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Abstract

In recent years, deep reinforcement learning is gaining traction due to its
effectiveness in manifold of applications. Despite its prospects, deep rein-
forcement agents are infamous for their long training times. In recent years,
there has been extensive research aimed at making deep RL agents train
faster by transferring knowledge from pre-trained models. In our work, we
investigate the influence of PCG parameters towards transfer sensitivity in
deep Q-networks on FlappyBird. Furthermore, we introduced an automated
curriculum learning algorithm for our DQN agent to improve sample efficiency
and have faster learning dynamics. We found that for positive transfer charac-
teristics in continual transfer learning, the target tasks need to be sufficiently
related to each other to improve sample efficiency of the transferred agents.
Additionally, using our automated curriculum approach designed for DQN’s
we emperically show faster learning dynamics on much harder tasks.
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Chapter 1

Introduction

Since the inception of deep reinforcement learning, we have seen numerous breakthroughs
in the fields of robotics, healthcare, autonomous driving, natural language processing,
financial trading and agents playing video games[1–6]. Reinforcement learning has become
a widely used framework for tasks involving sequential decision-making. Despite its po-
tential, agents trained using deep reinforcement learning suffer when the environment is
subjected to continual change [7]. Often times, the training procedure is restarted when the
environment changes. Although these RL-agents are shown to outperform human players
on Atari benchmark[8] they can’t generalize gathered experience towards new tasks as well
as humans do. Due to the computational overhead involved in training deep reinforcement
agents, it can be inefficient to restart training from scratch.

The challenging aspect for current deep reinforcement learning algorithms is learning
a decent initial control policy for vastly complex environments. Instead, the learning
procedure experiences frequent and long periods of unstable sub-standard policy [9, 10].
Intuitively, the agent needs to learn the dynamics of the environment from ground zero
by continually interacting with the environment and exploiting on the knowledge learnt.
As environments are complex and the innate requirement of neural networks needing a
lot of training samples makes the learning extremely slow[10, 11]. Transfer learning and
curriculum learning have shown great potential in alleviating some on these issues.

In our work we investigate transfer sensitivity of DQN agents to PCG parameters on
FlappyBird game. We chose FlappyBird as our testing environment due to its small action
space and relative simple implementation. FlappyBird is an arcade game where the players
objective is to navigate the bird through pipes as shown in Figure without crashing onto
the pipe or running out of the screen. The game difficulty is controlled by our PCG
parameter pipe gap, which denotes the distance the upper and lower pipes are separated.
The higher the pipe gap, the easier the game is. Our initial work is to benchmark the
performance and training characteristics of Deep Q-networks[9] and compare them to the
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improved variants proposed in [12].

Figure 1.1: An observation from our FlappyBird environment

The novelty our work presents is three folds. First, we present a new FlappyBird environ-
ment where the level difficulty could be controlled using PCG parameters. Second, we
investigate the effect of transfer learning on DQN agent in two different settings. The
former case when source task and target task having similar visual distribution and the
latter when the source and target task having differing visual stimuli. Third, we propose a
new automated curriculum algorithm on our PCG environment for training DQN agents
on hard environments and inspect its learning behaviour.
The report is structured as follows; in Chapter-2 we discuss a brief overview of related
work around this thesis. In chapter-3, we introduce common mathematical notion and
brief theoretical formulations relevant to our work. In chapter-4 we touch on the design
and implementation details of methods discussed in chapter-3. Chapter-5 outlines the
results with appropriate discussion and finally in chapter-6 we provide our conclusions
explaining our findings while proposing avenues for future work.
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1.1 Research Question

Our works aims to investigate whether transfer of pre-trained policy is viable for continual
learning in deep-Q networks when the observation space changes while the reward dynamics
and action space are unchanged. To formalize, we sought whether

• a positive transfer is achieved on our FlappyBird environment when the observation
space of target tasks closely resembles the one of source task.

• a positive transfer is achieved on our FlappyBird environment when the observation
space of target task is changed to varying degrees.

• Can the agents performance on hard task be improved by starting training on easier
tasks and gradually increasing the task difficulty

• Can we automate the curriculum learning procedure for training DQN agents based
on learning progress over a set of tasks with varying difficulty
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Chapter 2

Related Work

Our work is centered around Deep Q-networks, transfer learning and curriculum learning.
This section accounts for current research that influenced our work.

2.1 Deep Q-learning

DeepMind in 2013 introduced a new deep learning model for reinforcement learning
and demonstrated its potential to achieve difficult control policies for Atari 2600 video
games directly from high-dimensional sensory visual data[9]. [13] discuss why DQN can be
overoptimistic for large-scale applications and showed that there model Double DQN can
reduce the overoptimism problem leading to more stable and reliable learning by finding
better policies. [14] introduces a different experience replay framework called Prioritized
Experienced Replay which samples experiences based on computed priorities rather than
uniform sampling. Using prioritized experience replay buffer has show to speed up learning
two fold on the Atari Benchmark[14]. [15] introduces a novel architecture for DQN that
decouples values and advantages all the while sharing same convolutional layers. The
dueling architecture has shown significant improvement over in performance compared to
the traditional DQN variant. [16] proposes a new exploration scheme in contrast to the
ϵ-greedy scheme where the network weights are perturbed through an injected noise that
is tuned by the algorithm. NoisyNet have shown to over-perform over DQN’s performance
and even achieved super human performance in a select few Atari games. [17] notes on
the importance of using value distribution for each action in contrast to selecting actions
just based on expected state-action values. Distributional DQN’s show that it achieved
better learning behaviour using both theoretical and anecdotal evidence by stating the
importance of value distribution in better approximating the Q-values. [12] integrates six
most prominent improvements developed by DeepMind from the time DQN’s are first
introduced into a single learning algorithm. Rainbow DQN achieves better state-of-the-art
performance on the Atari benchmark.
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2.2 Transfer Reinforcement Learning

Transfer learning in reinforcement learning context has seen major interest lately. The
technique in utilizing external expertise from other tasks to benefit learning progress of
the target task is studied under different transfer frameworks catered towards different
goals. We discuss the most relevant works and ideas that influenced our work.
Learning from Demonstrations: To speed up the training process, the knowledge
transfer is made using external demonstrations. Demonstrations could include hand cu-
rated experiences from experts, pre-trained expert policy or a sub-optimal policy. For
demonstration based transfer learning the source tasks and targets tasks are the same[18].
[18] notes that providing demonstrations could lead towards better and efficient exploration
thus serves as a key method for speeding up the training. For off-policy methods[19, 20]
demonstrations are used to train the agents by supervised learning framework on the con-
trary for on-policy[21] methods, the demonstrations are used in the initial stages to obtain
a good starting or a sub-optimal policy that could aid learning through efficient exploration.

Policy Transfer: the knowledge transfer takes the form of pre-trained policies from
the source task. Policy distillation is an transfer learning approach that is extended from
supervised learning framework[22]. Policy distillation uses a student model that uses
learned knowledge from the ensemble of multiple teacher models into a single student
model. The student policy is learnt by minimizing the disparity of action distributions
between the teacher policy and student policy[23, 24]. Another policy transfer approach
denotes the framework that reuses the policy from source tasks. Policy reuse was proposed
by [25], that learns expert policies based on the policy learnt using the source tasks.

