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Abstract

Formal verification of synchronous programs has received growing attention since the emergence
of synchronous programming languages like Lustre. The goal of this research is to explore
the formal verification of Lustre program with the proof assistant Agda, which is based on
Martin Löfs Type theory. To achieve this, the syntax and semantics of Lustre are formalised
in Agda to model a Lustre program. Subsequently, a Linear Temporal Logic proof system is
implemented in Agda which can be used to write formal specifications about Lustre programs.
The result of this research enables the writing of formal proofs concerning properties of Lustre
nodes.
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1 Introduction
Lustre is a synchronous data flow language, which is designed for programming reactive systems
[HCRP91]. Reactive systems are computing systems which continuously interact with the physical
environment [Ber89]. This is opposed to an interactive system, which can make the environment wait.

Real-time programming is essential in industrial systems, where real-time programs read data from
the real world (through sensors) and construct outputs based on this data. The computation of
those outputs, also called the response time, has to be within some fixed time constraint too keep
up with incoming signals. Real-time constraints ask for the predictability of performance.

The synchronous hypothesis assumes that the program is able to react before any further event
occurs. Reactive systems are mostly used for automatic process control, monitoring and signal
processing. Most reactive-systems are highly critical, so the ability of a real-time program to give
guarantees about its computation within a certain time frame (dependability) is crucial. Think for
example of the consequences of a design error (bug) in an air traffic control system. Safety and
thus program correctness is a major concern for most real-time programs. Which raises the need for
formal verification of those programs [MBAK11]. Formal methods describe the specification and
verification of systems using mathematical (logical) formalisms.

Lustre is designed as a synchronous data flow language to make computations with real-time
data flows. It’s designed to interact with the environment in parallel. To achieve parallelism, time
constraints must be imperatively satisfied and verified as an important part of the program’s
correctness. Synchronous languages such as Lustre, Esterel [BCG88] or Signal [GBBG86] allow
programmers to assume that the program reacts instantaneously to external events by giving ’ideal’
real-time programming primitives. Because of this, correctness proofs can be written using existing
verification methods.

In 1993 Lustre was used as the core language of the industrial environment SCADE, which is used
today in industry1.

In this thesis, I will present a method of formalising the semantics of Lustre in a type theory with
the help of the proof assistant Agda [BDN09]. With this formalisation, I will present proofs about
properties of Lustre programs.

This motivates my research question: How can formalisation of the semantics of Lustre be achieved
in Agda and how can Agda be used to prove properties of Lustre programs?

1https://www.ansys.com/products/embedded-software/ansys-scade-suite
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1.1 Thesis overview

In this thesis I will explain the process of program verification in section 2. I will discuss formal
systems (section 2.2.1), formal verification and validation (section 2.3) and methods for proving
program correctness (section 2.3.2). In section 3, I will discuss type systems and the correspondence
between type theories and typed functional programming languages. I will discuss Agda (section 3.3),
a programming language which is based on Martin Löf’s intuitionistic type theory (section 3.2.1).
In section 4, I will discuss the syntax and semantics of the Lustre language, and why the formal
definitions of these can be used to write proofs about them in Agda. In section 5, I will discuss
related efforts to formally verify Lustre programs. In section 6 I will explain how Agda programs
can be written by construction in type theory. Finally, I will discuss my implementation of the
verification of Lustre’s syntax and semantics in section 7.

This bachelor thesis is the result of my bachelor project under the supervision of H. Basold from
the Leiden Institute of Advanced Computer Science (LIACS).

2 Program verification
The process of program verification is to ensure the program is performing the task it was intended
to execute. To express this task, the programmer specifies the task using some kind of specification
language.

To quote Alan Turing: “The programmer should make a number of definite assertions which can be
checked individually and from which the correctness of the whole program easily follows.” [Tur49].

2.1 Why program verification?

The importance of software verification depends on the program but its importance becomes clear
when safety-critical systems are considered. A safety-critical system is a system which malfunction
results in harm to the system itself, its environment or people. For example, a system failure in a
nuclear reactor could result in severe damage to the environment and people. Programs that are
used in these kind of systems must be verified to make sure no software related failures can happen.

In recent years, synchronous languages have received growing attention since their emergence.
Lustre, Esterel and Signal are now widely used to program real-time, safety-critical applications
such as nuclear power plant management and Airbus flight control systems.

This interest has in turn inspired researchers to make significant contributions to the problem
of verifying synchronous programs and several program specification based methods for proving
program correctness have been designed. I will discuss some of these methods in section 5.
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The use for program verification can be emphasised with examples of fatal safety-critical software
flaws in (recent) history:

• The case of Therac-25 [LT93] between 1985 and 1987, where six accidents caused patients to
receive massive overdoses of radiation due to a race condition.

• The Ariane 5 [Maz96] rocket in 1996, which was destroyed in less than a minute after launch
due to a bug in the guidance program.

• The Mars Climate Orbiter [Orb99], where failure to use metric units in the coding caused the
orbiter to lose trajectory.

These incidents highlight the need for formal verification in both safety-critical systems rather than
relying on empirical analysis and software testing methods.

A recent example of formal verification being used in industry is the seL4 (secure embedded L4
microkernel) verification project [KAE+14]. In the project it’s proven that the seL4 OS kernel
implements its specifications correctly. Systems based on seL4 have been used in aviation [CGB+18]
and telecommunication 2.

2.2 Definitions

2.2.1 Formal systems

A formal system consists of a formal language over a finite alphabet of symbols (strings) together
with postulates (a syntax that states which strings are in the language) and inference rules that
distinguish some of the strings in the language as theorems of that language [Poh89]. These strings
are called well-formed.

Formal logic is a formal system which has two types of well-formed expressions: terms (atoms) and
formulas. Axioms are special formulas that are taken to be theorems. The inference rules are a set
of premises and a conclusion to those premises. With these, we can decide whether some arbitrary
string (formula) is well-formed if there is a way to express the strings in terms of the axioms, formu-
las and inference rules. Semantics define the interpretation of these formulas [Sch96]. The syntax
of a language is the set of rules that define which arrangement of symbols denote well-formed strings.

A proof system is often presented as a collection of inference rules in the form:

Γ
ψ

where Γ is a set of premises and ψ is the conclusion to that set of premises. In the case when Γ = ∅,
ψ can be concluded without premise (axiom).

Natural deduction is a proof system originally described by Gentzen and Jaśkowski [HP14] which
expresses natural reasoning. A proof of some judgement Γ ⊢ ϕ holds if there is a deduction of Γ ⊢ ϕ.

2https://gdmissionsystems.com/products/cross-domain-solutions/hypervisor
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A deduction is a finite proof tree in which nodes are labeled with formulas. The root of the tree is
the conclusion and the leaves are the assumptions. A proof tree is built up using inference rules on
the assumptions to reach a new formula. This process can be repeated by using inference rules on
the new formulas to reach the conclusion.

Truth (|=) is a semantic notion of a formula. A formula is true if and only if every interpretation
that satisfies the assumptions also satisfies the conclusion.

A proof system is sound if everything that is provable is true, which means A |= B can b concluded
from A ⊢ B. A proof system is complete if everything that is true has a proof, which means A ⊢ B
can be concluded from A |= B.

A completeness theorem states for a proof system P and set of formulas S, that a formula is provable
in P if and only if it is true in P .

Formal language syntax is often described by a context-free grammar (CFG) formalism. In CFG’s,
well-formed expressions can be formed from terminals (symbols in the language), variables (a set
of other symbols, which each represent a language) and a start symbol (the starting variable).

Production rules (inference rules) are in the form:

Variable → String of variables and terminals

Strings that can be derived from this CFG are considered well-formed.

Programming language syntax is often written in Backus-Naur Form (BNF), in which variables
are written between angle brackets (⟨⟩). → is written as ::= and | is used for ’or’, which is an
abstraction for a list of productions with the same left side.

A formula Φ is satisfiable (SAT) if there exists an interpretation that evaluates the formula to true.
Φ is considered valid if all interpretations of Φ evaluate to true. Φ is decidable if its validity can
effectively be determined. A formal system is called complete if every valid formula can be derived
from that system.

A system in this context refers to some abstract machine, for example a program (algorithm) or
electronic circuit that transforms input signals into output signals. A system is causal if the output
at time t only depends of the input at t.
A causal system is memoryless if the output at time t only depends on the input at time t, otherwise,
the system must have memory. The configuration of a system for a given instant of time is defined
as its state.
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2.3 Formal verification and validation

Every software engineering method is based on a recommended development process which often has
the following stages: Analysis, specification, design, coding, unit testing, integration and maintenance
[KS98]. To visualise where formal methods fit into software development of a safety-critical system,
imagine a process like this:

Idea: Hazard
analysis and

risk assessment

Requirements
and Specification:
Safety, functional

and integrity require-
ments specification

Design and Im-
plementation

Verification:
Formal method

Validation: Proofs

A formal method in this case refers to a mathematical approach to describe the properties the
system must conform to. In order to formally verify the system, the requirements, specification and
system design must also be written in a formal way. This means that program is described in a
fully formal specification language with precise semantics.

Formal methods can eliminate ambiguity in software specifications by translating informal speci-
fications about properties of the program into a formal specification language. Verification of a
program involves mathematically asserting the program meets the formally stated requirements
and specification by using a formal method to describe the program. The validation of the program
means to prove that the program is functioning the way it was intended.

If the design and implementation of the program is written in a formal way, proofs that confirm
certain properties of the program can be written.
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2.3.1 Program abstraction

Most program verification methods use some kind of abstraction to prove certain properties of the
program. This means approximating the program by forgetting certain information and turning
it into a model for which proofs can be more easily constructed. This abstraction must of course
conserve the class of properties we want to write proofs about. When programs are abstracted, we
can conclude that if some behaviour does not occur in the abstraction, it will certainly not exist in
the real program.

2.3.2 Program correctness

For interactive systems, if the input specifications to run program P (precondition) hold and the
program terminates for those inputs and the desired properties are satisfied (post condition), P is
said to be partially correct.

