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Abstract

Monitoring biophysical parameters of vegetation is important to understand spatial processes of
ecosystems. Field monitoring of these parameters is logistically difficult and therefore Remote
Sensing (RS) provides an appealing alternative to monitor them. In addition, RS provides
near-daily and virtually global acquisitions. Nevertheless, scarcity of field data can hinder the
training of advanced models using RS. This lack of field data can potentially be addressed by
using physically based models known as Radiative Transfer Models (RTMs) that simulate the
interaction of light with vegetation. These models can be used to generate surrogate data for
the training of machine learning models. This combination of physically based models with
nonparametric regression methods models is commonly called hybrid regression. However,
these hybrid regression approaches mostly use traditional machine learning methods, where
the researcher is expected to possess adequate knowledge of these methods. Even for machine
learning experts obtaining a high-performant model can be a challenge.
AutoML methods promise to solve these hurdles by automating the machine learning process,
and thus taking the human out of the process. We investigated the performance of two AutoML
methods (AutoKeras and Auto-sklearn) and compared them against two traditional models
(Gaussian process regression and Random Forest regression) by training and evaluating them
on pure artificial inversion. Our artificial dataset was generated by sampling canopy and leaf
properties using Latin Hypercube Sampling (LHS), generating associated spectral responses
using the PROSAIL RTM and applying noise. Finally, the performance of the models was
evaluated by predicting above ground biomass (AGB) values from Landsat 7 (ETM+) imagery
and comparing these estimations against field measurements. We found that on artificial data,
Auto-sklearn had the best performance (MAE of 0.0034, σ = 0.0003). Here the average MAE
for the AutoML methods (0.003925) was lower than the average MAE for the traditional
machine learning methods (0.00465). On the field dataset, the Gaussian process regressor had
the best performance (MAE of 0.0514, σ = 0.0002). Here the average MAE for the AutoML
methods (0.055175) was higher than the average MAE for the traditional methods (0.05245).
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Variables

In the following table we show a list of the variables used in this thesis, their unit and a small
description.

Table 1: Variables, their meaning and their unit that are used in this thesis.

Variable Description Unit

LAI Leaf area index
Cm Dry matter content g/cm2

AGB Above ground biomass (equal to LAI · Cm) [27] g/cm2
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1 Introduction

In the field of ecology, RS is used for purposes ranging from determining the health of lakes,
farmland, and soil of the land around windparks, to determining leaf traits.

Remote sensing (RS), the gathering of spatial information of the Earth’s surface from a distance
[11], brings opportunities to scientists in many fields, like meteorology [49], archeology [76], and
ecology. In the field of ecology, RS is used for purposes ranging from etermining the health of lakes
[13], farmland [79], soil of the land around windparks [60] to determining leaf traits [57, 37].

One of the use cases for remote sensing methods in ecology is to retrieve biophysical variables of
vegetation [70]. A biophysical variable is defined as “any vegetation property that can be quantified,
i.e. any pigments, chemical constituents, structural variables, but also variables related to plant
photosynthesis, productivity or diseases” [70].

In our research we focus on the Above Ground Biomass (AGB). In specific contexts, monitoring
the amount of AGB has been shown to be useful, for example to determine the dynamics of an
ecosystem [54, 21], to track the vegetation to find diseases [59], and to track animal populations
[72]. In the case of our research the primary interest is to study the dynamics of AGB in the
Oostvaardersplassen (Section 3.2.1) to ensure that animals have enough food. In the last Decennia
animals were becoming thin and were dying; the die-off percentage without supplementary feeding
varied between 6% in 2008 and 34% in 2005 [65].

AGB estimation, in particular on homogeneous canopies (such as grasslands), has been successful
with Remote Sensing methods using satellites [27]. RS methods have the advantages of providing the
possibility to observe a large area, which is required to obtain good results in spatially heterogeneous
environments in the context of canopy characteristics estimation [3]. They also have the advantage
of being less expensive and time consuming, and furthermore they can be used to retroactively
observe regions. Imagery from publicly funded remote sensing satellite missions, such as the Landsat
and Sentinel missions, are readily available and free to use for any use.12 However, the missions are
limited in their resolution: the Landsat 7 and 8 missions both feature an image resolution of 30
meters3, and the Sentinel-2 mission has bands with resolutions ranging from 10 to 60 meters4. The
commercial WorldView-4 satellite boasts a sensor that has a resolution of 31cm for the panchromatic
channelx and 124cm for the multispectral channel.5 The imagery from the commercial satellites is
generally not free to use.

Verrelst et al. [70] summarised the current approaches for biophysical variable retrieval methods
from spectroscopy into four categories:

1. Parametric regression methods : Regression methods where an explicit relationship between
spectral observations and specific biophysical variables is assumed. Therefore, parametrized
expressions can be built. These methods require knowledge beforehand of the statistical
relationship that exists between variables and spectral responses.

1Landsat 7 data access information: https://developers.google.com/earth-engine/datasets/catalog/

LANDSAT_LE07_C02_T1_L2#terms-of-use
2Sentinel-2 data access information: https://sentinel.esa.int/documents/247904/1848117/Sentinel-2_

Data_Products_and_Access
3https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C02_T1_L2#bands
4https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial
5https://web.archive.org/web/20160424030451/https://dg-cms-uploads-production.s3.amazonaws.

com/uploads/document/file/196/DG_WorldView4_DS_11-15_Web.pdf
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2. Nonparametric regression methods : Regression methods where no explicit relationship needs
to be known beforehand between variables and spectral responses; the regression functions
are defined directly by the information provided to the methods. The relationship between
the variables and spectral responses is therefore made non-explicitly.

3. Physically based model inversion methods: Inversion methods that rely on techniques that
model physical laws. They typically use Radiative Transfer Models (RTMs).

In the field of RS a widely used RTM is PROSAIL [35]: an RTM model that combines
the PROSPECT [34] and SAIL [66] models. PROSPECT uses the physical principles of
light interaction with matter to simulate the optical properties of a single plant leaf. SAIL
(Scattering by Arbitrary Inclined Leaves) works on an idealized form of a canopy, which in
turn is used to simulate the canopy reflectance according to a single leaf reflectance [66]. In
Section 2.1 a more detailed explanation of PROSAIL is given.

4. Hybrid regression methods: Hybrid regression methods combine nonparametric regression
methods with physically based methods. They retain the flexibility and computational
efficiency of nonparametric regression methods and the generic properties of physically based
models.

Current research shows promising results using the hybrid regression method mentioned in the
above list. A nonparametric model is used to train the inverse relationship between the spectral
output of an RTM model (such as PROSAIL) to the biophysical variables to generate that output.
Hybrid inversion technqiues can be used in situations were there is a limited amount of field data
available, or were gathering field data would be expensive. However, inverting RTM models is
still challenging due to the problem of ill-posedness: the same spectral profile can be obtained by
different combinations of biophysical variables [23]. For the nonparametric and hybrid approaches
we define two categories of machine learning methods:

Traditional machine learning methods being nonautomated nonparametric regression methods;
examples are Support Vector Machines (SVMs), k-nearest neighbours, Random Forests, and
Gaussian Processes. These methods require domain-specific knowledge in the field of data science,
and even for experts they require substantial research and time to create well-performing models [28].
While these methods have produced promising results, not all ecologists are knowledgable enough
in the field of data science and/or artificial intelligence. In our comparison we use Random forests
[25] and Gaussian process [8] regressors for the Traditional methods, since they are commonly used
in literature for biophysical variable estimation [15, 56, 22].

Automated machine learning (AutoML) methods are an increasingly promising solution to this
obstacle. AutoML methods automate a larger portion of the AutoML pipeline (Fig. 3), thus allowing
scientists without much statistical and/or machine learning knowledge to leverage machine learning
in their research [28]. Examples of open-source AutoML methods are Auto-sklearn [18], AutoKeras
[36], TPOT [45], and H2O [46]. Commercial offerings are also available, for example Google’s
Cloud AutoML6 and Microsoft’s Azure Automated machine learning7. In our research we use
Auto-sklearn and AutoKeras for the Automated methods, since they are easy to use (Section 5.2),
are popular, and automate a large portion of the AutoML pipeline (Fig. 3). We explore AutoML
methods more in-depth in Section 2.2.2.

6https://cloud.google.com/automl/
7https://azure.microsoft.com/en-us/services/machine-learning/automatedml/
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Because of the aforementioned issues with traditional machine learning methods and the
improvements the AutoML techniques promise to bring, we will compare the mentioned frameworks
to the problem of AGB estimation in a hybrid regression approach. We will evaluate the performance
of the models on artificial data generated using the PROSAIL RTM. Then we will apply these
models to estimate the AGB value from Landsat 7 imagery in the Oostvaardersplassen, comparing
against field measurements done. Landsat 7 is a satellite that uses the Enhanced Thematic Mapper
Plus (ETM+) image sensor. Landsat 7 imagery was chosen since the mission started in 1999, which
means that we have images for the whole history of the field dataset at our disposal. The goal of
our research is to conclude whether or not AutoML are useful to the problem of AGB estimation
from spectral imaging using a hybrid approach, by evaluating whether or not they perform as well
as, or better than the traditional methods.

1.1 Related work

Verrelst et al. [70] provide a review into retrieval methods; they reviewed all the methods we
classified as traditional in our comparisons. Their review is of interest to our research since it lays
the groundwork of definitions and the hybrid approach to which we evaluate the four machine
learning methods.

Sá et al. [56] compared Artificial Neural Networks, Gaussian process regressors, Multi-task
Neural Networks, and Random forests regressors for the hybrid inversion of the PROSAIL RTM.
They evaluated the performance of the methods on artificial dataset, both with and without added
noise. They found the Gaussian process regressor to be the best-performing when when no noise
was added, and ANNs the best-performing when noise was added. We build on their approach
for hybrid inversion, especially their choices for artificial noise generation. In our research we add
evaluation on field data and also evaluate the performance of AutoML packages.

