
Master Computer Science

Investigating Deep Learning of DFT
Functionals for the 1D Hubbard Model in
the NISQ Era

Name: Eric Prehn
Student ID: s2724731
Date: 13/07/2022

Specialisation: Data Science

1st supervisor: Dr. J. Tura Brugués
2nd supervisor: Dr. V. Dunjko

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Leiden University

Computer Science: Data Science M.S.

Thesis: Investigating Deep

Learning of DFT Functionals for

the 1D Hubbard Model in the

NISQ Era

Author: Eric Prehn

Student ID: s2724731

1st Supervisor: Dr. J. Tura Brugués

2nd Supervisor Dr. V. Dunjko

July 25, 2022

Contents

1 Introduction 3

2 Problem Statement 6

3 Background and Theory 7

3.1 The Hubbard Model . 7

3.2 Density Functional Theory . 8

3.2.1 Functionals and Functional Derivatives 8

3.2.2 Hohenberg-Kohn Theorems [26] . 8

3.3 DFT Application to the 1-D Hubbard Model 10

3.4 Machine Learning . 11

3.4.1 Supervised Learning Algorithms . 11

3.4.2 Measuring Accuracy of Supervised Learning Algorithms 12

3.4.3 The Learning Goal: The Hubbard Model Density Functional 12

3.5 Neural Networks . 13

3.6 Convolutional Neural Networks . 14

3.7 Quantum Simulation . 16

3.8 Variational Quantum Eigensolver (VQE) . 16

4 Exact Diagonalisation 18

4.1 Solving the 1D Hubbard Model Exactly . 18

4.1.1 Hilbert Space Dimension . 18

4.1.2 Exact Diagonalisation . 19

4.1.3 On-site Occupation . 20

4.2 ML Data Set Generation and Implementation 20

4.2.1 Data Set Extension: Symmetries . 22

4.3 ML Model . 23

4.3.1 Standardisation . 23

4.3.2 Data Preprocessing for CNN Layers 23

4.3.3 Network Architecture . 23

4.4 ED: Results . 24

4.4.1 Data Set 1: L = 8, N = 4, N↑ = 2 = N↓ 24

4.4.2 Data Set 2: L = 8, N = 4, N↑ = 2 = N↓ 25

4.4.3 Data Set 3: L = 4, N = 2, N↑ = 1 = N↓ 25

4.4.4 Data Set 4: L = 4, N = 4, N↑ = 2 = N↓ 26

4.4.5 Data Set Structure and Discussion . 26

Page 1 of 54

5 Measurement Noise 28

5.1 Measuring Observbles on a Quantum Computer 28

5.2 Noisy Electron Densities . 29

5.3 Noisy Coulomb Energy Measurements . 29

5.4 Noisy Kinetic Energy Measurements . 30

5.5 Noisy ML Models . 31

5.6 Nosiy Measurements Results . 31

5.6.1 Data Set 1: L = 8, N = 4, N↑ = 2 = N↓ 31

5.6.2 Data Set 2: L = 8, N = 4, N↑ = 2 = N↓ 33

5.6.3 Data Set 3: L = 4, N = 2, N↑ = 1 = N↓ 33

5.6.4 Data Set 4: L = 4, N = 4, N↑ = 2 = N↓ 34

5.7 Discussion . 34

6 VQE Method 36

6.1 Anti-Commutation relations and Jordan-Wigner Representation 36

6.2 Hamiltonian Variational Ansatz . 37

6.3 Hamiltonian Variational Ansatz Implementation 38

6.3.1 Initial State Preparation . 38

6.3.2 Ansatz: Unitary Gates . 39

6.4 VQE Method: Data Generation . 40

6.5 VQE Results . 40

6.5.1 L = 8 . 41

6.5.2 L = 4 . 42

6.5.3 VQE Results: ML Model . 43

6.6 VQE: Discussion . 43

7 Conclusion and Future Work 45

Bibliography 48

8 Appendix 52

8.1 Additional Figures . 52

8.2 VQE Attempts . 53

8.2.1 Different Initial State Preparations . 53

8.2.2 Varying Ansatz Depths . 53

8.2.3 Extra Variational Parameters . 54

8.2.4 Parameter Initialisation . 54

Page 2 of 54

1 Introduction

The techniques from Physics, Machine Learning and Quantum Computing can be combined

to yield novel hybrid methods. In the following short paragraphs, the areas relevant for this

project are introduced, followed by a proposed hybrid scheme.