There exists a distinction between partial correctness and total correctness for interactive systems.
An interactive program is called partially correct if it returns the right output when it terminates
and totally correct if for every input, the halts and returns the right output. Because the stop-
characteristic of a program is related to the halting problem, this is not decidable.

For real-time systems, program correctness depends both logical and temporal correctness [OVW98].
Logical correctness depends on the results of the computations. Temporal correctness depends on
the time at which the results are computed. Temporal incorrectness often concerns computations
that violate the specified time constraints (outputs are produced too early or their computation is
overdue). A terminating real-time program would be incorrect.

2.4 Proving program correctness

The simplest way of proving the correctness of a program would be to extensively simulate all
possible inputs and verify the outputs. However, non-exhaustive simulation (testing) can miss
events and exhaustive simulation is too computationally expensive for systems with a large amount
of reachable states.

Other methods for program verification include theorem provers [Bun70], proof checkers [BG01],
term rewriting systems [Klo00] and model checking [CMCHG96].

Formal proofs are interesting because they can be generated by a computer or generated interactively
with a human, which I will discuss in sections 3.3 and 7. A formal proof can also in turn be checked
by the computer. When a program and its proof are constructed in parallel, deeper understanding
of the program can be achieved.

To prove a program’s correctness it must be described using a formal language (section 2.3). One
can argue that any logical or functional program is its own specification and therefore correct by
definition. However, the distinction between the specification and implementation of a program
must be taken into account. Correctness depends on both correctness of the specification and the
consistency of the implementation with its specification.
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2.4.1 Formal specification languages

Formal Specification Languages, based on a formal mathematical logic, are generally designed to
specify what needs to be computed (descriptive), but often not how the computation is actually
done. Most of these systems are based on axiomatic set theory or higher-order logic.

There are (including others) multiple kinds of formal specification languages:

• Model oriented specification languages (VDM, Z, OCL, B) support the specification of systems
by construction of a mathematical model of the system based on sets, relationships and
predicates.

• Algebraic specification languages (OBJ) are descriptive. Signatures of operations define the
syntax, and axioms define semantics.

• Constructive specification languages, usually type theories (Agda [BDN09], Coq [C.12])
concern themselves with (recursive) functions which are effectively computable.

The benefits of writing a formal specification is that the specification is unambiguous and verifiable.
Properties of the program can be proven or tested automatically. Despite the obvious advantages,
there are a lot of disadvantages such as cost and exploding complexity on larger systems.

Work on constructive logical systems such as type theories have become widespread since Martin
Löf’s intuitionistic type theory proved to have special relevancy to computing. I will discuss type
theories in the next section.

3 Type systems
According to the Curry-Howard correspondence, there exists a correspondence between programs
and mathematical proofs. This means, among other things, that a proof of functional correctness in
a constructive logic corresponds to a certain program in lambda calculus. This lays a mathematical
foundation for programs as proofs.

Essentially the correspondence can be explained by two different perspectives of typing judgments
of the form a : A. Here a can be read as a term of type A, but also a can be read as a proof of the
formula A [Geu08].

The correspondence has sparked the design of formal systems that act both as a proof system
and a typed functional programming language. Examples include Per Martin Löf’s intuitionistic
type theory and Alonzo Church’s typed λ-calculus. This typed lambda calculus has led to the
development of interactive theorem proving software (Coq [C.12], Agda [BDN09], NuPrl [CAB+96],
Alf [PN93] and Lego [Pol96]) in which programs can be formalised and proofs about them be
checked.
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3.1 Type theory

The main way types differ from sets is that sets are collections of objects which are in turn also
sets, whereas types can be seen as collections of objects of the same nature [Geu08]. The original
motivation for type theory was to provide a basis for constructive mathematics in Bertand Russels
Principia Mathematica [Rus03]. It was introduced as a way to avoid Russel’s paradox, which arises
in set theory.

In a system of type theory, we say term α has a certain type A in some context Γ. We can write
this as Γ ⊢ α : A.

Type theory describes how objects are constructed (recall section 2.4.1). Because it’s a formal
language, it describes what can and cannot be constructed (what types are well-formed and what
types are not).

Many functional program languages use some kind of type system which can usually provide a
type checking algorithm verifying the constraints of types which gives guarantees about properties
of type safety properties for all possible inputs. For example, Haskell is a typed language, where
functions are assigned with a type expressing what type the inputs must be and a type for the output.

C, C++ or Java are examples of typed languages. However, all of these language are not total,
which means that a program p of type T will not always terminate. Moreover, these programs can
raise exceptions when, for example, inputs of the wrong type are given. Languages based on type
theory are total when a program p of type T will always terminate with an output of type T .

3.2 Dependent type theory

In dependent type theory, types can depend on terms or put differently, elements of other types
[BD08]. For instance, a type An of vectors of length n can be defined, where n is parameterised by
N. We say that An is a family of types indexed by n.

The type [A] of lists of elements of type A is a parameterised type, and is not usually called
dependent because it depends on a type rather than a term. However, in dependent type theories
there exist a type of small types (universe), so that type [A] is considered a type of a list of elements
of a given small type A.

A context is a finite ordered list of typing declarations which is defined (mutually) inductively
[Geu08]:

• An empty list is a valid context.

• If Γ is a valid context, α is a term not already in Γ, and A is a valid type in Γ, then Γ, x : A
is also a valid context.

8



When considering dependent types, the type of functions and pairs must be generalized in dependent
type theory. A function which type of output is dependent on its output is a dependent function
and its type is the dependent function type (Π). For example, Γ, α : A ⊢ B a is the type of the
functions taking an argument α of type A, returning B a, a family of types indexed by elements in
A. Or, if Γ, a : A ⊢ B α, then Γ ⊢ (Πα : A) (B α).

The function type, written as A→ B is a special case of Π where the dependent type A does not
depend on B.

The dependent pair type (Σ) can be considered as an ordered pair where the type of the second
term is dependent on the first. Like the previous example, if Γ, α : A ⊢ B α is a type, then there
exists a dependent pair type Γ ⊢ (Σα : A) (B α).

The product type, written as A×B is a special case of Σ where the A does not depend on B.

Because of the Curry-Howard correspondence, a logical specification using dependent types can be
expressed. There is a one-to-one correspondence between product types to conjunctions, and sum
types to disjunctions. Howard and de Bruijn introduced dependent product types corresponding to
universal quantification and dependent pair types corresponding to existential quantification [BD08].

There is an correspondence between propositions and types in a dependent type theory. There is
also an correspondence between the proof of a proposition in constructive predicate logic and terms
of the corresponding type. This also means that formulas and function can be expressed and proved
by a verifying algorithm.

9



3.2.1 Martin Löf’s intuitionistic type theory

The Curry-Howard interpretation of proposition as types was the basis for Per Martin Löf’s in-
tuitionistic type theory (MLTT) [ML98]. The theory was primarily intended as a foundation for
constructive mathematics. Because of the proposition as types interpretation, it can also be used as
a programming language [ML82].

For any context Γ, if A is a (non parametrised) type, Γ ⊢ A : Type. If α : A is a typing declaration
in Γ, then we write Γ ⊢ α : A meaning α is a well-typed term of type A in context Γ.

Γ ⊢ x : A is a typing declaration of x in Γ. In this theory, there are atomic types called ⊤ (top,
also called the trivial type) and ⊥ (bot, or the empty type).

• ⊥ has no constructors, which means there is no way to construct something of type ⊥.

• ⊤ has a single constructor (tt), it is trivial to make something of type ⊤.

The semantics of dependent function types, dependent pair types, function types and product types
are as the same as in section 3.2. We write Γ ⊢ A : True for the notion that A is a nonempty type.
If Γ ⊢ α : A, then Γ ⊢ A : True. This corresponds with Γ ⊢ A in first-order logic. The typing rules
are used as the inference rules for intuitionistic first-order logic.

For example, modus ponens can be described like this:

Γ ⊢ A→ B : True, ∆ ⊢ A : True

Γ,∆ ⊢ A : True

3.3 Agda

Agda is a dependently typed programming language and proof assistant based on MLTT [BDN09].
In contrast to proof assistants such as Coq, Agda is primarily developed as a programming language
rather than a proof assistant. Programming proofs in Agda consists of defining types and recursive
functions. Unlike Coq, Agda has no proof automation to aid in the construction of proofs.

However, proofs in Agda are written in a functional programming style, which is easy to understand
for people familiar with existing functional languages. Using the functional programming style,
proofs can be constructed from smaller proofs (programs). This corresponds to writing math-
ematical proofs to prove mathematical theorems constructively and to run such proofs as algorithms.

Because the semantics of streams are based on coinductive types (section 6.3), which are easily
expressible in Agda, I’ve chosen Agda to formalise the semantics of a Lustre program.

10



4 Lustre
Lustre is a synchronous data flow language, designed for programming reactive systems [HCRP91].
As discussed in the introduction of this thesis, reactive systems react to real-time external events.
The synchronous hypothesis states that the program is able to react within a given time interval.

The time interval between ’events’ has to be set to the time constraints introduced by the dynamics
of the environment 3. If it is possible to verify the synchronous hypothesis, the ideal programming
primitives offered by Lustre can be seen as a sufficient abstraction.

The object code of most synchronous programs is structured as a finite automaton in which the
transitions are labeled with a linear piece of code that corresponds to an elementary reaction of
the program [HCRP91]. Because the code is linear and not cyclic, the execution time of a program
can be calculated for given hardware. The synchronous hypothesis can be tested like this.

A way of giving semantics to synchronous programs is by viewing them as functions that transform
a stream of inputs to a stream of outputs. A Lustre program is built up of a network of nodes which
are analogous to these functions. Nodes operate on flows of data. A flow in Lustre refers to a pair of
an infinite sequence of values of the same type (stream) and a clock, representing a sequence of times.