Estévez et al. [15] trained Gaussian process regressors in a hybrid approach using PROSAIL
to predict LAI from Sentinel-2 data. They also trained using artificial noise and evaluated their
performance on field data, which we also do. The only difference is that they predict LAI and
evaluated the performance of the models on field data. We cannot do the latter since the field data
that we have at our disposal does not include LAI measurements (Section 3.2). In Section 5 we
make an approximate comparison between the findings of this thesis and that of Estévez et al.

Gao et al. [22] used a nonparametric approach using the Artificial Neural Network, Support
Vector Machine, k-nearest neighbour, linear and Random forests regressors. Since Gao et al. used
a nonparametric approach and we did an hybrid approach, it might be interesting to compare our
findings, especially since both evaluate the Random forests regressor on the task of AGB estimation
on LANDSAT data (albeit their dataset uses Landsat 5 imagery, while we use Landsat 7 data).

He et al. [27] used Lookup-table (LUT) inversion for a physically based inversion approach
using the PROSAIL RTM to estimate the AGB variable from MODIS imagery. Their paper is of
interest to us since we use their definition of AGB. It is also interesting to explore the difference in
performance between the machine learning methods that we use against a physically based method
(LUT inversion).

Verrelst et al. [69] used Lookup-table (LUT) inversion to estimate the LAI and Cab variables in
a physically based approach using the PROSAIL RTM applied on Sentinel-2 and -3 data. Just like
Verrelst et al., this thesis give us another baseline to compare the results we obtained using hybrid
inversion to that of a physically based approach.
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Truong et al. [64] compared Auto-sklearn, AutoKeras, auto ml, H2Os AutoML, TPOT, Darwin,
and Ludwig on various regression and classification datasets. They found Auto-sklearn, AutoKeras,
and H2Os AutoML to be the best performing. this thesis is of interest since they compare both
Auto-sklearn and AutoKeras for regression problems, which we also do in this thesis. Since this
thesis also compares traditional methods on the same dataset, it has the opportunity to provide
more insight in the performance of Auto-sklearn and AutoKeras.

Balaji and Allen [1] compared Auto-sklearn, TPOT, auto ml and H2Os AutoML on various
regression and classification datasets. They found that Auto-sklearn performs the best on regression
problems compared to the other libraries tested. While less related to our research than the previous
paper — they don’t compare with Auto-sklearn — it still gives insight, especially when combining
their results with the results of the previously mentioned paper.

1.2 Research objectives

Our research objectives are as follows:

1. Compare the performance of traditional machine learning methods used for hybrid inversion
of PROSAIL RTM with AutoML methods for Landsat ETM+ PROSAIL RTM inversion.

2. Compare the performance of traditional methods with AutoML methods on real Landsat
TM/ETM data.

1.3 Research questions

Main question: Do AutoML methods outperform traditional machine learning techniques when
used as a hybrid regression model for the estimation of AGB by RTM inversion?

1. Do AutoML methods have a lower MAE than traditional machine learning methods when
used as hybrid regression methods for RTM inversion of artificial spectral data?

2. Do AutoML methods have a lower MAE than traditional machine learning methods when
used as hybrid regression methods for RTM inversion of field data?

1.4 Research hypothesis

Hypothesis 1 AutoML methods have a lower MAE than traditional machine learning methods
when used as Hybrid regression methods for RTM inversion of artificial spectral data.

H0 The MAE of AutoML methods is equal to or higher than traditional machine learning
methods.

Ha The MAE of AutoML methods is lower than traditional machine learning methods.

Hypothesis 2 AutoML methods have a lower MAE than traditional machine learning methods
when used as Hybrid regression methods for RTM inversion of Landsat data compared to
field data.
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H0 The MAE of AutoML methods is equal to or higher than traditional machine learning
methods.

Ha The MAE of AutoML methods is lower than traditional machine learning methods.

2 Algorithms

In this section a small introduction will be given for all the algorithms used and evaluated in this
thesis to the problem of RTM inversion. We will introduce the PROSAIL, the RTM model used
to generate an artificial dataset to train the models on. We will also introduce the methods we
compare, all support both single-output regression and multi-output regression.

First we will introduce the traditional machine learning methods commonly used in literature
for RTM inversion. The methods in this section that we will compare are: Random forests and
Gaussian process.

Secondly we have the AutoML frameworks: Auto-sklearn and AutoKeras.

2.1 PROSAIL RTM

Radiative transfer models (RTMs) are physical models that describe the interaction between
radiation and objects [70]. Although there are many different RTMs, our focus is in the interaction
between sunlight radiation and vegetation which is parametrized by biophysical (e.g. LAI) and
biochemical properties (e.g. Chlorophyll).

PROSAIL [35], first described by Baret et al. [2], is an RTM model that describes that interaction.
It is the most common used RTM to retrieve biophysical variables, and therefore also the most
used in hybrid regression methods [56]. PROSAIL works by combining PROSPECT [34] (a model
for leaf spectra) with the SAIL [66] (Scattering by Arbitrary Inclined Leaves) model (a model for
modelling the light scattering in canopies). PROSPECT uses the physical principles of light to
matter interaction to simulate the optical properties of a single plant leaf. SAIL works on an
idealized form of a canopy, it assumes the canopy to be [66]: 1. An infinite plane, 2. formed by small
and flat leaves, 3. homogeneous. SAIL can then simulate the interaction between a light source and
the canopy using the single leaf reflectance as generated by PROSPECT and calculate the final
reflectance of light on the canopy. The output of the PROSAIL model is the simulated spectral
profile of the canopy between the wavelengths of 400nm and 2500nm. This profile is described by
the input parameters: leaf traits (e.g. Cab), canopy traits (e.g. LAI), and sensor/sun positions (see
Table 3). A schematic showing a general overview of the workings of PROSAIL is given in Fig. 1.
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Figure 1: Schematic giving an overview of PROSAIL. By Kattenborn [38]

2.1.1 RTM inversion

We can use (non)parametric regression methods in junction with RTMs in two ways: emulation [68]
and inversion [70]. The schematic Fig. 2 shows the relationship between emulation and inversion.

Parameters c

RTM f(c, φ)

Reflectances e

Inversion g(e, θ)

forward problem

inverse problem

Figure 2: A schematic showing the relationship between the forward problem (emulation) and
the inverse problem (inversion). In our research we are studying the inverse problem, learning a
function g which estimates the parameters c for which the RTM f will again produce e. Adapted
from Svendsen et al. [61]

Emulation consists of learning the relationship between the input variables to a RTM and
the spectra it produces, thereby simulating the RTM model [68]. This can be interesting when
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the RTM is expensive and time consuming to compute, since the emulated model would be less
computationally expensive. Most RTMs are hard to compute because they are rigorous physically
based models [23]. Learning an estimation of these RTMs can provide a way more performant
model, which most of the times delivers results which are very close to the actual result [23].

Inversion consists of taking an RTM and learning the inverse relationship between (some of)
the input variables and the output spectra (i.e. we take generated spectra and try to estimate
the biophysical variables) [70]. Inversion can be used to efficiently estimate variables — such as
AGB — from Remote Sensing data. The focus of this thesis is on estimating this inversion problem.
RTM inversion is negatively impacted by ill-posedness, meaning that the same spectral profile can
be obtained by different combinations of biophysical variables [23]. Complications occur because
many biophysical variables have similar and drastic effects on the output spectra, which makes
this inverse problem ill-posed [67]. Ill-posedness will increase in the case of a limited number of
bands and with noisy data as is generally the case in RS data [82]. As increasing the amount of
target parameters increases both the ill-posedness of the problem and exacerbates the curse of
dimensionality we won’t learn to predict all the input parameters, but only LAI and Cm (or in the
case of single-output the product of the two).

2.2 Machine learning algorithms

This section provides a small introduction to the machine learning algorithms that were used. The
section is divided into traditional and automated machine learning methods. The first is used to
describe the more commonly used algorithms for RTM inversion, while the latter encompasses the
two AutoML packages used in this research: AutoKeras and Auto-sklearn.

Orginally also the AdaNet [75] library was included, but due to the properties of the library we
did not include it in the final comparison. We explain this in more detail in Appendix B.

2.2.1 Traditional machine learning algorithms for PROSAIL RTM inversion

Random forests
The general idea behind Random forests (RF, also known as random decision forests) was

introduced by Tin Kam Ho in 1995 [31]. But it was Leo Breiman in 2001 [5] to extend and properly
introduce Random forests.

The algorithm works by constructing a fixed amount (B) of uncorrelated decision trees. In
Breiman this is done using the CART [10, 40] procedure. The trees are combined using Bootstrap
aggregating (also known as bagging) which learns an ensemble of trees trained on different randomly
sampled subsets.

Random forests also combine the random subspace method (as introduced by Tin Kam Ho).
This method attempts to reduce the correlation between the learned trees in the forest. If there is
a strong predictor in the dataset that explains the output variable, one can expect many of the
B trees to also split on that predicting feature, thus leading to an unwanted correlation [30]. A
solution is the random subspace method (also known as feature bagging), this method reduces the
correlation not by randomly sampling datapoints from the dataset, but by sampling the features.
This makes an individual tree not being able to predict accurately on the dataset, but since we
create a forest we circumvent this problem and reduce the correlation between the trees, thus
reducing variance.
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Random forests can be used for regression or for classification. In the context of this thesis
we use Random forests for regression, where the mean value of the all the predictions done by
the individual estimators is used as the final prediction of the result. We use the Random forests
implementation from the scikit-learn (sklearn) [53] library.

