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Abstract

Reinforcement learning is a relatively new approach to train an agent to drive on public
roads. Training an autonomous driving agent in a live environment unfortunately is
challenging, since this would by definition involve making mistakes on public roads and
potentially causing accidents. An option is to train the agent in a simulation, but this
introduces challenges of its own, notably the simulation-to-reality gap.

This project proposes a framework for training autonomous driving agents consisting of
the CARLA urban driving simulator, Deep Deterministic Policy Gradient algorithm and
image translation, with the goal of training an agent in a simulation while simultaneously
reducing this sim-to-real gap. In this framework, the frames rendered by the simulator
are translated to look more similar to real-world images while preserving the important
features. We train two model variations: one where conventional convolutional layers are
used for feature extraction, and one where the InceptionV3 [1] neural network is used. By
measuring the accuracy of these models on a real-life driving dataset, the performance
of the models trained on this framework with image translation will be compared to the
performance of identical models that were trained without image translation. The accuracy
of our model will also be compared to the accuracy of models created in earlier works,
which were trained using the Asynchronous Advantage Actor Critic algorithm [2] and
the TORCS driving simulator [3]. Preliminary results show that the image translation
models return useful images that retain the overall structure of the virtual image. While
the driving models as they were trained in this paper have not developed particularly
useful policies, the models instantiated with InceptionV3 [1] do show some potential and
could be a good starting point for further research.
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1 Introduction

Autonomous driving is a concept that promises to make cars even safer and easier to use than
they are today. Many cars already help the driver in some shape or form: according to the
American Automobile Association, 97.2 percent of vehicle models available for purchase in the
United States in May 2018 contained some form of driver assistance [!]. Companies like Nvidia,
Google and Tesla take this a step further and are actively trying to develop fully autonomous
driving systems that require no user input, other than setting the desired destination.

In fully autonomous driving, an autonomous driving agent is responsible for taking appropri-
ate actions in given situations. This agent will perceive the state of the environment it is in
through the sensors present on the vehicle. The agent will then combine this sensor input with
a previously learned policy. Using this policy, the agent tries to predict the best course of action
for that given state. It will then use the actuators present on the vehicle to execute the desired
action. This paper is concerned with teaching an agent a driving policy for urban and highway
settings.

There are roughly four ways to teach a policy to a computer. First of all, one can explicitly
program what action should be taken for every possible state. This can be applied to many
computational problems, but in autonomous driving there are so many possible states that
this approach is virtually unworkable. Unsupervised learning can be used to train on unlabeled
datasets to estimate certain properties about the data, which is useful for data analysis tasks
but is not a very viable approach to autonomous driving. Two approaches remain: supervised
learning and reinforcement learning (RL). In supervised learning an agent is trained on a labeled
dataset, so the desired output corresponding to inputs is known. During training, the agent
makes predictions on the inputs, and the true outputs are used to correct the agent depending
on its predicted outputs. with RL, no labeled datasets are used for training. Instead, an agent is
given an environment to interact with. The agent’s actions are evaluated with a reward function,
where desirable behavior receives higher rewards. The goal of the agent is to maximize this
reward over its lifetime. Both supervised and reinforcement learning have their advantages and
disadvantages when autonomous driving is concerned.

First, we will discuss supervised learning. Because supervised learning uses a dataset, it
is easier to control what the agent learns by altering the contents of the dataset. Supervised
learning may have certain limitations: the policy learned will only reflect the data available
from the dataset. If the dataset contains mostly data about driving in a straight line on an
empty highway, one can expect the agent to become quite skilled at driving on an empty
highway. However, this characteristic can also be a disadvantage: the agent cannot learn to
handle situations that the training dataset does not contain. Using the highway dataset from
before, the agent would not be able to learn how to drive in a city environment. Similarly, an
agent would not know how to act in uncommon situations, such as accidents, if these are not
part of the training data. It is challenging to incorporate all scenarios the agent might encounter
during deployment into the training dataset.

Reinforcement learning takes a different approach, where no dataset is involved at all.
Instead, the agent has to explore its environment on its own. As long as the environment
contains everything the agent might run into during deployment, it can learn everything it needs
to, given enough time. Accidents and mistakes are also part of the experiences the agent will
gather. This aspect of exploration is problematic when training the agent in a live environment,
as this could lead to dangerous situations for other traffic participants.