A Lustre program P is functional, and maps its input flows to output flows. If we assume the
synchronous hypotheses, all functions must satisfy causality and predictability of execution time.
Satisfying causality means at any time instance t, the output of P can only depend on the input
before or at t. Satisfying the predictability of execution time means loops and recursive functions
can’t be implemented unless there is an upper bound on the execution time.

The functional behaviour of a lustre program P does not depend on the time instance t. This
means the functional validation of P can be done independently from the machine the program is
designed for.

3https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf
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4.1 Example of a node in Lustre

Lustre equations are mainly structured using a network of nodes. A Lustre node is made of input
and output declarations. The body of a node is made of a list of assertions and equations:

node example(x:bool; y:bool) returns (a:bool; b:bool);
let

a = x fby y and not pre x;
b = true fby not a;

tel

The full specification of the Lustre syntax can be found in the Lustre V6 Reference Manual 3. I will
lay out a reasonable subset of this syntax for the scope of this thesis.

This simplified syntax of the interface of a node (for the purposes of this thesis) is illustrated below
in BNF.

<Node> ::= node <Identifier>(<Params>) returns (<Params>) ; <Body>

Parameters are a list of typed identifiers:

<Params> ::= [ <TypedIds> ]

<TypedIds> ::= <Identifier> : <Type>

<Type> ::= bool
| int
| real

Where the body is made up of an equation list:

<Body> ::= let [ <Equation> ] tel

Equations can define outputs and values of local variables:

<Equation> ::= <Left> = <Expression> ;

A subset of the syntax of expressions is as follows:

<Expression> ::= <Constant>
| <Variable>
| not <Expression>
| - <Expression>
| pre <Expression>
| current <Expression>
| <Expression> when <ClockExpr>
| <Expression> fby <Expression>
| <Expression> -> <Expression>
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| <Expression> and <Expression>
| <Expression> or <Expression>
| <Expression> xor <Expression>
| <Expression> + <Expression>
| <Expression> - <Expression>
| <Expression> * <Expression>
| if <Expression> then <Expression> else <Expression>

A Clock expression refers to an identifier:

<ClockExpr> ::= <Identifier>
| not <Identifier>

4.1.1 Types and operators

Predefined types that can be used are Booleans, integers and reals, expressed by bool, int and
real respectively. A stream can only be of a certain type. In the example, x and y denote Boolean
flows. Output a in the example is defined by the equation a = x fby y and not pre x.

The and and not operators are regular (Boolean) operators. In the synchronous data flow model,
these operators work point-wise on flows. For example, if we consider stream X = (x0, x1, ..., xn, ...)
and stream Y = (y0, y1, ..., yn, ...), X or Y denotes the stream (x0∨y0, x1∨y1, ..., xn∨yn, ...). In this
example, it’s assumed that X and Y are on the same clock, which will be discussed in section 4.1.2.

Due to the synchronous nature of flows, temporal operators can be used. Lustre has four temporal
operators: fby (followed by), pre (previous), when and current:

• The fby operator is a binary operator which defines a flow that is equal to the left expression
at time 0 of the clock, and equal to the right expression at time > 0. For example, if we consider
flow X = (x0, x1, ..., xn) and flow Y = (y0, y1, ..., yn), X fby Y is the flow (x0, y1, ..., yn).

• The pre operator is a unary operator which defines a flow that is at every time step equal
to the value of the flow at the previous time step. For example, if we consider the flow X =
(x0, x1, ..., xn, ...), pre X is the flow (nil, x0, ..., xn, ...), were nil means the flow is undefined
at that time instance.

• The when operator is a binary operator which defines a flow that is only defined when the
right (Boolean) expression is true.

• The current operator is a unary operator which defines a flow that is equal to the last defined
value (at time step t or previous) of the right expression.

The when and current operators will be more thoroughly explained in the next section.
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4.1.2 Sequence operators and clocks

The when and current operators are called sequence operators, which can manipulate sequences,
their behaviour, given two arbitrary streams X and Y, is shown in table 1.

Global Clock 0 1 2 3 4 5 6 7 ...
X T T T F F T F F ...
Y F F T T F F T T ...
X when Y T F F F ...
current (X when Y) nil nil T F F F F F ...

Table 1: when and current

Note that the gaps between the values of X when Y are not nil. The flow X when Y denotes the
stream (T, F, F, F, ...). This means that this stream is on a different clock, in this case clock
Y. In other words, X when Y does not have the same notion of time as X and Y.

As stated before, a Lustre flow consists of a stream and its corresponding clock. Arbab and Rutten
present flows as timed data streams defined by a pair of a data stream and a time stream of type R+.
Lustre’s clocks use natural numbers to represent discrete time intervals [HCRP91] but replacing
the positive real numbers with natural numbers keeps the model largely the same [AR02]. Different
flows can therefore have different clocks, meaning that if we consider two flows which streams are
equivalent, they do not have to be equal.

Streams that follow the global clock are defined at each time step t. A clock can be considered to be
true at t if it is defined at that instant. The global clock can be viewed as a Boolean stream which
is defined (true) at every t. Constant flows follow the global clock. For example, the constant flow
true denotes an infinite sequence of Booleans (true, true, ...). This global clock is not necessarily
bound to a physical time interval. The basic clock tick should be considered as the minimal amount
of time in which a program cannot discriminate external events in order to satisfy causality.

A clock can also be defined by a non-constant flow, which in turn has its own clock. This means
clocks can be nested. For example, we can model a millisecond as a clock based on the global clock
which true value corresponds with a millisecond signal from a real clock.

Lustre’s clock calculus consists of associating a clock with each stream of the program and checking
whether an operator applies to correctly clocked streams. When arithmetic is applied to flows with
different clocks, we have to consider that either causality or the bounded memory condition [Cas92]
may be violated.
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4.1.3 The data flow model

The Lustre data flow model is based on a block diagram description. Block diagrams are often used
for specifying and programming real-time systems [Cas94]. A system is made up of a network of
operators acting in parallel and in time with their rate of input. A graphical representation of the
block diagram for the system of equations a = x fby y and not pre x and b = true fby not
a from the example in section 4.1 is illustrated below:

x

y

pre not

and

fby a . . .

Figure 1: Schematic of the equation a = x fby y and not pre x

a

true

not

fby b

. . .

Figure 2: Schematic of the equation b = true fby not a

Consider also the following block diagram containing a feedback loop which represents a node
producing the fibonacci sequence4:

1 fby

pre fby +

pre
1

f

Figure 3: Schematic of the equation f = 1 fby (pre (1 fby (f + pre f)))

The order of the arguments of the fby operator is not specified by the diagram, but can be inferred
from the equation. The block diagrams show that outputs can be used as inputs for other equations
or assertions. Furthermore, constant flows such as true can be used with the fby operator. Because
data flow model is a functional model, it is suited for formal verification.

4https://homepage.divms.uiowa.edu/ tinelli/classes/181/Spring08/Lustre-tutorial/Luke/Fibonacci.html
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4.1.4 Synchronous data flow

The combination of the synchronous- and data flow model can be expressed by adding a time
dimension to the data flow model. This way, a flow can be described by a stream of values associated
with a global clock. A flow takes the ith value at time i of the clock. If we take arbitrary streams x
and y, the outputs a and b will be as follows:

Global Clock 0 1 2 3 4 5 6 7 ...
x T F T F T F T F ...
y T T T T F F F F ...
pre x nil T F T F T F T ...
not pre x nil F T F T F T F ...
y and not pre x nil F T F F F F F ...
a (x fby y and not pre x) T F T F F F F F ...
not a F T F T T T T T ...
b (true fby not a) T T F T T T T T ...

4.1.5 Multiple equations

Example has two outputs. Lustre allows multiple definitions to be written. To call the node, we
can write (a, b) = example(x, y); which defines a and b to be the first and second result of
the call respectively. A model of the behaviour of this node is illustrated below. Eqx stands for the
equational definition of its corresponding output variable:

Node

Inputs Outputs

Eq a

Eq b

x

y

a

b

Figure 4: Model of the behaviour of example

As described before, an equation can use both input and output flows. For every instance of the
clock, the value of the output flows associated with that clock cycle are computed. Equations are
considered in order.
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If a flow is not defined at a certain time, its value is considered nil (undefined). If the value of
an output flow at a certain cycle is nil, the program is not well-formed and should be rejected.
In the example, the outputs a and b are defined at every clock tick and should therefore be accepted.

In general, for an arbitrary number of inputs, outputs and equations, the behaviour of a node can
be modelled like this:

Node

In Out

Eq 1

Eq 2

Eq 3

...

Figure 5: Model of the behaviour of a node
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4.2 A system of nodes

A Lustre program typically consists of a network of nodes. A node can be used as a function by
another node in an equation. For example, consider the two nodes system and plus:

node system(x:int; y:int) returns (z:int);
let

z = x fby plus(x, y);
tel

node plus(a:int; b:int) returns (c:int);
let

c = a + b;
tel

The behaviour of a system of nodes can be modelled like this:

system

plus

x
y

Eq

Eq
(a , b)

Figure 6: Model of the behaviour of a system of nodes

In the data flow model, the block diagram of these nodes is shown in the figure below:

x

y plus

fby a . . .

Figure 7: Schematic of a = x fby plus(x, y)
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4.3 Verification of Lustre programs

As noted in the introduction, Lustre programs are used in reactive systems, which often are
safety-critical. This means that program verification is crucial. The safety of a critical application
often depends on a set of properties that the program must fulfill.

We want to make sure a written Lustre program is both syntactically well-formed and meets its
formal specification. We do not have to prove the total correctness of the program. This is auto-
matically ensured in the form of productivity for streams. At each time instant t, the computation
of the value of the stream at time t (σt) will terminate due to the synchronous hypothesis.

The goal is thus to check whether the program satisfies the expected properties. Since we consider
dynamic systems, we talk about the relations between the input and output sequences and are
interested in the classification of certain temporal properties. There is a lot of theory about the
classification of temporal properties [MP90]. I will discuss temporal logic in the next section.

