal subject, a direct object and a prodeterminer

Table 6: Bucketing rules for class models.

Rule number

Syntax dependency level

Supersense level

POS level Lemma level

General rules | 1 Has at least two nouns (NN/NNP/NNS)
Specific rules | 2 Has a nominal subject, a clausal modifier, an agent and a clausal comples Has a verb. or nse and a verb.stative supersense
3 Has an adverbial modifie

Has one of the following lemma:

Table 7: Bucketing rules for activity models.

16

General rules

Rule number

Syntax

level

Supersense level POS level

Lemma level

Tas at least two nouns (NN/NNP/NNS)

Specific rules

Has one of the following lemmas: "system”,

facilitate”, "module”, "interface”, "functionality”

, "capability”

s one or more verb.contact supersenses

1
2
3
4
5

Tas a verb.creation or verbsocial Superscise

Has the lemma “execute”

a nominal subject

Tas a noun.animal, NOUN.PEFSO OF NOWn. pIant SUpersense

Table 8: Bucketing rules for use case

models.

	Introduction
	Research objectives
	Overview of our methodology
	Outline

	Background
	Unified Modelling Language (UML)
	Class modelling
	Activity modelling
	Use case modelling

	Natural Language Processing (NLP)
	Syntactic dependency trees
	Lexico-semantic analysis
	Summarization
	fastText

	NLP for UML modelling

	Methods
	Architecture overview
	Datasets
	PURE: a Dataset of Public Requirements Documents
	Validation set

	Entity-based summarization
	Structural filtering
	Metadata tagging

	System implementation
	Implementation details
	The Backend
	The Editor

	Results
	Entity-based summarization
	Structural filtering
	Metadata tagging

	Conclusion
	Main findings
	Future work

	Appendices
	Validation set of requirements texts
	Dental clinic
	Restaurant
	Observations on geological samples
	Law firm
	Rental truck company

	Interface
	Bucketing rules