A proposed solution is training a reinforcement learning agent in a simulation instead of
training on real roads. After training, the agent would be deployed in the real world. With this



approach, there is no risk of physical damage during training. An added benefit is that the
environment could be simulated at a faster rate than reality, given enough computing power.
This would allow the agent to consume an even larger volume of training data.

Of course, training in a simulator is not without challenges of its own. The challenge this
paper tries to tackle has to do with the simulation-to-reality gap. Even though computer graphics
have improved significantly in realism over the past few decades, the difference between reality
and simulation is still noticeable.

This paper explores whether real-world performance can be improved by making the virtual
image look more similar to the real world. To our knowledge, this is the first attempt to train
an end-to-end driving model using DDPG with visual data processed by image translation as
input. It also builds on the work of Pan et al. [5] by using a simulator that simulates an urban
driving environment, rather than a racetrack environment.

In Section 2 previous work will be introduced that serves as a basis for this project. After
that, we will explain some fundamentals and terminology that will be used in the rest of the
paper in the Section 3. A description of the framework proposed in this paper is given in 4. The
experimental setup is presented in Section 5, and the results can be found in Section 6. Finally,
we present, the conclusions and discussions on this project in Section 7.

2 Related Work

Until a decade ago, most methods to learn driving policies relied on hand-engineered algorithms
or imitation learning, but in the past few years promising progress has been made applying
reinforcement learning to vehicle navigation [0].

Supervised learning is one of the earlier approaches for training an autonomous driving agent.
Perhaps the earliest example of a neural network trained for this purpose is ALVINN [7], where
a network consisting of 3 fully-connected layers used image and laser rangefinder input to follow
a road. More recently, [] and [9] have leveraged pre-recorded labeled driving footage to train an
end-to-end driving agent, a variation on supervised learning known as imitation learning.

This project uses a reinforcement learning algorithm that does not use a labeled dataset,
but learns by exploring its environment. As mentioned earlier, the training often takes place in
a simulation. [10] is an early example of this, where the researchers created their model for a
vehicle and trained it to make decisions in a highway environment. In [1 1] reinforcement learning
is applied to teach a car an end-to-end driving policy in the TORCS [3] simulator using the
Deep Deterministic Policy Gradient (DDPG) [0] algorithm.

2.1 Image Translation

A major issue when training an agent in a simulator for real-world deployment is the simulation-
to-reality gap. Observations in a simulated environment are different from observations made in
reality, and as a result agents trained in simulations might perform well in those simulations,
but worse in reality. Domain randomization is proposed as a potential solution for this gap in
[12]. Domain randomization randomizes the visual output of the simulator, resulting in the
agent training on different environment variations. Reality would then appear as just another
random variation of the simulator to the agent.

Efforts to bridge the simulation-to-reality gap have also been made with image-to-image
translation. For example, the simulated image can be translated into a more realistic-looking
image before training the agent [5]. An even more recent proposed method is harmonizing the



feature space of the simulated and real images and training the agent on the feature space
[13][9]-

Image translation is an important component of these simulation-to-reality approaches. An
early approach to image translation can be found in Hertzmann et al.’s work on image analogies
[14], where the authors create image filter effects using a filtered and unfiltered image pair as
input. Similarly, Shih et al. [15] propose a method to synthesize outdoor photos at different
times of day from two source photos: one of the landscape and one of the desired time of day.
More recently, Isola et al. developed a framework to perform a variety of image translation
tasks [16]. A generative adversarial network (GAN) is trained on example image pairs, with the
goal of generating images that cannot be distinguished from real images. Because Pix2Pix is
not limited to one type of transformation, and because Isola et al.[10] already demonstrated
the performance of Pix2Pix in generating realistic urban driving images when trained on the
CityScapes [17] dataset, we use Pix2Pix as our image translation method.

2.2 Learning in a Simulator

The concept of image translation has already been used to bridge the sim-to-real gap of
autonomous agents. The work by Pan et al. [5] is to our knowledge the earliest example where
proper image translation was used during training, rather than a form of domain randomization.
It is also the baseline for our paper. In [5], the agent is trained in the TORCS simulator [3]
using the asynchronous advantage actor-critic (A3C) algorithm presented in [2].

The aim of this paper is to compare the performance of the approach in [5] to the performance
of an agent trained in a more versatile simulator, as TORCS simulates a relatively simple racetrack
environment. The CARLA [18] simulator was chosen, because it emulates a driving environment
more like what would be encountered on public roads. It also has an extensive API that provides
access to environment and vehicle data that we can use in our reward function.