2.3 Curriculum Learning

We humans learn and master various skills through compounding our experiences from easy
to hard tasks designed as curriculum through rigorous practice and evaluations. Recent
work in reinforcement learning has leveraged these ideas of developing curricula for deep
reinforcement learning agents to improve their performance and accelerate learning on
a difficult set of tasks. Most recent works have been studying on generating curriculum
automatically to train reinforcement learning agents. For the sake of brevity, we discuss
the most influential ideas that inspired our work. For a thorough account on current
state-of-the-art developments, we refer the reader towards [26–28].

Improving the sampling efficiency is one of the core mechanisms of automated curriculum
learning. [14] has developed a framework that prioritizes experiences to sample more fre-
quently from replay buffer for learn more efficiently. [29] expands on the prioritized replay
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framework for actor-critic architectures. [30] discusses on improving sampling efficiency
in policy gradient methods by discarding non-informative transitions from the gradient
update step.

Automated curriculum learning has shown major strides in solving hard tasks that could
not be solved directly due to sparse reward dynamics. [31] proposes a novel method
to develop robust policies using ACL to improve task generalization and reduce policy
brittleness. The task selection is carried out using what they term as "Reward guided
curriculum" that selects tasks that yield highest learning rewards using EXP3.S algorithm
developed towards adversarial bandits theory. Our work in creating curriculum learning
framework for PCG-controlled environment is influenced by the works in [32, 33]. [32]
discuss a method which samples parameters that control stocastic procedural generation
of environments for better task generalization and faster learning progress. [33] emphasizes
on active task selection strategies to uniform random sampling for achieving agents that
could perform better on various environment settings thus achieving a small degree of
generalization.
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Chapter 3

Methodology

Reinforcement learning has seen significant progress over the last decade which laid the
groundwork in developing A.I agents that could defeat the world Go champion [6], crushing
human set records on Atari video-games [8] and more impressively winning against seasoned
veterans in real time strategy video-games like Dota[7] and StarCraft [34]. This chapter
marks on the quintessential components of deep reinforcement learning algorithms used in
this paper and discusses them briefly. For this paper, we emphasize on deep Q-learning
networks by [8], a handful of improvements proposed in [12] to address the limitations
with vanilla DQN’s. For a thorough account in the field of reinforcement learning we refer
the reader to [10, 35]

3.1 Reinforcement Learning

Reinforcement learning is formalized following the conventions of Markov Decision Processes
[10]. The primary constituents of such conventions include a state space S, which represents
the various states in the environment; an action space A, which is a set of legal actions that
could be performed on each state of the environment; a control policy π : S → A; a reward
that is obtained when acting upon a state of the environment r; and a transition function
Pr(St+1, Rt+1 | St, At) which defines the dynamics of the environment. Reinforcement
learning aims at learning an optimal policy π∗, that maps observed states to actions that
results towards a maximum reward. To achieve the optimal policy, the agent should act on
the environment, collect experiences and tune its control policy based on the encountered
experiences. These experiences are represented as a quadruple (s, a, r, s′) where s is the
observed state, a is the action taken when presented with state s, r is the obtained reward
for performing the action a on state s and finally s′ is the observed next state.
For finite sequence episodic task, the cumulative reward obtained by the agent is defined
as [10],

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT (3.1)
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However, to assign higher relative importance towards immediate rewards, a discount
factor γ ∈ [0, 1] is used in equation 3.1 as

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...+ γT−1RT , (3.2)

It is paramount to note that the discounted return shown in equation 3.2 is accumulated
by an agent following the policy π. Accounting for stochastic dynamics, we aim towards
maximising the expected cumulative reward instead of deterministic reward show in
equation 3.2. The expected cumulative reward obtained by the agent following a policy π

on the observed state s is denoted by a value function [10]

vπ(s) = Eπ[Gt | St = s] = Eπ[Rt+1 + γvπ(St+1) | St = s] (3.3)

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)[r + γvπ(s
′)], (3.4)

, where π(a|s) indicated the probability that action a is chosen under policy π when the
observed state is s and p(s′, r|s, a) is the dynamic function of the environment. Equation 3.3
is referred to as the the Bellman equation which characterizes the relationship of a state
to its successor states.
To convert the optimal policy to actions, a notion of state-action value function qπ(s, a) is
defined in [10]. In essence, this state-action value function is a translative look-ahead for
the value-function vπ in equation 3.3 and defined as

q(s, a) = Eπ[Gt | St = s, At = a] (3.5)

=
∑
s′,r

p(s′, r | s, a)[r + γmax
a′

q(s′, a′)], (3.6)

.

3.2 Q-Learning

In the previous section 3.1, both the state and state-action value functions are theoretical
notions of defining the optimality of a particular control policy. However, in practive
these functions are ofter unknown and should be estimated appropriately. These function
estimations are indicated as V π(s) and Qπ(s, a) for the state and state-action value
functions, respectively.
A naive-algorithm for estimating such optimal state-action value functions is called Q-
learning. The Q-learning algorithm employs off-policy TD-learning[10]. The algorithm
starts by assigning random values to the state-value function for each observed state-action
pair. Now, Based on experience tuples from the environment et = (st, at, rt, st+1) sampled
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using the random policy, it updates the current estimate as follows,

Qπ(st, at) = Qπ(st, at) + α[Rt + γmax
at+1

Q(st+1, at+1)−Qπ(st, at)]. (3.7)

Since the experiences obtained are independent of the current policy this approach is
categorized as an off-policy algorithm.
The Q-learning algorithm is proved to converge to the optimal state action value function
when the amount of iteration grows towards infinity[10]. However, this is not practical
especially when the environment’s state-space or the action-space is vastly complex. Such
limitations call for methods that could use parameterized function approximators which
are recently referred to as neural networks.

3.3 Deep Q-learning Networks

Owing to recent breakthroughs in the field of deep-learning [36], deep neural networks
have become particularly favourable for reinforcement learning applications. Using neural
networks as a nonlinear function that maps state representations to actions, we could
modify the Q-learning algorithm discussed in section-3.2. However, its not as straight
forward as it seems and suffers learning instabilities. Such limitations of using neural
networks are outlined by the term ’deadly-triad’, which states that learning process can
become unstable or even diverge when bootstrapping, off-policy learning, and function
approximation are used[10]. However, DeepMind came up with an algorithm Deep Q-
Learning Network(DQN)[8], that showed stability in learning despite violating the deadly
triad’s principles. The DQN algorithm is denoted as follows.

Algorithm 1 Deep Q-learning with Experience Replay[9]
Initialize replay memory D to capacity N ;
Initialize action-value function Q with random weights
for episode = 1 ... M do

Initialise sequence s1 = {x1} and preprocessed sequenced ϕ1 = ϕ(s1);
for t = 1 ... T do

With probability ϵ select a random action at
otherwise select at = maxaQ

′(ϕ(st), a : θ)
Execute action at, get reward rt and preprocessed next state ϕ(st+1)
Store transition (ϕt, at, rt, ϕt+1) in D
Sample random mini-batch of transitions (ϕj , aj , rj , ϕj+1) from D
yi = rj + γ maxa′Q(ϕj+1, a

′ : θ)
if ϕj+1 is terminal then

yi = rj
end if
perform a gradient step on (yj −Q(ϕj , aj ; θ))

2

end for
end for

DQN extended the naive Q learning algorithm by addressing three vital issues that affect
training stability. The first of which is introducing epsilon-greedy policy to interact
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with the environment to sample experiences. The epsilon-greedy policy is hypothesized to
strike a balance to the exploration-exploitation trade-off towards learning optimal control
policies[35]. As Q-learning mimics the abstraction of supervised learning, there exist a
fundamental requirement that training data(i.e., experience tuples) obtained should be
independent and identically distributed(i.i.d). Since, the sampled tuples are temporally
correlated the use of large replay buffer to store transitions and sample batches randomly
to train the network was the second proposed solution. And, the third issue is when we
bootstrapping the state-action values Q(st, at) and Q(st+1, at+1) from the bellman equation
in 3.7. Since states st and st+1 are subsequent to each other, bootstrapping and updating
the network would change the networks standing on st+1 making the training unstable. [8]
gets around this issue using a target network, that is the copy of our original network
but updated periodically after a set of iterations.

