




Abstract

Decisions made in the early phases of ship design have a large influence on the building and operational
costs of a vessel. In order to support decision making in this phase, big data and machine learning
techniques can be of great use. This thesis shows how Explainable Artificial Intelligence(XAI) and
Global Sensitivity Analysis (GSA) combined with Autonomous Identification System (AIS) and static
ship data can be used to find important design characteristics of ships. A data collection framework is
setup that collects AIS data over a five month time period. Static ship design data is used to predict
performance related target features that are calculated from AIS data. By applying XAI and GSA
methods to the regression models that predict these target features, we gain insight in how design
features influence the performance of ships. We find that for most ship types the overall length is the
most important design feature for speed related target features. For rotation related target features
we also find that the draught is an important design feature.
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1 Introduction

Over the recent years the application of Artificial Intelligence (AI) in the maritime industry has seen
an increase [1]. Examples of recent applications range from fleet allocation to ETA prediction [2]. These
applications have caused a large increase in efficiency and performance of vessels throughout the whole
maritime industry [2]. A sub sector of the maritime industry that has only recently seen an increase in
applications of AI, is the naval architect industry [3]. Applications of AI and data driven decision making
can be of huge benefit for naval architects, as many early phase design decisions previously relied on the
experience of engineers or a handful of reference vessels [4]. Any wrong assumptions made in this phase
can lead to higher production, or operational costs, which highlights the importance of this phase [5]. In
order to come up with more cost efficient and better performing ships, engineers need a clear picture of
a ship’s desired operational profile. Here, data driven technologies can provide engineers a helping hand.
Previous applications of AI systems in the naval architect industry mainly focused on data collected
from a relatively small group of vessels. Examples of these are Neural Network aided design of ship hull
structures [6], and propulsion power optimum calculation via genetic algorithms [7].

Together with an increase in applications of AI methods, the predictive capabilities of AI models has
also increased [8]. As the performance of these models increase, they also tend become more complex
and their workings harder to understand. In order to understand the workings of complex black box
predictive models, Sensitivity Analysis (SA) and Explainable AI (XAI) can help. These methods define
measures or visualisations of important input features of predictive black box models. In this research
we will combine these tools with data collected from a large group of vessels in order to obtain a high
level view on what ship design parameters are distinctive for a vessel’s performance capabilities. The
data used in this work consists of Autonomous Identification System (AIS) data, for which we create a
data collection framework. Next to AIS data we use static ship data provided by C-Job, a Dutch Naval
Architect bureau. The contribution of this work is two-fold:

1. We apply XAI and SA methods to a Multi-Output regression model built by an Autosklearn 2.0
AutoML pipeline.

2. We use AIS data to analyze the world fleet in order to find important design characteristics for
commercial ships.

The remaining of this thesis is structured as follows: Section 2 describes the background, related work
and methods used in this work. Section 3 defines the problem statement. Hereafter, Section 4 explains
how the data is collected, processed, and stored. Section 5 then shows the experiments and results, which
are discussed in Section 6. Finally, Section 7 concludes.
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2 Background and Related Work

This Section describes the background and related work of the methods and data that are used in this
research. The methods include: regression models, SA techniques, and XAI techniques. These methods
are selected as the combination of these methods provides an overall view of the important features in
the data.

2.1 Related AIS data research

The Autonomous Identification System (AIS) has mainly been developed as a system that can be used for
collision avoidance and navigational safety for almost all ships in the commercial fleet. The system was
initially developed in 2002, but had limited coverage over only the coastal area waters. In 2008 satellite
AIS transponders were introduced which increased the coverage to almost all areas in the world. With the
increase in coverage and data quality new applications for the AIS appeared. Examples of this are, ship
trajectory extraction and prediction [9], ship activity tracking, tracking for environmental monitoring [10],
or tracking in restricted waters such as locks and canals [11]. Next to vessel tracking, AIS data can also
be used to measure various port statistics such as the number of daily visiting ships, or waiting times [12].
To the best of our knowledge AIS data has never been used to compare ship design characteristics of
the commercial fleet on a worldwide scale. More on how AIS data is used in this research is explained in
Section 4.1.

2.2 Regression models

In previous works regression models have been used in order to predict numerical values given a set of
input features [13]. These regression models can then be analysed in order to find which input features
have the highest contribution to the output as explained later on in Section 2.5. The following subsections
discuss how Linear regression, Support Vector Regression, XGBoost, and Random Forest regression have
previously been used and how they can be used for SA and XAI methods.

2.2.1 Linear regression

Linear regression is a regression model often used for it’s simplicity and interpretability [14]. Linear
regression uses a linear combination of independent variables to predict the dependent variable. Linear
regression models the relation

y = Xβ + ε

Where y is the dependent variable, X is the vector of independent variables or input features, β are the
regression coefficients or weights, and ε is a noise term. Linear regression uses Ordinary Least Squares
(OLS) to find the weights that minimize the error. Furthermore, linear regression assumes that the
relation between the dependent and independent variables is linear. In the case where the input data is
non-linear, alternative regression models are needed.

2.2.2 Support Vector Regression

Support vector regression (SVR) [15] is an alternation to the widely used Support Vector Machine
(SVM) [16] classification algorithm. SVR tries to find a line or hyperplane that fits the data, while giving
the user the flexibility to define how much error in the model is acceptable. If the hyperplane can not
be found in the current dimension, a kernel is used to transform the data into a higher dimension before
searching again for a hyperplane. The application of kernels allows SVR to also model non-linear data.
Training an SVR model works by solving the following objective function

min
1

2
‖w‖2 + C

n∑
i=1

|ξi|

With constraint function

|yi −wixi| ≤ ε+ |ξi|
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The term C in the objective function defines how far datapoints are allowed to lie outside of the decision
boundaries. ξi is the distance of sample i to the decision boundary. The decision boundaries are defined
by ε, which is a parameter set by the user. Figure 1 shows a one dimensional example of an SVR where
the red line is the fitted line that is used to predict new samples. The two grey lines are the decision
boundaries that lie a distance ε from the fitted line.

Fig. 1: Overview of a one-dimensional SVR model [17]. The red line is used to make predictions.

2.2.3 Gradient boosting with XGboost

Gradient boosting is a tree based classification or regression algorithm [18] and relies on three main ideas.
First, Gradient boosting uses a loss function that needs to be optimized. Second, it uses weak learners to
make predictions, weak learners are cheap and simple models that often perform slightly better than a
random model [19]. Finally gradient boosting uses an additive model to combine the predictions of weak
learners to minimize the loss function. The loss function must be differentiable, for most regression cases
the squared error function is used. Most often, regression trees with a limited number of splits are used as
weak learners. The additive model adds the trees one at a time using only the mispredictions to construct
new weak learners. Extreme gradient boosting [20], or XGboost is an open source implementation of the
gradient boosting algorithm that is widely used in practice. In addition to gradient boosting, XGboost
uses L1 and L2 regularization which improve model generalization.

2.2.4 Random Forest Regression

Random Forest (RF) regression is a regression algorithm that similar to gradient boosting uses an ensem-
ble of multiple models to come up with a more accurate prediction than a single model [21]. The algorithm
selects a subset of k random features. For these k features it then builds a regression tree. These two steps
are repeated N times, resulting in N decision trees. In order to come up with a prediction for an unseen
sample, the model predicts a value for each regression tree and then averages the prediction of all N trees.
The algorithm is often used for its strong performance on regression tasks [22, 23]. The disadvantage of
RF regression models is that they lack interpretability and tend to overfit faster than other methods.

2.3 Cross validation and hyperparameter optimization

In many cases, the default hyperparameter settings of a machine learning algorithm yield a good
performance. However, some improvements can often be made by optimizing the combination of hyper-
parameters. In order to obtain a trustworthy report of the performance of a model under a certain
combination of hyperparameters a model needs to be evaluated on as much unseen data as possible,
without sacrificing training data. In other works this is done by performing k-fold cross validation [24].
A schematic overview of 5-fold cross validation is shown in Figure 2.This method partitions the training
data into k folds, each time training a model on different k − 1 folds, and evaluating on the remaining
fold. After training the model k times, the performance over the k evaluations is averaged and reported
as the score for the model under the current hyperparameter combination. A specific case of k-fold cross
validation is leave-one-out cross validation. This method works the same as cross validation, but takes
the number of samples n as value for k. The best combination of hyper parameters is the combination
that yields the best performance over the k, for k-fold, or n, for leave-one-out, validations. In practice,
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k-fold is often used for it’s computational benefits over leave-one-out. After optimizing the hyperparam-
eters in combination with cross validation, a final evaluation can be made on the test set in order to see
how the optimized model performs on unseen data.

Fig. 2: 5-fold cross validation. Cross validation is performed after each time that a new combination of
hyperparameter values is introduced. Only the final optimized model is evaluated on the test data. Image
from [25].

2.4 AutoML pipeline

Automated machine learning helps machine learning engineers with the task of designing machine learn-
ing pipelines and has recently achieved promising results [26]. The Auto-sklearn 2.0 framework, an
improvement of Auto-sklearn 1.0, offers an implementation of an AutoML system that can perform well
on large datasets under strict time constraints by using a meta-feature-free meta-learning technique and
applying a bandit strategy for budget allocation. As Auto-sklearn 2.0 is an improvement on it’s prece-
dor, Section 2.4.1 explains the general workings of Auto-sklearn 1.0 before Section Auto-sklearn 2.0 is
discussed in 2.4.2.

2.4.1 Auto-sklearn 1.0

Figure 3 gives a schematic overview of the pipeline that Auto-sklearn 1.0 executes for training input
{Xtrain, Ytrain}, test input Xtest, time budget b and loss function L. The overview shows that the first
step is the meta-learning phase; an offline phase used to create a set of meta features for 140 datasets from
the OpenML repository [27]. For each dataset the meta-features are evaluated and Bayesian Optimization
(BO) is performed on ML frameworks constructed from a selection of 15 regression algorithms, 14 pre-
processing methods, and 4 data preprocessing methods. If an iteration of BO yields good performance on
the dataset in question, the instantiation of the ML framework that is currently being evaluated is stored.
Then for the training input {Xtrain, Ytrain} the k = 25 closest datasets in meta-feature space are used
for evaluation before BO is started on their results. After the BO phase, an ensemble is built consisting
of the best found ML frameworks. The ensemble is then used to make predictions Ŷtest for Xtest.

Fig. 3: Schematic overview of the Auto-sklearn 1.0 pipeline [28].

2.4.2 Auto-sklearn 2.0

Figure 4 gives a schematic overview of the AutoML pipeline implemented by Auto-sklearn 2.0. Just as
for Auto-sklearn 1.0, the pipeline has Xtrain, Ytrain as training input together with Xtest which is used
to generate the output Ŷtest, b is the time budget and L is the loss function that needs to be minimized.
The pipeline differs from Auto-sklearn 1.0 in the two phases before the AutoML system is executed. In
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the first phase a budget allocation together with a model selection strategy is selected, and in the second
phase a portfolio of candidate pipelines is constructed.