This paper also employs a different algorithm than the baseline from [5]. Instead of A3C
with discrete actions, Deep Deterministic Policy Gradient (DDPG) [6] with continuous actions
is used. DDPG is similar to the established Deep-Q learning introduced by Mnih et al.[19] in
that it uses a network to measure the ‘goodness’ of actions in certain situations. Unlike Deep-Q
learning, however, DDPG operates in continuous action spaces.

3 Background

At the heart of any reinforcement learning process is the training algorithm, which in our case
is Deep Deterministic Policy Gradient. This algorithm will be used to teach an agent to drive
in urban and highway environments. The environments for this project will be provided by
CARLA, a free and open-source driving simulator. The observed environments also need to be
translated into a more realistic image, to attempt to reduce the sim-to-real gap mentioned in
Section 2.1 for autonomous driving application. The Pix2Pix image translation framework [10]
will be used to address this challenge.

3.1 Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient Algorithm, or DDPG for short, was developed in 2015
by [6]. They combined the then-established Deep Q-learning with concepts from actor-critic
models, specifically the Deterministic Policy Gradient (DPG) algorithm developed by Silver et
al. [20]. The full DDPG algorithm from that paper can be found in Algorithm 1.



In Deep Reinforcement Learning, an agent interacts with an environment E. Every discrete
time-step ¢ the agent performs an action a that takes the environment from state s; to state
s¢11- The agent also receives a reward r;, which is bigger the more desirable the new state is.
The action to be taken at any given state is determined by a policy 7. The policy maps states
to a probability distribution over actions:

S —P(A) (Eq. 1)

The goal of the policy is to maximize the expected total reward over a complete episode.
The environment and interactions of the agent with the environment can be modeled as a
Markov Decision Process (MDP). An MDP consists of:

e The state space S containing all possible states.
e The action space A containing all possible actions.

o P,(s,s'), the probability that performing action a in state s at time ¢ will lead to state s’
at ¢t + 1.

e The reward function R,(s,s’) which determines the immediate reward for performing
action a in s to reach s'.

The expected total reward over an episode V (s), if a certain policy 7 is followed starting in
state s is given by the state-value function, defined as:

V(s), = E[R] = E

S s — s ] (Fa. 2)
t=0

Here, E is the expected value and R is the state return defined as the sum of discounted
rewards and:

T
R= Z v (Eq. 3)
i=t

where v is the discount rate that emphasizes the future rewards less or more, depending on
its value.

Similarly, we can define an action-value function (otherwise known as a Q-function or
Q-value), which assigns a value to an action a taken in state s under policy 7:

Q" (s,a) =E[R|s; = s,a; = a, 7] (Eq. 4)

It is useful to define the Q-function whose predictions always result in the highest possible
total reward as the optimal Q-function as Qx:

Q*(s,a) =E [r +ymax Qs a’)] (Eq. 5)

In some environments it is possible to keep track of all the state-values and Q-values (action-
values) possible in the environment, e.g. in a table. However, this is not an option in an urban
driving environment, as the amount of possible states is infinite. Instead, we can estimate the
Q-values from previous experiences. This is the job of the critic network in DDPG. This network
receives a state-action pair and outputs the estimated Q-value for that pair.

The critic network Q contains weights 6%, which can be adjusted to train the network. Just
as in Q-learning [19], these parameters are adjusted to minimize the mean-squared error in the
Bellman equation:



Ly(09) = E [y — Q(s,al69))?] (Eq. 6)
Here y,; denotes the target values, denoted by

Y = T(Sm at) + 'VQ(St-&-l»N(St-&-l)wQ) (EQ- 7)

During training a gradient is calculated over the loss, and using these gradients the critic
network is updated through an optimization algorithm such as stochastic gradient descent.

According to the paper in which the DDPG algorithm was presented, using the weights 6%
to determine the target value in Equation Eq. 7 to update the same weights with Equation Eq.
6 will often prove to be unstable [6]. To improve stability, a copy of the critic network is used:
the target network @Q'(s,a|#?"). This network is slowly updated to track the actual network:
69 «— 769 + (1 — T)QQ/, with 7 as the target learning rate. This network is used to calculate
the target values in Equation Eq. 7.