In Physics a problem is called many-body when the quasi-particles involved (electrons,

phonons, magnons, etc.) interact directly with each other and not through a mean potential

[21]. Mean field potentials are approximations that replace all interactions to any one par-

ticle with an average interaction, which is not how particles interact. However, they offer a

simplified analysis and a satisfactory qualitative explanation to many phenomena of interest.

In the last century, solving the many-body problem for the electronic structure of molecules

and solids has been one of the largest challenges in quantum mechanics. Classically, the com-

putational time required, along with the typically adverse scaling with system sizes, renders

exact analytical solutions infeasible.

An approximate many-body model for electron-electron interactions is the Hubbard

model [18], named after John Hubbard, who first proposed it in 1963 to describe electrons

in 3d transition metals. Later the one dimensional Hubbard model was solved using a Bethe

Ansatz by E. Lieb and F. Wu in 1968 [19]. Since, the Hubbard model has been applied to

the understanding of various systems, as it is the simplest model that captures the essence

of strongly-correlated electrons in solids [30]. Also, it is used as a toy model, that is believed

to capture the key behaviour explaining high-temperature superconductivity [7].

For smaller system sizes, the Hubbard model can be solved exactly via Exact Diagonalisa-

tion (ED), where solving refers to finding the energy spectrum and eigenstates. However, this

is typically limited by the rapidly growing Hilbert Space dimension of the system in question

and the computational cost of ED. Once the energy spectrum, and hence the eigenstates, are

found, further properties are attainable. An example being the on-site occupation, which

can act as the relevant density for a Density Functional approach.

Density Functional Theory (DFT) [17] is a powerful theory that is currently used in

Physics, Chemistry and materials science to investigate electronic structure of many-body

systems. As is described in the Background and Theory Section 3, complex many-body

problems can be reformulated by defining an energy functional of the electron density, using

DFT. In DFT, the exact form of the energy functional is not known and in practice approxi-

mations have to be chosen. Usually these approximations do not give one sufficient accuracy

in highly correlated systems. It is therefore of great interest to find the exact functional, with

Page 3 of 54

DFT currently being the most widely applicable and used approach for quantum chemistry.

It has been shown that in the case of the one-dimensional Hubbard model, the form of the

functional can be accurately learnt using Machine Learning (ML) [24].

Artificial Neural Networks (ANN’s) are a tool in ML, which are inspired in part by the

observation that biological learning systems are built of very complex webs of interconnected

neurons [12]. Deep Learning involves ANN’s with greater depth, meaning a larger number of

layers of neurons. Deep Learning models require a large number of parameters to be tuned,

typically requiring large data sets. Thanks to technological developments; the use of Deep

learning has grown as the amount of available training data has increased. These models

have grown in size over time, as their computer infrastructure (both hardware and software)

have improved [12]. Today, ML provides an alternative route to researching physics, due

to ML’s ability to find solutions by analysing data sets. There exist a multitude of ANN’s

to choose from, many of which, in turn are trained using Deep Learning software. More

details on ANN’s , ML and Deep Learning are given in Sections 3.5 and 3.6. One set back

of Deep Learning is the requirement that a large enough training set has to be generated.

For example this could require exactly solving a quantum system, thousands of times.

Generally, exact simulation of quantum systems on classical computers remains infeasi-

ble due to the lack of computationally efficient methods. However the advances in quantum

computing may lead to solutions for certain problems, in certain regimes, that classical com-

puters cannot handle. This is because quantum computers can represent quantum systems

natively [32]. Currently quantum computing is in the Noisy intermediate-scale quantum

(NISQ) era. Here, noise in quantum gates limits the size of quantum circuits that can be

executed reliably, and “intermediate scale” refers to the size of quantum computers (50-100

qubits). This rules out the implementation of famous quantum algorithms, such as Shor’s

factoring algorithm [25] and Quantum Phase Estimation (QPE) [25].