Fig. 4: Schematic overview of the Autosklearn 2.0 pipeline [29].

In the first phase Auto-sklearn 2.0 selects an optimization policy π, which is a combination of AutoML
system hyperparameters and components to be used during a run of the AutoML system. π consists
of a model selection strategy, either Hold Out (HO), or Cross-Validation (CV) and a budget allocation
strategy, either Successive Halving (SH), or Full Budget (FB). HO splits the set into one training and
one test part, CV splits the data as explained in section 2.3. SH works by setting a minimal and maximal
budget for evaluating a pipeline. Then, it iteratively selects 1

η pipelines with the lowest generalization
error, multiplies their budget by η, removes the pipelines that are not selected and repeats the process.
The process continues until there is one pipeline left or the maximal budget has been spent, in this case
the pipeline with the current lowest error is selected.

Making a decision about which policy to use is done by the policy selector. The policy selector works
by fitting an RF classifier that predicts whether policy πA outperforms πB for each policy given the
meta-features of the current dataset. The meta-features used in this phase are very simple and can be
calculated in linear time: the number of data points, and the number of features. These meta-features
are different from the more complex meta-features used by Auto-sklearn 1.0.

After selecting the optimization policy π, a portfolio with ML pipelines is created from a finite set
of candidate pipelines C = {λ1, ..., λl}. This step replaces the meta-feature calculation phase in Auto-
sklearn 1.0. Autosklearn 2.0 then uses a set of meta-datasets Dmeta = {D1, ...,D|Dmeta|} to build a
portfolio P that performs well on Dmeta. The portfolio is built by starting with an empty set and adding
candidates λ∗ ∈ C in a greedy way to P such that the generalization error over all meta-datasets is
reduced the most. This procedure continues until |P| reaches a predefined limit value. The generalization
error on a single dataset D is the error of the best performing pipeline λ ∈ P on D. The pipelines in P are
then evaluated on Xtrain with policy π in order to come up with a final model, or ensemble of models.

2.5 Global sensitivity analysis and Explainable AI methods

Global Sensitivity Analysis (GSA) and Explainable AI (XAI) methods help in understanding the workings
of a complex model by determining the contributions of individual features to the output of a model [30].
It gives an overall view on the influence of inputs on model outputs. GSA methods aim to determine how
much the output of a model generally changes with a change in input. Consider a model f , the goal is to
understand the relationship

y = f(x)

Here f can be any function or model ranging from a simple linear regression to a complex neural
network [31]. x = |x1, x2, ..., xm| ∈ X ⊆ Rm, is a vector of model inputs that determines the model
output. The goal of GSA and XAI is to understand how much change in the model output y ∈ R can be
attributed to a specific xi. GSA and XAI use metrics and visualisations that show how much a change
in output can be attributed to a single, or combination of input features. In previous works GSA has
been proven to be useful for many applications such as: determining the optimal lot size for production
systems [32], understanding the workings of chemical models [33], or measuring the influence of input
parameters on biological models [34].

GSA can be divided into variance based, derivative based, and density based methods. Examples of
variance based methods are: Fourier Amplitude Sensitivity Test (FAST), and Sobol indices. Derivative
based methods used in earlier works are the Morris method and Derivative Based Global Sensitivity
Measures (DGSM). Previously used density based GSA methods are DELTA, and PAWN. A short
overview of the workings of these methods is given in the following subsections.
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2.5.1 FAST

FAST decomposes the variance of the model into partial variances that can be attributed to individual
input features by using a periodic sampling method and a Fourier transform [35].

2.5.2 Sobol indices

Sobol indices are a form of variance based GSA [36], and can be used to determine the importance of
input features. This method decomposes the variance of the output of a machine learning model into
fractions that can be attributed to features, or combinations of features. A function Y = f(X) can be
decomposed as follows

Y = f0 +

d∑
i=1

fi(Xi) +

d∑
i<j

fij(Xi, Xj) + · · ·+ f1,2,...,d(X1, X2, ..., Xd)

With constant f0, and fi as function of Xi. The variance of Y can then be expressed as:

V (Y ) =

d∑
i=1

Vi +

d∑
i<j

Vij + · · ·+ V1,...,d

Where

Vi = V (E(Y |Xi))

And

Vij = V (E(Y | Xi, Xj))− Vi − Vj

Here E(Y |Xi) stands for the expectation over Y given Xi, which can be calculated by taking the mean
over Y for all Xi. The first order Sobol index can then be calculated as a measure of sensitivity S of
feature i on model output Y as

Si =
Vi

V (Y )

The first order Sobol index measures the effect of alternating Xi alone averaged over variations of other
input features. By dividing it over the total variance it is measured as a fractional contribution. Higher
order indices can be calculated by dividing Vij , Vijk and so on over V (Y ). The first- and higher-order
Sobol indices quantify the importance of each feature, or combination of features with respect to the
output variance. Evaluating all indices for a large number of features can be problematic as the number
of evaluations is quadratic with the number of input features. In practice the total-order Sobol index is
often calculated to overcome this problem. The total-order Sobol index is a measure of the contribution
to the output variance of the i-th feature including all variance caused by the interactions with other
features. It can be calculated as follows

STi =
EX∼i(VXi

(Y | X∼i))
V (Y )

Here EX∼i(VXi
(Y | X∼i)) stands for the expected variance in model output Y when all but the i-th

feature are fixed.

Test case

Figure 5 shows the first- and total order Sobol indices for a simple test function:

f(x1, x2, x3) = x1 + x2 + c · rand(0, 1) · x3 (1)

The function is evaluated for values between 0 and 1 for x1, x2, x3. c is a parameter that determines how
much noise is added to the function and is valued {0, 0.25, 0.5, 0.75, 1}. x1 and x2 intuitively have the
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same influence on the output in the case that there is no noise present. The visualisation shows that the
first order index for x3 is 0.0 even when the amount of noise for this variable is increased. Furthermore,
inspection of the visualisation shows that a higher amount of noise results in a larger value for the total
order index of x3. In earlier work by Kenneth et al. [37] it is shown that the Sobol indices can be well
approximated and the correct order of variable importance is maintained even when the analyzed models
contain significant error.
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Fig. 5: Sobol indices for test equation 1 for various values of c.

2.5.3 Morris method

The Morris method [38], also known as the One-Step-At-A-Time (OAT) method aims to identify non-
influential features in the input set. The Morris methods classifies each input feature into one of three
categories. Input with negligible effect, input with large linear effect without interaction, and input having
large non-linear and/or interaction effects. The method performs r OAT experiments over an input space

that is discretized into a d-dimensional grid with n input levels. The elementary effect E
(i)
j can then be

calculated at the i-th repetition for the j-th variable as:

E
(i)
j =

f(X(i) + ∆ej)− f(X(i))

∆

Here ∆ is a multiple of 1
n−1 and ej a vector of the canonical base. From this, the mean of the absolute

value of elementary effects µ∗j and the standard deviation of the elementary effects σj can be calculated as

µ∗j =
1

r

r∑
i=1

| E(i)
j |
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σj =

√√√√1

r

r∑
i=1

(E
(i)
j −

r∑
i=1

E
(i)
j )2

The larger the value of µ∗j for a feature j, the more the input value of this feature contributes to the
divergence in output. σj gives information about the type of interaction effects that a feature has. A low
value of σj indicates that the elementary effect has a low variation due to the input, suggesting that the
effect of a perturbation is the same for all inputs and thus a linear relation between the input and output.
If there is a high value of σj , elementary effects have large variations due to the input, suggesting that a
variable with high σj has a non-linear effect on the output.

2.5.4 Derivative Based Global Sensitivity Measures

The previously mentioned variance based methods often require a large number of model evaluations in
order to sample the model outputs. As models become more complex, the evaluation time or cost of a
model can also increase. A faster method that relies less on model evaluations is called Derivative Based
Global Sensitivity Measures (DGSM) [39]. The method focuses on averaging local derivatives by using
Monte Carlo sampling methods. The DGSM method calculates derivative based importance measures
v1, ..., vn

vi =

∫
Hn

(
∂f

∂xi

)2

dx

A smaller value for vi indicates a less influential features xi. The importance measure is similar to the
Morris importance measure µ∗.

2.5.5 Density based Sensitivity measures

The DELTA(δ)-index [40] is a global model free sensitivity measure, and is based on the Probability
Density Function (PDF) of the output of the model. The method assesses the influence of the complete
input distribution on the complete output distribution without referencing to a specific moment of the
output. PAWN [41] is a sensitivity index that relies on the Cumulative Distribution Function (CDF). The
PAWN index for a given parameter is calculated by taking the mean, median an maximum over all Kol-
mogorov–Smirnov (KS) test values. The KS test values can be calculated by taking the distance between
the unconditional output distribution and the conditional output distribution. The unconditional output
distribution can be calculated by moving all parameters simultaneous while the conditional distribution
can be calculated by fixing the input parameter of interest to a certain value.

2.5.6 Partial Dependence Plots

Once the importance of each input features has been determined it is possible to visualise the type of
relation between the input feature and the output target. Partial Dependency Plots (PDP) [42] is an
XAI method that can show whether the target variable and the input features have linear, monotonic, or
more complex relationships. PDP’s show the outcome of a model at a value of a feature when this value
is substituted for all samples in the training set. PDP’s divide the set of input features into to subsets:
C and S. S is the set of features that are investigated, and C is the set of the remaining features. PDP’s
marginalize the model output over the distribution of the features in set C, so that the plot shows the
relation between the model output and the features in S. In practice the PD function is estimated by
calculating the average output in the training data

f̂s(xs) =
1

n

n∑
i=1

f̂(xs, x
(i)
C )

The output of this function expresses the average marginal effect of the features in S on the prediction of

the model. x
(i)
C are the feature values from the training set from the features that are not investigated.
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Test case

An example PDP for test equation 1 can be seen in Figure 6. The visualisation shows the PDP’s for various
values of c. Even for relatively high values of c the noise has very little effect on the plots. Experiments
in Section 5.6 show how the r2 value of a model influences the interpretability of PDP’s.
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Fig. 6: Partial dependence plots for test equation 1 with c = {0, 0.25, 0.5, 0.75, 1}.

When making the PDP’s the assumption is made that the features in S are independent of the features
in C. The downside of this method is that when this assumption is violated it will cause the PDP to
include data points with very unlikely or even impossible values. Examples of this are ships with a very
large length and very narrow width, or very little engine power. These examples do not occur in real life,
but are evaluated for making the PDP. A disadvantage of PDP’s is thus that the assumption is made that
the features are independent. The advantage of this methods is that it provides the user with a visual
interpretation of the importance and effect of a feature.