4.4 Temporal logic

To reason about the behaviour of Lustre programs, a logic is needed that allows reasoning about
temporal properties. Temporal logic is used for reasoning about properties of languages over time.
Linear temporal logic is such a temporal logic that allows such reasoning in terms of paths which
are similar to Lustre’s flows.

The syntax of LTL is as follows:

ϕ ::= true | a | ϕ ∧ ψ | ¬ ϕ | ◦ ϕ | ϕ ∪ ψ

Where a is an atomic proposition, meaning the smallest possible formula in propositional logic
which either evaluates to true or false. ◦ the ’next’ operator (ϕ is true at the next time instance)
and ∪ the ’until’ operator (ϕ is true at least until ψ becomes true).

There are two key operators in temporal logic:

• Eventually (⋄ϕ) : ϕ will become true at some point in the future

• Always (□ϕ) : ϕ will always be true

In Lustre, flows are defined as a pair of stream and a clock. Because flows can be associated with each
other by their clocks and flows are well-defined at each time instant, it’s useful to be able to reason
about linear time properties. LTL has specific operators to specify linear time properties, and can
be used to reason about them. Each instance of time has a well-defined successor and no branches
are possible. This makes LTL a suitable logic to reason about temporal properties of Lustre programs.
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Consider the execution of a Lustre program P at global clock time t. For the verification of this
program, the difference between safety properties and liveness properties has to be considered.

• A safety property states that nothing (bad) will ever happen.

• A liveness property states that something (good) will eventually happen.

A safety property can be verified in temporal logic by proving □ϕ holds and a liveness property
can be verified by proving ⋄ϕ holds.

4.4.1 Static verification

The first important issue of verifying Lustre programs is checking their well-formedness. Notable
things to check are:

• Any output variable must belong to one and only one equational definition.

• No recursive node calls can be made (Lustre allows only static networks to be described).

• No Clock inconsistencies.

• No outputs yielding nil.

• No cyclic definitions.

4.4.2 Recursive node calls

A recursive node call is a node calling itself in a system of nodes (section 4.2). Recall that recursive
node calls have to be avoided to let the synchronous hypothesis hold (section 4).

4.4.3 Undefined output

Lustre does not allow outputs to be undefined at any point in time, so any program that can output
a flow defined as nil at any point in time, is not well-formed [HCRP91].

4.4.4 Clock consistency

To explain what clock consistency means for a Lustre program, consider the following node:

node inconsistent(a:int) returns (x:bool; y:int);
let
x = false -> not pre x;
y = a + (a when x);
tel

In the second equation, the computation of y needs both the nth and 2nth values of a. Adding
something at time n with something at time 2n runs into an inconsistency. In other words, any
binary operator has to apply to operands sharing the same clock. This means the clock calculus of
each equation has to be checked statically.
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4.4.5 Clock calculus

To check whether two flows operate on the same clock means to check the equality of the Boolean
streams. However, static equality checking of Boolean streams is undecidable, so other rules have
to be applied to compare the clocks of two distinct flows. These rules are formally described in
[CPHP87]. Two Boolean streams define the same clock if and only if these can be unified by means
of syntactical substitutions [HCRP91] Consider the following example:

x = a + b;
y = a when (y > b);
u = a when (a + b > b);
v = a when (b < y);

Here, y and u are on the same clock, while v is on a different clock.

4.4.6 Cyclic definitions

Any cycle in the system of equations (visualised in the block diagram description) should at least
contain one pre operator. Consider the equation x = (2 ∗ x) + 2. The computation of this equation
will result in a flow of nil values, which will be rejected. I will further discuss how proofs of each of
these properties can be written in the next section.

4.5 Dynamic verification

If the program is well-formed, we can check if the program meets its formal specification. This
means we have to make sure that for every input, we get the output we desire.

Consider the following Lustre program which models a stopwatch. time_unit specifies the unit of
time and is set to the global clock, start_stop indicates the activation of the start/stop button,
time indicates the time displayed on the screen and running indicates whether the stopwatch is
currently running. Let’s say every clock cycle in Lustre is one unit of time for the stopwatch:

node stopwatch (time_unit: bool; reset: bool; start_stop: bool)
returns (time: int; running: int);
let

time = 0 -> if reset then 0
else if running and time_unit then pre(time) + 1
else pre(time);

running = false -> if start_stop then not pre(running)
else pre(running);

tel
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One possible execution of the program is illustrated below:

Global Clock 0 1 2 3 4 5 6 7 8 9 ...
time_unit T T T T T T T T T T ...
reset F F F F T F F F F F ...
start_stop F T F F F F F F T F ...
time 0 1 2 3 0 1 2 3 3 3 ...
running F T T T T T T T F F ...

The behaviour of this program can be abstracted into LTL and verification of properties can be
expressed in LTL (section 4.4). A specification (temporal property) to verify could for example be;
’Once stopped, running stays false until a restart’. This can be encoded into LTL, yielding the
following specification: (◦ start_stop & running) → ◦((¬running) ∪ ◦ start_stop).

’Once stopped’ means that the stopwatch was running when it was stopped the next instant. A
’restart’ happens only when the stopwatch was not running before and the stopwatch is started
again in the next instant. Note that for an arbitrary input stream, it doesn’t have to be the case
that start_stop ever becomes true a second time. To avoid this, we can add an extra assumption
or use the weak until operator (W) for which ψ W ϕ ≡ (ψ ∪ ϕ) ∨ □ ψ applies. Which means
either ψ ∪ ϕ eventually becomes true or ψ stays true forever.

To summarise, given an informal program P and a temporal property ϕ, the verification of ϕ can be
done by defining a formal abstraction of P that conserves the property being verified (section 2.3.1),
defining an abstraction of ϕ and using this abstraction to verify that the abstract program P ′

satisfies the abstract property ϕ′. From this it can be inferred that P must satisfy ϕ [DHJ+01].

In the following section, I will formalise the semantics of Lustre in Agda. Using this formal
abstraction, temporal properties of Lustre programs can be verified with LTL.

22



5 Related work
In this section I will briefly review other relevant studies on program verification for Lustre programs.
In “A methodology for proving control systems with Lustre and PVS ”, [BCPvD99] Bensalem et al.
show how to use Lustre combined with the PVS proof system5 to derive provably correct control
programs.

In “Synchronous program verification with Lustre/Lesar ” [Ray10], Raymond proposes general meth-
ods for formal verification of Lustre programs.

In “Transformation von Scade-Modellen zur SMT-basierten Verifikation” [Bas14] [BGHM14], Ba-
sold et al. procedure fully automatic verification of the security characteristics of Scade models
[Ser11]. Scade is a graphical environment which semantics are based on Lustre. It is developed
by the Esterel-Technologies company. To do this, Basold et al. model (abstract) the programs as
quantifier-free first-order formulas. This model is transformed to an SMT instance and passed to a
solver.

In “Scaling up the formal verification of Lustre programs with SMT-based techniques” [HT08], Ha-
gen et al. present a general approach for verifying safety properties of Lustre programs automatically.

In “Formal modelling and automatic verification of Lustre programs using NP-tools” [Lju99], Ljung
gives a procedure for translating Lustre programs to NP-Tools code (a propositional theorem solver).

In “Towards Mutation Analysis for Lustre Programs” [dD08], de Bousquet and Micheal Delauney
use mutation analysis [DLS78] to produce a testing tool dedicated to synchronous programs which
randomly and dynamically produces test sequences.

Lastly, in “A formally verified compiler for Lustre“ [BBD+17], Bourke et al. describe the specifica-
tion and verification of a compilation chain that treats the key aspects of Lustre: sampling, nodes
and delays in the interactive theorem prover Coq. This is very similar to the approach I present in
this paper, which I will discuss in the next sections. “Towards a denotational semantics of streams
for a verified Lustre compiler “ [BJP22] is a recent advancement of this appoach where Bourke et
al. give a compilation correctness proof by modelling the input language with a relational-style
semantics.

This collection of work shows that there are a lot of ways to tackle the verification of Lustre (or
similar synchronous languages). The general approach is to model Lustre programs into simpler
models for which proofs can be verified by theorem solvers.

5http://pvs.csl.sri.com/
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6 Dependent type theory in Agda
In this section I will explain how Type theory is defined in Agda and how programs can be written
by construction. In Agda, the data keyword creates a data type the constructors of the type are
listed. ⊥ (bot) can be defined as a data type without constructors. It is therefore empty and also
sometimes called the empty type.

data ⊥ : Set where

Records are types for grouping values. They are a generalisation of the dependent product type Σ
and provide named fields. ⊤ (top) is defined in Agda as a record type with a single constructor. ⊤
has no fields: it is trivial to make one, and contains no information.

record ⊤ : Set where
constructor tt

The Boolean type has two constructors, it can either be true or false (one bit of information).

data Bool : Set where
true : Bool
false : Bool

Natural numbers are inductively defined as either zero, or the successor of another natural number.

data Nat : Set where
zero : Nat
suc : Nat → Nat

The product type is defined as a record with two fields, fst and snd:

record _×_ (A : Set) (B : Set) : Set where
constructor _,_
field

fst : A
snd : B

open _×_

Agda offers support for mixfix notation. Mixfix notation can be indicated by providing Agda with
the places where the arguments must go by using underscores. The product type can be constructed
with A×B where the type parameters are A and B.

The record constructor _,_ can be used to make something of type A × B using this notation.
This constructor takes two parameters: the fields fst and snd, of type A and B, respectively. If we
have x of type A and y of type B, then (x , y) is of type A×B.
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Opening _ × _ enables the two projection functions:

fst : A×B → A

snd : A×B → B

to be used by the programmer.

A simple proof of the commutativity of × can be written like this:

×-comm : A × B → B × A
×-comm (a , b) = b , a

The proof consists of constructing of something of type B×A which yields the type of the outcome,
namely: b , a.