3.4 DQN-Extensions

The DQN paper was published in 2013, and over the years there were genuine criticisms’
regarding the approach that perpetuated towards making improvements. DeepMind have
published another paper Rainbow DQN [12] incorporating six enhancements to their
original algorithm. In this section, we discuss five of them that are relevant to our paper’s
scope.

3.4.1 N-step DQN

N-step DQN is an improvement that was taken from an old work of Richard Sutton in
1998[37]. In section 3.2, equation 3.7 defines the bellman update for our DQN method.
Due to its recursive formulation one can express Q(st+1, at+1) in terms of itself as

Q(st, at) = Rt + γmax
at+1

[ra+1,t+1 + γmax
at+2

Q(st+2, at+2)]
1 (3.8)

Under the assumption that actions are chosen under optimal policy, equation 3.8 could be
phrased as

Q(st, at) = Rt + γrt+1 + γ2max
at+2

Q(st+2, at+2). (3.9)

Following the same idea, we could further unroll the Q-function for preceding states any
desired number of times. Unrolling the action-value function has show faster training times,
as better estimates for Q-value are propagated n-steps faster in contrast to each step for
vanilla DQN[38]. The previous statement holds true only for small values for n, because
equation 3.9 is bounded by the assumption that all chosen action are optimal; however, in
reality we aim to find optimal policy leading to such actions.

1For the sake of simplicity the parameter α in equation 3.7 is assumed to be equal to 1.
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Furthermore, n-step DQN transforms our traditional vanilla DQN from off-policy learning
algorithm to on-policy method as actions are chosen based on the current policy. [38]
notes that using large replay buffers will hinder the training as the likelihood of sampling
experiences from bad old policy is high, thus leading to bad updates in our Q-network.
For a much theoretical discussion on n-step approaches for Q-learning we refer the reader
to [37, 38].

3.4.2 Double DQN

The next improvement to traditional DQN has been proposed by DeepMind in 2015
named Double Q-Learning. DQN overestimates the values for Q in the bellman update in
equation 3.7 that could result towards sub-optimal policies [13]. For an elaborate proof for
the reason of cause we refer the reader to [13]. To tackle this problem of overestimation, a
solution to modify the bellman’s update is proposed as

Q(st, at) = Rt + γmax
at+1

Q′(st+1, argmaxat+1
Q(st+1, at+1)). (3.10)

Where, the action is selected based on the Q-network rather than the target network Q′

discussed previously in section 3.3.

3.4.3 Noisy Network

Traditional variant of DQN discussed in section 3.3 explores the environment choosing
the ϵ-greedy policy, i.e., the agent takes a random action with the probability ϵ otherwise
chooses action based on higher action-value based on the network outputs. [9] suggests
defining an initial ϵ to 1 and slowly annealing over time, thus resulting in extra hyperpa-
rameter that has to be tuned for each specific environment. The ϵ-greedy policy explores
the environment until a period of time and then chooses actions based on current policy
once the ϵ saturates which might lead to a sub-optimal policy that is stuck in the local
minima.

In 2017 DeepMind proposed a new framework Noisy Networks that explores the environ-
ment during training instead of having a separate exploration schedule[16]. The proposed
solution is to perturb the weights of fully connected layers in our network and adjust the
level perturbation during training based on the loss function i.e., TD-error. For a complete
theoretical discussion we refer the reader to [16].

3.4.4 Prioritized Replay Buffer

The DQN algorithm outlined in Algorithm 1 uses a replay buffer to sample experiences
and break correlations between immediate experience transitions. Sampling experiences
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uniformly from the replay buffer to train on the network is crucial to adhere to i.i.d.
property for training networks using gradient descent approach. However, the uniform
sampling approach from the replay buffer had been questioned, as there may be a chance
the network fails to see experiences that are important and could be thrown away when
the replay buffer updates. To address such shortfall, DeepMind proposed a replay buffer
framework that could prioritize samples based on TD-error or training loss[14].

Assigning priorities to experiences based on the TD-error and sampling experiences
proportional to the priorities had shown positive learning characteristics in DQN’s[14].
However, when we embed priorities to experiences and sample the replay buffer based on
the defined priorities we may loose the i.i.d. property and overfit on the sampled subset
as we impute bias in our selection. To curb such issues [14] defines the priority of each
experience in the buffer as

P (i) =
pαi∑
k p

α
k

, (3.11)

where pi is the priority for the ith experience in our buffer and α ∈ [0, 1] is the parameter
that controls the emphasis given to priorities. A value of α = 0, makes the sampling
uniform and higher values impose higher emphasis on the computed priorities.
[14] proposes two variants in computing the priorities. The most practiced one is where the
relationship between the batch weights and individual experience in the batch is defined as

wi = (
1

N · P (i)
)−β (3.12)

where β ∈ [0, 1] is a hyperparameter that accounts for bias imputed due to prioritized
sampling. For β = 1, the imputed bias is compensated by making the all the priorities
same as in the case of uniform sampling. For better learning characteristics [14] suggests
gradually increasing β from 0 to 1.

3.4.5 Dueling DQN

The final improvement we discuss over vanilla DQN’s is Dueling Network Architecture
proposed by [15]. The prominent feature of the dueling architecture is that the Q-values
our network approximates is divided into two quantities:

• value of the state V (s) and,

• advantage of actions for the observed state, A(s).

Using theoretical notion the division of Q-values could be shown from by modifying
equation 3.7 as

Q(st, at) = V (st) + A(st, at) (3.13)
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Figure 3.1: A single stream Q-network(top) and dueling Q-network(bottom). The dueling network
has two streams to estimate state-value and the advantages for each actions; the green output module
implements equation 3.14 to aggregate the outputs. Both networks output Q-values for each action. Figure
taken from [15]

where, advantage A(st, at) can be interpreted as the extra improvement in reward from a
particular action on the observed state. Intuitively, using dueling architecture, the agent
could differentiate between states without having to learn the effect of each action on
the observed state[15]. Fig 3.1 shows the networks architecture for dueling networks that
showed better training stability, convergence and higher rewards on the Atari benchmark.
The convolution features are shared between the value network and advantage network
followed by aggregating the outputs as

Q(s, a) = V (s) + [A(s)− 1

|A|
∑
a′

A(s, a′)] (3.14)

where, the output values from the advantage network are mean centered at 0.

3.5 ALP-Curriculum

Current state-of-the-art reinforcement learning algorithms fail to yield good performance
on tasks with sparse rewards. For such tasks the likelihood for an agent in achieving a
decent control policy is dependent on the quality of exploration. Curriculum learning has
shown improvement in learning characteristics by aiding better exploration [39] for harder
tasks by acquiring experience from simpler tasks.
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Figure 3.2: A generic representation of our automated curriculum learning framework

To automate the task selection we adhere to the framework shown in Figure 3.2. At each
learning step, the task scheduler chooses a task for the agent to train on. The agent trains
on the chosen task and returns back a score that is indicative of its learning progress.
Based on the agents score, the task scheduler should decide on which task to select, such
that the agents learning progress doesn’t degrade.
Selecting a task for an agent to train on is dependent on the score obtained after the
training interval. The algorithms in the following sub-section 3.5 outline the task selection
strategies employed for curriculum learning.