Gaussian process
Gaussian process regression is usually attributed to Matheron in 1962, where it was used in

the geostatistics field [8]. But it also finds use in general statistics [51]. A Gaussian process model
creates a posterior based on a prior distribution updated with observed datapoints from a dataset
[71]. This probability distribution is a distribution over possible functions that fit the set of points
the model is trained on. Since we are left with a probability function we can calculates the variances
and the means, therefore deducing how confident we are about a prediction [19].

There are multiple methods to calculate this probability distribution. According to their
documentation, sklearn uses algorithm 1.2 from [55], this uses Cholesky decomposition to aid in
the performance and numerical stability. We use the Gaussian process implementation from the
scikit-learn (sklearn) [53] library.

2.2.2 Automated Machine Learning

Figure 3: Overview of the AutoML pipeline. He, Zhao and Chu [28]

Automated Machine Learning (AutoML) encompasses the idea of automating the entire process of
setting up, using, applying and maintaining the pipeline required for machine learning methods
[28].

AutoML methods can be formalised as a Combined Algorithm Selection and Hyperparameter
optimization (CASH) problem [63]. Given a set of algorithms A = A(1), . . . , A(k), with associated
hyperparameter spaces Λ(1), . . . ,Λ(k), CASH is defined as computing:

A∗λ∗ ∈ argmin
A(j)∈A,λ∈Λ(j)

1

k

k∑
i=1

L(A
(j)
λ ,D(i)

train,D
(i)
valid) (1)
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Where D(i) denotes the dataset i in k-fold cross-validation. Where L(A
(j)
λ ,D(i)

train,D
(i)
valid) is the loss

achieved by A when trained on D(i)
train and evaluated on D(i)

valid. Thus finding the algorithm and
hyperparameter set that results in the lowest mean loss value in k-fold cross validation.

The appeal of AutoML is that it reduces the expertise required for obtaining performant models
using machine learning methods. Because of this there is an increasing interest in AutoML methods,
as can be seen by the fact that there are currently various commercial offerings available for AutoML
[28].

In Fig. 3 a schematic overview is given of the pipeline that AutoML methods try to automate.
How and which components of this pipeline are automated differs per method. AdaNet (Appendix B),
for example, just focusses on Neural Architecture Search (NAS), while Auto-sklearn (Section 2.2.2)
does data preparation and feature engineering besides model generation and evaluation.

AutoKeras
AutoKeras [36] is an AutoML (more precisely a NAS) package built on top of Keras [9], which in
turn is built on top of TensorFlow [12].

It does not follow the CASH formalisation, however the formalisation used by AutoKeras is
similar. For a neural architecture search space F , the dataset is divided into Dtrain and Dtest. We
define Cost(A,B) as the evaluation metric as provided by the user (e.g. MSE, accuracy). We have:

f ∗ = argmin
f∈F

Cost(f(θ∗), Dval) (2)

θ∗ = argmin
θ
L(f(θ), Dtrain) (3)

Here θ is the learned parameter of f .
AutoKeras explores the search space by morphing the neural architecture guided by a Bayesian

optimization algorithm. The algorithm works in three steps [36]:

1. Updating: train and test existing models and use their results train the Bayesian optimization
search,

2. Generation: generate the next architecture as guided by the Bayesian optimization algorithm,

3. Observation: Obtain the performance by training the network and test the performance on
the validation set. Update the Bayesian optimization algorithm with the results.

The fact that AutoKeras does Bayesian optimization for a neural architecture search brings
some challenges [36]: Bayesian optimisation techniques are normally used for learning functions
in Euclidean space, which a neural architecture is not; Furthermore, transitional gradient based
methods cannot be used to optimize for discrete network morphism actions; Finally, keeping the
network consistent is a problem. Changes on one layer can require changes on other layers, such as
shape changes of output tensors requiring changes to the shape of the input of the child layers. To
tackle these issues, AutoKeras uses three key components [36]:

1. Edit-Distance Neural Network Kernel for Gaussian Processes,

2. Optimization for Tree Structured Space,

3. Graph-Level Network Morphism.
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Edit-Distance Neural Network Kernel for Gaussian Processes The authors of AutoKeras
propose an approximate solution to determine the edit distance between two neural networks.
Approximate because finding the edit distance between two neural networks is equivalent to finding
the edit distance between two graphs, an NP-hard problem [81].

Optimization for Tree Structured Space Traditional acquisition functions for Bayesian
optimisation are defined on Euclidean space. These functions are not applicable for tree-structured
spaces required for the morphism of networks. The authors of the AutoKeras paper propose a
novel method to optimize the acquisition function on tree-structured space. They use a A∗-based
algorithm to exploit the most promising nodes combined with simulated annealing to balance the
exploitation with exploration.

Graph-Level Network Morphism Finally the authors define the following morphism
functions on a neural network:

deep Inserting a layer to the neural network.

wide Depending on the type of the previous layer to where this is used this can mean adding more
filters to the previous layer if it is a convolutional layer, or making the output vector of the
previous fully-connected layer longer.

add Adding an additive connection between two nodes.

concat Adding an concatenative connection between two nodes.

Auto-sklearn

Figure 4: The general pipeline of the Auto-sklearn library. Noteworthy are the additions of the
meta-learning and automated ensemble construction nodes. By Feurer et al. [17] (image licensed
under CC BY 4.0)
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Figure 5: The configuration space of Auto-sklearn. In the three categories (feature preprocessor,
estimator, and data preprocessor) we can have respectively one, one, and up to three methods used
in the final pipeline. Squared boxes denote parent hyperparameters, boxes with rounded edges are
leaf hyperparameters. Grey boxes denote active hyperparameters in the pipeline. By Feurer et al.
[17] (image licensed under CC BY 4.0)

Auto-sklearn [18] is a popular AutoML package built on top of scikit-learn (sklearn) [53]. The
library contains 15 classification algorithms, 14 preprocessing methods, and 4 data preprocessing
methods, resulting in a total of 110 hyperparameters [18]. For the full list of the algorithms and
method included, I refer you to the original Auto-sklearn paper [18]. In Fig. 4 an overview of the
pipeline of Auto-sklearn is given and in Fig. 5 an overview of the configuration space is given.

Auto-sklearn follows the CASH formalisation as shown in the previous section (Eq. (1)). To
optimise the formalisation Auto-sklearn uses Bayesian optimization which optimizes both the data
and features preprocessors as well as the classifier selected and its hyperparameters. However,
Auto-sklearn makes two additions: 1. A meta-learning step, 2. an ensemble construction step.

The meta-learning step is used to warm-start the Bayesian optimization search. Meta-learning
is transferring the knowledge of older datasets to newer datasets [58]. In the case of Auto-sklearn,
a large amount of pre-trained models is given corresponding to datasets which metafeatures are
recorded. When Auto-sklearn is now given a new dataset, the nearest neighbours in the metalearning
set compared to the new dataset are found (per default 25), and the parameters of these pre-trained
models are given to the Bayesian optimization, thus aiding in the search.

For the automated ensemble construction step Auto-sklearn provides the insight that Bayesian
hyperparameter optimization is wasteful. To get to the best performing model, all earlier models
trained to reach the best model are discarded, even when they perform almost as well as the
resulting model. Instead of discarding, Auto-sklearn stores and uses these models to construct an
ensemble. For this the library uses the ensemble technique from Caruana et al. [7]. Ensembles of
weak models are known to perform better than these individual models and are also less prone to
overfitting [42, 75].

In summary, Auto-sklearn is a general purpose AutoML package, containing a large amount of
methods and classifiers. Set up is such a way that the only settings the end-user has to configure are
easy to understand for the data science layman (we will explore this in more detail in Section 5.2).
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3 Methodology

LHS sampling

PROSAIL

Map to ETM+ spectral sensitivity

Add noise

Cross validation

Field measurements

Combine datasets

LANDSAT 7 imagery

Performance evaluation

models

Figure 6: Flowchart showing the overall setup of the experiments done in this thesis. The circular
nodes represent datasets, the box nodes represent steps in the process, and the hexagons represent
steps which produce results.

In Fig. 6 a schematic overview is given of the methodology used in this research.
An artificial dataset is created, which is described in Section 3.1. We use 5-fold random

permutations cross-validation (also known as Monte Carlo cross validation) [78] to train and
evaluate models using the methods as described in Section 2.2. These experiments were ran using
increasing training times to determine the time after which the models did not show significant
improvement anymore. This was determined to be around 16000 seconds (4 hours, 26 minutes
and 40 seconds) (Section 4), this training time is used as the baseline for comparisons between the
methods. We added artificial inverse-combined noise of 5% (per Sá et al. [56]) to the dataset and
trained the models with the chosen baseline setting on the dataset with artificial noise. We use
these 5 models to asses their performance on the field dataset, which is described in Section 3.2.

All models were trained and evaluated on a computer running an Intel(R) Xeon(R) CPU
E5-4667 v3 CPU @ 2.00GHz. Every model is trained and evaluated using one thread, with an
unlimited amount of memory allowed. In practice, we have not observed the memory usage to go
above 3GiB per model.

Metrics The metrics used to quantify the performance of the models are defined in Table 2.
The MAE metric uses the same unit as the variable it measures, is easy to interpret and symmetrical
[33]. Therefore we use the MAE metric for the general conclusions in this thesis.
The MAPE metric is scale-invariant, it uses percentages in the range [0,∞) [33]. However, it has
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shortcomings: it is non symmetrical and produces produces values up to infinity for actual values
close to zero [39].
The MAPE metric is used in graphs were differently scaled units are compared to each other. Here
the problems of MAPE are less of a concern, and the property of scale-invariance is useful.
Finally we also calculate the RMSE metric, it is symmetrical but not linear. This metric is only
used for comparison to other research. RMSE is a popular choice, however it is more sensitive to
outliers, thus might be harder to interpret [77, 33]. RMSE — just like MAE — represents the error
in the same range as the variable it measures.