Due to its nature, the Hubbard model is seen as an early target for quantum simulation

algorithms [3, 9, 32]. Firstly because it is useful for understanding technologically-relevant

correlated systems. Secondly, its regular structure and relative simplicity, suggests it is

easier to solve than, for example, a large unstructured molecule (especially in the NISQ

era). Additionally it can be viewed as a benchmark for quantum algorithms, since classical

solutions are restricted to small system sizes (17 fermions on 22 sites requiring over 7TB of

memory and 13 TFlops on a 512-node supercomputer to diagonalise a 159-billion-dimensional

matrix [35]).

Page 4 of 54

This work is an attempt to combine the areas of DFT, ML and quantum computing.

The goal is to investigate solving the 1D Hubbard model via a DFT approach, using Deep

Learning, that trains on NISQ era data.

First, in Section 2 the problem statement is defined and in Section 3 background and

theory are provided. In Section 4 the ED results of Sanvito [24] are reproduced, where a

Deep Learning model learns an exact functional, for finite, periodic systems. Next, in Section

5 measurement noise is incorporated into the exact results, which emulates the process of

measuring the ground state if it were prepared on a quantum computer. The effects of this

noise on the Deep Learning method is investigated.

Lastly in Section 6, a quantum algorithm, the Variational Quantum Eigensolver (VQE), is

used to generate training data for the Deep Learning method.

Overall this work aims at achieving a potential NISQ era application of the following

proposed scheme:

1. A NISQ era quantum computer is used to generate a dataset of Hubbard model in-

stances (of fixed size but with varying external potentials).

2. A Deep Learning model learns the exact form of the DFT functional, by training on

this NISQ dataset. Ideally the Deep Learning model achieves some degree of noise

mitigation, as it learns the functional and interpolates through noise.

3. Once the Deep Learning model is trained and performs/generalises well, it can be

reused without the need for further quantum computing resources.

The advantages of using a classical Deep Learning model are that it is deterministic and has

differentiable output. Additionally it can be robust to noise [31, 28] and perhaps even miti-

gate noise effects, which is of great importance for NISQ generated data. Importantly, in the

NISQ era, the proposed scheme could be applied to larger Hubbard system sizes than clas-

sically solvable, and the DFT functional learned using limited quantum computing resources.

In summary, the Deep Learning model was applied to 3 types of data, including exact

data (as in [24]), exact data with measurement noise and lastly, VQE generated data. The

proposed scheme was successful for the measurement noise data, and achieved a degree

of noise mitigation. In contrast, the Deep Learning model did not perform well on VQE

generated data. Still, the VQE data generation method can be improved, yielding better

data for the scheme. Hence, it remains to be confirmed how the scheme performs for higher-

quality VQE data and this is the centre of attention of future work.

Page 5 of 54

2 Problem Statement

The canonical problem to solve is to find the ground state energy of a quantum many-body

Hamiltonian H. This work focuses specifically on the one-dimensional Hubbard model.

Note that in general, producing the ground state of a quantum Hamiltonian is expected to

be computationally hard for quantum computers [3, 11]. However this does not mean that

solutions cannot be found. The ground state energy is the solution of the problem,

EGS = min
|Ψ⟩

⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

, (1)

where the minimisation occurs over all the (unnormalised) states {|Ψ⟩} in the Hilbert space.

In general the ground state is sought after because it contains much of the information for

understanding the low-energy properties of a system. In this work, ground states are needed

to learn the exact form of Hubbard model DFT Functionals. This thesis investigates how

well the Deep Learning model of [24] learns the DFT Functionals, when trained on NISQ

era data. The following three settings are investigated:

1. Exact Diagonalisation data.

2. Exact Diagonalisation data with measurement noise.

3. VQE generated data.

Page 6 of 54

3 Background and Theory

3.1 The Hubbard Model

In 1963 John Hubbard introduced the Hubbard Hamiltonian in order to model electronic

correlations in narrow energy bands, specifically for 3d transition metals. It is a tight-binding,

many-body quantum model, based on nearest neighbour hopping and on-site interactions.

The Hubbard Hamiltonian describes moving, interacting spin-12 electrons hopping on a set

Λ of spatially localized orbitals.