Algorithms

Our approach of task selection is based on the bandit algorithm in [10] where each task is
aliased as a bandit arm. We use an exponentially weighted average to update the expected
return Q from different tasks as shown in equation 3.15:

Qt+1(at) = αrt + (1− α)Qt(at) (3.15)

where α is the learning rate and rt is the obtained reward. The next task is chosen using an
ϵ-greedy exploration. Our algorithms follow the same framework while the major difference
lies in how the reward rt is calculated.

Algorithm 2 Online Curriculum
Initialize DQN-Agent
Initialize replay memory D to capacity N ;
Initialize expected return Q(a) = 0 for all K tasks
for t = 1 ... T do

choose task at based on |Q| using ϵ-greedy policy;
fill the replay buffer D with experiences from task at
Train the DQN agent and observe reward rt = x

(at)
t − x

(at)
t′

Update expected return Q(at) = αrt + (1− α)Q(at)
end for

The first steps in our algorithms is to initialize our DQN agent, the replay buffer and
assign the expected return Q(a) as 0. We use an ϵ-greedy approach to choose an action at

that represents the task to train on. Following the task selection, our DQN agent uses its
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current policy to sample experiences from the chosen task and stores them in replay buffer
for use during the agents learning stage. We note that the replay buffer doesn’t discard
its previous experience samples from the preceding task making this approach limited to
DQN agents. However with slight modification, we outline the current approaches in the
Appendix 7.4 to be compatible with other reinforcement learning algorithms.
Our first version of algorithm named Online curriculum is outlined in 2.
Since task selection is reliant on the score rt we discuss three approaches to define and
evaluate these scores. Our first approach outlined in 2 computes the difference in episodic
rewards before and after training the agent on the chosen task. This approach is simple
and intuitive as we want our task scheduler to choose tasks that show greater learning
progress. Furthermore, to avoid task forgetting i.e., performance degradation on other
task the task scheduler makes the decision based on the absolute expected returns |Q(a)|.
Choosing the task by taking the absolute expected return forces the task scheduler to pick
up tasks that show a greater degree of forgetting.

Algorithm 3 Repeat Curriculum
Initialize DQN-Agent
Initialize replay memory D to capacity N ;
Initialize expected return Q(a) = 0 for all K tasks
for t = 1 ... T do

choose task at based on |Q| using ϵ-greedy policy;
Reset W = ∅
fill the replay buffer D with experiences from task at
for j = 1 ... J do

Train DQN agent and observe score ot = x
(at)
t

Store score ot in list W
end for
Apply linear regression on the scores in W and extract slope as rt
Update expected return Q(at) = αrt + (1− α)Q(at)

end for

The observed score should try to estimate the learning progress of the agent. Our second
approach tries to better estimate the learning progress on each task by training on the task
multiple times. This can be seen as practicing a task several times before moving on to the
next one. 3 describes the algorithm for our second approach where the scores are calculated
by computing the slope on all the obtained scores after each training sub-intervals. A higher
slope means greater learning progress, a negative slope represents the case of unlearning
and a slope of zero denotes no progress made through training.
Running the training sequence multiple times for a specific task could be expensive when
the performance on that specific task starts to saturate. To counter this, we employ a
first in first out(FIFO) buffer that keeps track of the previous K scores along with its
time-steps in our final algorithm outlined in 4.
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Algorithm 4 Window Curriculum
Initialize DQN-Agent
Initialize replay memory D to capacity N ;
Initialize expected return Q(a) = 0 for all K tasks
initialize FIFO buffers W(a) with length L

for t = 1 ... T do
choose task at based on |Q| using ϵ-greedy policy;
fill the replay buffer D with experiences from task at

Train the DQN agent and observe score ot = x
(at)
t

Store score ot in W(at)

Apply linear regression on the scores in W(at) and extract slope as rt

Update expected return Q(at) = αrt + (1− α)Q(at)

end for

Having a stand-alone FIFO buffer for each task doesn’t waste extra computational resources
on tasks that show no progress. The scores are evaluated by the computing the slopes on
each of the buffer assigned to the tasks.
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Chapter 4

Design

This section details on our implementation details and design choices for Deep Q-Network,
its variants and curriculum learning algorithms discussed in Chapter 3. In addition, we
discuss the environment design and detail on the preprocessing methods used in improv-
ing the training speed. Our implementation throughout uses deep-learning framework
PyTorch[40] for architecture design and uses a high level library PyTorch-Ignite[41] for
training and evaluating our networks.

4.1 Deep Q-Networks

Model Architecture: The deep Q-network architecture for our implementation follows
closely to what has been proposed in [9]. Our model has three convolution layers followed
by fully connected layer separated by rectified linear units(ReLU) for non-linear activations.
The first convolution layer with a kernel size of 8 spanning over the observation space with
a stride of 4 with 32 convolved channels. Following, the first layer a second convolution
layer with 64 convolved channels of kernel size 3 spanning with stride of 2. And, the final
layer with 64 convolved filters with kernel size 3 that span with a stride of 1. The output
of the final convolution layer is flattened and a hidden layer of 512 units are connected to
the 2 units(alias for 2 actions) that output the state-action values.

Replay Buffer: A replay buffer is a storage mechanism that stores experiences in the
fixed length buffer and has to omit previous observations when adding new experiences
while the buffer is at its capacity. For our implementation we use the Deque container of
fixed capacity from python’s collections library that stores experiences. The experiences
stored in our Deque container are namedtuple data-structure from python’s collections
library that house the information of state, action, reward, done-flags and new states.

Training Hyperparameters: Our training workflow follows the same one described
in Algorithm 1 using Adam optimizer to update the network parameters after every
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Parameter Name Value Description
Replay Buffer Size 100,000 Number of experience to keep track to sample

and learn from later in
Warm start 10,000 Number of random samples to gather before

starting the learning procedure
Exploration Schedule 100,000 Linear annealing schedule for ϵ-greedy action

selection
Exploration start 1 Probability of choosing a random action at the

start of the schedule
Exploration Min. 0.02 Probability of choosing a random action at the

end of the schedule
Batch size 32 Number of experience samples to be sampled

from replay buffer to train the network on
Target update frequency 1000 Number of training iteration before copying

the network to our target network
Optimizer learning rate 0.0001 Learning rate for Adam optimizer
Discount Factor 0.99 Horizon discounting factor for TD-error

Table 4.1: Hyperparameters for the DQN training procedure

training step. Table 4.1 details on the choice for our selected parameters. In contrast to
the parameters specified in [9] we have been judicious in selecting the size of replay buffer
owing to hardware constraints available at our disposal.

4.1.1 n-step DQN

Extending our DQN model towards n-step DQN is fairly straight forward. The most
important change to our implementation would lie on how experiences are stored. As
mentioned in Section 3.4.1 a high value of n is not preferred and based on [37]’s suggestion
we chose a value of n = 4 and unroll our TD-update equation 3.7 by 4 steps. This results in
changing our experience tuple slightly, where, the next state would be chosen after taking
n-actions based on current policy and the reward would be the total accumulated reward
obtained from n-steps. However, when we encounter an end state we should we stop rolling
further and update the experience tuple until the current step. Another implementation
feature one might overlook is the discount factor as after n-steps, the discount factor
on the n-th state would be γn. For our experiments using n-step DQN we use the same
hyperparameters as shown in table 4.1 while keeping number of steps n = 4.