Table 2: The metrics used for the performance comparisons in this thesis.

Name Formula

Mean Absolute Error (MAE) 1
nsamples

∑nsamples−1
i=0 |yi − ŷi|

Mean Absolute Percentage Error (MAPE) 1
nsamples

∑nsamples−1
i=0

|yi−ŷi|
max(ε,|yi|)

Root Mean Square Error (RMSE)
√

1
nsamples

∑nsamples−1
i=0 (yi − ŷi)2

Where:

nsamples: the amount of samples in the dataset to calculate the metric for;

yi: the actual value;

ŷi: the value predicted by the model;

ε: an arbitrary small yet strictly positive number to ensure that, when y is equal to zero, the
equation won’t result in an undefined result.

3.1 Artificial data generation

We use Latin Hypercube Sampling (LHS) [50] to sample 10 000 parameter datapoints from the
parameter space (Section 3.1.1). We use these datapoints to generate reflectance spectra using the
PROSAIL model Section 2.1. The continuous reflectance spectra are reduced to the bands using a
spectral convolution approach [56] based on the spectral response functions provided by NASA.8.
The algorithms used for these calculations are provided in Appendix C. The AGB was calculated
using Eq. (4) (from He et al. [27]). Thus we obtained two datasets: one multi-output dataset (LAI
and Cm) and one single-output dataset (AGB).

AGB = LAI · Cm (4)

Artificial noise added to the dataset was generated by using the Inverse-combined noise formula
(Eq. (5)) of Locherer et al. [47]. The noise level percentage chosen is 5%, as determined by Sá et al.
[56]. Specifically 5% was chosen since it results in a good trade-off of bias and variance. These
datasets are split using random permutations cross-validation using 5 folds, 5000 datapoints used
for training and 5000 datapoints used for evaluation.

8https://landsat.usgs.gov/spectral-characteristics-viewer
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Rns(λ) = 1− {[1−Rsim(λ)]× [1 + χ(0, 2σ(λ))]}+ χ(0, σ(λ)) (5)

Where:

Rns(λ): simulated reflectance value for band λ with added noise;

Rsim(λ): simulated reflectance value for band λ;

χ(0, σ): Gaussian distribution with a mean value of 0 and a standard deviation of σ;

σ(λ): Uncertainties within the Gaussian distribution for band λ.

3.1.1 PROSAIL parameters

In the following table we describe the parameters that are sampled using the Latin Hypercube
Sampler (LHS). Per variable: the symbol, a small description, the unit and the range is given. We
adapted the values used by He et al. [27]. We determined the ranges for the angle values from our
field dataset (Section 3.2).

Table 3: The ranges for the PROSAIL parameters to be generated by the Latin Hypercube Sampler.
The ⇒ indicates variables for which we are interested in estimating them.

Description Parameter Unit Range

Leaf structure index N [1.500, 1.900]
Chlorophyll a + b content Cab ug/cm2 [15.000, 55.000]
Total carotenoid content Car ug/cm2 10.000
Equivalent water thickness Cw cm [0.002, 0.010]

⇒ Dry matter content Cm g/cm2 [0.005, 0.010]
Brown pigments Cbrown 0.000
Total anthocyanin content Canth ug/cm2 0.000

⇒ Leaf area index LAI [0.100, 8.000]
Average leaf slope LIDFa

◦ -1.000
Leaf distribution bimodality LIDFb

◦ 0.000
Hot spot parameter hspot [0.050, 0.100]
Soil reflectance psoil 0.500
Soil brightness factor αsoil 0.500
Solar zenith angle tts ◦ [0.000, 1.000]
Sensor zenith angle tto ◦ [30.000, 70.000]
Relative azimuth angle phi ◦ [0.000, 340.000]

In Fig. 7 a curve is shown that represents the generated reflectance spectra, the line is the mean
value of all the spectra and the shaded area shows the 95% confidence interval.
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Figure 7: The reflectance spectra PROSAIL generated by PROSAIL. The shaded area shows the
95% confidence interval.

In Fig. 8 the distribution is given for the AGB parameter (LAI · Cm), visualised as a histogram.
The curve shows the Kernel Density Estimate (KDE).
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Figure 8: The distribution of the AGB parameter (LAI · Cm) visualised as a histogram. The curve
shows the Kernel Density Estimate (KDE).
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3.2 Field data

The field data is comprised of field measurements done in the Oostvaardersplassen combined with
satellite imagery taken by the Landsat 7 mission. We will describe the study area in Section 3.2.1
and the process done to prepare the data in Section 3.2.2.

3.2.1 Study area

The study area for the field data is the Oostvaardersplassen, a nature reserve in province of
Flevoland in the Netherlands built on a piece of reclaimed land. It is seen as an experiment of
rewilding [48]. The Oostvaardersplassen contains both dry grasslands and wetlands [41]. Humans
introduced large herbivores which graze in the dry grasslands. The wetlands is an important
location for birds, used as wintering grounds. Therefore, it has also been classified as a Special
Protection Area (SPA) under the European Environment Agency’s Birds Directive [16].

3.2.2 Data preparation

Field data gathered by Staatsbosbeheer9 (the Dutch governmental organisation for forestry) is used
to determine the relationship between grass sward heights and the biomass of the corresponding
patch. The data was gathered by transecting sections of the dry grasslands. The dataset contains
both the sward heights and the biomass per patch, we used this to determine a linear relationship
between the two variables for the dry grasslands using LibreOffice Calc [20] (r2 = 0.8007):

AGB [g cm−2] = −0.0120942 + 0.0147056 · sward height [cm] (6)

This dataset is not used further.

9https://www.staatsbosbeheer.nl/
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Figure 9: The transects of the dataset shown on a satellite image of the Oostvaardersplassen.
Figure by Nuno De Mesquita César de Sá.

Table 5: The amount of field measurements per day in the dataset used of the Oostvaardersplassen.

Year Month Day Count RS Days difference

2013 05 07 137 -6
06 07 170 -5
07 08 112 -4
08 09 171 -4
09 12 5 10

2015 04 16 136 -5
06 03 160 5
07 10 174 0

2016 09 16 178 -2
11 08 37 9

2017 06 14 175 -1
07 25 117 6
08 28 14 -12
11 01 162 3
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To evaluate the results of the models, we use a newer dataset, also by Staatsbosbeheer. This
data again was gathered by transecting sections of the dry grasslands and measuring a sample
every 50 meters. In Fig. 9 the start and end locations of these transects are shown and in Table 5
the amount of field measurements per day is shown. This dataset only contains the sward heights,
so we use Eq. (6) to estimate the AGB.

The imagery for the plots are taken by the Landsat 7 mission [43] (which uses the ETM+
sensor). This sensor has eight bands, we don’t use band 6 and band 8 because they are out of
range for PROSAIL’s output or they overlap with the other bands respectively. The ETM+ bands
are (bolded are the bands that we use):

• Band 1 Visible (0.45 - 0.52 µm)

• Band 2 Visible (0.52 - 0.60 µm)

• Band 3 Visible (0.63 - 0.69 µm)

• Band 4 Near-Infrared (0.77 - 0.90 µm)

• Band 5 Short-wave Infrared (1.55 - 1.75 µm)

• Band 6 Thermal (10.40 - 12.50 µm)

• Band 7 Mid-Infrared (2.08 - 2.35 µm)

• Band 8 Panchromatic (PAN) (0.52 - 0.90 µm)

We retrieved the imagery from from Google Earth Engine [24], using the official Python library10.
However, these images did not include the sensor angles. Therefore, we retrieved the raw angle files
from the Google Cloud Landsat 7 dataset [44], which we then converted to the actual angles using
the Landsat 4-7 Angles Creation Tool [6]. Since the angle for the sensor can differ slightly per band
we took the mean value of every band per pixel. For this gathering and conversion we had to write
a script which we included in the GitHub repository mentioned in Appendix C.

Finally, the field measurements and imagery were combined by taking the images of the locations
that were taken the closest to the day of measurements. If there were multiple options the one with
the highest quality score was chosen. To reduce the impact of noise in the imagery (since one pixel
represents 30 meters on-ground) we took the average of the pixel values and measurements per plot,
in Appendix C the code for this can be found in the transform-field-data.ipynb notebook.

3.3 Method-specific parameters

Not all methods have the same set of hyperparameters or provide the same configuration options.
In this section we explain the options and ranges for the hyperparameters that we have chosen per
method.

3.3.1 Traditional approach to RTM inversion

We tune the Random forests and Gaussian process regressors using random search [4], which is
conveniently built-in into the scikit-optimize library [29].

10https://developers.google.com/earth-engine/guides/python_install
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Random forests
Adapting from Yang and Shami [80] we optimize the following three hyperparameters:

Table 6: The hyperparameters optimised for the Random forests regressor.

Parameter Description Range
max_depth The maximum depth of a tree in the forest. [5, 50]

min_samples_split Fraction of the total amount of samples that are required
to split an internal node.

[2, 11]

min_samples_leaf Fraction of the total amount of samples that are required
to be at a leaf node.

[1, 11]

A surprising omission might be the number of estimators in the forest, we have chosen to not
optimise this since we saw no improvement in performance when increasing that parameter (Fig. 18)
from the default value of 100, only increasing training times. Lowering this hyperparameter also
does not decrease the variance (i.e. improve any possible overfitting) [25].

Gaussian Process
We optimize the following hyperparameters:

Table 7: The hyperparameters optimised for the Gaussian process regressor.

Parameter Description Values
kernel The covariance function to use. { RBF, RationalQuadratic,

Matern, DotProduct }
fixed Whether or not the value bounds for the ker-

nels are fixed.
{True, False}

n_restarts The number of restarts of the optimizer for
finding the optimal kernels parameters.