Hhom = −
∑
i,j∈Λ

∑
σ

tij â
†
i,σâj,σ + U

∑
i∈Λ

n̂i,↑n̂i,↓, (2)

where tij is usually restricted to nearest-neighbor sites and becomes a constant hopping

parameter t, resulting from the overlap of the wavefunctions of adjacent atoms [33]. Every

site can hold at most 2 electrons from the Pauli exclusion principle. Here σ ∈ {↑, ↓},
â† and â are creation/annihilation operators, n̂ = â†â is the number operator, and U is

a Coulomb Potential term. The Hubbard Hamiltonian follows from second quantisation,

where the quantum many-body states are represented in a Fock state basis. Details on

second quantisation can be found in [20] and the canonical anti-commutation relations for

the creation/annihilation operators are provided in Section 6.1. Below a simple example

(with notation abuse) of the creation and annihilation operators acting on the possible states

of orbital (i, σ) are shown:

â†i,σ|0⟩ = |1⟩,

â†i,σ|1⟩ = 0,

âi,σ|0⟩ = 0,

âi,σ|1⟩ = |0⟩.

(3)

Where the notations, |1⟩ represents an electron present at orbital (i, σ), and |0⟩ represents

none. The inhomogeneous 1D Hubbard Model is the focus of this work and is described by:

H =
∑
i∈L

∑
σ

νiâ
†
i,σâi,σ − t

∑
⟨i,j⟩∈L

∑
σ

â†i,σâj,σ + U
∑
i∈L

n̂i,↑n̂i,↓, (4)

Summation over nearest neighbour sites (i, j) is labeled by ⟨i, j⟩ and the chain of length L

becomes a ring due to periodic boundary conditions. The presence of an external potential

ν, with νi being site-dependent, leads to the inhomogeneous case. This corresponds to

varying on-site energies, commonly referred to as disorder. The second term in Equation

4 creates and destroys electrons of neighbouring sites, representing electron transfer, or the

Page 7 of 54

kinetic energy. Finally, the third term is composed of the product of 4 creation/annihilation

operators, providing the interactions that make it a many-body problem. The hopping

parameter can be set to t = 1 and without loss of generality, the remaining parameters U

and νi correspondingly measured in units of t.

3.2 Density Functional Theory

The foundation of Density Functional Theory (DFT) comes from two simple theorems, known

as the Hohenberg-Kohn theorems [17]. In principle, these allow one to circumvent the atten-

tion on the wavefunction and replace it with the electron density n(r), when seeking ground

state properties. Note the dimension of the wavefunction of a many-body problem typically

scales very badly, whereas the electron density is at most a function of 3 spatial coordinates.

This subsection briefly introduces the notion of functionals and functional derivatives, fol-

lowed by the Hohenberg-Kohn theorems and their application to the Hubbard model.

3.2.1 Functionals and Functional Derivatives

Mathematically, functionals are linear maps from a vector space to its underlying scalar field.

An example of a functional is the following:

E[|Ψ⟩] = ⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

, (5)

where the energy is a function of another function, i.e. it is a function of the wavefunction.

Typically a functional is a real (complex)-valued function on a vector (Hilbert) space H. In

Equation 5, |Ψ⟩ is a wavefunction but in general one can define functionals of the electronic

density, denoted as F [n(r)]. This is the case in DFT, where n(r) is the electron density

function, with r ∈ R3. The functional derivative δF
δn is defined as [26]:

δF =

∫
δF

δn
(r)δn(r)d3r, (6)

where δn is an arbitrary function and δF = F [n+ δn]− F [n] is the variation of F .

3.2.2 Hohenberg-Kohn Theorems [26]

The electronic structure Hamiltonian in real space, under the non-relativistic Born-Oppenheimer

approximation, for an isolated N -electron atomic or molecular system is given by:

H =

N∑
i=1

(−1

2
∇2
i) +

N∑
i

ν(ri) +
N∑
i<j

1

rij
, (7)

Page 8 of 54

where

ν(ri) = −
∑
α

Zα
riα

(8)

is an external potential which acts on electron i, typically due to nuclear charges Zα. The

ground state wavefunction and corresponding energy are determined, as in Equation 1, by

the minimization of the energy functional:

E[|Ψ⟩] = ⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

. (9)

Importantly it can be seen that N and ν determine all the properties for the ground state,

because the external potential ν completely fixes the Hamiltonian [26]. Any desired prop-

erty/observable X of the ground state |Ψν,N
GS ⟩ is then a functional of the external potential,

so that X = X[ν]. The first Hohenberg-Kohn theorem allows for replacing N and ν(r) with

the electron density n(r) as the basic variable.