2.5.7 Accumulated Local Effect plots

Accumulated Local Effect (ALE) plots [43] are a faster alternative to PDP’s and in addition overcome the
problem that PDP’s assume feature independence. Just as with PDP’s, ALE plots reduce the complex
model function to a function that is dependent on only one or two features. The ALE plot, in contradiction
to PDP’s, show the change in prediction of a model over only a small window z of a value of a feature.
The difference in prediction can be seen as the effect of a feature on a single instance in a certain interval.
The uncentered ALE function is defined as:

ˆ̃
fj,ALE(x) =

kj(x)∑
k=1

1

nj(k)

∑
i:x

(i)
j ∈Nj(k)

[f̂(zk,j , x
(i)
\j )− f̂(zk−1,j , x

(i)
\j )]

Here, the sum on the right side of the equation adds the effect of all samples within interval or neighbor-
hood Nj(k). This sum is then divided by the number of samples in the interval in order to obtain the
average difference of predictions in this interval. The left summation then accumulates all the averages
over all intervals. The following equation then centers the effect such that the mean effect is 0.
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f̂j,ALE,centered(x) =
ˆ̃
fj,ALE(x)− 1

n

n∑
i=1

ˆ̃
fj,ALE(x

(i)
j )

The value of this function can be interpreted as the main effect of a feature at a certain value compared
to the average prediction of the data. When the ALE function has, for instance, an estimate of −4 at
xj = 2 it indicates that when the j-th feature has as value 2 the prediction is lower by 4 compared to the
average prediction. The advantage of ALE plots is that they are not biased in a situation where features
are correlated.

Test case

An example ALE plot for test equation 1 can be seen in Figure 7. The visualisation shows that as the
noise level increases, the ALE plots become less stable. Experiments in Section 5.7 show how the r2 value
of a model influences the interpretability of the ALE plot.
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Fig. 7: Ale plots for test equation 1 with c = {0, 0.25, 0.5, 0.75, 1}.

3 Problem Statement

The ship design profession has existed for hundreds of years. In the past, most early phase design deci-
sions were based on a handful of reference vessels, or made by experienced engineers that relied on the
knowledge they had built up over their career. Examples of early phase design decisions are decisions
about a ships measurements or engine power. The problem with this approach is that a wrong estimation
by an engineer, or wrong sample of reference vessels can lead to flaws in the design, such as too many
or little engine power for the length or width of the ship. These flaws can lead to higher building, or
operating costs.
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As big data has proven it’s impact in many different industries over the recent years, it is also starting
to gain ground in the shipping industry [44]. Previous big data projects in the shipping industry have
shown promising results in vessel route planning and ETA prediction [45], ship chartering analysis [2],
but also for static ship data based ship design optimization[46]. Most ship design optimization big data
studies focus on static data, or data collected from sensors of either one or a handful of vessels. The
results and conclusions from these studies thus only apply to a limited number of ships. To the best
of the author’s knowledge there is currently no study that uses the performance of all vessels in the
commercial fleet to search for distinctive ship design characteristics.

By using the AIS it has become possible to gather data about the performance of all vessels in the
commercial fleet. In order to learn from this vast amount of data, an efficient way of collecting, storing,
and analyzing all incoming data from the AIS is needed. More on the data collection and processing will
be explained in Section 4. Once the data is collected it can be analyzed by building a regression model
that takes as input a vector X that contains features {x1, x2, ..., xm} ∈ X ⊆ Rm. The output of this
regression model is also a vector of a size than can range from 1 up to n; the number of target features
that need to be predicted. As the regression algorithms produce a black box model, further analysis is
needed in order understand how the input features affect the output of the model. The Sobol indices,
explained in Section 2.5.2, can be used to determine which input features have the largest influence on
the output. How these features influence the output can then be visualised by creating PDP’s and ALE
plots, as explained in Section 2.5.6, and 2.5.7. By understanding how the model produces the output
values it is possible to gain insight in which input features, and thus which ships design parameters, are
important for determining the model output, and thus the performance of a ship.

4 Data

The data used for this research can be divided into two main branches; AIS data, and static ship data.
This section gives an in depth overview of how both data sources are collected, stored and processed.

4.1 AIS data

The AIS is a transceiver based automatic tracking system that aims to improve the safety of maritime
traffic. The goal of the system is to provide insights in the whereabouts of vessels so that collisions can be
avoided. The system does this by constantly transmitting a vessel’s identity, location, sailing speed, and
course along with additional information about the destination and identity of the vessel. Most vessels are
equipped with a Very High Frequency (VHF) AIS transceiver that allows local AIS data to be received and
plotted on a chart plotter. Simultaneously, the transceiver sends out AIS data to other nearby receivers.
The range of VHF receivers is approximately between 10-20 nautical miles. Due to the relatively short
range of VHF receivers it is not possible to capture all worldwide AIS data with just one receiver. In order
to overcome this issue, many third party applications have been developed that collect the AIS data from
multiple local transponders and combine them in order to come up with a wider coverage. The third party
application used in this research is AISHub [47] as they provide an easy to use API that allows the raw
AIS strings to be collected. Normally, an API key can only be obtained by contributing to the AISHub
network of AIS transceivers, meaning that you have to install an own AIS transponder and connect it to
the AISHub network. As we managed to obtain an API key via the Transferring Operational Data into
Design Information for Ships (TODDIS) project [48] we did not install our own AIS transceiver.

Fig. 8: AISHub coverage
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AIShub aims to connect as many local AIS transceivers in order to obtain the best possible coverage. All
connected stations are on land, or within coastal areas, meaning that there is no coverage on open ocean.
The total coverage of AIShub can be seen in Figure 8. The map shows a strong coverage in Europe, East
coast North-America, and South-East Asia.

4.1.1 Data collection

AIShub continuously logs the incoming AIS signals, and allows for one request to collect the most recent
data per API key per minute. For this research a Google Cloud environment is setup that performs
the API request, receives the data, and subsequently stores the data in a database. A cloud function
performs a call to the AIShub API once every minute. The API then responds with a .csv file containing
approximately 34,000 rows, each row corresponding to a vessel with an AIS transmitter, and 22 columns
containing the features corresponding to each vessel. Table 1 describes the features that are logged. Once
a .csv file is received from the API the cloud function appends it’s contents to a Google Bigquery database
where all collected AIS data is stored.

Table 1: Definition of features in raw AIS data

Feature name Explanation Range
MMSI Maritime Mobile Service Identity N/A
TSTAMP Timestamp in UTC date/time format N/A
Longitude Geographical longitude in degrees [-180,180]
Latitude Geographical latitude in degrees [-90,90]
COG Course over ground [0,360]
SOG Speed over ground >0
Heading Current heading of vessel at time of last message [0,360]
Navstat Navigational status, indicates what operation the ship is performing [0,15]
IMO IMO ship identification number N/A
Name Ship name N/A
Type Vessel Type [1,99]
Callsign Vessel callsign N/A
A Distance from transceiver to bow in meters N/A
B Distance from transceiver to stern in meters N/A
C Distance from transceiver to port in meters N/A
D Distance from transceiver to starboard in meters N/A
DRAUGHT Draught of vessel in meters >0
DEST Vessel destination N/A
ETA Estimated time of arrival in UTC date/time format N/A

The data collection process has started in september 2021 and is still going on at the moment of writing.
At the moment of writing the Google Bigquery database contains approximately 7.5 billion rows with a
total size of 1.2 TB. A schematic overview of the AIS data collection pipeline is given in Figure 9.

Fig. 9: Schematic overview of the AIS data collection pipeline

4.1.2 Data preprocessing

From this large set of raw AIS data, information can be extracted about a vessels operational perfor-
mance capabilities. The columns of interest are: TSTAMP, Latitude, Longitude, COG, SOG, Heading,
Navstat, IMO, A,B,C,D and Draught. The definition of these columns can be seen in Table 1. Fur-
thermore, a subset of the data is selected so that only ocean going vessels are considered. This is done
by only selecting vessels with a length of more than 80 meters, as recommended by a domain expert.
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Next, the samples with feature values that lie outside the allowed ranges shown in Table 1 are filtered
out. Examples of this are samples that have a value of 511 for heading, which means that the heading
is unknown. Any further samples that have unrealistic feature values, such as an SOG >40 knots, are
also removed. Finally, the navigational status of a vessel is checked for each record, and removed if the
navigational status is 1 (at anchor) or 5 (moored). The resulting subset, containing data from October
up to February, is then downloaded from the Google Bigquery database and saved as a Hierarchical
Data Format (HDF) file, a compressed file format designed for handling large datasets. The data from
September is not considered as the data collection process was not continuously active in this period.

Even though the dataset spans a five month time window, many vessels have a relatively limited number
of records in the dataset as shown in Figure 10. In order to get a good grasp of the maximum operational
performance capabilities of a vessel, a minimum number of data points per vessel is needed. Furthermore,
these data points need to be from a variety of days. Simply looking at the data from one day might give
a biased view of a vessels performance as the conditions on that day might be especially dis- or advanta-
geous. By trial and error it is determined that vessels in the dataset that have transmitted less than 300
data points, or on less than 4 unique days will be removed from the dataset. As only data points that
have an AIS status different from 1, or 5 are selected from the Bigquery database, it is guaranteed that
these data points are not from ships laying still in harbor.

(a) (b)

Fig. 10: For many vessels the number of logged data points is relatively low. Similarly, for many vessels
the logged data points have been transmitted over a small number of days.

4.1.3 Feature extraction

The resulting dataset is 9 GB, has 197 644 394 rows and 12 columns describing the behaviour of 35 645
unique vessels over a period of 5 months. The next step is to derive features from the AIS data that
give information about the operational performance capabilities of a ship. This is done by calculating the
following features for each vessel.

Max speed
The maximum SOG that a vessel has sailed. This feature is of interest to a naval architect because
it shows how fast a ship can potentially sail. As SOG is part of the AIS data string, it can be simply
extracted directly for each ship in the dataset.

Max rotation
The maximum rotation in degrees that a vessel has made in a time window of one minute. The
feature is of interest for a naval architect because it is a quantification of the maneuverability of a
ship. Rotation is not part of the raw AIS data, and thus needs to be derived. The rotation per minute
can be calculated from AIS data by taking the difference in heading between two consecutive AIS
records, dividing the difference in heading by the difference in time in seconds and then multiplying
this by 60. An example edge case exists when the heading of record 1 is 5, and the heading of record
2 is 355. The difference between these two records is then 350, while the ship has probably only
rotated by 10 degrees. If the difference between the two records is larger than 180, the difference in
heading is subtracted from 360 to account for the edge cases where the heading of two records are
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both close to 360 and 0. The formula used for calculating the rotation between two records is:

∆t = TSTAMP2 − TSTAMP1

∆h =

{
360− abs(h1 − h2), if abs(h1 − h2) > 180

abs(h1 − h2), otherwise

rotation =
∆h

∆t
× 60

Here ∆t stands for the difference in time, ∆h for the difference in heading, h1 for the heading of
record 1 and h2 for the heading of record 2. We have empirically found that using consecutive AIS
records that are no further than two minutes apart provide us with the best results.