[10, 100]

alpha Value added to the diagonal of the kernel
matrix during fitting.

[1× 10−10, 1]

scale_x Whether or not to MinMax scale the input
values.

{True, False}

normalize_y Whether or not to normalize the target values
by removing the mean and scaling to unit-
variance.

{True, False}

3.3.2 Automated Machine Learning

AutoKeras
AutoKeras provides the user the opportunity to tweak multiple variables, we focus on two:

loss: the loss metric used to evaluate the performance of the networks. This is set to Mean
Squared Error (MSE) per default in AutoKeras. This default is a reliable choice for many regression
problems, we therefore keep it as it is for our single-output regression. However, for multi-output
regression we need to combine the metrics of the multiple regression outputs to a single metric.

21



Keras (and therefore AutoKeras) do this by taking the mean value of the RMSE values of the
regression outputs. This introduces a problem in our case, since the outputs have completely
different scales. Therefore we use Mean Absolute Percentage Error (MAPE) as the loss metric for
AutoKeras.

max_trials: the maximum amount of neural networks to generate, train, and test. This is the
main variable that the user can change to change the training time of AutoKeras, we set it to 250
trials as the baseline since this corresponds to the point after which the error does not improve in
our tests with a training time bounded to 16000 as a maximum.

Auto-sklearn
The main variable that one can set is time_left_for_this_task, which indicates how many
seconds Auto-sklearn can use to find and fit the pipeline it produces. This variable is easy to use
since — in our testing — a higher value results in better performing models on average (Fig. 21).
The memory_limit parameter limits the amount of memory that can be used during the training,
we set this to be unbounded.
The n_jobs parameter allows Auto-sklearn to be run in using multiple processor threads. We did
not change this variable, meaning that only one core can be used.
Other variables were left unchanged from their default values.

4 Results

This section shows the results that directly relate to the research objectives (Section 1.2). Many
intermediate results were also obtained, these are provided in Appendix A. A discussion of the
results will be given in Section 5.

In the following figure we show a line plot that compares the performance of all the single-output
and multi-output models on the artificial dataset by increasing time taken for training. We used
this graph to determine the baseline of 16000 seconds (4 hours, 26 minutes and 40 seconds) used in
this thesis. For clarity, the y-axis does not show the full range of values, since the Auto-sklearn
regressor starts off with a very high MAPE value:
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Figure 10: Line plot showing the performance of the all the models on the artificial dataset expressed
using the MAPE metric.

All the results shown in this section and the data used for conclusions done in this thesis were
produced by the methods all being provided this amount of training time.

4.1 Artificial data
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Figure 11: An overview of the performance of all the models on the artificial dataset in terms of the
MAPE metric visualised using a strip plot. The evaluations were done using 5-fold cross-validation.
One dot represents one fold.

In Fig. 11 a strip plot visualises the performance of the models on the artificial dataset in multi-
output and single-output modes. In Table 8 the mean value of the cross-validation results are
shown of the best performing trained model per method using the MAE metric. In Tables 10 and 11
the results can be shown using the RMSE and MAPE metrics respectively.
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Table 8: The mean and standard deviation of the performance of the baseline models evaluated on
the artificial dataset expressed in MAE. Columnwise, the best value is bolded.

Model LAI MAE Cm [g cm−2] MAE AGB [g cm−2] MAE

Random forests 0.3356 (σ = 0.0050) 0.0009 (σ = 0.0000) 0.0057 (σ = 0.0001)
Gaussian process 0.2719 (σ = 0.0054) 0.0004 (σ = 0.0000) 0.0036 (σ = 0.0001)
AutoKeras 0.2474 (σ = 0.0164) 0.0006 (σ = 0.0001) 0.0037 (σ = 0.0002)
Auto-sklearn 0.2765 (σ = 0.0246) 0.0007 (σ = 0.0000) 0.0045 (σ = 0.0002)
Random forests single-output 0.0052 (σ = 0.0001)
Gaussian process single-output 0.0041 (σ = 0.0001)
AutoKeras single-output 0.0041 (σ = 0.0005)
Auto-sklearn single-output 0.0034 (σ = 0.0003)

We see in Table 8 that the single-output Auto-sklearn regressor is the best performing model
for predicting the AGB value. Since the single-output regressors don’t predict the LAI and Cm
variables, we only have the errors metrics for these variables for the multi-output regressors. In the
case for LAI the multi-ouput AutoKeras regressor has the lowest error. For Cm the best performing
method is the multi-output Gaussian process regressor.

The average MAE for the AutoML methods (0.003925) was lower than the average MAE for
the traditional machine learning methods (0.00465).

4.2 Field data
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Figure 12: An overview of the performance of the models on the field dataset in terms of MAPE
visualised using a strip plot. Each dot an evaluation on the complete field dataset of one model
trained on a cross-validation fold of the artificial dataset.

In Fig. 12 a strip plot visualises the performance of the models on the field dataset in multi-output
and single-output modes. Note that the scale is different than that used in Fig. 11. In Table 9
the mean values are shown for the models applied on the field data. In Table 12 the same table is
shown with RMSE and MAPE added.
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Table 9: The mean and standard deviation of the performance of the baseline models evaluated on
the field dataset expressed in the MAE metric. Columnwise, the best value is bolded.

Model AGB [g cm−2] MAE

Random forests 0.0536 (σ = 0.0006)
Gaussian process 0.0514 (σ = 0.0002)
AutoKeras 0.0567 (σ = 0.0116)
Auto-sklearn 0.0543 (σ = 0.0015)
Random forests single-output 0.0532 (σ = 0.0005)
Gaussian process single-output 0.0516 (σ = 0.0003)
AutoKeras single-output 0.0558 (σ = 0.0059)
Auto-sklearn single-output 0.0539 (σ = 0.0022)

The best performing model on the field dataset is the multi-output Gaussian process regressor.
The single-output Gaussian process version being the runner-up. The worst performer is the
multi-output AutoKeras regressor, which actually performs fairly well on the artificial dataset
(Table 8).

The average MAE for the AutoML methods (0.055175) was higher than the average MAE for
the traditional machine learning methods (0.05245).

5 Discussion

As we have seen we see that on the artificial dataset the best performing model is the single-output
Auto-sklearn regressor. On the field data, however, it is the multi-output Gaussian process regressor.
One might think that this could be that the Gaussian process regressor has a higher bias, however,
as we can see in Table 8 the Gaussian process regressor still performs well even on artificial data
(although is is not the best). This behaviour warrants more investigation. Furthermore, we saw
that in the case of artificial data the average MAE was lower for the AutoML methods (versus
the traditional methods), while on the field data the average MAE was higher for the AutoML
methods. In general one can conclude that the AutoML methods have a tendency to overfit (i.e.
have a high variance). This warrants further investigation, especially since this is not observed in
other evaluations of AutoML methods on different datasets [73]. Since RTM inversion has unique
problems (see Section 2.1.1) this problem might quire specific improvements in AutoML techniques.

It is notable that the performance of the models is way worse on the field dataset than it is
on the artificial dataset; in fact, it is 14 times worse. The dataset that we used had multiple
shortcomings, we will discuss some of them here. First of all, the dataset was made to research
biomass directly, it was not gathered for RS research. Since the data was gathered by transecting
sections, we had to deduce the coordinates from the starting point of the transects with every
increment; this might result in some error. Furthermore, the resolution of the imagery is 30 meters,
this combined with the scale on which the data was gathered lead to a small amount of usable data,
restricting the accuracy of the results. We approximated the AGB in the field dataset by using
the formula shown in Eq. (6), this is only an approximation (the r2 being 0.8007). The height off
the grass was only recorded by increments of 1 centimeter. The difference in AGB (using Eq. (6))
between a sward height of 1 and 2 centimeters is already 0.0147056 [g cm−2]. One other problem
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is the fact that we only had one dataset with points close to each other. This might result in
non general results due to spatial correlation. If one would use multiple dataset the errors might
average out better, giving a more fair representation of the model performance. In general one
would expect the models to perform worse on the field dataset than on the artificial dataset due to
measurement errors and noise from the sensor and environment. However, the large discrepancy
in the results on the artificial dataset and the field dataset can potentially be explained due to
shortcomings of the field dataset we just mentioned.

The scatterplots of the artificial dataset (Appendix A.1.1) show some general characteristics. We
can see the saturation happening in all the LAI plots. This is common behaviour with estimating
LAI values, the parameter becomes chaotic for little changes in the measured reflectance [3] The
Cm value has a high variance in all plots. We can see a bump in all the AGB plots.

Comparison to prior research Sá et al. [56] compared Artificial Neural Networks, Gaussian process
regressors, Multi-task Neural Networks, and Random forests regressors for the hybrid inversion
of the PROSAIL RTM. The metric used was the MAPE metric. We have comparable results,
although the MAPE for Cm prediction generally is higher than that of Sá et al. One surprising
result is that the Gaussian process regressor performed surprisingly well compared to our results.
In our testing the Gaussian process regressor is still the best performing one on the MAPE metric,
but the performance is close to the other methods. In the case of Sá et al. the Gaussian process
regressor achieved a MAPE close to 0, whereas we achieved 11% with the baseline configuration.