Theorem 1: Existence of a universal functional For any system of N interacting

electrons moving under the influence of an external potential v(r) (e.g. that of the nuclei), the

external potential, and hence the total energy, is a unique functional of the electron density

n(r).

The total energy of the system can be written as,

E[n(r)] =

∫
n(r)ν(r)dr+ F [n(r)]. (10)

Where F [n(r)] is universal, namely it is independent of the system. A corollary of the first

Hohenberg-Kohn theorem is that there is a one-to-one correspondence between the external

potential ν(r) and the electron density n(r), meaning that one is sufficient to determine the

other.

Theorem 2: Variational Principle The universal functional is minimised at the

ground state density n(r)GS, and the corresponding energy is the groundstate energy, EGS.

This means that,

EvGS = Ev[n(r)GS] ≤ E[n(r)]. (11)

With these theorems the functional given by Equation 10 can be minimised with respect to

the normalisation constraint:

N =

∫
n(r)d3r, (12)

such that,

δ

(
Ev[n(r)]− µ

(∫
n(r)d3r−N

))
= 0. (13)

Page 9 of 54

Here µ is a Lagrange multiplier and together with Equation 10, this becomes:∫
δn(r)vext(r)d

3r+ δF [n(r)] = µ

∫
δn(r)d3r. (14)

Finally applying Equation 6 one gets the following Equation to solve for n:∫
δn(r)vext(r)d

3r+

∫
δF

δn
(r)δn(r)d3r = µ

∫
δn(r)d3r,

vext(r) +
δF

δn
(r) = µ.

(15)

In practice, the universal functional F is unknown and therefore needs to be approximated.

Note that typically these approximations do not give you sufficient accuracy in highly corre-

lated systems. Still, DFT has been widely applied to various quantum mechanical systems

and there exist several well-established approximations for performing DFT calculations [13].

In summary, the strength of DFT lies in needing to solve for the electron density rather

than the wavefunction, but the accuracy of DFT methods is limited by approximations of

the functional F .

3.3 DFT Application to the 1-D Hubbard Model

The two Hohenberg-Kohn theorems apply also for the case of interacting lattice models

[29]. DFT on lattice models is sometimes referred to as SOFT (Site-Occupation Functional

Theory). The functional has a global minimum at the ground-state density that corre-

sponds to the ground-state energy. Note the Hohenberg-Kohn theorems originally applied

to non-degenerate ground states, however in practise density functionals can be restored [4]

for degenerate cases. The relevant densities for lattice models depend on the model being

studied. The relevant density for the Hubbard Model is the on-site occupation,

{niσ} = {n1↑, n1↓, n2↑, n2↓, . . . , nL↑, nL↓}, (16)

where niσ ∈ [0, 1] is the occupation of the orbital (i, σ), when the system is in state |Ψ⟩. Note
that the electron density n(r) becomes {niσ} when going from DFT to SOFT. Applying the

Hohenberg-Kohn Theorem to the 1D Hubbard Model gives [24],

E = E[{niσ}] =
∑
i,σ

νiniσ + F [{niσ}], (17)

F [{niσ}] = ⟨ψ|(−t
L∑

⟨i,j⟩

∑
σ

â†i,σâj,σ + U
L∑
i

n̂i,↑n̂i,↓)|ψ⟩ = ⟨ψ|(T̂+ Û)|ψ⟩. (18)

Page 10 of 54

With T̂ and Û representing the kinetic and potential terms, respectively. Note that for this

lattice model F [{niσ}] is universal only for a given T̂, Û and N . Various approaches to

finding this functional exist, one such being Machine Learning [24].

3.4 Machine Learning

In this section, Machine Learning theory is provided for Supervised Learning, Neural Net-

works and Convolutional Neural Networks. A reader familiar with these areas is advised

to view Section 3.4.3 and then skip to Section 3.7. Broadly speaking, a Machine Learn-

ing algorithm is an algorithm that is able to learn from data [12]. The algorithms used in

ML apply numerical techniques (mathematical/statistical models) to perform a specific task.