Max acceleration
The maximum acceleration that a vessel exhibits between two consecutive AIS records. The feature
is of interest to a naval architect because acceleration plays a role in the speed and maneuverability
of a ship. Acceleration is not part of the raw AIS data but can be derived by taking the difference in
SOG between two consecutive AIS records, dividing this difference by the difference in time between
the records, and multiplying this by 60. Here we also take a maximum of two minutes for two records
to be consecutive. In formula:

∆SOG = SOG1 − SOG2

∆t = TSTAMP2 − TSTAMP1

Acceleration =
∆SOG

∆t

For acceleration, we only look at postive results of this formula. The negative values are used for
deceleration.

Max deceleration
The maximum deceleration that a vessel exhibits between two consecutive AIS records. As decel-
eration influences the maneuverability of a ship, it is an important measure for a naval architect.
Deceleration can be derived by the same formula as for acceleration, but this time only looking at
negative values. The same time window as for rotation and acceleration is used here.

Max lateral speed
The maximum lateral speed that a vessel exhibits. Lateral speed is also a quantification of the
maneuverability of a ship, and can thus be of interest to a naval architect. The lateral speed is
calculated as follows:

SOGlat = sin(rotation) · SOG

Next to these target features, some additional input features are calculated from the AIS data. For each
target feature, the draught of the vessel at the moment that the vessel produced the target value is
logged. Furthermore, for each vessel the number of tugboats in the proximity is calculated at the moment
the maximum rotation value is logged. This value is calculated by using the latitude and longitude
coordinates in the AIS data to check within a radius of 600 meters, in a time interval of 1 minute before
the max rotation is logged, and 1 minute after the max rotation is logged if there are vessels present
that transmit AIS data with ship type 52, as this is the vessel code for tugboats. The time interval and
radius of the proximity are set after consulting a human expert, combined with some trial and error.

The calculation of aforementioned target features can be influenced by missing values, or noise which
is naturally present in AIS data [49]. AIS is not a strongly typed language, so for the columns DEST,
DRAUGHT, ETA, and NAVSTAT, users are free to fill in strings where real valued numbers are
expected, or leave certain fields unfilled. In order to account for outliers that occur as a result of this
while calculating the maximum value for each ship, the 0.999 quantile value for each feature is also
calculated. Figure 11 shows the distributions of the target features for both the maximum value, and
the 0.999 quantile value. As expected, most of the 0.999 quantile values seem to have a slightly lower
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value than the absolute maximum values. For acceleration and deceleration, the 0.999 quantile values
have many more occurrences in the lower valued bins than the absolute maximum value. This suggests
that using the absolute maximum value is more susceptible to outliers. In Section 5 we determine which
feature yields the best results.

(a) (b)

(c) (d)

(e)

Fig. 11: Distributions of features calculated from AIS data. Taking the absolute maximum value seems
more susceptible to outliers than taking the 0.999 quantile value.

4.1.4 Outlier removal

In order to take account for the remaining outliers in the target the Inter Quartile Range (IQR)
method [50] is used. This method calculates an upper and lower bound for a feature. All feature values
below the lower bound, or above the upper bound are selected as outliers. The bounds are calculated as
follows

Q1 = 1st quartile

Q3 = 3rd quartile

IQR = Q3−Q1

Upperbound = Q3 + 1.5 · IQR
Lowerbound = Q1− 1.5 · IQR

4.2 Static ship data

The second branch of data used in this research is static ship data. The dataset with static ship data
comes from earlier work [46] where the data is provided by a reference database from C-Job Naval
Architects. C-Job Naval Architects is a worldwide independent ship design and engineering company
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with its headquarters in the Netherlands. The vision of C-job is “A sustainable maritime industry within
one generation.” The company now employs over 180 in-house maritime engineers and naval architects
in seven offices across the globe. C-Job has a passion for everything afloat. Whether it is new build or
conversions, C-Job is renowned for ground-breaking new vessels in a broad range of maritime sectors.

The dataset contains 230 851 unique vessels, each described by 129 features. A description of all features
in the dataset can be found in the table A1. Some features are specific for certain ship types, which
means that not all features contain a value for each ship. After calculating the performance features
from the AIS data as explained in Section 4.1, the instance is merged with additional information about
the ship design from the reference database. Each instance in the resulting dataset now contains the
features calculated from the AIS data, as well as the static ship information describing the ship’s design.
As each row now describes the performance characteristics and design of a unique vessel, we have a
much smaller dataset containing 27 343 rows. This is less than the initial 34 000 vessels that we collect
AIS data of because non-ocean going vessels, and vessels that have not transmitted sufficient data points
on a variety of days are filtered out as explained in 4.1.

Figure 12 shows a histogram of the top-10 most frequently occurring ship types. The distribution is

Fig. 12: Histogram of most frequent ship types in dataset.

skewed to the left with Transshipment Bulk Carrier, Container ship, and Products Tanker clearly being
the most frequently occurring ship types. Furthermore, two ship types seem very similar due to their
name; General Cargo ship tween deck, and Multi-Purpose General Cargo ship. The distributions of the
most distinctive ship design parameters of these ship types can be seen in Figure 13. The distributions
show that Multi-Purpose General cargo ships tend to be larger and more recently built than General
Cargo ship tween decks. It can also be noticed that there is a spike in ship occurrences of approximately
90 meters. Ships of this length correspond to ships with a gross tonnage of 3000 tonnes. Ships below
this gross tonnage are required to only have one captain and one helmsman, while ships with a higher
gross tonnage are required to have one captain with higher qualifications and two helmsmen, resulting
in higher operational costs. In order to check if these two distributions are statistically significantly
different we apply the Mann-Whitney U test [51], as this test does not assume any specific distribution
of the data. The null hypothesis of this test states that two distributions are the same. A p-value < 0.05
rejects the null-hypothesis.
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(a) Mann-Whitney U-test: p = 0.0.
Null hypothesis rejected.
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(b) Mann-Whitney U-test: p = 0.0.
Null hypothesis rejected.

1960 1970 1980 1990 2000 2010 2020
build_year

0

50

100

150

200

250

300

Co
un

t

MP general cargo ship
General cargo tween deck ship

(c) Mann-Whitney U-test: p = 0.0.
Null hypothesis rejected.
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(d) Mann-Whitney U-test: p = 0.0.
Null hypothesis rejected.

Fig. 13: Distributions of design parameters of General Cargo ship tween deck and Multi-Purpose General
cargo ship showing that they are different ship types, even though their names are similar.

As each ship type is designed for its own unique purpose we expect there to be differences between the
performance features of the different ship types. Figure 14 shows the distributions of the performance
features calculated from AIS data for the 10 most frequently occurring ship types in our dataset. For
max speed we see that container ships, Liquified Natural Gas (LNG) tankers, and vehicles carriers overall
seem to have a higher max speed compared to the other ship types. For max rotation we see a less clear
distinction, but crude oil tankers and LNG tankers seem to have an overall lower max rotation value.
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Fig. 14: Kernel Density plots of performance features calculated from AIS data.

4.3 Imputing Missing values

The reference database with static ship data, discussed in Section 4.2, contains many columns with
missing values. A missing value can occur in two cases; if the feature is not applicable to a ship, the
feature “number of lorries”for instance, is only applicable for vehicle carrier ships and not for other ship
types. In order to take account for this, for all ship types only the features that have a missing value
percentage smaller than a predetermined threshold are selected. By manually inspecting the number of
missing values for each ship type we have set this percentage to 30%. In almost all cases this percentage
caused all features that are applicable to a ship to be selected, without selecting inapplicable features.

The second case where missing values can occur is when the value is simply unknown. If a feature value
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is unknown it can be derived from similar samples in the dataset. In order to impute the missing value
the k-Nearest Neighbour (KNN) imputing method [52] can be applied. This method assigns each sample
to k neighbours based on the Euclidian distance between the feature values and then fills in the missing
value as the mean feature value of the k neighbours. For categorical features, all feature values should
first be transformed to numerical values.

5 Experiments & Results

This section contains the experiments and results of this research. Linear regression and SVR are trained
as baseline algorithms, and used as comparison for the effect of various feature engineering steps. Addi-
tional regression algorithms and a multi-output AutoML pipeline are introduced in order to further
improve the model performance. The AutoML pipeline is then further analyzed with SA and XAI
techniques.

5.1 Baselines

The first experiment contains baseline models for each unique ship type and target feature. The algorithms
used for the baseline models are Linear regression and SVR as described in Section 2.2.1 and 2.2.2. Before
the models are trained, the target feature outliers are removed by using the IQR method as described
in Section 4.1. Furthermore, for each ship type only the input features from the reference database that
contain less than 30% missing values are used. This value is selected after measuring the decrease in r2

scores when removing an x percentage of feature values and filling them with the KNN imputing method.
The results of this preliminary experiment can be seen in Table A2. For each feature that contains any
remaining missing values the value is filled by using the KNN imputing method described in Section 4.3.
The models are trained with the default hyperparameters and their average r2 scores over 5-fold cross
validation are reported. The results can be found in Table 2.

Table 2: Average r2 scores over 5 cross validation folds for the 10 most frequently occurring ship types
in the dataset. The two baseline algorithms used are Linear Regression and Support Vector Regression.

Max lat. speed Max acc. Max decel. Max rot. Max speed

Transshipment bulk carrier
Lin reg 0.02 0.13 0.09 0.14 0.11
SVR 0.02 0.18 0.07 0.13 0.13

Container ship
Lin reg 0.06 0.33 0.25 0.48 0.38
SVR 0.04 0.38 0.25 0.51 0.42

Products tanker
Lin reg 0.02 0.22 0.20 0.25 0.15
SVR 0.00 0.23 0.24 0.24 0.21

General cargo ship tween deck
Lin reg 0.03 0.18 0.14 0.19 0.46
SVR 0.08 0.17 0.09 0.22 0.48

Multi Purpose general cargo ship
Lin reg 0.00 0.25 0.15 0.26 0.30
SVR 0.09 0.25 0.15 0.27 0.37

Chemical tanker
Lin reg 0.02 0.25 0.20 0.14 0.16
SVR 0.02 0.26 0.20 0.12 0.16

Crude oil tanker
Lin reg 0.01 0.00 0.03 0.12 0.00
SVR 0.03 0.00 0.03 0.14 0.00

Ro-ro cargo
Lin reg -0.03 0.21 0.19 0.15 0.57
SVR -0.05 0.22 0.19 0.04 0.58

LPG tanker
Lin reg 0.02 0.26 0.31 0.29 0.22
SVR 0.00 0.25 0.30 0.26 0.23

LNG tanker
Lin reg 0.00 0.02 0.02 0.01 0.11
SVR -0.1 0.08 0.08 0.01 0.08

The results show that for many ship types and many features the models fail to learn any relationship
in the data. However, for Container ship, General Cargo (GC) ship tween deck, Multi Purpose (MP)
general cargo ship, and Ro-ro cargo ship with target features maximum rotation and maximum speed the
r2 scores show that the models have learned some relation between the input data and target feature. As
only for these four ship types and two target features the results are promising, the experiments in the
following sections are focused on this subset of ship types and target features.