6.1 A programming example in Agda

Consider the definition of a list from the Agda standard library:

data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A

A list is another example of an inductive type. Every element in the list is of type A. A list can be
constructed with [], which yields an empty list, or by a constructor which takes an element of A
and a list of A, which produces a new list of A.

A specific list can then be constructed by declaring its type and definition. For example:

list : List Nat
list = zero :: (suc zero :: [])

Agda can help with program construction by validating just a part of a written program using so
called holes. These holes can be filled with the correct definitions using case-splitting and refining.

When an Agda program is compiled, it checks the type definitions for any errors. Also, it checks
whether the programmer has left any holes in his program, denoted by a question mark. To illustrate
this, consider the following example of writing a program to append two lists together:

_++_ : List A → List A → List A
xs ++ ys = ?
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When running this program, Agda will detect the hole and provides the type signature of the code
that should be filled in:

?O : List A

Using Agda’s case-split, we can pattern match on xs, which is either empty or a constructor of a
list. After splitting the program looks like this:

_++_ : List A → List A → List A
[] ++ ys = { }
(x :: xs) ++ ys = { }

Now, there are two holes to fill. The first case, in which xs is the empty list, the resulting list is
just ys. The second hole can be recursively defined. Here Agda’s features can be used again to
write only part of the program and leave the rest as a hole. The first item of the resulting list has
to be the first item of xs, resulting in the following program:

_++_ : List A → List A → List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: { }

Now the rest of the list can be defined in terms of recursively appending the tail of xs with ys,
giving the final program:

_++_ : List A → List A → List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

6.2 Vectors

Vec is an inductive dependent type parameterised by (n : Nat). It has two constructors: [] constructs
an empty vector and _::_, which takes an element of A and a Vec of A of length n and produces a
new Vec of A of length (suc n). Arguments between curly brackets are implicit, and don’t have to
be given and can be inferred with Agda.

data Vec (A : Set) : Nat → Set where
[] : Vec A zero
_::_ : {n : Nat} → A → Vec A n → Vec A (suc n)

For example, a vector of length n consisting of repeating copies some element of type A can be
defined like this:

constr : (n : Nat) → (x : A) → Vec A n
constr zero x = []
constr (suc n) x = x :: constr n x
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6.3 Streams, coinduction and bisimilarity

A stream can be defined with a record type with projections hd (head) of type A and tl (tail) of
type Stream A. Intuitively this will generate an infinite structure of elements which can be explored
with hd and tl. The coinductive keyword lets the programmer define a recursive record:

record Stream (A : Set) : Set where
coinductive
constructor _::_
field

hd : A
tl : Stream A

open Stream

Structures like List and V ec are finite in the way that they are defined by their constructors.
Formally they are called initial algebras. Streams on the other hand, are infinite structures (formally
called coalgebras) with destructor operators hd and tl [JR99]. Note that this is reflected in the
definition of a Stream in Agda, which takes no constructors.

Like in the previous example, a stream of repeating elements of some type A can be defined like
this:

rep : (x : A) → Stream A
hd (rep x) = x
tl (rep x) = rep x

Two streams of the same type are the same if they have the same term when destructing the
streams at the same point (pointwise equality). This is called bisimilarity. Bisimilarity on streams
is defined as a coinductive record with equivalence and a bisimulation, a binary relation on streams:

record _≈_ {A : Set} (x : Stream A) (y : Stream A) : Set where
coinductive
field

hd : x .hd ≡ y .hd
tl : x .tl ≈ y .tl
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7 Formalising the syntax and semantics of Lustre
I used the Lustre V6 Reference Manual 6 to model the syntax of a Lustre program into Agda. For
the description of the Agda language, I used the Agda Language Reference documentation 7.

Agda can be run from the Emacs editor 8, which is also the basis for Agda’s interactive development
system for proof assistance, which I will talk about in the following section.

For the scope of this thesis, I only formalised a part of the semantics of Lustre. In this implementation
of the formalisation of the semantics of Lustre, I have omitted clock calculus and systems of nodes.
The goal of this program is to model a single node, which can use any point-wise operator, and the
pre and fby temporal operators. Then, proofs can be written to prove the (temporal) properties of
nodes hold. Parts of the code were written in collaboration with H. Basold. The full source code
can be found on the LIACS GitLab server 9.

7.1 Formalised semantics

Using the Agda programming language, the syntax and semantics of Lustre can be formalised as
Agda programs. To model the behaviour of Lustre nodes, streams of values, expressions, equations
and their semantics have to be defined.

7.1.1 Values

First, I defined the Value type (value.agda) using the standard Agda library for the definitions of
integers, vectors, Booleans and rational numbers. I have limited the possible types of a value to
Integers, Booleans, Rationals and nil (empty) for practical purposes. Together with their definitions,
I defined the semantics of both Boolean and numerical operators. I also defined some predicates
and relations for values that can be used to reason about them.

data Value : Set where
int : Z → Value
bool : Bool → Value
ratio : Q → Value
nil : Value

Predicates on values like isPos (is positive), are implemented as follows using the predicates on
Integers and Rationals from the Agda standard library. Similar definitions are omitted for reading
purposes:

data isPos : Value → Set where
isPos-int : ∀ x → Int.Positive x → isPos (int x)
isPos-ratio : ∀ x → Ratio.Positive x → isPos (ratio x)

6https://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf
7https://agda.readthedocs.io/en/v2.6.2.1
8https://www.gnu.org/software/emacs/
9https://git.liacs.nl/s1914839/lustre
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data isNeg : Value → Set where
isNeg-int : ∀ x → Int.Negative x → isNeg (int x)
isNeg-ratio : ∀ x → Ratio.Negative x → isNeg (ratio x)

isV : Value → Value → Set
isV = flip (_≡_)

isFalse : Value → Set
isFalse = isV (bool false)

isTrue : Value → Set
isTrue = isV (bool true)

Relations on values also use the relations from the standard library:

data _≤_ : Value → Value → Set where
≤-int : ∀ x y → x Int.≤ y → int x ≤ int y
≤-ratio : ∀ x y → x Ratio.≤ y → ratio x ≤ ratio y

data _≥_ : Value → Value → Set where
≥-int : ∀ x y → x Int.≥ y → int x ≥ int y
≥-ratio : ∀ x y → x Ratio.≥ y → ratio x ≥ ratio y

. . .
Boolean logic is lifted from the Boolean logic from the standard library to Values:

if_then_else_ : Value → Value → Value → Value
if int x then _ else _ = nil
if bool x then y else z = Data.Bool.if_then_else_ x y z
if ratio x then _ else _ = nil
if nil then _ else _ = nil

. . .

liftBools : (Bool → Bool → Bool) →
(Value → Value → Value)

liftBools _ (int _) _ = nil
liftBools f (bool x) (bool y) = bool (f x y)
liftBools _ (bool _) _ = nil
liftBools _ (ratio _) _ = nil
liftBools _ nil _ = nil

_xor_ : Value → Value → Value
_xor_ = liftBools Data.Bool._xor_

. . .
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Arithmetic for values. Operators and relations from the standard library are lifted to Values:

liftArith : (Z → Z → Z) →
(Q → Q → Q) →
(Value → Value → Value)

liftArith f g (int x) (int y) = int (f x y)
liftArith f g (int x) _ = nil
liftArith f g (bool x) _ = nil
liftArith f g (ratio x) (ratio y) = ratio (g x y)
liftArith f g (ratio x) _ = nil
liftArith f g nil _ = nil

. . .

_+_ : Value → Value → Value
_+_ = liftArith Int._+_ Ratio._+_

_-_ : Value → Value → Value
_-_ = liftArith Int._-_ Ratio._-_

. . .

7.1.2 Expressions

The syntax of expressions defined like in section 4.1 is expressed below. Note that only non-temporal
expressions are formalised like this. The formalisation of temporal operators will be discussed in
section 7.1.4. Note that variables are defined as Fin Γ, a type that has Γ - 1 elements. This results
in variables not being identified by a unique name but rather by a unique number, corresponding
to a De Bruijn index. A De Bruijn index is a notation for representing terms in lambda calculus by
their "distance" to the binding λ instead of using a variable name [Sel14]. Operator precedence
follows the Lustre V6 manual. The declaration of the operator precedence is omitted for reading
purposes.

data Expr (Γ : N) : Set where
const : Value → Expr Γ
var : Fin Γ → Expr Γ
not : Expr Γ → Expr Γ
-_ : Expr Γ → Expr Γ
_and_ : Expr Γ → Expr Γ → Expr Γ
_or_ : Expr Γ → Expr Γ → Expr Γ
_xor_ : Expr Γ → Expr Γ → Expr Γ
_-_ : Expr Γ → Expr Γ → Expr Γ
_+_ : Expr Γ → Expr Γ → Expr Γ
_*_ : Expr Γ → Expr Γ → Expr Γ
if_then_else_ : Expr Γ → Expr Γ → Expr Γ → Expr Γ
empty : Expr Γ
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7.1.3 Semantics of a Lustre expression

The semantics of an expression is implemented as a function which takes an expression and a vector
of values, and returns a value. Operators preceded with ’v’ are the operators that were defined in
value.agda but renamed to avoid naming collisions. These operators return different types based on
their inputs.

The outputs of a Lustre node are defined by their corresponding expressions. These expressions can
use both input and output variables, which are identified by a de Bruijn index.