Normally, one makes the classification of ML into Supervised, Unsupervised and Reinforce-

ment Learning, each being more general than the previous. In this thesis the type of ML

used is Supervised Learning.

3.4.1 Supervised Learning Algorithms

A Supervised learning algorithm attempts to learn a mapping or function from a data set

consisting of pairs of inputs and matching outputs:

fML : xi 7→ yi, (19)

where each input of the data set, xi, called an example, (whose individual components are

called features) is mapped to the corresponding output, yi, called a target. The algorithm

attempts to create a one-to-one correspondence between inputs and outputs. Each pair of

input and output are indexed by i in Equation 19 and typically xi ∈ Rm and yi ∈ R, with
m being the number of features. Note the form of inputs and outputs can vary, for example

the target may also be a vector or tensor, rather than a scalar as in Equation 19.

Supervised learning algorithms are typically applied to regression or classification problems.

A famous classification example involves the iris data set [2], where ML algorithms can

successfully (up to high accuracy) classify the type of iris plant (target), from its features.

Each individual plant corresponds to one example, and the features are measurements such as

petal width or length. Given a data set to train on or “learn”, supervised learning algorithms

can then predict the (e.g. iris species) for a new unseen example.

To evaluate how accurate the function fML is, the entire dataset can be split into 3 sets, the

training data, the validation data, and finally, the ‘test data. The ML algorithm is applied

to the training data and a form of fML is found. This form of fML is validated on validation

Page 11 of 54

data. If the accuracy is not sufficient then the ML algorithm can be altered and the process

is repeated. The remaining test data is unseen data, which the algorithm has not used during

training.

3.4.2 Measuring Accuracy of Supervised Learning Algorithms

The accuracy of a given model is obtained by acting on the “test data” with fML. For classi-

fication problems the accuracy is simply the percentage of correctly predicted examples from

the “test data”. For regression problems, where each output (e.g scalar yi) is a continuous

variable, the following measures exist:

The Mean Absolute Error is an average measure (over M test examples and their

corresponding features),

MAE =
1

M

M∑
i

|yi − ŷi|, (20)

where ŷi is the ML prediction for the i’th data point and yi is the actual value (yi could aslo

be a vector ⃗̂yi, in which case the Euclidean norm is used).

The Mean Squared Error (MSE) is given by,

MSE =
1

M

M∑
i

(yi − ŷi)
2. (21)

The accuracy of a model will be low if the model is underfitting, where underfitting means

the training error is too large. Overfitting can also occur, in this case the training error is

low, however the test error is not sufficiently low and the model fails to generalise. It is

therefore important to monitor the losses of all the data sets.

With these measures, the accuracy of an ML approach to the Hubbard model, specifically

if the desired functional is being learned, can be measured.

3.4.3 The Learning Goal: The Hubbard Model Density Functional

Following equations 16 and 18, the function sought after is the true DFT functional,

fDFT : {nGSiσ } 7→ F [{nGSiσ }] = EGS −
∑
i

νin
GS
i = ⟨ψGS |(T̂+ Û)|ψGS⟩, (22)

where {nGSiσ } is the on-site occupation for the ground state energy EGS , which acts as the

input to the ML algorithm.

Page 12 of 54

3.5 Neural Networks

ANN’s provide a general, practical method for learning functions from examples. A Neural

Network consists of an input layer, hidden layer(s) and a final output layer. The layers consist

of many units, which connect to all units in adjacent layers, as shown in Figure 1. Data

enters the input layer, each unit in this layer corresponds to a feature of the example. Every

unit receives inputs adjusted by connection weights and processes these to form outputs.

This output is activated or sent to the next layer’s units, if a weighted sum (Σ) satisfies a

condition specified by the activation function.

Figure 1: (a) An example of a Neural Network with no hidden layers and a single output.
(b) An overview of a Neural Network with one hidden layer and two outputs [12].