5.2 Feature engineering

The performance of regression models can be increased by performing various feature engineering steps.
The experiments in this subsection show how further outlier removal, and adjusting the definition of
target features can improve model performance.
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5.2.1 Improved outlier removal

The IQR method explained in Section 4.1 is a statistical method for detecting outliers in the target
features. Next to this statistical way of removing outliers, domain specific knowledge can be applied to
remove any remaining outliers or noise in the data that might decrease the performance of the regression
models. The maximum speed that is measured, is calculated by taking the absolute maximum value of
all SOG values of a ship. For some ships, however, all collected data is collected at moments where the
ship is not sailing at full power. This is often the case for Container ships, as they are known for sailing
on a scheduled service. For these ships, there is no point in sailing at full power unless they are behind on
their schedule. When they are sailing on schedule they do not sail at full power in order to save fuel. For
ships that have only sailed on schedule, the maximum recorded speed does not resemble the true maxi-
mum speed of the ship. In order to detect and remove samples of ships that have not sailed at full power
the maximum recorded SOG is compared to the service speed. For each ship, the reference database
provides a service speed which is the estimated average speed that a ship sails under regular load and
weather circumstances. Together with a human expert we determine that ships with a maximum speed
recorded in the AIS data lower than 3.5 knots below their service speed certainly have not sailed at
maximum power. As a result, all ships that have a maximum recorded speed lower than 3.5 knots below
the service speed are removed from the dataset. The distribution of the recorded maximum speed versus
the corresponding service speed of container ships and the cut off that is made can be seen in Figure 15a.

For the feature max rotation, outlier samples can be removed in a similar way. For some vessels only data
points that are transmitted during a straight trajectory are recorded. The recorded max rotation over
these trajectories is not representative of a ships rotational capabilities simply because the ship barely
had to rotate. For this reason, samples that have a recorded max rotation of 15 degrees per minute or
lower are removed. This threshold has been determined, just as for max speed, in consultation with a
human expert. The distribution of max rotation and the cut off point can be seen in Figure 15b.

(a) (b)

Fig. 15: Plots showing how outliers are removed for max speed and max rotation for ship type Con-
tainer ship. For a, samples below the dotted line are removed. For b, samples left of the dotted line are
removed. Similar plots for GC ship tween deck, MP general cargo ship, and Ro-ro cargo can be found in
Figure A1, A2, and A3.

Table 3 shows the results of retraining the baseline models on data after applying aforementioned outlier
removal steps. The r2 scores increase for almost all ship types for both features, and especially for
Container ships.
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Table 3: Baseline model average r2 score over 5-fold cross validation pre and post feature engineering.
The highest results for each ship type, target feature, and algorithm are marked in bold.

Max rotation Max speed
Pre FE Post FE Pre FE Post FE

Container ship Lin reg. 0.48 0.49 0.38 0.48
SVR 0.51 0.52 0.42 0.52

General cargo ship tween deck
Lin reg. 0.19 0.20 0.46 0.47
SVR 0.22 0.21 0.48 0.48

MP general cargo ship
Lin reg. 0.26 0.27 0.30 0.31
SVR 0.27 0.29 0.36 0.36

Ro-ro cargo ship
Lin reg. 0.12 0.15 0.57 0.54
SVR 0.15 0.08 0.58 0.56

5.2.2 Additional target features

The outlier removal step has as disadvantage that almost 50% of the samples of Container ships are
discarded due to the max speed values that have been gathered from ships that are not sailing at full
power. Removing such a large subset from the dataset means that the model misses out on information
from 50% of the samples, which might prevent the model from generalizing. In order to remove less ships
from the dataset but still use a target feature that gives information about a ships speed, we define a new
target feature called median cruising speed. This feature gives information about the median speed of a
ship, and is thus less dependant on whether the collected data points come from ships that are sailing
at full power. The median cruising speed is calculated by taking the median of all speed values that lie
within the range

x · SOGmax < SOG < SOGmax

x ∈ {0.6, 0.7, 0.8, 0.9}

This range is used in order to disregard data points that are recorded while ships are sailing in ports, or
other waters where their movements are restricted.

Table 4 shows the results of retraining the baseline models for the new target features. For each ship
type, a different value for x results in the highest r2 score. Furthermore, the r2 scores for MP general
cargo ship and GC ship tween deck are higher than when max speed is used as target feature. For
Container ships the results show that the r2 score has dropped in comparison to max speed, but only
slightly. Moreover, the table shows that using the 0.999 quantile value of SOG, results in a higher r2

score than when using the absolute maximum SOG value. Because of this, the 0.999 quantile SOG value
for max speed is used in all remaining experiments.

In the case of max speed and max speed 0.999q only 2467 container ships are considered due to outlier
removal, whereas for median cruise speed 4569 container ships are considered. The median cruise speed
thus gives a broader view of the speed capacities of container ships.

A similar experiment has been performed where the mode over all data points in an interval is taken
instead of the median. As the resulting r2 scores of the models built for these features are too low to
provide useful insights, they are presented in the appendix in table A3. The low r2 scores for target
features where the mode is taken instead of the median might be explained due to the fact that some
vessels might have multiple very often occurring, but very different values for SOG. When taking the
mode only the most frequent value is considered while all other frequently occurring values are discarded,
thus providing a limited view.
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Table 4: Results of different target features that quantify the speed capabilities of multiple ship types.

median cruise speed
x

0.6 0.7 0.8 0.9 max speed 0.999q max speed

Container ship
Lin reg. 0.33 0.46 0.51 0.45 0.56 0.38
SVR 0.36 0.49 0.54 0.50 0.59 0.42

General cargo ship tween deck
Lin reg. 0.59 0.59 0.54 0.52 0.48 0.47
SVR 0.60 0.59 0.57 0.57 0.49 0.48

MP general cargo ship
Lin reg. 0.51 0.48 0.40 0.32 0.35 0.31
SVR 0.59 0.57 0.48 0.44 0.37 0.36

Ro-Ro cargo
Lin reg. 0.58 0.62 0.67 0.62 0.57 0.57
SVR 0.58 0.59 0.64 0.65 0.59 0.58

By slightly changing the definition of the speed related target features the r2 scores for regression models
that predict the speed capacity for GC ship tween deck, MP general cargo ship, and Ro-Ro cargo ships
have been improved. Analogous, the r2 score can be improved for regression models that predict the
rotational capabilities of ships. Currently the absolute maximum value is taken as maximum rotational
speed. This value might be influenced by noise or outliers. The 0.999 quantile value might give a better
insight in the rotational capabilities of the ship, as it is less influenced by outliers which is visualised in
Figure 11. The baseline regression algorithms are trained again for both max rotation and max rotation
0.999q. The average r2 scores over 5-fold cross validation are compared in Table 5. The table shows
that for Container ships the models clearly perform better when we use the 0.999 quantile value for
max rotation, but for General cargo ship tween deck, and Multi-purpose general cargo ship, taking the
absolute maximum rotation value works better. For Ro-Ro cargo we see that for both target features the
models perform very poor.

Table 5: Comparison of average r2 scores over 5-fold cross validation for absolute max rotation and 0.999
quantile max rotation.

max rotation max rotation 0.999q

Container ship
Lin reg 0.49 0.58
SVR 0.52 0.58

General cargo ship tween deck
Lin reg 0.31 0.19
SVR 0.33 0.18

Multi-purpose general cargo ship
Lin reg 0.35 0.27
SVR 0.33 0.27

Ro-Ro cargo
Lin reg 0.04 0.08
SVR 0.07 0.00

5.3 Model improvements

The model performance can be further improved by using more advanced regression algorithms, and
by optimizing the hyperparameters of these algorithms. Before tuning the hyperparameters, XGBoost
regressor and a Random forest regressor are trained with default hyperparameters for each ship type
and target feature. The same methods for filling missing values, and removing outliers as in Section 5.1
are used. The average r2 score over 5-fold cross validation is reported in Table 6 which shows that RF
regressor outperforms XGboost in all cases. When comparing the results to the baseline results in Table 4,
and 5 it also shows that RF regressor outperforms all baseline models.
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Table 6: Average r2 score over 5-fold cross-validation of XGBoost regressor and RF regressor on all
target features.

median cruise speed
x

0.6 0.7 0.8 0.9 max speed 0.999q max rot. max rot. 0.999q

Container ship
XGBoost reg. 0.31 0.46 0.53 0.49 0.59 0.50 0.53
RF reg. 0.39 0.52 0.57 0.54 0.64 0.55 0.59

GC ship tween deck
XGBoost reg. 0.58 0.59 0.55 0.54 0.49 0.28 0.04
RF reg. 0.62 0.62 0.60 0.59 0.52 0.40 0.21

MP GC ship
XGBoost reg. 0.57 0.52 0.44 0.39 0.36 0.28 0.13
RF reg. 0.59 0.55 0.48 0.42 0.41 0.39 0.29

Ro-Ro cargo
XGBoost reg. 0.56 0.64 0.66 0.61 0.66 0.14 0.14
RF. reg 0.63 0.67 0.66 0.62 0.65 0.19 0.08

5.3.1 Hyperparameter optimization

As RF has outperformed all other tested algorithms, hyper parameter tuning is performed only to the
RF models. In order to optimize the hyperparameters a grid search is performed over the grid shown in
Table 7. The average r2 scores over 5-fold cross-validation of the models with optimized hyperparameter
combinations can be found in Table 8.

Table 7: Hyper parameter grid used for optimizing Random Forest model.