This function is then mapped over a stream of values by semExprV. The resulting stream is a
stream containing the output values for a certain output variable. This mimics the semantics of
point-wise operators as described in section 4.1.1. An empty expression will result in an undefined
stream of nils. This line can be removed to disallow empty expressions.

semExpr : {n : N} (e : Expr n)
→ Vec Value n
→ Value

semExpr (const e) x = e
semExpr (var v) x = lookup x v
semExpr (not e) x = vnot (semExpr e x)
semExpr (- e) x = v-- (semExpr e x)
semExpr (e1 and e2) x = (semExpr e1 x) vand (semExpr e2 x)
semExpr (e1 or e2) x = (semExpr e1 x) vor (semExpr e2 x)
semExpr (e1 xor e2) x = (semExpr e1 x) vxor (semExpr e2 x)
semExpr (e1 - e2) x = (semExpr e1 x) v- (semExpr e2 x)
semExpr (e1 + e2) x = (semExpr e1 x) v+ (semExpr e2 x)
semExpr (e1 * e2) x = (semExpr e1 x) v* (semExpr e2 x)
semExpr (if e1 then e2 else e3) x = vif (semExpr e1 x) then

(semExpr e2 x) else (semExpr e3 x)
semExpr empty v = nil

semExprV : {n : N} (e : Expr n)
→ Str (Vec Value n)
→ Str Value

semExprV e v = S.map (semExpr e) v

7.1.4 Formalisation of a Lustre node

In formalising the semantics of a Lustre node one has to keep the semantics of temporal operators
in mind. A Lustre node is simulated by a new type of node with input, state and output variables.
This node is parameterised by the number of inputs, state variables and outputs. A state assigns
a value to each expression. A given expression can have different values in different states. Note
that the

⊕
operator is just the ’+’ operator for natural numbers but renamed to avoid naming

collisions.
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record StateEq (I S : N) : Set where
constructor stateEq
field

eqInit : Expr (I ⊕ S)
eqStep : Expr (I ⊕ S)

open StateEq public

The semantics can be described as a state machine in which the values of the outputs depend
on the current value of the inputs and state variables. Temporal operations are simulated by the
state equations. In the initial condition, the state variable is determined by eqInit. In the step con-
dition, the state variable is determined by eqStep. Both expressions can use input and state variables.

In the case of simulating pre, the initial condition is nil, and the step condition is the original
stream. In the case of simulating a fby b, the initial condition will be the head of a and the step
condition the tail of b.

In general, expressions of type pre b are written as s where s refers to a state equation with both
initial condition empty and step condition a.

Expressions of type a fby b are written as if s then a else b statements where s refers to a
state equation with initial condition True and step condition False. An example this notation of
this can be found in section 7.3.3.

A node needs to be constructed with the output and state equations (outEqs and stateEqs). Each
output variable has one output expression and for each state variable there is one state equation.

record Node (I S O : N) : Set where
constructor node
field

outEqs : Vec (Expr (I ⊕ S)) O
stateEqs : Vec (StateEq I S) S

open Node public

The semantics of a system of equations in a Lustre node is illustrated in figure 8. Where the head
of each transition and the output are respectively determined by:

Vec (Str Value) I × Vec Value S → Vec Value O

Vec (Str Value) I × Vec Value S → Vec (Str Value) I × Vec Value S.

The head and tail give a state machine with state type Vec (Str Value) I × Vec Value S and output
type Vec Value O.

The state model S an infinite sequence of the form (S : s0, s1, s2, . . . ,) where s0 is the initial state
of the computation and each state (si , 0 ≤ i) is the state of the system at time i.
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Figure 8 shows the state diagram of the state machine. The output at t = 0 (Σout
0 ) is determined

by the initial input Σin
0 and the initial state vector (sv0). The letter Σ is used to signify a col-

lection of streams σ in a vector (which I will call packed streams). Each step, the state vector
is updated according to the state equations and the computation continues with the tail of the input.

The linear computation of the outputs ensures that the computation of the output terminates when
the state of the system at t = x is requested.

s0 s1 s2
Σin

0

sv0

Σin
1

sv1

Σout
0 Σout

1

sv2

Σin
2

Σout
2

. . .

Figure 8: State model for the semantics of a Lustre node

The semantics of a node in Lustre is a function which takes the input streams returns the output
streams. Note that eqSysSem is a forward reference. The order of the functions are reversed for
reading purposes.

nodeSem : Node I S O → Vec (Str Value) I → Vec (Str Value) O
nodeSem n i = eqSysSem (outEqs n) (stateEqs n) i

The initial state vector is made by the mapping of the initial equations to the head of the input
vector. Then, a system of equations is simulated by using this initial state vector together with the
input streams as input.

Equations can use the output of other equations as terms because they were previously defined in
terms of the input stream and the state vector. Functions that operate on streams that are packed
in a packed stream like hdvs and svtovs are defined in vecstr.agda. hdvs returns a vector of
values with the head of each stream. svtovs converts a stream of vectors to a packed stream.

eqSysSem : Vec (Expr (I ⊕ S)) O →
Vec (StateEq I S) S →
Vec (Str Value) I →
Vec (Str Value) O

eqSysSem oe se i =
let init = Vec.map (λ e → semExpr (eqInit e) (hdvs i ++ replicate nil)) se
in eqSysSemCoiter oe se (i , init)
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Every state has access to the output and state equations, which remain unchanged when changing
from state to state.

eqSysSemCoiter : Vec (Expr (I ⊕ S)) O →
Vec (StateEq I S) S →
Vec (Str Value) I × Vec Value S →
Vec (Str Value) O

eqSysSemCoiter oe se = svtovs ◦ coiter (coiter-hd oe) (coiter-tl se)

In coiter-hd, the head of the output stream is determined by the head of the input streams and the
current state variables. These are then mapped to the output vector.

coiter-hd : Vec (Expr (I ⊕ S)) O →
Vec (Str Value) I × Vec Value S →
Vec Value O

coiter-hd oe (i , s) = Vec.map (λ e → semExpr e (hdvs i ++ s)) oe

In coiter-tl the state vector is updated and the new input of the system is the tail of the previous
step.

coiter-tl : Vec (StateEq I S) S →
Vec (Str Value) I × Vec Value S →
Vec (Str Value) I × Vec Value S

coiter-tl se (i , s) = (tlvs i , state-step se i s)

In state-step, the state vector is updated and the new input of the system is the tail of the previous
step.

state-step : Vec (StateEq I S) S →
Vec (Str Value) I → Vec Value S →
Vec Value S

state-step se i s = Vec.map (λ e → semExpr (eqStep e) (hdvs i ++ s)) se

34



We now give a version of the semantics that als displays the state variables to the outside
(nodeFullSem). The theorem nodeFullSem ∼ nodeSem shows that it restricts to the normal
semantics, if we hide the state variables. The theorem was written by my supervisor and can be
found in the source code on GitLab.

coiterFull-hd : Vec (Expr (I ⊕ S)) O →
Vec (Str Value) I × Vec Value S →
Vec Value (S ⊕ O)

coiterFull-hd oe (i , s) = (s ++ Vec.map (λ e → semExpr e (hdvs i ++ s)) oe)

eqSysFullSemCoiter : Vec (Expr (I ⊕ S)) O →
Vec (StateEq I S) S →
Vec (Str Value) I × Vec Value S →
Vec (Str Value) (S ⊕ O)

eqSysFullSemCoiter oe se = svtovs ◦ coiter (coiterFull-hd oe) (coiter-tl se)

eqSysFullSem : Vec (Expr (I ⊕ S)) O →
Vec (StateEq I S) S →
Vec (Str Value) I →
Vec (Str Value) (S ⊕ O)

eqSysFullSem oe se i =
let init = Vec.map (λ e → semExpr (eqInit e) (hdvs i ++ replicate nil)) se
in eqSysFullSemCoiter oe se (i , init)

nodeFullSem : Node I S O → Vec (Str Value) I → Vec (Str Value) (S ⊕ O)
nodeFullSem n i = eqSysFullSem (outEqs n) (stateEqs n) i

7.2 A Lustre node in Agda

Using the formalisation of a Lustre node in Agda, we can model the ’plus’ node from section 4.2.

module plusnode where

Initialisation of the number of input, output and state parameters:

I = 2
S = 0
O = 1

open import node I S O

The ’plus’ node has two inputs; a and b. The state of the variables can be looked up by finding the
index of their corresponding stream in the input vector.

a = # 0
b = # 1
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aE bE : Ex
aE = var a
bE = var b

The output expression corresponds to c = a+ b and is defined like this:

c : Ex
c = aE + bE

oe : Vec Ex O
oe = c :: []

This node has no state expressions as there are no temporal operators.

se : Vec StateEq S
se = []

The node is constructed by giving the output and state equations as parameters.

n : Node
n = node oe se

The node takes two input streams and returns a single output stream which is given by the semantics
formalised in section 7.1.4.

sem : Vec (Str Value) I → Vec (Str Value) O
sem = nodeSem n

By formalising the semantics of a Lustre node in Agda, proofs can be written about the output of
the node, given some input. To write proofs about Lustre nodes, some kind of logic system has to
be formalised so properties of vectors of streams can described. This logic can be used to write
proofs about those properties.

7.3 LTL in Agda

The domain of a predicate on the state of a node is parameterised by the number of streams in the
state object. A predicate over some type A (Pred A) is defined in the standard library as a unary
relation that can be viewed as some property that elements of A might satisfy. P : Pred A can also
be seen as a subset of A containing the elements that satisfy P.

StrPred : N → Set1
StrPred n = Pred (Vec (Str Value) n) _

The operators of propositional calculus are static. One can reason about the ’current’ state of
the system using these operators with the atHead function. The hdvs function returns a vector
containing the heads of all streams at the current state.

atHead : ∀{n} → (Vec Value n → Set) → StrPred n
atHead P σ = P (hdvs σ)
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The proof system to reason about the semantics of a Lustre node will be LTL. A constructive
(Agda) version of LTL is defined below:

record □ {n : N} (φ : StrPred n) (σ : Vec (Str Value) n) : Set where
coinductive
field

hd : φ σ
tl : □ φ (tlvs σ)

The always (□) operator is defined as a coinductive record over a set of streams (σ). φ holds for σ
if it holds for the entire stream, so for the head and (coinductively) for the tail.

data ⋄ {n : N} (φ : StrPred n) (σ : Vec (Str Value) n) : Set where
now : φ σ → ⋄ φ σ
later : ⋄ φ (tlvs σ) → ⋄ φ σ

The eventually operator (⋄) is defined as a data type. It holds when either ⋄ φ holds for σ at the
’current’ state (now) or at some future state (later).

data ⃝ {n : N} (φ : StrPred n) (σ : Vec (Str Value) n) : Set where
next : φ (tlvs σ) → ⃝ φ σ

The next (⃝) operator is defined as a data type with a single constructor. ⃝ φ holds for σ if it
holds at the next state (next).

data _U_ {n : N} (φ : StrPred n) (ψ : StrPred n) (σ : Vec (Str Value) n) : Set where
here : ψ σ → (φ U ψ) σ
step : φ σ → (φ U ψ) (tlvs σ) → (φ U ψ) σ

The static operators can be used to reason about a state of the system. The lookup function returns
the value from the vector of values at the current state from an index (Fin n). The operators use
the relations defined earlier in 7.1.1:

_>_ : ∀ {n} → Fin n → Value → Vec Value n → Set
_>_ i n v = lookup v i V.> n

. . .