Estévez et al. [15] trained Gaussian process regressors in a hybrid approach using PROSAIL
to predict LAI from Sentinel-2 data. The metric used was the RMSE metric. Our field dataset
does not include enough information to deduce the LAI accurately. However, we can make an
educated guess of the prediction performance of our methods by dividing the performance of the
AGB predictions with the mean value of the Cm parameter, since RMSE uses the same units as
the variable it measures. This results in the following RMSE score for predicting the LAI variable
using the multi-output Gaussian process regressor: 0.0856

0.0075
≈ 11.4133. The RMSE in Estévez et al.

was 0.70, which makes our result approximately 16.3048 times as large.
Gao et al. [22] used a non-parametric approach using the Artificial Neural Network, Support

Vector Machine, k-nearest neighbour, linear and Random forests regressors. Since the mentioned
paper and our research both evaluated Random forests regressors on the problem of AGB estimation
for LANDSAT data, but our research used a hybrid approach and Gao et al. used non-parametric
it might be interesting to compare. The RMSE in Gao et al. came to 28.4 [Mg / ha], which is 0.284
[g cm−2]. This would make the RMSE in this thesis for the Random forests regressor better (our
result was 0.0866 [g cm−2]).

He et al. [27] used Lookup-table (LUT) inversion for a physically based inversion approach using
the PROSAIL RTM to estimate the AGB variable from MODIS imagery. The RMSE for the AGB
value He et al. obtained is 60.06 [g m−2], which is equal to approximately 0.0060 [g cm−2]. Our
results for the Gaussian process regressor were equal to 0.0856 [g cm−2]. Which makes our results
around 14.27 times as large.

Verrelst et al. [69] used Lookup-table (LUT) inversion to estimate the LAI and Cab variables in a
physically based approach using the PROSAIL RTM applied on Sentinel-2 and -3 data. The RMSE
for the LAI they obtained was 1.20. Just like two paragraphs above, we can make an educated
guess that our results for the multi-output Gaussian process regressor is approximately equal to
11.4133. The RMSE for the LAI variable in Verrelst et al. was equal to 0.89. This makes our result
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approximately 12.82 times as large.

Random forests We see in Fig. 18 and Fig. 26 (a) that the Random forests regressor has a very
constant error, even when the time training increases. The reason for this might lie in the fact
that the hyperparameters that are optimised for the Random forests regressor (see Section 3.3.1)
don’t have a lot of impact in the resulting MAPE. We can see this clearly in Fig. 27. In contrast,
for the Gaussian process regressor the hyperparameters do have a lot more impact (Fig. 28). And
unsurprisingly we see in Fig. 19 that the Gaussian process regressor performance improves slightly
as the training time increases.

Gaussian process We see that the Gaussian process regressor performs well on both the arti-
ficial dataset (Table 8) and the field dataset (Table 9). In the case of the artificial dataset the
Gaussian process regressor is not the best performing of all the methods, but it is only off by a
small margin.

In Fig. 28 (c) it is interesting that we see that the RationalQuadratic11 kernel performs the
most predictable with an MAPE around 12 on average for the AGB variable. The RDF12 kernel,
on the other hand, does have a lower mean value, however the standard deviation is a lot larger.
We can also see that it is useful to normalize the y-value (d).

AutoKeras In the case of the AutoKeras regressor there are some interesting characteristics to
be found in Appendix A.3.3. In Appendix A.1.2 one would expect the curves to start high and
decrease as the training time used increases, which is more or less what is happing with the methods.
However in Fig. 20 we see that with AutoKeras this is not the case, there are multiple peaks in
the MAPE when the time taken for training increases. Since AutoKeras does not provide a direct
way to set the maximum allowed training time (Section 3.3.2) we had to resort to the max_trials

hyperparameter. In Fig. 29 we see a similar figure to that of Fig. 20. Instead of putting the time
taken for training on the x-axis, we put the value of the max_trials hyperparameter. The curve
is now closer to what one might expect. This is not unexpected, whereas there is a relationship
between the max_trials hyperparameter and the training time (Fig. 31), the training time is also
influenced by how ‘lucky’ AutoKeras gets with itś Neural Architecture Search. Therefore, with a
low value for max_trials the search might end up with a bad archiecture, which it cannot train to
a well performing level.

In Fig. 31 we can see that there is little correlation between an increased value for the max_trials
hyperparameter and the time taken for training. A little increase in mean training time can be
seen, however the standard deviation is large regardless. Noteworthy in this figure is the fact that
the multi-output regressor increases the time taken a little faster for a higher max_trials value
than is the case for the single-output regressor.

In Fig. 32 the relationship between the max_trials value and the epochs used is noted. In
earlier testing we found that the amount of epochs seemed to decrease when the maximum amount
of allowed trials was increased. This would make sense, since with more trails a better performing
neural architecture can be found which requires less epochs to trains successfully. However, as

11https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.

RationalQuadratic.html
12https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.RBF.html
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seen in the figure, with further testing this relationship vanished. The mean value for the epochs
used stays constant with increasing max_trials at around 104 epochs, the standard deviation does
increase however.

Auto-sklearn For Auto-sklearn the single-output regressor performs a lot better than the multi-
output regressor (Table 8). Both the single-output and multi-output variants reach their optimal
performance around the same time of training (Fig. 21).

In Fig. 21 (a) we see that the LAI and AGB start with a high MAPE which decreases when the
training time increases. However, the Cm value is low from the start. A reason for this might be of
the saturation problem described in Baret and Buis [3], the LAI is very sensitive to changes of the
spectra, which makes it harder to learn the correlation. AGB being a product of LAI and Cm it
would get the same issues that LAI has on it’s own. However, it is noteworthy that this issue is
less pronounced with all the other methods (Figs. 18 to 20).

5.1 Research questions & hypotheses

We defined one main question and two sub questions in Section 1.3 and we defined two hypotheses
in Section 1.4.

For hypothesis 1 (AutoML methods have a lower MAE than traditional machine learning methods
when used as Hybrid regression methods for RTM inversion of artificial spectral data.) we have
to take a look at Table 8. Here it becomes clear that hypothesis 1 only holds for single-output
regression, where Auto-sklearn is the best performing method and AutoKeras has equal performance
to the Gaussian process regressor. In the case for multi-output, the Gaussian process regressor
is the best performing model. The average MAE of the AutoML methods (0.003925) is lower
than the average MAE of the traditional machine learning methods (0.00465). Therefore, we
can conclude that hypothesis 1 does hold. Thus, we answer the first sub research question (Do
AutoML methods have a lower MAE than traditional machine learning methods when used as hybrid
regression methods for RTM inversion of artificial spectral data? ) positively.

To determine whether hypothesis 2 holds, we study the results in Table 9. Here we find that
hypothesis 2 does not hold, since the Gaussian process regressor is the best performing model.
The average MAE of the AutoML methods (0.055175) is also higher than that of the traditional
methods (0.05245). We have to answer the second sub research question (Do AutoML methods have
a lower MAE than traditional machine learning methods when used as hybrid regression methods
for RTM inversion of field data? ) negatively.

The main question (Do AutoML methods outperform traditional machine learning techniques
when used as a hybrid regression model for the estimation of AGB by RTM inversion? ) cannot be
answered positively in general, since the answer of sub question two is in the negative. However, in
our research, AutoML methods do in fact outperform traditional methods on artificial PROSAIL
data.

5.2 User experience

Previously we only compared objective measurements, such as the MAE differences in the different
methods. However, a large part of the appeal of AutoML is the ability for researchers with a
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minimal amount of knowledge of machine learning techniques to reliably apply machine learning to
their research.

In this section we compare the different methods from a more subjective point of view. We look
at the ease-of-use and functionality that doesn’t fit in any single metric, but we look at the models
in a case-by-case basis, looking at the pros and cons of each method.

Random forests While being a traditional machine learning method, Random forests have some
characteristics that make them easier to use than other methods. The implementation in the sklearn
library [53] they don’t have a lot of hyperparameters. Increasing B will decrease the variance,
without increasing the bias (i.e. increasing B will not lead to overfitting) [25].

The hyperparameters that one still has to set can be tuned relatively easily by using exhaustive
grid search, which is conveniently built in into sklearn. Random forests are trained relatively
quickly; it lends itself to be optimised efficiently using exhaustive grid search, which in itself is not
an efficient search method.

Although even without optimizing the hyperparameters, the default settings for the Random forests
regressor in sklearn have good performance in our evaluation (Appendix A.3.1).

One advantage that Random forests models provide is the fact that the Gini importance can
be retrieved for every feature, which might provide interesting insights in one’s dataset.

Gaussian processes Gaussian process, being a Bayesian method, requires more knowledge about
the properties of the dataset one is training a model on. The researcher needs to choice a kernel,
which will directly influence the performance of the model [14].

Gaussian processes have multiple hyperparameters to tune (Section 3.3.1). Most are not as
important, and the defaults in sklearn are good enough. However, the alpha parameter may lead to
wildly different performing models if the out-of-sample dataset has different Gaussian measurement
noise shape than the training dataset. This requires some knowledge from the researcher about
Gaussian process regression to understand.

Gaussian processes have two big advantages though. One is the fact that they perform pretty
well on datasets with little amount of data points, which can be crucial for field measurements.
Another big advantage is the fact that the uncertainty of a estimation is known [19], which is a
unique aspect that can be desired in critical decision applications.

AutoKeras AutoKeras is easy to use, although the automation isn’t as extensive as that of
Auto-sklearn (see Section 5.2) it still is fairly automated. As said in Section 2.2.2 the library just
focusses on neural architecture search.

In Section 3.3.2 we introduced the various noteworthy tweakable variables. However, in practice
the main knob would be the max_trials variable. This enables the user to make sure AutoKeras
is not going to search too extensively for the best architecture, thus taking a lot of time.

AutoKeras is usable for more tasks than the competition, while our research has been constricted
to comparing the methods to numerical regression problems, AutoKeras also has support for image
problems and text problems. It can even include pre-trained blocks of ResNet [26] and EfficientNet
[62] in the generated architecture.

This advantage of focussing on neural architectures also has a downside, for numerical regression
problems other methods than neural networks can be interesting, such as using Gaussian processes.
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In contrast to Auto-sklearn, AutoKeras doesn’t build an ensemble of various methods, it just builds
a neural network.