Param name Values
max depth {8,10,12}
max features {3,4,5}
min samples leaf {3,4,5}
min samples split {3,5,7}
n estimators {100,200,300}

Table 8: Average r2 scores over 5-fold cross-validation of Random forest regressor models with tuned
hyper parameters.

median cruise speed
x

0.6 0.7 0.8 0.9 max speed 0.999q max rot. max rot. 0.999q
Container ship 0.41 0.53 0.58 0.55 0.66 0.56 0.60
GC ship tween deck 0.64 0.63 0.62 0.61 0.56 0.41 0.23
MP GC ship 0.61 0.57 0.50 0.45 0.43 0.40 0.31
Ro-ro cargo 0.64 0.69 0.68 0.68 0.66 0.19 0.14

The results from optimizing the hyperparameters show that there is not a single target feature that
obtains the highest r2 score for all ship types. Instead, the results show that for each ship type, slightly
different definitions of the target features are needed in order to create a regression model that can make
accurate predictions about a ship’s speed or rotational capabilities. The combination of these slightly
different target features might provide the regression algorithms useful information that it can use in
order to make better predictions.

5.4 Multi-output regression

A multi-output regressor is trained that predicts for one ship type all target features. Predicting all target
features at once might exploit the extra information that is enclosed in the relationship between the target
features. In order to prevent having to repeat all experiments performed in the previous subsections, an
AutoML pipeline is used that takes care of selecting algorithms, fine tuning models, and finally building
an ensemble of the individual models. The AutoML pipeline is implemented in Auto-sklearn 2.0 which
requires the setting of only two hyperparameters; time left for this task which is the time limit in seconds
for finding appropriate models, and per run time limit which is the time limit for a call to a single machine
learning pipeline. The time limits are set as recommended in the documentation to respectively 7 hours,
and 35 seconds. An overview of the ensemble of the resulting model for each ship type can be found in
tables A4, A5, A6, and A7. The performance of the resulting models is evaluated by reporting the r2

score on the test set in Table 9.
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Table 9: r2 score of AutoML models on test set.

median cruising speed
x

0.6 0.7 0.8 0.9 max speed 0.999q max rot. max rot 0.999q
Container ship 0.52 0.67 0.72 0.68 0.67 0.52 0.56
GC ship tween deck 0.59 0.60 0.56 0.54 0.56 0.32 0.31
MP GC ship 0.52 0.47 0.39 0.32 0.34 0.27 0.26
Ro-Ro cargo 0.82 0.81 0.83 0.81 0.82 0.46 0.51

The table shows that for some target features the r2 score has improved compared to the r2 scores of the
optimized random forest models from Table 8, especially for Ro-Ro cargo ships. For other features we see
that the performance has dropped, which can be explained by the fact that the AutoML pipeline aims to
produce a model that results in the highest overall r2 score instead of focusing on individual r2 scores.

5.5 Sobol indices

The models described in Section 5.4 work in a black-box fashion, it accepts input and produces output,
but it is not clear to the user how the model makes decisions in order to produce the output. In order to
gain insight in which ship design parameters have influence on the performance of a ship it is important
to understand the working of the regression models. This subsection shows which input features explain
the largest part of the variance of the model output, and thus which input features are most important
for determining the value of the target features. The model that we choose to analyze is the multi-
output regression model described in Section 5.4 as this allows us to see how multiple target features are
influenced by the input features. For each ship type and target feature the first order, and total order
Sobol index are calculated in order to gain insight in the effect of a feature with and without interaction
with other features. As there exists very little difference between the resulting first order, and total order
index, we report the total order index in Figure 16, and the first order index in Figure A5. The plots show
that for all target features for ship type Container ship the input feature length overall has the highest
total order Sobol index. Although with lower index values than Container ships, GC ship tween decks has
depth as the highest ranked Sobol index for most speed related target features. Furthermore, the draught
related features obtain the highest Sobol index values for the target features related to rotation for this
ship type. MP general cargo ships show a less clear picture of which features have the highest indices,
but in most cases length overall is the most important input feature for both speed and rotation related
target features. For Ro-Ro cargo ships, the Sobol indices show that length overall is the most important
feature for all speed related target features, while also being one of the most important for both rotation
related target features.
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(b) GC ship tween deck
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(c) MP general cargo ship
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(d) Ro-Ro cargo ship

Fig. 16: Total order sobol indices for all ship types and target features.

5.6 Partial dependence plots

The Sobol indices give insights in which input features have the largest influence on the model output
variance. In order to investigate in which way these features influence the model output partial dependency
plots are created for the feature with the highest ranked Sobol indices. The plots show what kind of
relation there exists between changing the value of an input feature and the effect on the target feature.

5.6.1 Test function

In order to determine if the PDP’s show the correct relation between the input features and the target
feature even when the r2 score of the analyzed model is relatively low, Figure 17 shows the PDP’s for
test equation 1 with c = {0, 0.5, 1, 1.5, 2}. We fitted an RF regressor to 7k training samples and evaluated
the performance of the model on 3k test samples. The title of the plots show that as the amount of noise
added to the function increases, the r2 score on the test set decreases. From the function definition it is
clear that x1 and x2 both contribute equally and linearly to the output of f , and that x3 only contributes
to the output when c > 0. The plots show that even when the r2 score is relatively low (< 0.5) the PDP’s
still approximate a correct visualisation of the influence of the different input parameters.
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Fig. 17: Partial dependence plots for RF regressor fitted to test equation 1 with c = {0, 0.5, 1, 1.5, 2}.

5.6.2 Application to AutoML model

For each ship type the PDP’s are created for features with the highest ranked sobol indices. As experiments
have shown that there is little to no difference between the rankings of the first and total order indices,
the ranking from the total order index is used for determining which features are plotted.
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Fig. 18: Partial dependence plots for speed related (a) and (b) rotation related target features of container
ships for input feature length overall.

Figure 18a shows that there exists a positive linear trend between the speed related target features and
the overall length of Container ships. The lines have similar gradients for each target feature although
the intercept is higher for target features that resemble more closely to the maximum speed of a vessel.
Furthermore, it can be noticed from Figure 18b that for the rotation related target features there exists
a negative trend between the target features and the overall length of the vessel.
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Fig. 19: Both plots show partial dependence for GC ship tween deck.(a) shows the Partial dependence
plot for input feature depth for all speed related target features. (b) shows the draught at max rotation
and draught at max rotation0.999q

Figure 19a shows that there exists a positive trend between the speed related target features of GC ship
tween decks and their depth, although the gradient of the trend is relatively small. As the Froude number
had a similar Sobol index as depth for the speed related target features, we have also created a PDP
with Froude number as input feature. As the resulting line is almost flat we have appended the resulting
plot in Figure A4. From 19b it can be seen that for rotation related target features there is a relatively
large drop in degrees of rotation per minute for ships with a draught at max rotation between 6 and 8
meters. For ships that have a draught at max rotation that lie above this interval there is a lower degree
of rotation per minute, while there is a higher degree of rotation per minute for ships that have a draught
at max rotation that lies below this interval.
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Fig. 20: Both plots show partial dependence for MP general cargo ships for input feature length overall.

For MP general gargo ships Figure 20a shows a slightly positive trend between the speed related features
and the overall length of a ship. Figure 20b shows a negative trend between the overall length of the ship
and the maximum degrees of rotation per minute.
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Fig. 21: Both plots show partial dependence for Ro-Ro cargo ships for input feature length overall and
draught at max speed/draught at max speed0.999q.
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The plots in Figure 21a show that for Ro-Ro cargo ships there exists a positive trend between the overall
length of a ship and the speed related features, just as for Container ships. As for the rotation related
target features, the plot in Figure 21b shows a negative trend between the draught at max rotation and
the rotational capabilities of a ship.

As for most ship types the overall length of the ships is the most important feature for the speed related
target features, Figure 22 shows a PDP for all ship types with on the x-axis the overall length, and on
the y-axis the SOGmax of the vessels. Two conclusions can be drawn from this figure: the SOGmax of
Ro-Ro cargo ships is influenced the most by the overall length of the ship. Furthermore we see that
Container ships and Ro-Ro cargo ships are larger, and have a larger range of length values than GC ship
tween deck and MP cargo ships.

102 2 × 102 3 × 102

length_overall

12

13

14

15

16

17

18

19

20

SO
G

m
ax

Partial Dependence Plot all ships

Container ship
GC ship tween deck
MP cargo ship
Ro-Ro Cargo ship

Fig. 22: PDP showing the effect of the overall length of a ship for all ships types on the maximum SOG
of the ship. X-axis is in logarithmic scale.

As the partial dependence plots are calculated by averaging over all samples we risk using samples that
are unlikely to occur in real life such as very large ships that are very narrow, or have very low engine
power. In order to check the validity of the PDP results, the next section shows the experiments performed
for ALE plots to see if they show similar trends as the PDP’s.

5.7 ALE plots

The PDP’s show what kind of relation there is between the most influential input features and the
absolute value of the target feature. ALE plots can complement these results by visualising how much
the prediction of the target features change if we slightly adjust an input feature.

5.7.1 Test function

Figure 23 shows the ALE plots for test equation 1 with noise term c = {0, 0.5, 1, 1.5, 2} that is modeled
by an RF regressor. The goal is to see if the ALE plots model the correct relation between the input
features and target feature even when the r2 score of the analyzed model is relatively low. The regressor is
trained on 7k training samples, and evaluated on 3k test samples. The titles of the plots show that when
the noise level increases, the r2 score on the test set decreases. The plots show, similar to the PDP’s,
that even when the r2 score of the model that is being analyzed is relatively low, the ALE plots still
approximate a correct visualisation of the influence of the input parameters.
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Fig. 23: Ale plots for RF regressor fitted to test equation 1 with c = {0, 0.5, 1, 1.5, 2}.

5.7.2 Application to AutoML model

For all ship types and target features the influence of input parameters on the prediction of the AutoML
model created in Section 5.4 is visualised by creating ALE plots.
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Fig. 24: Both figures show ALE plots for Container ships for input feature length overall.

Figure 24 shows that there exists a positive trend between the overall length of container ships and the
speed related target features. The plots show a more oscillating line than for the PDP’s, this can be
explained by the fact that ALE plots calculate an average of the target feature over samples that lie in
a small interval, while PDP’s use all samples in the dataset which results in a smoother line. What can
also be noticed is that there is less difference between the intercept of the ALE lines than for the PDP
lines. This can be attributed to the fact that the y-axes for ALE’s show only the effect on prediction,



CONTENTS 31

while the y-axes for PDP’s show the absolute value of the target features. When we look at the ALE plot
for rotation related features we see that the predicted value of degrees of rotation per minute decreases
when the overall length of a ship increases, just as we have seen in the PDP’s.
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Fig. 25: Both figures show ALE plots for GC ship tween decks. (a) for depth and (b) for
draught at max rotation/draught at max rotation 0.999q.