_=_ : ∀ {n} → Fin n → Value → Vec Value n → Set
_=_ i n v = lookup v i V.- n

_≡_ : ∀ {n} → Fin n → Fin n → Vec Value n → Set
(x ≡ y) v = lookup v x ≡ lookup v y

isNil : ∀{n} → Fin n → Vec Value n → Set
isNil i v = lookup v i ≡ nil

isFalse : ∀{n} → Fin n → Vec Value n → Set
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isFalse i v = lookup v i ≡ bool false

isTrue : ∀{n} → Fin n → Vec Value n → Set
isTrue i v = lookup v i ≡ bool true

. . .

Propositional connectives use the connectives on sets from the standard library:

_∧_ : ∀ {n} → (φ : StrPred n) → (ψ : StrPred n) → StrPred n
_∧_ = λ φ ψ → φ ∩ ψ

_∨_ : ∀ {n} → (φ : StrPred n) → (ψ : StrPred n) → StrPred n
_∨_ = λ φ ψ → φ ∪ ψ

_−→_ : ∀ {n} → (φ : StrPred n) → (ψ : StrPred n) → StrPred n
_−→_ = λ φ ψ → φ ⇒ ψ

¬_ : ∀ {n} → (φ : StrPred n) → StrPred n
¬_ = λ φ → ∁ φ

neg : ∀ {n} → StrPred n → StrPred n
neg φ = φ ◦ vmap (map V.not)

7.3.1 The Agda LTL proof system

I will show that this proof system is consistent with the local LTL proof system presented by Cini
and Francalanza [CF15] that allows reasoning about whether any finite stream σ at the current
state of the system satisfies or violates some formula φ. The (extended) syntax can be found in
Figure 1 of their paper. The proof rules can be found in Figure 2.

The axioms of the proof system presented by Clini and Francalanza can be related to the proof
system introduced in 7.3 in which LTL is formalised in Agda. I will show that the axioms of their
online monitoring proof system are theorems of the proof system presented in this thesis. For any
theorem in their proof system that satisfies φ, a theorem can be constructed in Agda that satisfies
φ. The same can be done for theorems that violate φ.

A satisfaction judgement in in the online monitoring proof system is denoted by σ ⊢+
φ and a

violation judgement is denoted by σ ⊢-
φ. This corresponds with φ σ in Agda. If a proof can be

constructed that holds for σ, then φ is satisfied for σ. The inverse says that if φ doesn’t hold for σ,
a proof can be constructed that violates φ (φ σ → ⊥).

_⊢+_ _⊢-_ : {n : N} (σ : Vec (Str Value) n) (φ : StrPred n) → Set
σ ⊢+

φ = φ σ
σ ⊢-

φ = φ σ → ⊥
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The satisfaction and violation rules are derived below. Note that Sum.inj1 and Sum.inj2 are the
constructors of the sum type (defined as a disjoint union). Σ.proj1 and Σ.proj2 are the constructors
of a dependent product type.

pNeg : ∀ {n} {σ} {φ : StrPred n} → σ ⊢-
φ → σ ⊢+ (¬ φ)

pNeg p q = p q

pAnd : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢+
φ → σ ⊢+

ψ → σ ⊢+ (φ ∧ ψ)
pAnd p q = p , q

pOr1 : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢+
φ → σ ⊢+ (φ ∨ ψ)

pOr1 p = Sum.inj1 p

pOr2 : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢+
ψ → σ ⊢+ (φ ∨ ψ)

pOr2 q = Sum.inj2 q

pNext : ∀ {n} {σ} {φ : StrPred n} → (tlvs σ) ⊢+
φ → σ ⊢+ ⃝ φ

pNext = next

pUnt1 : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢+
ψ → σ ⊢+ (φ U ψ)

pUnt1 p = here p

pUnt2 : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢+
φ → tlvs σ ⊢+ (φ U ψ) → σ ⊢+ (φ U ψ)

pUnt2 p q = step p q

nNeg : ∀ {n} {σ} {φ : StrPred n} → σ ⊢+
φ → σ ⊢- (¬ φ)

nNeg p q = q p

nAnd1 : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢-
φ → σ ⊢- (φ ∧ ψ)

nAnd1 p q = p (Σ.proj1 q)

nAnd2 : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢-
ψ → σ ⊢- (φ ∧ ψ)

nAnd2 p q = p (Σ.proj2 q)

nOr : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢-
φ → σ ⊢-

ψ → σ ⊢- (φ ∨ ψ)
nOr p q = Sum.[ p , q ]

nNext : ∀ {n} {σ} {φ : StrPred n} → (tlvs σ) ⊢-
φ → σ ⊢- ⃝ φ

nNext p (next q) = p q

nUnt1 : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢-
φ → σ ⊢-

ψ → σ ⊢- (φ U ψ)
nUnt1 p q (here ψσ) = q ψσ
nUnt1 p q (step φσ u) = p φσ

nUnt2 : ∀ {n} {σ} {φ ψ : StrPred n} → σ ⊢-
ψ → tlvs σ ⊢- (φ U ψ) → σ ⊢- (φ U ψ)

nUnt2 p q (here ψσ) = p ψσ
nUnt2 p q (step φσ u) = nUnt2 (λ _ → q u) (λ _ → q u) u
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7.3.2 The stopwatch node

The following is a model of the stopwatch node introduced in chapter 4.5. The node uses 3 state
variables to simulate fby, pre(time) and pre(running).

module stopwatch where

I = 2
S = 3
O = 2

open import node

ex = Expr (I Nat.+ S)

False True Zero One : ex

Constants are declared beforehand and can be used inside expressions.

False = const (bool Bool.false)
True = const (bool Bool.true)
Zero = const (int (Z.pos 0))
One = const (int (Z.pos 1))

reset = # 0
start_stop = # 1

stateA = # 2
stateB = # 3
stateC = # 4

r ss a b c : ex

r = var reset
ss = var start_stop

a = var stateA
b = var stateB
c = var stateC
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Note that the order of the equations for running and time are reversed. The output of the running
equation is needed as input for the time equation.

The fby operator is formalised as an if then else statement which uses a state variable as it’s
conditional. For this node, the values of running and time at t = 0 will be False and Zero respectively.
On the next steps (t > 0) the values the alternative applies. pre(time) and pre(running) are denoted
by b and c respectively, signifying the value of time and running at the previous step.

running : ex
running = if a then False else (

if ss then (not c)
else c)

time : ex
time = if a then Zero else (

if r then Zero
else if running then (b +’ One)
else b)

oe : Vec ex O
oe = time :: running :: []

se : Vec (StateEq I S) S
se = stateEq True False :: stateEq time time :: stateEq running running :: []

n : Node I S O
n = node oe se

sem : Vec (Str Value) I → Vec (Str Value) O
sem = nodeSem n
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7.3.3 The trigger node

This node simulates a trigger which starts and stops a stopwatch. It converts a trigger signal
defined as True when the trigger is pressed and false when the trigger is released, to a signal that
becomes true at a rising edge. This output can be used as input for the stopwatch node to create a
system of nodes. It also outputs separate toggle_on and toggle_off signals which take apart the
start_stop signal into a start and a stop signal.

As the equations are somewhat simpler, it’s a good place to start writing proofs about their
behaviour. Like the stopwatch node, it uses 3 state variables for 1 fby and 2 pre operators.

module trigger where

I = 1
S = 3
O = 4

open import node

ex = Expr (I ⊕ S)

False True : ex

False = const (bool Bool.false)
True = const (bool Bool.true)

trigger = # 0
stateA = # 1
stateB = # 2
stateC = # 3

t a b c : ex

t = var trigger
a = var stateA
b = var stateB
c = var stateC

The edge equation detects a rising edge in the input. This is the case when a False is followed by
a True at the next time step. This is formalised by the expression (t and (not c)) in which t
denotes the input and c denotes the state of t in the previous time step, which is analogous with
pre(t). It can be used as the start_stop input for the stopwatch node.

edge : ex
edge = if a then False else (t and (not c))
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The mem equation stores the information of the last rising edge. The mem signal starts at False and
inverts when edge becomes true. When edge becomes true a second time, mem inverts again and so
on. This information is necessary to decide whether start_stop or reset should become True.

mem : ex
mem = if a then False else (if edge then (not b) else b)

The toggle_on equation is defined by edge ∧ mem. At the first rising edge, toggle_on becomes
True for one time instant.

toggle_on : ex
toggle_on = edge and mem

At the next rising edge, toggle_off becomes True. At each rising edge either toggle_off or
toggle_off becomes true in turn.

toggle_off : ex
toggle_off = edge and (not mem)

oe : Vec ex O
oe = edge :: mem :: toggle_on :: toggle_off :: []

se : Vec (StateEq I S) S
se = (stateEq True False) :: stateEq mem mem :: stateEq t t :: []

n : Node I S O
n = node oe se

sem : Vec (Str Value) I → Vec (Str Value) O
sem = nodeSem n

7.3.4 A proof on the trigger node

The following contains the proof of the LTL formula φ : trig-ff ∧ ◦ trig-tt → ◦ edge-tt.
Whenever the trigger signal is False, followed by a True at the next time instant, ◦ edge-tt should
become True. To prove this, we use a Lemma that contains a proof for φ for the semantics of a node
that displays the state variables to the outside and then use this Lemma to prove that φ holds for
the original semantics. This method can also be used to prove other formulas about other nodes.