4.1.2 Double DQN

The core difference between Double DQN and vanilla DQN from implementation point of
view lies in the loss function passed to PyTorch optimizer. As discussed in section 3.4.2,
we calculate the best action on subsequent state using our main network while the Q-
values corresponding to these actions are computed through the target network. For our
experiments using Double DQN we use the same hyperparameters listed in table 4.1
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4.1.3 Noisy DQN

In regards to Noisy network implementation the key changes lie in the network architecture
of vanilla DQN where the final fully-connected layers are replaced with Noisy layers that are
implemented using core PyTorch[40] functionality. To perturb the network weights in our
fully-connected layers in vanilla DQN, we sample random values from normal distribution
with mean µ = 0 and standard deviation σ = 0.017 as suggested in [16]. Additionally
we want to wrap the standard deviation as a trainable parameter that decreases based
on the loss function. To make σ a trainable parameter, we use PyTorch functionality
nn.Parameter to define it as a trainable parameter that can be updated by the optimizer
after every training step. Furthermore, the authors from [16] suggest toward initializing
the network weights using a uniform distribution with mean µ = 0 and standard deviation

σ =

√
3

Ninputfeatures

(4.1)

Finally, during the networks forward pass we sample random noise based on the defined
parameters and perform linear transformation of input data as in the case of feed-forward
network. For our Noisy network, we stick to the same set of hyperparameters from table 4.1
where the exploration parameter epsilon is redundant.

4.1.4 Prioritized Experience Buffer

Replacing our replay buffer from our DQN’s implementation with Prioritized Experience
buffer might seem like a straight forward task. However, there exist stark changes to that
of our replay buffer functionality. We use the same data structure to that of replay buffer
discussed previously with an additional variable "weights" assigned to each experience
tuple. Sampling from the traditional replay buffer has complexity of O(1) whereas the
complexity of sampling of a prioritized replay buffer would be high. The framework for
prioritized experience buffer used in [14] is defined to be O(logN). However, due to the
lack of any open-source implementations, we used the naive version of prioritized replay
buffer that has a complexity of O(N). Our implementation uses the hyperparameter β that
accounts for the bias imputed due to prioritized sampling as described in [14] experiments
on Atari benchmarks. For our experiments we start with β = 0.4 and incrementally increase
it towards 1 over the span of 100, 000 iterations. While populating the replay buffer with a
new experience we assign the maximum value of priority of existing experiences in the
buffer to the new experience. But, when the buffer is empty, the newly added experience get
a priority of 1. While sampling from the buffer the priorities are converted into probabilities
and experiences are sampled based on these probabilities using NumPy’s random sampling
methods. For the task of updating the priorities of each experience in the replay buffer we
get the losses from our loss function and perform the update step as shown in equation 3.12.
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4.1.5 Dueling DQN

The only change compared to the vanilla DQN’s implementation lies in the architecture as
discussed in section 3.4.5. The only change to the architecture is having two separated
fully connected layer to estimate the state-value and action-advantage which are cascaded
as shown in figure 3.1

4.1.6 Rainbow DQN

To mark all the improvements discussed over vanilla-DQN, we combine everything in an
orderly fashion. We replace the replay buffer with prioritized replay buffer, the experience
tuples are structured based on n-step rolling, we change the loss function to account for
overestimation, use the dueling architecture for our model with noisy fully-connected layers.
We trained the combined-DQN using the same set of hyperparameters from table 4.1.

4.2 ALP-curriculum

Figure 4.1: Automated curriculum framework for DQN. The task sampler chooses a task from the task
pool and add experiences specific to the task into the replay buffer for the agent to sample and train on.

From our discussion of Automated Learning-Progress(ALP) based curriculum in section 3.5
we detail on the design and implementation of the same in the current section. Figure 4.1
expands on our discussed framework of curriculum learning as shown in figure 3.2. We
note that the design showed in Figure 3.2 is fused into the DQN architecture by using a
common replay buffer to collect experiences from different tasks by the task controller.
For the model-independent variation of our approach the key change would be to make
the replay buffer independent of the task scheduler by re-initializing it every curriculum
time-step. We compare our approaches to hand-crafted curriculum we refer to as oracle
and uniform curriculum that samples tasks randomly with equal probability from the task
pool regardless the score. Our experiments on curriculum strategies are done on a total of
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500.000 training iterations with new task selected after 10.000 iterations. For a detailed
view of chosen hyperparameters for curriculum algorithms refer to table 4.2

Parameter Name Value Description
Exploration Schedule 20 Linear annealing schedule for ϵ-greedy action selection
Exploration Start 0.6 Probability of choosing a random action at the start of the schedule
Exploration Min. 0.05 Probability of choosing a random action at the end of the schedule
Learning Rate (α) 1 Blending factor
Run iterations 500,000 Total number of training iterations
Task change frequency 10,000 Frequency at with the curriculum task selector evaluates and samples new tasks
sub-task frequency (Naive) 1000 Frequency of stored episodic rewards during the task training period

Table 4.2: Hyperparameter configuration for our curriculum learning task scheduler

4.3 Flappy Bird environment

Figure 4.2: (left) denotes the observation of our FlappyBird environment with the pipe-gap of 200 pixels
and (right) denotes the observations when the probability of walls is set to 100%

Our implementation in designing the flappy bird environment involves use of PyGame1

module for writing the game logic and rendering the environment based on player inputs.
We closely base our game logic from an existing GitHub repository2. The action space
in both our implementations is discrete with two action queries namely flap and no flap.
The difference however lies in the way the actions is registered. In our implementation, we
code the action flap to 1 and action no flap to 0 while the previous uses a mouse click to
register the flap action. In addition, we wrapped the game logic to the OpenAI gym[42]
environment framework for better accessibility to train and test various RL algorithms
and methods.

1https://www.pygame.org/
2https://github.com/sourabhv/FlapPyBird
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The game is designed to run at a resolution of 288 × 512 pixels, with pipes spawning
with random placement every 200 pixels. At a given any time frame, the player could
see at-most 3 pipes. For every step the player takes without crashing, we reward the
player with a reward of 0.1, for every pipe crossed a reward of +1 and a reward of −1

when crashed are awarded. We have included a parameter pipe gap to our implementation,
through which the user has control over the separation between the pipe on top and bottom.

The novelty in our implementation is addition of a different surface we call wall into the
game to test our agents learning behaviour when the training environment changes. We
include the parameter wall probability that spawns a walls of varying heights in-place of
pipe with the specified probability. Figure 4.2 show the environment observation when we
choose the wall probability to be 1. The generated wall and pipes have the same width
but differ in vertical placement. The obstacles are separated at a fixed distance for the
game to be deemed solvable. The reward structure is kept the same irrespective whether
the obstacle is a wall or a pipe. Having the reward structure intact we could inspect the
effects of agents learning behaviour while the visual stimuli changes.

FlappyBird-LIDAR:

To further simplify our environment, we change our observation space from a tensor of
stacked RGB observations to a numerical vector representing

• Distance to pipe,

• Distance to ground, and

• Velocity of the bird

for further testing our curriculum strategies on environment with different observation
characteristics.