In Figure 25 the plots show that for GC ship tween decks there exists a positive trend between the
predicted speed related target features and the depth of the ship, although the effect is very small as it
ranges from −0.3 to 0.4 over the complete range of depth values. As the Sobol index for input feature
froude number had a similar value, an ALE plot for froude number and the speed related target features
is appended in Figure A4. The ALE plot for rotation related target features shows little to no effect on
the prediction for ships with a draught at max rotation between 2 and 6 meters. Between 6 and 8 meters
we see a sharp drop in effect on predicted degrees of rotation per minute. From 8 to 10 meters we again
see little to no effect on the predicted target value. This is again, the same trend as we have seen in the
PDP’s.
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Fig. 26: Both figures show ALE plots for MP general cargo ships. (a) for input feature length overall
and (b) for draught at max rotation/ draught at max rotation0.999q.

The ALE plots for Multi Purpose general cargo ships can be found in Figure 26. Here the plots again
show a positive trend between the overall length of a ship and the predicted target value for speed related
target features. Furthermore, it can be noticed that for rotation related features the overall length of a
ship has a negative effect on predicted degrees of rotation per minute. Figure 26b shows a relatively large
difference between ships with an overall length between 80 and 140 meters. For ships longer than 140
meters the plot shows that there is little to no difference in prediction, just as for the PDP’s in Figure 20.
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Fig. 27: Both figures show ALE plots for Ro-ro cargo ships. (a) for input feature length overall, and (b)
for draught at max rotation/ draught at max rotation0.999q.

Figure 27 shows the ALE plots for Ro-ro Cargo ships. 27a shows that there exists a positive trend
between the overall length of the ships and the speed related target features, while 27b shows a negative
trend between the predicted degrees of rotation per minute and the draught at max rotation of a ship.
This trend is similar to the trends shown in the PDP’s in Figure 21. Only a limited number of Ro-Ro
cargo ships have a length of more than 250m, so the large increase in effect on prediction that the plot
shows after 250m is based on a limited number of samples.

6 Discussion of the results

The experiments in Section 5 showed that using a combination of AIS data and static ship data does
not always result in good regression models that can accurately predict ship performance related target
features. However, for Container ships, MP cargo ships, GC ship tween deck, and Ro-ro cargo ships good
regression models have been created for speed and rotation related target features. In some cases taking
the absolute maximum value for a target feature was susceptible to outliers. In order to overcome this,
the 0.999th quantile value was used. Further outliers were taken account of by using the Inter Quartile
Range method. Other feature engineering steps included slightly altering the definition of target features
which resulted in more samples that were no longer considered outliers. The use of more advanced
regression algorithms, and tuning the hyperparameters of these algorithms resulted in even higher r2

scores. The performance of the models was further increased by training a multi-output AutoML pipeline
that could exploit the relation between the multiple target features. A multi-output AutoML model
resulted in the highest r2 scores for most target features and ship types. Analyzing the multi-output
model shows how the multiple targets change to a change in input. The Sobol indices for these models
showed that for Container ships, the overall length of the ship is the most important input feature for
both speed related and rotation related target features. For GC ship tween deck and Ro-ro cargo the
results also show that the overall length is the most important input feature for the speed related target
features. For MP general cargo ships the depth is the most important input feature for the speed related
target feature. When looking at the rotation related target features we see for MP general cargo, GC
ship tween deck, and Ro-ro cargo ships that the draught at the moment the maximum rotation is logged
is the most important input feature.

The fact that it was not possible to create good regression models for all ship types and target features
means that for most ship types and target features, the static ship parameters do not contain enough
information to explain the variance in the target features. Especially for the maximum lateral speed the
model completely fails to learn any patterns in the data. This can be attributed to the fact that the
calculation of the lateral speed assumes that the AIS transponder is placed in the middle of the vessel.
A domain expert pointed that in some cases the transponder can be placed on either the bow, the
stern, or somewhere in between on the ship. The position of the AIS transponder greatly influences the
calculation of the lateral speed, as it uses the distance to bow and distance to stern. To the best of our
knowledge, there is unfortunately no automated way to determine the position of the AIS transponder
so that this issue can be avoided. Including more information about factors that were not possible to
account for in this work, such as accurate weather data or data about engine settings might increase the
r2 scores of these models.



CONTENTS 33

The GSA and XAI methods used in Section 5.5, 5.6, and 5.7 show how the input features influence the
output of the model, and thus how the input features influence the speed and rotational capabilities of
a ship. Experiments on a test function showed that even when the r2 is lower than 0.5 the PDP’s and
ALE plots still give a good approximation of the influence of the input parameters. Most ship types had
the overall length of the ship as the feature with the highest ranked Sobol index. Furthermore, the PDP
and ALE plots showed a positive trend between the predicted speed capabilities and overall length of
ships. An increase of the overall length of a ship often means that the breadth of the ship increases as
well, but only up to a certain level, as ships often have to be narrow enough to fit through locks used in
busy sailing routes. Increasing the width of a ship is associated with the largest increase in resistance
called wave resistance. On the other hand, increasing the length of a ship is associated with a much
smaller increase in resistance called boundary layer induced friction [53]. To account for the increase
in resistance for longer and wider ships, these vessels are often installed with extra engine power. Even
though the engine power was one of the input features, it is never selected as most important inpute
feature. As the breadth of Container ships tend to max out around 60 meters, all extra engine power
installed after this can be used to compensate for extra length of a ship. As the extra resistance as a
result of a longer ship is much smaller than that of a wider ship, the results show that longer container
ships exploit the extra engine power in a more efficient way than shorter or broader ships.

The influence of the overall length of a vessel on the rotational capabilities of Container ships can be
explained by the fact that a shorter ship has to displace less water when turning than a longer ship.
These explanations of the importance of the overall length of a ship are confirmed by the PDP’s and
ALE plots in Section 5.6 and 5.7 which show that there exists a negative trend between the rotational
capabilities of Container ships and the overall length.

When looking at the Sobol indices for the speed related features for GC ship tween decks there is no
single feature that explains a large part of the model output variance, but rather three separate features
that all explain a relatively small part of it. The depth is the most important input feature for speed
related target features. The PDP’s and ALE plots show that there is a slightly positive trend between
the depth and the speed related target features. For the rotation related target features the regression
models have a relatively low r2 score. A domain expert’s explanation for this is that the rotational capa-
bilities of these ships are heavily determined by how many bow thrusters they have, and how powerful
they are. Unfortunately, the reference database did not contain sufficient information about the bow
thrusters for this ship type, causing it to be excluded from our analysis. When looking at the Sobol
indices for the rotation related features, the draught at the moment the maximum rotation value was
logged is the most important feature. This can be explained by the fact that when a vessel has a lower
draught it has to displace less water when turning, which allows it to turn faster. This explanation is
confirmed by the PDP’s and ALE plots which show a sharp drop in the predicted degrees of rotation
per minute when ships have a higher draught.

The results of the experiments for MP General Cargo ships again show that the overall length of the
ship is the most important input feature for both the speed and rotation related target features. The
same explanations hold here as for the Container ships.

For Ro-ro cargo ships the r2 scores of the regression models for speed related target features were higher
than for any other ship type. The Sobol indices showed that for speed related target features the overall
length of a ship is the most important input feature. The PDP’s and ALE plots show similar trends as
for Container ships and Multi Purpose general cargo ships; a positive trend between the overall length
of the vessel and the speed and rotation related target features. What is different for Ro-ro cargo ships
is that there is a much steeper line for speed related target features in both the PDP’s and ALE plots
compared to the two previously mentioned ship types.

A limiting factor in this research was that some important information, such as accurate weather data
or information about a ships engine settings was not available. Furthermore, the coverage of AIS hub is
mainly focused on coastal waters, and does not cover the open oceans between the continents. In future
work, using a source of AIS data that has more coverage might increase the quality of the data and thus
the performance of the regression models.
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7 Conclusion

To the best of our knowledge this is the first work where AIS data is used to analyse the performance
of a large volume of ships with relation to their design characteristics. During this research, AIS data
from over 30.000 vessels during a period of multiple months has been collected. Exploratory analysis
has shown that there exists a large difference between the number of occurrences of different ship types,
and that AIShub is not able to provide a continuous input stream of data for all ships over the complete
time period of interest. Because of this a subset was used containing data from frequently occurring
vessel types, that transmit data over a multiple day time span and with a sufficient number of total
transmitted data points.

In order to gain insights into how ship design and performance are related we have used static ship data
to predict the performance related target values calculated from AIS data. The results showed that that
only for a subset of the data good performing regression models could be created. For other ship types
and target features better regression models could have been made if extra information was available
such as accurate weather data, or the engine settings of a ship.

For the ship types and target features for which good regression models were created there is no single
combination of feature engineering steps and algorithms that performs best for each ship type and target
feature. However, for most ship types the best performing model resulted from a multi-output AutoML
pipeline. Experiments on a test function showed that even for r2 values below 0.5 the PDP´s and ALE
plots provide a good approximation of the influence of the input features on the target feature. When
analyzing the AutoML models with GSA and XAI techniques it can be concluded that for Container
ships the overall length is the most important feature for both the speed related, and rotation related
target features. When increasing the length the PDP’s and ALE plots show that ships tend to sail
faster, and rotate slower. The results for GC ship tween deck show that the depth, and Froude num-
ber are equally important for the speed related features. For both input features the PDP’s and ALE
plots show that there exists a small positive trend between the input features and speed related target
features. When looking at rotation related target features, the Sobol indices show that the draught at
max rotation is the most important feature. For MP General cargo ships the same trends hold for both
the speed related and rotation related target features as for Container ships. Finally, for Ro-Ro cargo
ships the results also show that the overall length of the ship is the most important feature for the speed
related target features while the draught at max rotation is the most important feature for the rotation
related target features. The PDP’s and ALE plots show a positive trend, much steeper than for other
ship types, between the overall length of Ro-Ro cargo ships and the speed related target features, and a
negative trend between the draught at max rotation and rotation related target features.