In DDPG, the actions taken are generated by an actor network p(s|0*). This network receives
the current state as input and maps this to an action output. It is updated according to the
policy gradient as described in the paper on DPG by silver et al. [20]:

Voud =E [V,Q(s,a|09)Voup(s|0")] (Eq. 8)

The networks are not trained on the experience of the last time-step. An experience replay
buffer is used instead, which stores a large but finite number of experiences. Using a replay buffer
ensures that samples are independent and evenly distributed. Every training step a random
sample is taken from the replay buffer, which is used as the training batch. As a result, DDPG
is an off-policy algorithm, as the agent at the time of recording the experience was different
from the agent at the time of training. The full algorithm for DDPG as used in this study can
be found in Algorithm 1.

Algorithm 1 The DDPG Algorithm

Initialize critic and actor networks @ and p with weights 69 and 6*
Initialize critic-target and actor-target networks @’ and p/ with weights 69" and ™
Initialize empty replay buffer R
for episode = 0, episode < M do
Retrieve environment state sq
fort =0,t < T do
Generate action a; = pu(s¢|6")
Perform a; in environment and receive reward r; and state s;1;
Store transition s;, as, ¢, Spy1 in R
Sample random batch of N transitions from R
Calculate target values y; = r(s;s, a;r) + ’yQ(sl i1 1(8i.641)|09)

Update critic by minimizing loss L = Z(yz Q(s4,a;]09))?

Update actor with policy gradient VQuJ E [VaQ(s,al09) Vo pu(s]6")]
Update the critic target network: 09" < 769 + (1 — 7)09
Update the actor target network: 6# < 76* + (1 — 7)%
end for
end for
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Figure 1: Conceptual model of a neuron

3.2 Neural Networks

A neural network consists of neurons that can receive inputs from and send trained outputs to
other neurons. A neuron has a weight assigned to every input, which can be adjusted during
training. All the inputs together add up to a ‘weighted sum of inputs’, which is used to determine

the output y of the neuron:
y=9 (Z wi%’) (Eq. 9)
=0

Here, n is the amount of inputs, w; are the input weights and x; are the input values. ¢ is the
activation function that determines the output value, given the weighted sum. A model of a
neuron is depicted in Figure 1.

There are several types of activation functions that each map the sum to the output value
differently. The activation functions used in this project are ReLU and tanh.

e ReLU (Rectified Linear Unit) is linear if the sum is positive. If the sum x is zero or
negative, the value of ReLU is 0. For the purpose of this project, ReLLU is defined as
max(0, z).

ef—e™ "
em+e—.’n )

e tanh is the hyperbolic tangent, defined as and has a range between -1 and 1.

Neurons can be arranged in different architectures, and many architectures have been
proposed and studied. Since our agent will receive image data as input, we studied architectures
that can extract and use features from this image to determine the action output. We focused
on convolutional layers for extracting features, and fully-connected layers for the final output.

For feature extraction from images, a 2-dimensional convolutional layer is often used. In
these convolutional layers a relatively small matrix, known as the kernel, visits every pixel of
the input data. If the kernel size is larger than 1, it will also cover pixels surrounding the pixel
being visited. Every entry in the kernel corresponds to a weight, and every pixel covered by the
kernel is multiplied by this weight. The sum of these multiplications is then used as the value of
the corresponding pixel in the output.

Several convolutional layers can be arranged to form a convolutional neural network. In
convolutional neural networks such as AlexNet [21] and InceptionV3 [1] many convolutional
layers are used to extract features ranging from low-level features such as edges, curves and
shapes to more abstract features such as text, cars or animals.
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Figure 2: The image translation pipeline, with translations performed by Pix2Pix [10]

4 Method

As mentioned in the introduction, the goal of our framework is to reduce the simulation-to-reality
gap for agents trained in a simulation. We aim to address this challenge this by passing the
frames rendered by the simulator to an image translation model, which will translate the
rendered frames to frames looking more similar to the real world. The agent will then use these
translated frames as state input. The actions the agent decides to take will then be applied
to the simulator and a reward will be returned to the agent. An overview of this process with
Pix2Pix [16] can be found in Figure 2

4.1 Training the agent

The agent will be trained in a simulator using the Deep Deterministic Policy Gradient (DDPGQG)
Algorithm described in Section 3.1. Currently, our agent only has one goal: to keep the car in
the lane for as long as possible. To do this, it only needs to control the steering angle; throttle is
regulated by the simulation. To encourage generalization, the agent will be roaming around in
the five different maps that the CARLA simulator offers by default, rather than one. Training
takes places over several episodes, which themselves are divided into many time-steps. At the
beginning of every episode the episode reward is reset, a random map from the available maps
is chosen, and the agent is spawned into this map.