The lemma hideState allows us to prove that a weakened formula never uses the state variables.
Hence, it can be proven purely on the input-output semantics.

hideState : ∀ {I S O} (n : Node I S O) (φ : StrPred (I ⊕ O)) → Resp~* φ →
∀ i → weaken I S φ (i ++ nodeFullSem n i) → φ (i ++ nodeSem n i)

hideState {I} {S} n φ φ-resp~* i = φ-resp~* (disect-lem n i)

From hideState, we obtain the following theorem that allows us to use a lemma that proves
something involving the internal state variables of a node to prove a weakened formula. With this
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theorem, we can "open up" a node, prove ψ on the state variables, then show that ψ → φ and then
forget about the state variables to obtain φ.

fromStateLemma : ∀ {I S O} (n : Node I S O)
(ψ : StrPred (I ⊕ (S ⊕ O)))
(φ : StrPred (I ⊕ O)) →
(ψ ⊆ weaken I S φ) →
Resp~* φ →
(∀ i → ψ (i ++ nodeFullSem n i)) →
∀ i → φ (i ++ nodeSem n i)

fromStateLemma n ψ φ ψ⊆φ φ-resp~* ∀ψ i =
hideState n φ φ-resp~* i (ψ⊆φ (∀ψ i))

These lemmas can now be used to write a complete proof of φ.

t0 : Fin I
t0 = # 0

e0 m0 on0 off0 : Fin O
e0 = # 0
m0 = # 1
on0 = # 2
off0 = # 3

module Lemma where

First, the de Bruijn indices are raised to address both input and state variables.

iT’ sA sB sC oE’ oM’ oOn’ oOff’ : Fin (I ⊕ (S ⊕ O))
iT’ = inject+ (S ⊕ O) t0
sA = # 1
sB = # 2
sC = # 3
oE’ = raise (I ⊕ S) e0
oM’ = raise (I ⊕ S) m0

oOn’ = raise (I ⊕ S) on0

oOff’ = raise (I ⊕ S) off0

We define the predicates over streams we need to prove φ. The testVar function checks whether the
Value at a certain index satisfies some predicate P. In this case, isFalse and isTrue are used as
predicates over values.

trig-ff trig-tt c-ff edge-tt : StrPred (I ⊕ (S ⊕ O))
trig-ff = testVar V.isFalse iT’
trig-tt = testVar V.isTrue iT’
c-ff = testVar V.isFalse sC
edge-tt = testVar V.isTrue oE’
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The full theorems φ and ψ we want to prove. φ only considers in- and output variables whereas ψ
also considers the state variables.

φ0 φ ψ0 ψ : StrPred (I ⊕ (S ⊕ O))
φ0 = (trig-ff ∧ ◦ trig-tt) −→ ◦ edge-tt
φ = □ φ0
ψ0 = (trig-ff ∧ ◦ trig-tt) −→ (◦ c-ff ∧ ◦ edge-tt)
ψ = □ ψ0

e-up states that for an input x with x .hd = false and x .tl .hd = true (so a False followed
by a True at the next instant) give that ◦ edge-tt for the full semantics of n (nodeFullSem n).

e-up : ∀ {x s u v} →
x .hd ≡ u → x .tl .hd ≡ v →
u ≡ bool false → v ≡ bool true →
◦ edge-tt (nSem n Vec.[ x ] s)

e-up {x} p q refl refl = next r

where
open ≡-Reasoning

r =
begin

(x .tl .hd) V.and V.not (x .hd)
≡⟨ cong (λ t → t V.and V.not (x .hd)) q ⟩

(bool true) V.and V.not (x .hd)
≡⟨ cong (λ t → (bool true) V.and V.not t) p ⟩

(bool true) V.and V.not (bool false)
≡⟨⟩

bool true
■

c-down states that for an input x with x .hd = false and x .tl .hd = true (so a False followed
by a True at the next instant) give that ◦ c-ff for nodeFullSem n.

c-down : ∀ {x s u v} →
x .hd ≡ u → x .tl .hd ≡ v →
u ≡ bool false → v ≡ bool true →
◦ c-ff (nSem n Vec.[ x ] s)

c-down p q refl refl = next p

The proof for ψ0 applied to n with any input i is a pair of c-down and e-up, constructing ◦ c-ff ∧
◦ edge-tt.

pψ0 : ∀ {i} → (ψ0 on n) i
pψ0 {x :: []} (t-ff , next ◦t-tt) = c-down t-ff ◦t-tt refl refl , e-up t-ff ◦t-tt refl refl
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If ψ0 is satisfied for nodeFullSem n, then φ0 will also be satisfied for nodeFullSem n.

ψ0→φ0 : stateOf n have ψ0 ⇒2 stateOf n have φ0
ψ0→φ0 ψ0x p = proj2 (ψ0x p)

ψ0 is satisfied for nodeFullSem n.

ψ0-safe : ∀ {i s} → (stateOf n have ψ0) i s
ψ0-safe {x :: []} {s} (t-ff , next ◦t-tt) = c-down t-ff ◦t-tt refl refl , e-up t-ff ◦t-tt refl refl

Proof that □φ holds for nodeFullSem n (for any input). This proof requires that ψ is an invariant,
meaning that if ψ holds for some state, it holds for every state. The proofs can be found in
NodeReasoning.lagda.

pφ : ∀ {i} → φ (i ++ nodeFullSem n i)
pφ = □-safety-node n ψ0 ψ0-resp φ0-resp ψ0→φ0 ψ0-safe pψ0

Now, we need to prove that φ holds for the version of the semantics that doesn’t display the state
variables to the outside (sem i).

iT oE oM oOn oOff : Fin (I ⊕ O)
iT = inject+ O t0
oE = raise I e0
oM = raise I m0

oOn = raise I on0

oOff = raise I off0

trig-ff trig-tt : StrPred (I ⊕ O)
trig-ff = testVar V.isFalse iT
trig-tt = testVar V.isTrue iT

edge-tt : StrPred (I ⊕ O)
edge-tt = testVar V.isTrue oE

φ is now a StrPred over (I + O) instead of (I + S + O).

φ : StrPred (I ⊕ O)
φ = □ ((trig-ff ∧ ◦ trig-tt) −→ ◦ edge-tt)

w-trig-ff : ∀ x → (weaken I S trig-ff) x ≡ Lemma.trig-ff x
w-trig-ff x = weaken-proj1 {atHead1 V.isFalse} I S t0 x

w-trig-tt : ∀ x → (weaken I S trig-tt) x ≡ Lemma.trig-tt x
w-trig-tt x = weaken-proj1 {atHead1 V.isTrue} I S t0 x

w-edge : ∀ x → (weaken I S edge-tt) x ≡ p-assoc I {S} {O} Lemma.edge-tt x
w-edge x = weaken-proj2 {atHead1 V.isTrue} I S e0 x

→assoc : Lemma.edge-tt ⊆ p-assoc I {S} Lemma.edge-tt
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→assoc {x} p = subst Lemma.edge-tt (sym (assoc-id x)) p
where

assoc-id : ∀ x → v-assoc {_} I S {O} x ≡ x
assoc-id (_ :: _) = refl

Proof of φ0 on the weakened state variables.

Lemma→φ0 : Lemma.φ0 ⊆ weaken I S ((trig-ff ∧ ◦ trig-tt) −→ ◦ edge-tt)
Lemma→φ0 {x} p (t-ff , next ◦t-tt) =

let r = tlvs-weaken I {S} trig-tt {x} ◦t-tt
(next q) = p (subst id (w-trig-ff x) t-ff , next (subst id (w-trig-tt (tlvs x)) r))
q’ = subst id (sym (w-edge (tlvs x))) (→assoc {tlvs x} q)

in next (weaken-tlvs I {S} edge-tt {x} q’)

If ψ → φ we can forget about the state variables and obtain φ.

Lemma→φ : Lemma.φ ⊆ weaken I S φ
Lemma→φ p = weaken-□ I (□-mono Lemma→φ0 p)

pφ : ∀ i → φ (i ++ sem i)
pφ = fromStateLemma n Lemma.φ φ Lemma→φ φ-resp (λ i → Lemma.pφ)

8 Conclusions and Further Research
By Lustre’s design, Agda can be a useful tool for program verification. I have shown that a subset of
Lustre’s syntax and semantics (described in section 4) can be formalised in Agda by demonstration
in section 4.3. This formalisation makes it possible to write proofs about properties of Lustre nodes.
I’ve demonstrated that my encoding of LTL in Agda is useful for this purpose in section 7.3. In
section 7.3.3 I’ve demonstrated how my formalisation of Lustre’s syntax and semantics can be used
to model the execution of a Lustre program and I’ve provided a proof about a temporal property
of this node. My research question: How can formalisation of the semantics of Lustre be achieved
in Agda and how can Agda be used to prove properties of Lustre programs? is therefore answered by
demonstration.

As stated in section 7, clocks and clock calculus are omitted from my formalisation. The imple-
mentation of clocks, the temporal operators when and current together with their semantics on
flows are therefore still subject for research. My implementation of the formalisation of the syntax
and semantics can also be further improved by writing programs that make the writing of nodes
easier, for example by automatically generating the in/output streams, equations and functions
from a given node definition. The process of creating proofs for Lustre nodes can be simplified by
writing functions that aid generalised proof writing. This thesis doesn’t contain a proof that uses
predicates on outputs as premises and is also still subject for research.

Additionally, a compiler could be written to directly translate a Lustre program to its formalisation
in Agda. Much work is still needed to formalise the full Lustre syntax and semantics in Agda.
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