4.3.1 Preprocessing

As discussed in the previous section, each observation is an rgb-image of dimensions
(288, 521, 3). Using CNN’s in our network architecture the agent could look into local
spatial features that could aid its decision making[43]. DQN’s need a lot of time to train
to arrive at an optimal policy. To accelerate learning, we apply several transformations
on our observation space. Since we already discussed that our environment is designed
to resemble OpenAI-gym’s environment functionality we frame our transformations as
OpenAI-gym wrappers over both environments observation space and action space. All
the transformation we implemented are motivated from [8] on training on Atari benchmarks
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Figure 4.3: Preproccesing function(ϕ) output: The input image is down-scaled, converted to gray-scale,
and stacked with 4 preceding observations

To increase the training speed of our DQN agent, the action taken by the agent is repeated
for the subsequent K-frames. We choose k = 4 as done by the authors in [8]. Repeating
the action on k-frames could lead to significant training speeds as the we cut down on
processing every frame with our network.

Furthermore, we convert our observation space from RGB-colour space to grayscale followed
by scaling our images to a resolution of (84, 84) and normalizing them. As the network can’t
get the dynamics of the game state, [9] suggests to stack several preceding frames together
as the network could draw information about the game dynamics. In our implementation
we stack preceding 4 frames to the our observation space. And, finally we clip the rewards
using signum function. Figure 4.3 shows the transformation of our observation space as
discussed here
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Chapter 5

Results

5.1 DQN-variants

Our first experiments entail inspection of various DQN improvements proposed in [12]. All
our experiments are repeated three times with different seed values to validate that the
results we get aren’t by mere chance. We compare each of our improvement discussed in
chapter 3 to the traditional variant of DQN in [9].

Figure 5.1: n-step DQN learning characteristics compared to vanilla DQN

Our first experiments test the effectiveness of n-step DQN [38] to the vanilla DQN.
Figure 5.1 shows the learning behaviour of both our agents trained using DQN and n-step
DQN. We observe a clear faster learning behaviour by unrolling our TD-equation in 3.7
by 4 to have faster convergence to the reward achieved by vanilla DQN.

26



Figure 5.2: Double-DQN learning characteristics compared to vanilla DQN

Next, we compare the learning dynamics of double DQN to vanilla DQN. From figure 3.4.2
we observe the reward dynamics of double DQN is almost as equal compared to vanilla
DQN. We haven’t observed any significant better reward behaviour in comparison to
vanilla DQN as discussed in [13].

Figure 5.3: Noisy-DQN learning characteristics compared to vanilla DQN

Replacing the vanilla DQN’s exploration behaviour with a noisy fully connected layer
shows much better training dynamics. NoisyDQN’s were able to reach the vanilla DQN’s
behaviour in less than 100k iterations as shown in figure 5.3. Furthermore we can see
that the signal to noise ratio in the output layer of our network increases up until 100k
iterations and decreases gradually after. This explains the agents behaviour as it starts
reaching high scores gradually beyond this point where the SNR starts to decrease.
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Figure 5.4: Dueling-DQN learning characteristics compared to vanilla DQN

Double DQN architecture separates the state-values and state-dependent-actions(Advantage)
into two different streams. From the learning dynamics in figure 5.4 of double DQN to
vanilla DQN for FlappyBird we observe almost similar behaviour. We expect such be-
haviour as the agent has to take successive actions to evade obstacles continuously which
could be explained by the fluctuating values of the advantage network in

Figure 5.5: Rainbow DQN learning characteristics compared to all the DQN enhancements

Finally, we combine all the improvements and as discussed in section 4 and compare it
against all models. Figure 5.5 shows that the combination resulted in a stable and better
learning behaviour.

5.2 Transfer Learning

For our transfer learning experiments we use weights of pre-trained network trained on a
specific task and initialize the training on next task with the same weights. We categorize
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our transfer learning experiments into two categories where section 5.2.1 discuss on transfer
learning characteristics when the distribution on observed pixel data on source task and
target task have almost similar distribution. Meanwhile, section 5.2.2 discuss the transfer
learning characteristics when the distribution on observed pixel data on source task and
target task change at user-controlled rate.

5.2.1 Type-1

For our first transfer learning experiment, we inspect the training characteristics when
an agent is trained on the FlappyBird environment where the gap between the pipes is
200 pixels and see how the agent learns when the gap is reduced to 150 pixels making
the game a bit harder. To compare the transfer characteristics we train the agent on the
target task with random initialization and compare it with agent initialized with weights
initialized with model trained on source task with 100k, 200k and 300k iterations.

Figure 5.6: Cumulative episodic reward comparison between an vanilla-DQN agent that is trained on the
environment with PCG parameter 150 to the agent that is pre-trained on the environment with PCG
parameter 200 for 100k, 200k and 300k iterations

Figure 5.6 details the learning characteristics of vanilla DQN when transferred from source
task to target task. The black dotted line in figure 5.6 shows the learning behaviour of
vanilla DQN agent with random weight initialization. The dark-solid lines in figure 5.6
represent the rolling average of the agents learning initialized with trained weights on
source task to elucidate on training behaviour much clearly. We observe a positive transfer
for vanilla DQN agent. However, the effect of weights transferred from source task trained
for 100k, 200k, and 300k show no significant difference. But, on a closer look we can observe
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that the transfer from source task trained for 300k performs slightly worse in comparison.
Which could be due to the agent trying to unlearn from its experiences gained in source
task.

Figure 5.7: Cumulative episodic reward comparison between a rainbow-DQN agent that is trained on the
environment with PCG parameter 150 to the agent that is pre-trained on the environment with PCG
parameter 200 for 100k, 200k and 300k iterations

Figure 5.7 shows the learning characteristics of combined DQN with the same source and
target task setup. The black dotted line in figure 5.7 is the training dynamics of Combined
DQN agent with random initialization. Similar to our results from vanilla DQN, we observe
the same positive transfer from source task to target task. Again, we observe that that the
transfer from source task trained for 300k iterations shows slight performance degradation
compared to the ones trained on 200k and 100k iterations.

5.2.2 Type-2

For our second transfer learning experiment, we inspect the learning characteristics when
an agent is trained on the same FlappyBird environment where the gap between the pipes
is 200 pixels and see the transfer characteristics of an agent trying to learn slightly more
difficult level with where the gap between the pipes is reduced to 150 pixels whiles the
environment observation characteristics change with wall appearing in-place of pipes with
a probability of 10%, 25%, 50% and 100%. To maintain a level field between the agents in
our experiment the transfer is initiated when the agent trains on the source task for 500k

iterations.
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Figure 5.8: Cumulative episodic reward comparison between a vanilla-DQN agent that is exclusively
trained on the environment with PCG parameter 150 to the agent pre-trained initially on the environment
with PCG parameter 200 and resumed on same environment with but varying degrees of stocasticity to
replace pipes with walls.

Figure 5.8 visualizes the learning characteristics of vanilla DQN when transferred from
source task to target task. The black dotted line in figure 5.8 show the learning character-
istics of vanilla DQN on the target task with random weight initialization. We observe a
positive transfer from source task to target. From figure 5.8 we see that the transfer works
well when the target task constitutes walls in place of pipes. This behaviour is expected as
the difficulty level of the game is decreased in comparison to the difficulty of our target
task without walls. What we find interesting is that the more the environment is subject
to change, the better the transfer characteristics as shown in figure 5.8 because agent show
slightly worse learning characteristics when the walls are occurring with 10% probability.
We believe this drop in performance is due to the fact that the replay buffer consists of
fewer samples with walls when they generated with a low probability thus, making it
difficult for the agent to sample and learn before the experiences are completely lost.