The reward function in Equation Eq. 10 was designed to judge the agent’s performance on
every time-step. This function takes into account the angular difference between the vehicle
and lane, and the vehicle’s distance to the center of the lane. States with a smaller angular
difference and distance are more desirable, and therefore receive higher rewards. For example,
if in a time-step the vehicle is right in the center of the lane following the direction perfectly,
the agent would receive a reward of 2 in that time step. If the agent is a meter from the center
moving perpendicular to the lane direction, the agent would receive a reward of —1. The agent’s
experiences, consisting of the previous state, action taken, next state and reward received, are



stored in a replay buffer.

As input, the agent receives a frame buffer containing the last frame or frames. This input
passes through the actor network described in Section 4.2, producing the steering angle as output.
During training, the agent is free to roam the simulation environment with few restrictions.
However, if the agent is involved in a collision or leaves its lane altogether, it receives a big
punishment in the form of a negative reward and the episode ends. There is also a set amount
of time-steps after which an episode always finishes, regardless of the agent’s actions. All the
rewards received during the episode together add up to the episode reward, which the DDPG
algorithm attempts to maximize.

r { 1+ cos(¢) — |sin(@)| — |deenter| if vehicle in lane (Eq. 10)

—100 if vehicle left lane

The agent is also trained every time-step. A random sample of the agent’s previous experiences,
stored in the aforementioned replay buffer, is taken as training data. The networks are then
updated as described in the DDPG algorithm given in Algorithm 1.

4.2 Network Architecture

DDPG uses two separate networks: the actor network, responsible for predicting actions, and
the critic network, which evaluates the decisions of the actor network. Actions are predicted
using frames as input, each of which has been processed by the image translation pipeline. In
this project we use two variations of actor- and critic networks that use different networks for
feature extractions.

The first variation of the actor network is presented in Figure 4a. They take four frames
as input, which are processed by a three-layer convolutional network as shown in Figure 3,
each with 32 filters and a 3x3 kernel size. The combined output of the convolutional networks
is batch-normalized to improve network stability, and is then connected to a fully-connected
layer. This is where the decision-making will happen. The final neuron outputs the predicted
steering angle. All convolutional layers and the first two fully-connected layers are followed by
rectified linear (ReLLU) activation, and the remaining fully-connected layers are followed by tanh
activation. The intent is for the convolutional layers to extract features from the input images
that are useful for determining the best course of action. Recognizing the road markings, for
example, could be very beneficial.

The first variation of the critic network can be found in Figure 5a. One branch of this network
is identical in architecture to the aforementioned actor network. However, it also has a branch
that processes the action associated with the state input. The two branches are concatenated
into a fully-connected layer, batch-normalized and finally connected to two more fully-connected
layers, the last of which outputs the predicted Q-value of the given state-action input. All the
layers that are not part of the actor network branch are followed by RelLU activations.

The difference between the two variations of actor and critic networks is the approach to
feature extraction. While the first variation uses three convolutional layers that are not pre-
trained, the second variation uses the InceptionV3 [1] model for feature extraction. InceptionV3
is also a convolutional neural network, but much deeper than the three layers in Figure 3. This
model is provided by Keras [22] and comes pre-trained on the ImageNet [23] dataset, which
makes it suitable for general image recognition tasks. We include this model variation because
we anticipate it to yield shorter training times and better results compared to the architectures
in Figures 4a and Ha, as the feature extraction layers of the model do not have to be trained



Input frame (256 x 256 x 12) 128 x 128 x 32 64 x 64 x 32 32x32x 32

kernel: (3,3) stride: 2 kernel: (3,3) stride: 2 kernel: (3,3) stride: 2

Figure 3: The convolutional network that processes every frame

from scratch. As the network is trained on single images, we only provide it with a single frame
as input.

The critic network is similar in architecture to the actor network, but it contains some extra
components to process the action input along the image input. Along with the convolutional
layers it contains an extra fully-connected layer, which is then concatenated with the output of
the convolutional layer into another fully-connected layer, which in turn is connected to the
output neuron. The complete critic network can be found in Figure 5.

4.3 Image Translation

. To aid in addressing the simulation-to-reality gap, the agent does not receive the raw simulator
images. First, the simulator output is processed by a set of image models. These models have
previously been trained on image pairs of the source and target appearance, and their goal is
to map the visual appearance of the simulator environment to the visual appearance of the
environment in which the agent will be deployed.