For analysing the progress and performance of AutoKeras, one can use TensorBoard since
AutoKeras is built on top of Keras. Furthermore, since Keras is widely used finding troubleshoot
or information about analysing the network structure is easily findable online.

Auto-sklearn Auto-sklearn is very easy to use, taking care of most of the AutoML pipeline, thus
leaving no hyperparameters to tune. The only parameters to really set are the time and memory
limits, these parameters do not require knowledge about machine learning, just information about
the machine and the patience of the researcher.

Auto-sklearn still offers flexibility, giving the researcher the options of disabling or fixing some
parts of the AutoML process.

The fact that Auto-sklearn uses metalearning to accelerate the performance of learning model
is also a big plus.

Another pro of Auto-sklearn is the fact that it integrates a lot of models to be added in the
ensemble, which means that a researcher will be likely to obtain a performing model in the end.
Even if the problem isn’t easily modelled by a MLP, for example, Auto-sklearn still has a lot of
different models to try, such as: Random forests, SVM, kNN, and Gaussian processes.

PipelineProfiler [52] can be used to visualize the pipeline produced by Auto-sklearn. Giving the
researcher tools to obtain insights in the resulting ensemble.

6 Conclusions and Further Research

We showed that AutoML methods (AutoKeras and Auto-sklearn) did not perform better than
traditional machine learning methods (Gaussian process and Random forests) in the problem of
AGB inversion on Landsat 7 data using Hybrid inversion of PROSAIL RTM data. However, on
artificial PROSAIL data, the AutoML methods had a lower average MAE value. On artificial data
PROSAIL data the single-output Auto-sklearn did perform the best. For multi-output versions,
the Gaussian process regressor performed the best. AutoKeras did not perform better than the
Gaussian process regressor for both multi-output and single-output regression. On the field dataset
we found that that the best performing model was Gaussian process, both in the multi-output and
single-output versions. Of the two, the multi-output version had the lowest MAE. The mean MAE
value of the traditional methods was lower than the mean MAE value for the AutoML methods. In
Section 5.2 we made a subjective evaluation of the user experience of the differing packages. This,
in combination with the objective metrics, might be useful to determine which package to use.

There were however significant shortcomings with the field dataset that we had access to for
our research, which might impact the quality of our findings. Therefore, research on larger and
more appropriate datasets might lead to better quality results. Our field dataset was limited to
approximated AGB, evaluating the methods applies on the problem of LAI inversion might be of
interest, since the LAI component was the most stable in our evaluation on artificial data. However,
we could not explore whether or not this holds too when applied on satellite imagery. Per category
our research tested two offerings, so more traditional methods and AutoML offerings should be
evaluated. Finally, as discussed in Section 5, the fact that AutoML methods perform worse than
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traditional machine learning methods warrants further research. Since this behaviour is not seen
for AutoML methods in other comparisons on different types of datasets.
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[35] Stéphane Jacquemoud et al. “PROSPECT+SAIL models: A review of use for vegetation
characterization”. In: Remote Sensing of Environment 113 (2009). Imaging Spectroscopy
Special Issue, S56–S66. issn: 0034-4257. doi: https://doi.org/10.1016/j.rse.2008.01.
026. url: https://www.sciencedirect.com/science/article/pii/S0034425709000765.

33

https://doi.org/10.3390/rs8020119
https://doi.org/10.3390/rs8020119
https://www.mdpi.com/2072-4292/8/2/119
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1007/978-0-387-84858-7\_15
https://doi.org/10.1007/978-0-387-84858-7%5C%5F15
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.3390/rs11131597
https://www.mdpi.com/2072-4292/11/13/1597
https://doi.org/10.1016/j.knosys.2020.106622
http://arxiv.org/abs/1908.00709
https://doi.org/10.5281/zenodo.4014775
https://doi.org/10.5281/zenodo.4014775
https://doi.org/10.5281/zenodo.4014775
https://doi.org/10.1007/s100440200009
https://doi.org/10.1007/s100440200009
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/https://doi.org/10.1016/j.ijforecast.2006.03.001
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://doi.org/https://doi.org/10.1016/0034-4257(90)90100-Z
https://doi.org/https://doi.org/10.1016/0034-4257(90)90100-Z
https://www.sciencedirect.com/science/article/pii/003442579090100Z
https://www.sciencedirect.com/science/article/pii/003442579090100Z
https://doi.org/https://doi.org/10.1016/j.rse.2008.01.026
https://doi.org/https://doi.org/10.1016/j.rse.2008.01.026
https://www.sciencedirect.com/science/article/pii/S0034425709000765


[36] Haifeng Jin, Qingquan Song and Xia Hu. “Auto-Keras: An Efficient Neural Architecture
Search System”. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM. 2019, pp. 1946–1956.

[37] Aaron G Kamoske et al. “Leaf traits and canopy structure together explain canopy functional
diversity: an airborne remote sensing approach”. eng. In: Ecological applications 31.2 (2021),
e02230–n/a. issn: 1051-0761.

[38] Teja Kattenborn. “Linking Canopy Reflectance and Plant Functioning through Radiative
Transfer Models”. PhD thesis. Karlsruher Institut für Technologie (KIT), 2019. 135 pp. doi:
10.5445/IR/1000089168.

[39] Sungil Kim and Heeyoung Kim. “A new metric of absolute percentage error for intermittent
demand forecasts”. In: International Journal of Forecasting 32.3 (2016), pp. 669–679. issn:
0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2015.12.003. url: https:
//www.sciencedirect.com/science/article/pii/S0169207016000121.

[40] Jason M. Klusowski. Analyzing CART. 2020. arXiv: 1906.10086 [stat.ML].

[41] N. Kolen et al. “Vegetatie, begrazing en vogels in een zoetwatermoeras : monitoringsprogramma
Oostvaardersplassen 1999/2000”. Dutch. In: Rijkswaterstaat Rapportendatabank (2001).

[42] Alexandre Lacoste et al. “Agnostic Bayesian Learning of Ensembles”. In: Proceedings of the
31st International Conference on Machine Learning. Ed. by Eric P. Xing and Tony Jebara.
Vol. 32. Proceedings of Machine Learning Research 1. Bejing, China: PMLR, 22–24 Jun 2014,
pp. 611–619. url: https://proceedings.mlr.press/v32/lacoste14.html.

[43] Landsat 7. url: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-
7.

[44] Landsat data — Cloud Storage — Google Cloud. url: https://cloud.google.com/storage/
docs/public-datasets/landsat.

[45] Trang T Le, Weixuan Fu and Jason H Moore. “Scaling tree-based automated machine learning
to biomedical big data with a feature set selector”. In: Bioinformatics 36.1 (2020), pp. 250–
256.

[46] Erin LeDell and Sebastien Poirier. “H2O AutoML: Scalable Automatic Machine Learning”.
In: 7th ICML Workshop on Automated Machine Learning (AutoML) (July 2020). url:
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf.

[47] Matthias Locherer et al. “Retrieval of Seasonal Leaf Area Index from Simulated EnMAP
Data through Optimized LUT-Based Inversion of the PROSAIL Model”. In: Remote Sensing
7.8 (2015), pp. 10321–10346. issn: 2072-4292. doi: 10.3390/rs70810321. url: https:

//www.mdpi.com/2072-4292/7/8/10321.

[48] J. Lorimer and C.P.G. Driessen. “Experiments with the wild at the Oostvaardersplassen”.
English. In: Ecos 35.3/4 (2014), pp. 44–52. issn: 0143-9073.

[49] Vitor S. Martins et al. “Seasonal and interannual assessment of cloud cover and atmospheric
constituents across the Amazon (2000–2015): Insights for remote sensing and climate analysis”.
In: ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018). SI: Latin America Issue,
pp. 309–327. issn: 0924-2716. doi: https://doi.org/10.1016/j.isprsjprs.2018.05.013.
url: https://www.sciencedirect.com/science/article/pii/S0924271618301461.

34

https://doi.org/10.5445/IR/1000089168
https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.12.003
https://www.sciencedirect.com/science/article/pii/S0169207016000121
https://www.sciencedirect.com/science/article/pii/S0169207016000121
https://arxiv.org/abs/1906.10086
https://proceedings.mlr.press/v32/lacoste14.html
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7
https://cloud.google.com/storage/docs/public-datasets/landsat
https://cloud.google.com/storage/docs/public-datasets/landsat
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://doi.org/10.3390/rs70810321
https://www.mdpi.com/2072-4292/7/8/10321
https://www.mdpi.com/2072-4292/7/8/10321
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.05.013
https://www.sciencedirect.com/science/article/pii/S0924271618301461


[50] M. D. McKay, R. J. Beckman and W. J. Conover. “A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output from a Computer Code”. In:
Technometrics 21.2 (1979), pp. 239–245. issn: 00401706. url: http://www.jstor.org/
stable/1268522.

[51] A. O’Hagan. “Curve Fitting and Optimal Design for Prediction”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 40.1 (1978), pp. 1–42. issn: 00359246. url:
http://www.jstor.org/stable/2984861.

[52] Jorge Piazentin Ono et al. PipelineProfiler: A Visual Analytics Tool for the Exploration of
AutoML Pipelines. 2020. arXiv: 2005.00160 [cs.HC].

[53] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[54] Shaun Quegan et al. “The European Space Agency BIOMASS mission: Measuring forest
above-ground biomass from space”. In: Remote Sensing of Environment 227 (2019), pp. 44–60.
issn: 0034-4257. doi: https://doi.org/10.1016/j.rse.2019.03.032. url: https:
//www.sciencedirect.com/science/article/pii/S0034425719301233.