There exist many forms of activation functions, the most common being the Rectified

Linear Unit (ReLU) function,

g(s) = max[0, s]. (23)

This activation function is non-linear, helping complex non-linear relationships in the data to

be learned. Also, its piecewise linear property and simple derivatives (derivative at disconti-

nuity s = 0 is evaluated as 0 during training) are convenient for training (backpropagation).

The reader is referred to [12] for details on backpropagation, stochastic gradient descent and

activation functions. For a general neural network with K hidden layers, with input vector

x (layer 0), the first and second layer are expressed as:

h1 = w0,1
ij x+ b0, (24)

h2 = w1,2
ij h1 + b1. (25)

The weights between unit i in the previous layer and unit j in the current layer are labelled

wij . The bias vector ensures that a constant term is present in the layers, which may be

required for successfull ML (by shifting the activation function). The final output is then

given by,

Page 13 of 54

ŷ = w
K(K−1)
ij hK + bK . (26)

Thus for such a fully-connected Neural Network the number of parameters to learn grows

rapidly with input size and number of layers.

3.6 Convolutional Neural Networks

CNN’s are a specialised form of neural networks for processing data with a grid-like topology.

Examples of such data are images (pixels form a grid) or time-series data (1-D grid taking

samples at equally spaced time intervals). CNN’s employ a form of convolution in one or

more layers rather than matrix multiplication as in equations 24, 25 and 26. 1-D real valued

convolution of a general function f(t) and a weighted function w(t) is mathematically defined

as

(f ⊛ w)(t) =

∫ ∞

−∞
f(τ)w(t− τ)dτ. (27)

In convolutional network terminology, the first argument to the convolution is referred to as

the input, and the second as the kernel. The output is referred to as the feature map [12].

For time-series data, time is discretised and the convolution can be expressed by,

(f ⊛ w)(t) =
τ=∞∑
τ=−∞

f(τ)w(t− τ). (28)

For ML purposes the inputs are usually a multidimensional array of data, and the kernel a

multidimensional array of parameters (weights) that are adapted by the learning algorithm.

The infinite sum is then replaced by finite summation over array elements. In related work

[24], 2-D CNN kernel filters are used, therefore it makes sense to discuss the 2-D case. As

an example, if the input is a 2-D image (array of pixels labelled by I(i, j)), the kernel can

be 2-D array W (m,n), resulting in an output array S, satisfying,

S(i, j) = (I ⊛W)(i, j) =
∑
m

∑
n

I(m,n)W (i−m, j − n). (29)

In contrast to typical ANN layers, where every unit interacts with every unit in adjacent

layers via matrix multiplication, CNN’s can have fewer interactions or connections. This

is accomplished by making the kernel size smaller than the input. CNN’s can therefore be

more efficient as fewer parameters have to be stored. Convolution is an extremely efficient

way of describing transformations that apply the same linear transformation of a small local

region across the entire input [12]. A key property of CNN’s is that their convolutions are

equivariant to translation. For detailed theory on this group equivariance the reader is re-

Page 14 of 54

Figure 2: Illustrative example, taken from [12], of 2D convolution on pixels with “valid
padding”. This involves restricting the kernel window to positions where it fits entirely in
the image. The kernel window “slides” through the input image. Due to this, CNN’s can
identify features or traits in data sets [12] .

ferred to [6], a less detailed description is provided here:

For CNN’s the resulting convolutional matrices S(w), in Equation 29, are circulant matrices

(each row vector is rotated one element to the right relative to the preceding row vector).

Importantly all convolutional matrices S(w) commute with the translation operators or shift

operators (which are also circulant matrices). This means circulant matrices enable transla-

tion equivariance to convolutions. In other words, when changing the location of the input,

the outputs of the CNN layer will be the same, only shifted. Mathematically this stems

from the fact that all circulant matrices have the same eigenspace (Fourier eigenspace) and

Equation 29 applies the same filter W to every part of the image. Therefore, if the networks

learns to recognize a certain feature, e.g., circles, in one part of the image, then it will be

able to do so in any other part as well.

Multi-layer networks (Deep Learning networks) can be constructed from combinations of

CNN’s layers and fully-connected layers. Further layers can be added to avoid over-fitting

such as the Dropout layer which randomly removes a fraction of the units of a layer (helping

the model to not become too specialised to the training data).