This mapping can happen in one or more translation steps, depending on what datasets
are available to train the image model on. For example, if a dataset containing image pairs
from the simulator and realistic environment were available, only a single translation model
would need to be trained. In our case such a dataset does not exist, and as such an extra step
is needed that translates the frames into an intermediary representation. In the context of
autonomous driving, datasets with pairs of segmented scene data and real images are available,
such as the Cityscapes [17] dataset. This segmented scene representation would be a suitable
intermediary representation. We trained our first model on virtual and segmented frames we
collected from the CARLA simulator, and trained our second model on the CityScapes [17]
dataset. An overview of the pipeline can be seen in Figure 2.

It is worth mentioning that the CARLA simulator does have a segmented image camera,
which would allow us to skip one of the translation steps. We decided not to use this feature and
opt for the 2-step translation pipeline because the goal of this project is to propose a framework
for training agents in any simulation, not just CARLA.

For the image translations we will be using the Pix2Pix framework designed by Isola et al.
[16]. Pix2Pix uses a conditional generative adversarial network (cGAN) architecture, which
consists of a generator and a discriminator network. These two networks are trained in an
adversarial fashion. The generator is trained to generate images that are hard to distinguish
from real images. Meanwhile, the discriminator is trained to determine whether an image is
a real example or synthetic, i.e. produced by the generator. The architectures used for the
generator and discriminator in this project are derived from [16] and can be found in Figures
6 and 7, respectively. The network of the generator is a so-called U-net [24] architecture: an
encoder-decoder style network augmented with skip connections between encoder and decoder
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Figure 4: The variations of the actor networks, which are used to predict actions on a given state
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layers. Using a U-net with skip connections was found to give "much higher-quality results
[16] compared to an encoder-decoder architecture without skip connections. The network of the
discriminator was designed by the authors to penalize image structure only at an image patch
level, meaning that if you look at the images as a whole, the generated images should resemble
real images.

5 Experimental setup

The main issue that this sim-to-real framework attempts to address is the simulation-to-reality
gap that that emerges when training an agent in a simulator. The works of Pan et al. [5] also
focuses on this issue. Both of these projects train the agent with the Asynchronous Actor-Critic
(A3C) algorithm, and use TORCS [3] as a simulation environment. This project uses the DDPG
[6] algorithm to train the agent in the CARLA simulator. A major difference between A3C and
DDPG is that the former is an on-policy algorithm, while the latter is an off-policy algorithm.
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We think that the off-policy characteristic will lead to better exploration.

In Pan et al. [5], A3C outputs a probability distribution over a discrete action space. In our
method, DDPG outputs continuous actions directly. We believe a continuous action space will
lead to an agent that more closely emulates human steering behavior: after all, humans also
steer in a continuous fashion to avoid jerky movements and loss of traction.

5.1 The CARLA simulator

The work of Pan et al. [5] uses TORCS [3] as a simulation environment, while we use CARLA.
Compared to TORCS, CARLA is a more modern simulator that simulates an urban environment
rather than a track environment, and therefore should match the features present in the real
world better than TORCS. CARLA also comes preloaded with a few maps: the images collection
and training agents roam the “Town01’, ‘“Town02’, ‘Town03’, ‘Town04’ and ‘Town05" maps.

5.2 Image Collection

For training the image models, a TensorFlow implementation by Christopher Hesse [25] of the
Pix2Pix program developed by Isola et al. [16] is used. The goal is to make the image frames
from the simulator look more like the real world, but unfortunately a dataset containing pairs
of CARLA and real images does not exist. We therefore perform the translation in two steps:

1. Convert the virtual frames to a segmented scene representation
2. Convert the segmented scene representation into a ‘realistic’ frame

This means we need to train two models and therefore two datasets are required: one dataset
with the simulator frames and corresponding segmented images, and one dataset with segmented
images and corresponding ‘realistic’ images.

The first dataset is the most challenging, as we need to collect it ourselves. Fortunately, the
CARLA simulator already has a sensor that can capture the segmented scene representation
that we need. A script was created in which a vehicle drives around the maps that are provided
in the CARLA simulator. The route the car takes is random, but the car does stay on the road.
A set amount of virtual frames and corresponding segmented frames can then be recorded at
regular intervals. After some processing, these frames can be used as input data to train the first
image model. The dataset we use for the second model is the ‘gtFine’ package of CityScapes
dataset [17].