Furthermore, Figure 5.9 shows the learning characteristics of the combined DQN with the
same source and target setup. Unlike the previous result with vanilla DQN, we observe a
negative transfer in this case.
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Figure 5.9: Cumulative episodic reward comparison between a rainbow-DQN agent that is exclusively
trained on the environment with PCG parameter 150 to the agent pre-trained initially on the environment
with PCG parameter 200 and resumed on same environment with but varying degrees of stocasticity to
replace pipes with walls.

5.3 ALP-Curriculum: DQN specific

To test our curriculum approaches outlined in section 3 we use our self implemented
FlappyBird environment that procedurally generates obstacles that are vertically separated
by user controlled parameter called pipe-gap. In all our experiments, we create a task pool
with three different pipe-gap configurations

• task-0: pipe-gap = 225

• task-1: pipe-gap = 175

• task-2: pipe-gap = 125
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Figure 5.10: Observation space for our Easy and Hard tasks. In the Easy task, the pipes are placed
uniformly and in the Hard task,the pipes are added in random locations

Intuitively, we expect the agent to learn a sub-standard policies from easier tasks that
could aid in faster and better learning on harder tasks. The standard game of FlappyBird
is designed to run with a fixed pipe gap of 175 thus making experiences obtained on
environment with pipe gap of 225 the easier task and 125 the harder task in our task
pool. Furthermore, we define two versions of the environment, Easy and Hard. The easy
version of the environment generates pipes that are placed uniformly and the hard version
introduces stochasticity in placement and arrangement as shown in figure 5.10. We discuss
our results in two folds, the first sub-section examines our transfer learning results when
the environment observation space is RGB encoded and the later sub-section details on
curriculum learning results when the environment observation space is represented as a
1-D vector.
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5.4 FlappyBird-RGB

Figure 5.11: Cumulative episodic reward for agents trained on the same environment with uniform pipe
placements with a pipe gap of 125 employed with different curriculum learning algorithms.

This section discusses our curriculum-learning results when the provided inputs for agents’
learning are the true visual stimuli(RBG values) from the environment. Figure 5.11 shows
the training characteristics of our combined DQN agent trained on the Easy environment
using different curriculum strategies discussed in section 3.5. Our curriculum strategies are
compared against the baseline trained solely on the hardest task(pipe-gap of 125) and the
oracle curriculum strategy designed using human intuitive knowledge. We observe that
all the automated curriculum strategies perform better than the baseline. However, the
online curriculum strategy and window curriculum strategy show slow learning compared
to the baseline in the initial stages of learning but outperforms the baseline after 300, 000

iterations of training. This drop in performance during initial learning iterations could be
explained due to the stochastic task selection behaviour of our task scheduler. Figure 7.4
in Appendix shows the task distribution handled by each representative curriculum task
scheduler. The slow learning progress for online curriculum could be explained due to
its bias towards training on the easiest task(Task-0) than much harder task(Task-2). In
addition, training more on the easiest task could have aided the agent learn a robust
policy on harder task by honing on its experiences from the easy task. On the contrary,
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the higher learning performance using repeat curriculum strategy can be explained by its
higher affinity towards choosing the difficult task after training on easier tasks initially.

Figure 5.12: Emperical performance of the agents employed with different curriculum strategies on
environments with uniform pipe placement for different PCG parameter(pipe-gap).

Figure 5.12 shows the empirical performance of our trained agent over the range of different
environment parameters. During the training phase, the agent is shown experiences from
tasks with a pipe gap of 225, 175 and 125 making environments with pipe-gap parameters
200, 150 and 100 unseen. From our results on environment with Easy task, we observe
that the baseline agent achieves good performance on the trained task with pipe gap 125
and performs worse on easier tasks with larger pipe gaps. Furthermore, all other employed
curriculum strategies except the oracle strategy show a slight improvement in performance
compared to the baseline on all other tasks. However, what we find interesting is that the
oracle strategy has almost equal performance on all tasks including the unseen hard task.
This behaviour of showing equal performance on tasks could be due to the human induced
learning heuristics that fail to counter the forgetting on easier tasks while transitioning to
much difficult tasks making learning unstable.
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Figure 5.13: Cumulative episodic reward for agents trained on the same environment with uniform pipe
placements with a pipe gap of 125 employed with different curriculum learning algorithms.

Figure 5.13 shows the learning characteristics of our curriculum strategies against the
combined DQN agent when the environment is subjected to stochastic pipe placement.
We clearly observe better learning behaviour from the agents trained using curriculum
strategies.

36



Figure 5.14: Emperical performance of the agents employed with different curriculum strategies on
environments with random pipe placement for different PCG parameter(pipe-gap).

Our previous observation that the baselines performs better on the task it is trained on but
performs worse on our pool of testing tasks holds true for harder environment configurations
as shown in Figure 5.14. Furthermore, the oracle curriculum strategy performs significantly
well unlike its performance when the environment has no degree of stocasticity in the
placement of pipes(EASY task). Introducing stocaticity in our environment might be the
reason we observe overall relative improvement in performance on tasks that are not the
target tasks(i.e., pipe-gap ̸= 125) as the gathered experiences are diverse, making the
agents ability to handle changes robustly.
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5.5 FlappyBird-LIDAR

Figure 5.15: Cumulative episodic reward for agents trained on the same environment with uniform pipe
placements with a pipe gap of 125 employed with different curriculum learning algorithms

This section discusses our curriculum results when the provided inputs for the agents
are proximal numerical representations as discussed in section 4. Figure 5.15 shows the
learning characteristics of our agents trained using different curriculum strategies detailed
in section 3. Irrespective of the observation space representation, we observe the similar
trend where the learning using curriculum strategies is better than the baseline performance
that is trained on the hardest task alone.
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Figure 5.16: Emperical performance of the agents employed with different curriculum strategies on
environments with uniform pipe placement for different PCG parameter(pipe-gap).

Figure 5.16 further attests to our previous observations by showing that the agents empirical
performance on wide range of tasks is significantly better than that of the baseline. For
a the specific case where the environment is simple and the observation space is a 1-D
vector, repeat curriculum shows better performance on all tasks including the unseen yet
more difficult task with a pipe gap of 100.
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Figure 5.17: Cumulative episodic reward for agents trained on the same environment with uniform pipe
placements with a pipe gap of 125 employed with different curriculum learning algorithms.

The learning characteristics of agents trained using different curriculum strategies when
the environment is subjected to stocastic change is shown in Figure 5.17. We observe that
that our curriculum task selection strategies show faster learning behaviour in comparison
to the baseline but exhibit similar learning characteristics during the far later iterations of
learning.

40



Figure 5.18: Emperical performance of the agents employed with different curriculum strategies on
environments with random pipe placement for different PCG parameter(pipe-gap).

Additionally, the empirical performance of our agents shown in Figure 5.18 correspond
to our previous observation that the baseline performs on-par with agents trained using
our curriculum approaches. However, window-curriculum task selection and oracle show
degraded performance on our target task which is quite unexpected. This drop in perfor-
mance could be attributed to the fact that the environment is complex but the observation
space is quite myopic for the agent to learn and make appropriate decisions.
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Chapter 6

Conclusions

In our work we compared different Deep Q-network variants and showed that the combi-
nation of them resulted in a strong agent with stable learning characteristics.
Furthermore, we demonstrated different cases for continual transfer, and empirically
showed the success of transfer learning when both the source task and target task share
common visual distribution. Our observations show a positive jumpstart, asymptotic
learning performance and higher total reward which are three transfer success metrics
discussed in [44].
On tasks where the target task is altered we see vanilla DQN showing better transfer char-
acteristics in comparison to the combined DQN. We note the degradation in performance
in the combined DQN is due to improper network initialization of our noise parameters.