[55] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine
learning. Adaptive computation and machine learning. OCLC: ocm61285753. Cambridge,
Mass: MIT Press, 2006. isbn: 978-0-262-18253-9.
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A Auxiliary results

More graphs and figures were produced than were shown in Section 4, because they were not
helpful to form answers to the research questions (Section 1.3) or hypotheses (Section 1.4). In this
appendix these figures are shown, which might be of interest.
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A.1 Artificial data

Table 10: The mean and standard deviation of the performance of the baseline models evaluated
on the artificial dataset expressed in RMSE.

Model LAI RMSE Cm [g cm−2] RMSE AGB [g cm−2] RMSE

Random forests 0.5028 (σ = 0.0061) 0.0011 (σ = 0.0000) 0.0079 (σ = 0.0001)
Gaussian process 0.4450 (σ = 0.0078) 0.0006 (σ = 0.0000) 0.0062 (σ = 0.0001)
AutoKeras 0.4702 (σ = 0.0238) 0.0008 (σ = 0.0001) 0.0066 (σ = 0.0004)
Auto-sklearn 0.4752 (σ = 0.0291) 0.0009 (σ = 0.0000) 0.0070 (σ = 0.0003)
Random forests single-output 0.0074 (σ = 0.0001)
Gaussian process single-output 0.0067 (σ = 0.0001)
AutoKeras single-output 0.0072 (σ = 0.0006)
Auto-sklearn single-output 0.0059 (σ = 0.0002)

Table 11: The mean and standard deviation of the performance of the baseline models evaluated
on the artificial dataset expressed in MAPE.

Model LAI MAPE Cm [g cm−2] MAPE AGB [g cm−2] MAPE

Random forests 8.0674 (σ = 0.0717) 12.6426 (σ = 0.0765) 20.8497 (σ = 0.2018)
Gaussian process 6.4602 (σ = 0.1016) 5.9823 (σ = 0.0936) 11.3588 (σ = 0.2492)
AutoKeras 5.0312 (σ = 0.5311) 7.8093 (σ = 0.6201) 11.4430 (σ = 0.5086)
Auto-sklearn 6.6538 (σ = 1.6371) 9.6413 (σ = 0.2390) 15.6727 (σ = 1.2124)
Random forests single-output 19.1547 (σ = 0.2612)
Gaussian process single-output 13.2914 (σ = 0.2307)
AutoKeras single-output 12.2952 (σ = 1.5774)
Auto-sklearn single-output 12.1048 (σ = 1.1353)

In the following figure the MAPE is shown for every run of the AutoKeras and Auto-sklearn
regressors with differing time taken for training:
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Figure 13: Comparison between performance and training time of AutoKeras and Auto-sklearn.
Each dot represents one cross-validation fold evaluation result.

Of note in the above figure is that Auto-sklearn starts off with a very high error, decreasing
rapidly. At around 2 minutes of training time the error stabilises, never reaching quite the level of
performance that AutoKeras has.

A.1.1 Scatterplots

In this section scatterplots are presented hat show the performance for both the multi-output
and single-output versions of all models. The models are evaluated on the artificial dataset and
scatterplots are shown for every variable. All models were trained for the training time set as
the baseline in Section 4. The x-axis relates to the actual value, while the y-axis relates to the
estimated value.
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Figure 14: Random forests
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Figure 15: Gaussian process
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Figure 16: AutoKeras
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Figure 17: Auto-sklearn

A.1.2 Relationship between training time and performance

For every model, the figures in this section show the relationship between the time taken for training
the model and the performance of the model expressed using the MAPE (Mean absolute percentage
error) metric when the model is tested on the artificial dataset. The shaded area shows the 95%
confidence interval.
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(a) Multi-output regressor
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(b) Single-output regressor

Figure 18: Random forests
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Figure 19: Gaussian process
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(b) Single-output

Figure 20: AutoKeras
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(b) Single-output

Figure 21: Auto-sklearn
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A.2 Field data

Table 12: The mean and standard deviation of the performance of the baseline models evaluated
on the field dataset expressed in various metrics.

Model AGB [g cm−2] MAE AGB [g cm−2] RMSE AGB [g cm−2] MAPE

Random forests 0.0536 (σ = 0.0006) 0.0866 (σ = 0.0008) 205.9718 (σ = 9.6346)
Gaussian process 0.0514 (σ = 0.0002) 0.0856 (σ = 0.0002) 125.3716 (σ = 1.4102)
AutoKeras 0.0567 (σ = 0.0116) 0.0888 (σ = 0.0125) 141.4532 (σ = 45.3825)
Auto-sklearn 0.0543 (σ = 0.0015) 0.0878 (σ = 0.0012) 158.8600 (σ = 14.0477)
Random forests single-output 0.0532 (σ = 0.0005) 0.0860 (σ = 0.0006) 197.5492 (σ = 12.2309)
Gaussian process single-output 0.0516 (σ = 0.0003) 0.0860 (σ = 0.0003) 119.0338 (σ = 3.6652)
AutoKeras single-output 0.0558 (σ = 0.0059) 0.0897 (σ = 0.0035) 146.5579 (σ = 143.9520)
Auto-sklearn single-output 0.0539 (σ = 0.0022) 0.0880 (σ = 0.0025) 135.2766 (σ = 23.2554)

A.2.1 Scatterplots

In this section scatterplots are presented hat show the performance for both the multi-output and
single-output versions of all models. The models are evaluated on the field dataset and scatterplots
are shown for every variable. All models were trained for the training time set as the baseline in
Section 4. The x-axis relates to the actual value, while the y-axis relates to the estimated value.
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Figure 22: Random forests
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Figure 23: Gaussian process
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Figure 24: AutoKeras
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Figure 25: Auto-sklearn

A.2.2 Relationship between training time and performance

For every model, the figures in this section show the relationship between the time taken for
training the model and the performance of the model expressed using the MAPE (Mean absolute
percentage error) metric when the model is tested on the field dataset. The shaded area shows the
95% confidence interval.

48



0 5000 10000 15000 20000 25000

Time taken (s)

185

190

195

200

205

210

215

M
ea
n
a
b
so
lu
te

p
er
ce
n
ta
ge

er
ro
r
(%

)

Multi-output

Single-output

(a) Random forests

0 5000 10000 15000 20000 25000

Time taken (s)

116

118

120

122

124

126

M
ea
n
a
b
so
lu
te

p
er
ce
n
ta
ge

er
ro
r
(%

)

Multi-output

Single-output

(b) Gaussian process

0 2000 4000 6000 8000 10000

Time taken (s)

100

200

300

400

500

600

M
ea
n
ab

so
lu
te

p
er
ce
n
ta
g
e
er
ro
r
(%

)

Multi-output

Single-output

(c) AutoKeras

0 5000 10000 15000 20000 25000

Time taken (s)

110

120

130

140

150

160

170

180

M
ea
n
ab

so
lu
te

p
er
ce
n
ta
g
e
er
ro
r
(%

)

Multi-output

Single-output

(d) Auto-sklearn

Figure 26: Training time compared to the Mean absolute percentage error (MAPE) performance of
the output variables. The shaded area shows the 95% confidence interval.

A.3 Method-specific

A.3.1 Random forests

In the following figure we show three line plots that show the impact of the three hyperparameters
on the final MAPE for predicting the AGB value:
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Figure 27: The impact of the hyperparameter that the random search optimises of the
Random forests regressor.

A.3.2 Gaussian process

In the following figure we show four line plots that show the impact of the four hyperparameters
on the final MAPE for predicting the AGB value:
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Figure 28: The impact of the hyperparameter that the random search optimises of the
Gaussian process regressor.

A.3.3 AutoKeras

AutoKeras was the only method that didn’t provide a hyperparameter that directly controls
the maximum training time. Instead, the training time can indirectly be controlled using the
max_trials hyperparameter (see Section 3.3.2). In Figs. 29 and 30 we show similar figures to
Figs. 20 and 26 respectively. However here we compare the value of the max_trials parameter
against the MAPE, instead of the time taken for training against the MAPE. We see a much more
stable and expected error curve, which decrease as the maximum amount of allowed trials increases.
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Figure 29: max trials compared to the Mean absolute percentage error (MAPE) performance of
the output variables.
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Figure 30: Mean absolute percentage error (MAPE) performance of the output variables compared
against the value of the max trials hyperparameter.

Since the max_trials parameter was used to indirectly control the maximum training time, it
is useful to look at the relationship that exists between said parameter and the maximum training
time. The following figure shows this relationship:
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(a) Scatterplot
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Figure 31: The relationship between the max trials hyperparameter and the time taken for
training in the AutoKeras regressor.

Furthermore, the AutoKeras library automatically optimises the amount of epochs to used
per trial. In the following figure it becomes obvious that there is no relationship between the
max_trials hyperparameter and the amount of epochs, although one might expect one to exist:
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Figure 32: The relationship between the max trials hyperparameter and the time taken for
training in the AutoKeras regressor.

In Fig. 33 we show a Kernel Density Estimate (KDE) plot (combined with a rug plot) that
shows the estimated density of the epochs as chosen automatically by AutoKeras. A peak can be
seen around 100 epochs, with little skewness or kurtosis.
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Figure 33: Kernel Density Estimate (KDE) of the epochs as chosen by AutoKeras. The rug plot
shows the epochs used for every trained model.

B AdaNet

We originally also included the AdaNet [75] library in our comparison. However, it quickly became
apparent that the library is too low level and thus out-of-scope for inclusion. Though the usage
of AdaNet for this problem currently was too complicated, the library still shows potential in our
opinion. In the GitHub repository, we also include a notebook containing novel code combining
the AdaNet algorithm with Bayesian optimization (using the scikit-optimize library [29]) to find a
Neural Network.

C Reproducibility

Care is taken to ensure the results are reproducible, all tools and notebooks that are required to
produce the results that are shown in this thesis can be found at the authors’ GitHub: https:

//github.com/lieuwex/rtm-inversion-automl.
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