10,000 image pairs were collected from CARLA for training the simulation-to-segmented
image model. Both RGB and segmented image were recorded in a 256x256 resolution with
1-second intervals. The Cityscapes dataset used consists of 2975 image pairs; the images are
also downscaled to a 256x256 resolution prior to training.

5.3 Training the image models

For the image translation models we use the Pix2Pix framework described in Section 4.3. The
virtual-to-segmented model is trained on the collected CARLA frames for 50 epochs. The
segmented-to-real model is trained for 100 epochs on the aforementioned CityScapes dataset.
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5.4 Training the agent

The training of the self-driving agent follows the DDPG algorithm described in Section 3.1. We
intend to train four different models with otherwise identical training parameters:

1. A model with feature extraction through the three-layer convolutional network, as shown
in Figures 4a and 5a. Image translation will not be applied to the input frames. We refer
to this model as CNN-NoTranslation.

2. A model with feature extraction through the three-layer convolutional network, as shown
in Figures 4a and 5a. Image translation will be applied to the input frames. We refer to
this model as CNN-Translation.

3. A model with feature extraction through the InceptionV3 network, as shown in Figures
4b and 5b. Image translation is not applied to the input frame. We refer to this model as
Inception-NoTranslation.

4. A model with feature extraction through the InceptionV3 network, as shown in Figures
4b and 5b. Image translation will be applied to the input frame. We refer to this model as
Inception-Translation.

The actor and critic networks as described in Section 4.2 are created and initialized, as are
their respective target networks. A replay buffer that can contain 10,000 transitions is initialized,
and the training loop starts. Each model is subjected to 500 training episodes. Episodes end
when the vehicle departs its current lane.

Every training step the network is trained on a batch of 32 experiences with an actor learning
rate of 0.0001 and a critic learning rate of 0.001 using the Adam optimizer. The target networks
are updated with an update rate (tau) of 0.001. Finally, a discount factor of 0.99 is used to
calculate the target values.

Every time-step the actor network predicts a steering angle based on the simulator’s frame
input, which has been translated by the image translation models. This action is applied to
the simulation and the resulting state is fetched. The reward function found in Equation Eq.
10 determines the value of this state, taking into account the distance from the center of the
current lane and the angle difference between the vehicle and the lane. The old state, action,
new state and reward are then added to the replay buffer.

5.5 Validation

We can evaluate the effectiveness of each of the trained models by measuring its accuracy on
an annotated real-life driving dataset. We use the annotated driving dataset from [20], which
contains video frames of a driving trip performed by a human, annotated with the steering
angle. This dataset is also used by Pan et al. [5], with which we can compare the accuracy.
Comparing these accuracies allows us to verify how our combination of DDPG and CARLA
performs compared to the combination of A3C and TORCS.

The real-life dataset contains steering angles in degrees, while the aforementioned work
uses models that output discrete actions. The steering angles were therefore binned into three
categories. Steering angles in range (-10, 10) were considered ‘going straight’, angles smaller
than -10 ‘going left’ and angles larger than 10 ‘going right’. Since our model outputs continuous
data, we bin our model outputs in the same manner. Whether the bins of the prediction and
annotation match up or not determines if a prediction is considered accurate. By comparing the
prediction to the annotation, we can determine the accuracy of our self-driving models.
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Our models are also compared to each other, which allows us to determine if there is
a noticeable improvement in accuracy between the agents trained with and without image
translation, and thus whether image translation is an effective method of bridging the simulation-
to-reality gap. The comparison can also show if any of the feature extraction methods used may
lead to better real-life accuracy.

6 Results

6.1 Image Translation Results

In Figure 8 we present a comparison between virtual images taken from the CARLA simulator,
and the ‘realistic’ image that results when this virtual image is processed by the image translation
models we trained. At first glance the translated images do seem to resemble the real world, but
the realism falls apart upon closer inspection. Still, we believe that the translated images are
more similar to what would be captured by a camera on the road than their virtual counterparts.

Interestingly, the translation models seem to have trouble painting in larger surfaces. This is
especially apparent when a lot of sky is visible. We speculate the CityScapes [17] dataset used
to train the segmented-to-realistic image model is the cause of this. The images contained in
CityScapes tends to contain many smaller surfaces, and not too much empty road or sky. This
theory is supported by the image pair captured in ‘“TownlOHD’ which does not contain large,
empty surfaces and does not suffer from inpainting artifacts. In fact, this pair looks the most
realistic of all the examples given in Figure 8, even though image pairs from this map were not
present in the dataset used to train the image models.