The significant part of our paper lies in our formulation of automated curriculum learning
algorithm that selects tasks and samples experiences based on the agents learning progress
on the set of tasks. We discussed three variants named Online, Repeat and Window each
estimating the agents learning progress differently. Based on our experimental results we
empirically showed that our implementation of automated curriculum learning strategies
perform significantly better to the agent trained individually on the hardest task.
Furthermore, we carried out the same experiments when the observation space of our
environment is represented as a vector rather than a tensor of RGB values. We show that
our curriculum approaches works well irrespective of the observation space representation.

6.1 Future Work

Our approach of transfer learning when the source task and target task are similar but
differ in level difficulty has shown good transfer characteristics. Our work on designing the
automated curriculum learning framework is currently limited to discrete set of tasks chosen
based on pre-selected values. Our future work could focus on developing a curriculum
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framework that automatically chooses task by choosing the parameter values from a
continuous interval without human supervision.
Moreover, since our work is centered around choosing PCG parameters from a set of
discreet values the next plausible extension would be to extend the task selection on a
continuous PCG parameter space.
Additionally, since the entirety of our work is focused on value-based methods, we could
extend our methods towards policy gradient algorithms in the future.
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Chapter 7

Appendix

7.1 Experiment - 1

This section entails the supplementary figures from the experiments carried out on the
FlappyBird-RGB environment using our automated curriculum learning algorithms.

Figure 7.1: Q-values for each task during the task selection cycle for online curriculum scheduler on the
environment with uniform pipe placement

Figure 7.2: Q-values for each task during the task selection cycle for repeat curriculum scheduler on the
environment with uniform pipe placement
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Figure 7.3: Q-values for each task during the task selection cycle for window curriculum scheduler on the
environment with uniform pipe placement

Figure 7.4: Distribution of tasks selected during training phase for automated curriculum algorithms on
the environment with uniform pipe placement
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Figure 7.5: Q-values for each task during the task selection cycle for online curriculum scheduler on the
environment with random pipe placement

Figure 7.6: Q-values for each task during the task selection cycle for repeat curriculum scheduler on the
environment with random pipe placement

Figure 7.7: Q-values for each task during the task selection cycle for window curriculum scheduler on the
environment with random pipe placement
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Figure 7.8: Distribution of tasks selected during training phase for automated curriculum algorithms on
the environment with random pipe placement

7.2 Experiment - 2

This section entails the experiments carried out by decoupling the replay buffer from our
automated curriculum learning framework to make the algorithm more general for any
RL methods. The following figures are from the experiments run on our FlappyBird-RGB
environment.
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Figure 7.9: Cumulative episodic reward for agents trained on the same environment with uniform pipe
placements with a pipe gap of 125 employed with different curriculum learning algorithms.

Figure 7.10: Emperical performance of the agents employed with different curriculum strategies on
environments with uniform pipe placement for different PCG parameter(pipe-gap).
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Figure 7.11: Q-values for each task during the task selection cycle for online curriculum scheduler on the
environment with uniform pipe placement

Figure 7.12: Q-values for each task during the task selection cycle for repeat curriculum scheduler on the
environment with uniform pipe placement

Figure 7.13: Q-values for each task during the task selection cycle for window curriculum scheduler on the
environment with uniform pipe placement
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Figure 7.14: Cumulative episodic reward for agents trained on the same environment with random pipe
placements with a pipe gap of 125 employed with different curriculum learning algorithms.

Figure 7.15: Emperical performance of the agents employed with different curriculum strategies on
environments with random pipe placement for different PCG parameter(pipe-gap).
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Figure 7.16: Distribution of tasks selected during training phase for automated curriculum algorithms on
the environment with uniform pipe placement

Figure 7.17: Q-values for each task during the task selection cycle for online curriculum scheduler on the
environment with random pipe placement
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Figure 7.18: Q-values for each task during the task selection cycle for repeat curriculum scheduler on the
environment with random pipe placement

Figure 7.19: Q-values for each task during the task selection cycle for window curriculum scheduler on the
environment with random pipe placement
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Figure 7.20: Distribution of tasks selected during training phase for automated curriculum algorithms on
the environment with random pipe placement

7.3 Experiment - 3

This section entails the supplementary figures from the experiments carried out on the
FlappyBird-LIDAR environment using our automated curriculum learning algorithms.

57



Figure 7.21: Q-values for each task during the task selection cycle for online curriculum scheduler on the
environment with uniform pipe placement

Figure 7.22: Q-values for each task during the task selection cycle for repeat curriculum scheduler on the
environment with uniform pipe placement

Figure 7.23: Q-values for each task during the task selection cycle for window curriculum scheduler on the
environment with uniform pipe placement
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Figure 7.24: Distribution of tasks selected during training phase for automated curriculum algorithms on
the environment with uniform pipe placement

Figure 7.25: Q-values for each task during the task selection cycle for online curriculum scheduler on the
environment with random pipe placement
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Figure 7.26: Q-values for each task during the task selection cycle for repeat curriculum scheduler on the
environment with random pipe placement

Figure 7.27: Q-values for each task during the task selection cycle for window curriculum scheduler on the
environment with random pipe placement
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Figure 7.28: Distribution of tasks selected during training phase for automated curriculum algorithms on
the environment with random pipe placement

7.4 Experiment - 4

This section entails the experiments carried out by decoupling the replay buffer from our
automated curriculum learning framework to make the algorithm more general for any RL
methods. The following figures are from the experiments run on our FlappyBird-LIDAR
environment.
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Figure 7.29: Cumulative episodic reward for agents trained on the same environment with uniform pipe
placements with a pipe gap of 125 employed with different curriculum learning algorithms.

Figure 7.30: Emperical performance of the agents employed with different curriculum strategies on
environments with uniform pipe placement for different PCG parameter(pipe-gap).

62



Figure 7.31: Q-values for each task during the task selection cycle for online curriculum scheduler on the
environment with uniform pipe placement

Figure 7.32: Q-values for each task during the task selection cycle for repeat curriculum scheduler on the
environment with uniform pipe placement

Figure 7.33: Q-values for each task during the task selection cycle for window curriculum scheduler on the
environment with uniform pipe placement
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Figure 7.34: Distribution of tasks selected during training phase for automated curriculum algorithms on
the environment with uniform pipe placement
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Figure 7.35: Cumulative episodic reward for agents trained on the same environment with random pipe
placements with a pipe gap of 125 employed with different curriculum learning algorithms.

Figure 7.36: Emperical performance of the agents employed with different curriculum strategies on
environments with random pipe placement for different PCG parameter(pipe-gap).
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Figure 7.37: Q-values for each task during the task selection cycle for online curriculum scheduler on the
environment with random pipe placement

Figure 7.38: Q-values for each task during the task selection cycle for repeat curriculum scheduler on the
environment with random pipe placement

Figure 7.39: Q-values for each task during the task selection cycle for window curriculum scheduler on the
environment with random pipe placement
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Figure 7.40: Distribution of tasks selected during training phase for automated curriculum algorithms on
the environment with random pipe placement
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