This work can be extended in the future by applying the same methods to AIS data from a provider
that has a larger coverage. A larger coverage might increase the quality of the data, or expose different
operational characteristics of ships. Including accurate weather data, or more onboard sensor data of
ships migh also lead to interesting insights. Another interesting approach would be to skip the feature
calculation step and apply a time series approach where a Recurrent Neural Network automatically
derives the important features.
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Appendix A

Table A1: Feature descriptions of static ship data
Feature name

Explanation Type Range

additional service info Extra information about a vessel categorical N/A

vessel age Years passed since vessel launch numerical >0

volume of asphalt Volume of asphalt cargo numerical >0

auxiliary engine power hp
Power of the engine that powers everything
except a ships movement.
Measured in horsepower

numerical >0

auxiliary engine power kw
Power of the engine that powers everything
except a ships movement.
Measured in kilowatts

numerical >0

volume of bale Volume of bale in mˆ3 numerical >0

number of berths Number of beds numerical >0

bollard pull Measure of pulling force in ton numerical >0

breadth moulded
Maximum breadth measured amidship to the
moulded line of the frame in a ship

numerical >0

breadth overall Overall width of the ship measured
at the widest point numerical >0

build year Year in which ship has been built numerical >1960

bulb Wether the ship has a bulb or not bool yes/no

number of cabins Number of cabins on board numerical >0

cad cad numerical >0

callsign Radio call name string N/A

capacity of cargo pumps Capacity of cargo pumps in mˆ3/h numerical >0

number of cargo pumps Number of cargo pumps numerical >0

total volume of cargo Total volume of cargo in mˆ3 numerical >0

number of cars Car capacity numerical >0

block coefficient

Ratio of the underwater volume of a ship to
the volume of a rectangular
block having the same overall length,
breadth and depth

numerical [0.1]

classification society Organization that executes
technical inspections categorical N/A

comp gross tonnage Amount of work necessary to build a ship numerical >0

construction month Month in which construction of ship finished numerical [0,12]

construction year Year in which construction of ship finished numerical >1960

total number of cranes Number of installed cranes numerical >0

total crane swl Safe working load of cranes in tonnes numerical >0

number of crew Number of crew on board numerical >0

continous surface rating numerical >0

number of decks The number of decks on the ship numerical >0

delivery month Month in which the ship was delivered numerical >0

depth
Distance from top of keel to top of the
deck beam op uppermost continuous deck

numerical >0

displacement
Volume of the water that a ship pushes aside
when floating in mˆ3

numerical >0

draught Distance from keel to waterline numerical >0

length of dry holds Length over dry hold areas numerical >0

number of dry holds Number of dry holds numerical >0

dwt
Deadweight tonnage; amount of mass a ship
can transport

numerical >0

dwt by formula Deadweight measured by formula numerical >0

dwt div lsw DWT divided by light ship weight numerical >0

number of electric engines Number of electric engines numerical >0

number of engine cylinders Number of engine cylinders numerical >0

designer of engine Company that designed engine numerical >0
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engine maximum continous rating
Maximum power output of engine while
running continuously at safe limits
and conditions

numerical >0

number of engines Number of engines numerical >0

engine revolutions per minute Number of revolutions per minute of engine numerical >0

stroke of engine Type of power cycle used in engine numerical [2,4]

type of engine Type of engine categorical N/A

flag Flag under which the ship sails categorical N/A

froude number
Measure of the ratio of the inertia force
on an element of fluid to the
weight of the fluid element

numerical [0,1]

gas fuelled Whether the ship is gas fuelled bool T/F

volume of grain Max capacity of grain in mˆ3 numerical >0

gross tonnage Internal volume of a ship in tonnes numerical >0

height Height in m numerical >0

hopper volume numerical >0

hull Hull type categorical N/A

hull construction Technique used for constructing the hull categorical N/A

hull material Material used for constructing hull categorical N/A

hull type Type of hull categorical N/A

ice class If vessel has an ice class categorical N/A

insulated volume

months from keel layed to launch Months between start of keel and launch of ship numerical >0

heigh of lanes Height of lanes numerical >0

length of lanes Length of lanes numerical >0

width of lanes Width of lanes numerical >0

months from launch to commission Months from launch to commission numerical >0

lb+d

lb+t

lbd

ldt

length between perpendiculars
Length of the ship along the summer load
line from the forward surface of the stem

numerical >0

length overall
Length of the ship measured from two
outermost points of the ship

numerical >0

ligthship weight
Weight of the ship without fuel, passengers,
cargo, and water in tonnes

numerical >0

total volume of liquid cargo
Volume of liquid cargo that the ship can
hold in mˆ3

numerical >0

total volume of liquified gas
Volume of liquid gas that the ship can
hold in mˆ3

numerical >0

number of lorries Number of lorries that the ship can hold in mˆ3 numerical >0

main engine power hp Main engine power in horse power numerical >0

main engine power kw Main engine power in kw numerical >0

total maximum continuous rating Maximum continuous rated power output in kw numerical >0

mmsi Maritime Mobile Service Identity number numerical >0

net tonnage
Dimensionless index calculated from the
total moulded volume of a ships cargo space

numerical >0

newbuilt price Price of the newbuilt ship numerical >0

old name Previous name of the ship str N/A

operator Operator of the ship str N/A

owner country Country of the owner categorical N/A

number of passengers Maximum number of passengers numerical >0

number of propellers Number of propellers numerical >0

type of propellers Type of propellers categorical N/A

number of railway wagons Number of railway wagons numerical >0

length of ramp Length of ramp numerical >0

location of ramps Location of ramps numerical >0

number of ramps Number of ramps numerical >0

swl of ramps Safe working load of ramps numerical >0

width of ramps Width of ramps numerical >0
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propeller revolutions per minute
Number of revolutions that a single
propeller can make

numerical >0

volume of segregated ballast Volume of segregated ballast in mˆ3 numerical >0

service speed Service speed of ship numerical >0

ship name Ship name str N/A

ship type 1 Ship division categorical N/A

ship type 2 Ship category categorical N/A

ship type 3 Ship type categorical N/A

ship type 4 Ship type categorical N/A

ship type 5 Ship type categorical N/A

ship type additional Additional ship type information str N/A

ship type total All ship types combined str N/A

ship owner Owner of the ship str N/A

ship builder Builder of ship str N/A

total volume of slop Total volume of slop tanks in mˆ3 numerical >0

specials Special features of ship str N/A

status Status code categorical N/A

status additional Additional information about status str N/A

standard design name Name of standard design categorical N/A

tons per cm immersion
Mass that has to be loaded to change
draught in salt water by 1 cm

numerical >0

number of teu
Maximum container capacity (twenty
foot equivalent units)

numerical >0

number of teu on deck Maximum number of teu on deck numerical >0

number of teu in holds Maximum number of teu in holds numerical >0

number of thrusters aft Number of thrusters at rear of ship numerical >0

number of thrusters fwd Number of thrusters at bow of ship numerical >0

power of thrusters aft Power of thrusters at rear of ship in kw numerical >0

power of thrusters fwd Power of thrusters forward numerical >0

number of trailers Number of trailers that fit on ship numerical >0

length of tween holds

number of tween holds

type size Type and size combinde categorical >0

yard country Country of ship yard categorical >0

Table A2: Table showing the average r2 scores over 5-fold cross validation of RF regression model when
deleting a percentage of the input values and filling them with the KNN imputing method.

median cruise speed
x

percentage of samples removed 0.6 0.7 0.8 0.9 max speed max rotation max rotation0.999q
0 0.54 0.69 0.71 0.69 0.66 0.49 0.48
5 0.53 0.70 0.70 0.68 0.65 0.48 0.48
10 0.53 0.69 0.70 0.68 0.65 0.48 0.48
15 0.54 0.70 0.70 0.68 0.65 0.48 0.48
20 0.52 0.66 0.68 0.65 0.62 0.48 0.47
25 0.51 0.66 0.66 0.64 0.62 0.48 0.45
30 0.51 0.65 0.66 0.61 0.61 0.45 0.43
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(a) (b)

Fig. A3: Plots showing how outliers are removed for max speed and max rotation for ship type ro-ro
cargo ship. For a, samples below the dotted line are removed. For b, samples left of the dotted line are
removed. A much smaller number of samples is deleted when compared to container ships. This can be
attributed to the fact that ro-ro cargo ships do not sail on scheduled services, and thus sail at full power
more often.

(a) (b)

Fig. A1: Plots showing how outliers are removed for max speed and max rotation for ship type General
cargo ship tween deck. For a, samples below the dotted line are removed. For b, samples left of the dotted
line are removed. A much smaller number of samples is deleted when compared to container ships. This
can be attributed to the fact that General Cargo ship tween deck ships do not sail on scheduled services,
and thus sail at full power more often

(a) (b)

Fig. A2: Plots showing how outliers are removed for max speed and max rotation for ship type multi
purpose general cargo ship. For a, samples below the dotted line are removed. For b, samples left of
the dotted line are removed. A much smaller number of samples is deleted when compared to container
ships. This can be attributed to the fact that Multi-purpose general cargo ships do not sail on scheduled
services, and thus sail at full power more often
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Table A3: Average r2 scores over 5-fold CV for modus cruise speed Container Ships, General Cargo
Ship Tween Decks, and Multi-Purpose General Cargo Ships

modus cruise speed
0.6 0.7 0.8 0.9

Container ship 0.22 0.38 0.50 0.51
GC ship tween deck 0.51 0.52 0.53 0.52
MP GC ship 0.47 0.52 0.48 0.37

Table A4: Ensemble details of AutoML model for container ship.

Ensemble weight Model type Loss on validation
0.04 Extra trees 0.42
0.02 Extra trees 0.42
0.02 Extra trees 0.42
0.04 Extra trees 0.42
0.36 Extra trees 0.42
0.20 Extra trees 0.42
0.32 Extra trees 0.54

Table A5: Ensemble details of AutoML model for General Cargo ship tween deck.

Ensemble weight Model type Loss on validation
0.34 Random Forest 0.54
0.26 Random Forest 0.54
0.02 Random Forest 0.54
0.12 Random Forest 0.54
0.12 Random Forest 0.54
0.02 Extra trees 0.54
0.02 Extra trees 0.54
0.02 Extra trees 0.54
0.02 Extra trees 0.54
0.04 Extra trees 0.54
0.02 Extra trees 0.54

Table A6: Ensemble details of AutoML model for Multi Purpose General Cargo ship.

Ensemble weight Model type Loss on validation
0.02 Extra trees 0.55
0.04 Extra trees 0.55
0.06 Extra trees 0.55
0.02 Extra trees 0.55
0.02 Extra trees 0.55
0.02 Extra trees 0.55
0.02 Extra trees 0.55
0.04 Extra trees 0.55
0.04 Extra trees 0.55
0.06 Extra trees 0.55
0.06 Extra trees 0.55
0.06 Extra trees 0.55
0.02 Extra trees 0.55
0.02 Extra trees 0.55
0.02 Extra trees 0.55
0.06 Extra trees 0.55
0.02 Extra trees 0.55
0.02 Extra trees 0.55
0.04 Extra trees 0.55
0.02 Extra trees 0.55
0.08 Extra trees 0.56
0.24 Extra trees 0.57
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Table A7: Ensemble details of AutoML model for Ro-ro cargo ship.

Ensemble weight Model type Loss on validation
0.46 Extra trees 0.44
0.22 Extra trees 0.46
0.18 Random forest 0.46
0.02 Extra trees 0.47
0.12 Random forest 0.47
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Fig. A4: (a)PDP for GC ship tween deck for speed related target features and froude number as input
feature. (b) ALE for GC ship tween deck for speed related target features and froude number as input
feature.
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Fig. A5: First order sobol indices for all ship types and target features.
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