6.2 Driving model training

Figure 9 shows the change in reward and episode steps over the course of their training. The
reward reflects the quality of actions taken during the episode: better actions result in higher
rewards. Better actions can also result in more rewards because the car stays in its lane longer,
which means the episode is terminated later. The amount of steps per episode reflects how
long the vehicle was able to stay in its lane. The models we trained behave very similar to
one another, however no progress in either the reward per episode or the steps per episode is
observed during our training. Unfortunately, due to time constraints, we were unable to train
CNN-NoTranslation.

6.3 Comparing models

We compare the models we trained ourselves to the models trained by Pan et al. [5] by measuring
the accuracy on Chen’s annotated driving dataset [26]. They are compared to the following
models trained by Pan et al. [5]:

1. Pan-Baseline, which was trained through reinforcement learning without image translation

2. Pan-SV, which was trained through supervised learning on Chen’s dataset [20]

3. Pan-RL, which was trained through reinforcement learning with image translation

The results of the model evaluations are presented in Table 1. The Inception-Translation

and Inception-NoTranslation obtained surprisingly high accuracies, considering the lack of
training progress reported in 6.2. On top of that, the accuracies of these to models were identical.
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Figure 8: Comparison of virtual simulator output, captured from CARLA [18], and their
translated counterparts, translated through the models trained in Section 5.3. Each pair is
captured from one of the maps included with CARLA. From left to right, top to bottom:
‘Town01’, “Town02’, ‘Town03’, ‘Town04’, ‘Town05’, ‘Town06’, ‘Town07’, ‘Town10HD’. Note that
‘Town06’, ‘Town07" and ‘TownlOHD’ were not included in the training dataset of the image
translation models.
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Model: | Training method: | Accuracy on [20]:

Pan-Baseline RL in TORCS 28.33%
Pan-RL RL in TORCS with Image Translation 43.40%
Pan-SV Supervised Learning on [20] 53.60%
CNN-NoTranslation RL in CARLA Unavailable
CNN-Translation RL in CARLA with Image Translation 19.24%
Inception-NoTranslation | RL in CARLA 58.92%
Inception-Translation RL in CARLA with Image Translation 58.92%
Table 1: Comparison of the accuracy of the models trained by Pan et al. [5] and ourselves on

Chen’s annotated real-life dataset [20]

Upon further investigation, this was due to these models always predicting a low steering value
between 10 and -10 degrees, while a large portion of the annotated frames contain steering
angles that are also in this range. We discuss these results further in Section 7.

7 Conclusions and Discussion

We present a framework that uses the CARLA simulator [13], Pix2Pix image translation
framework, DDPG [0] algorithm and the neural network architectures from Section 4.2 in an
attempt to train an end-to-end self-driving agent in a simulator while simultaneously addressing
the simulation-to-reality gap. We compared our trained agents to the agents trained by Pan et
al. [5]. While the image translation results look promising, with the scenes maintaining their
overall structure while being closer in appearance to reality, the autonomous driving models
trained by us did not seem to improve their behavior in the amount of steps we trained them,
and did not improve on the models they were compared to.

Even though the models we trained showed little difference in reward during training, they
did behave differently from each other during testing. Unlike the CNIN-Translation model,
the Inception-NoTranslation and Inception-Translation models predicted steering angles
in a very small range. Because the binning method as described in Section 5.5 classified these
values as ‘going straight’, and over half the frames in the used dataset [26] were also considered
‘going straight’, these models obtained a high accuracy rating. This does raise the question of
how the models in [5] behaved during evaluation, but this information is unfortunately not
included in the paper. It also indicates that this method of binning might not give the model
with the best policy the highest accuracy score, as a policy of ‘only going straight’ would obtain
a higher accuracy than all the driving models mentioned in Table 1.

The framework presented in this paper is not limited to training only the algorithm and
networks presented in Sections 3.1 and 4.2. The framework is suitable for implementing, training
and testing any neural network, and can thus be used for future studies. For example, it could
be used to investigate whether the agents can be improved through more training episodes
or a different network architecture; the actor- and critic networks in Figures 4b and 4b only
use a single frame as input, and we considered using multiple frames as input instead, where
each frame is processed by the InceptionV3 [1] separately. We also considered using a different
classification network for feature extraction, such as InceptionV4 [27] or a ResNet [25].

We also believe that the image translation results could be improved further, by training the
image translation model on a dataset that contains image examples with larger empty surfaces
than CityScapes [17], or by combining multiple urban driving datasets into one training set.
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