The aim of these algorithms is to construct the desired function or mapping by minimizing

corresponding loss functions (e.g. the MSE). The optimisation of the loss functions can be

Page 15 of 54

achieved via a number of methods, many of which are based on or similar to the method of

stochastic gradient descent.

3.7 Quantum Simulation

The Schrödinger Equation for time evolution of quantum mechanical systems is given by:

iℏ
d

dt
|Ψ⟩ = H|Ψ⟩, (30)

whose solution for a time independent Hamiltonian H is given by:

|Ψ(t)⟩ = eiHt|Ψ(0)⟩. (31)

The exponentiation of the evolution matrix is simplified when the Hamiltonian can be written

as a sum of local Hamiltonian’s Hk, since they only act on small subsystems. Generally Hk

and Hj don’t commute and e−iHt ̸=
∏
k e

−iHkt. The Trotter formula for Hermitian operators

A and B:

lim
r−→∞

(e
iAt
r e

iBt
r)r = ei(A+B)t, (32)

helps with non-commuting local Hamiltonians at the cost of errors determined by the size of

time intervals ∆t = t
r [25]:

ei(A+B)∆t = eiA∆teiB∆t +O(∆t2). (33)

Note that it is possible to construct higher order approximations. The following unitary

can repetitively be applied to the initial state to evolve the system to |Ψ(t)⟩, up to error

corrections.

e−i
∑m

k=1Hkt ≈ (

m∏
k=1

e−iHk
t
r)r. (34)

3.8 Variational Quantum Eigensolver (VQE)

Given a Hermitian matrix H with an unknown minimum eigenvalue λmin and associated

eigenstate |ψmin⟩, VQE provides a bound on λθ:

λmin ≤ λθ ≡ ⟨ψ(θ)|H|ψ(θ)⟩. (35)

Where |ψ(θ)⟩ = U(θ)|ψ⟩ is a parameterised state resulting from acting on an initial state via

a parameterised unitary. Applying this to a Hamiltonian H yields:

λmin ≤ ⟨H⟩ψ = ⟨ψ|H|ψ⟩ =
n∑
i=1

λi|⟨ψi|ψ⟩|2. (36)

Page 16 of 54

Where in Equation 36, H has been substituted with its weighted eigenvector representation,∑n
i=1 λi|Ψi⟩⟨Ψi| . A parameterised quantum circuit can be optimised classically (outer loop)

using the measurements of the observables (i.e the energy) as a loss function. The parameters

θ of this hybrid algorithm can then be tuned and the minimum eigenvalue sought after. The

algorithm typically has the following structure:

1. An initial state |Ψ0⟩ is prepared on the quantum computer. Ideally this state has a

large overlap with the desired ground state.

2. Next, a parameterised quantum circuit U(θ) is applied, yielding the variational ansatz

state |Ψ(θ)⟩ = U(θ)|Ψ0⟩.

3. The initial variational paramters θ0 are chosen to prepare |Ψ(θ0)⟩. Then the corre-

sponding energy E(θ0) = ⟨Ψ(θ0)|H|Ψ(θ0)⟩ is measured.

4. Based on this energy, the classical optimiser adjusts the parameters θ until convergence

to a minimum energy.

The VQE method can obtain results with relatively short circuits, making it well suited to

NISQ devices. The success of the method is sensitive to the choice of the parameterised circuit

and the problem in question. Important elements to take into account when selecting the type

of parameterised circuit are: the ability to produce the ground state with high fidelity, and

the implementabality of the circuit on NISQ hardware. These two considerations are closely

connected, due to the limited connectivity, length and qubit number that current quantum

circuits can have, but also the number of variational parameters a classical optimizer can

deal with.

Page 17 of 54

4 Exact Diagonalisation

In this section, the ED method of Sanvito et al. [24] is implemented for the one-dimensional

Hubbard model.

4.1 Solving the 1D Hubbard Model Exactly

The model can be solved by writing the Hamiltonian over a convenient representation.

The basis states are the number of possible configurations of the system, composed of 2L

orbitals and N electrons. The ordering of basis states can be chosen to be spin-up followed

by spin-down orbitals, such that: A basis state representing two electrons present at the first

site with L = 2 is,

|1, 0 : 1, 0⟩ = |1, 0, 1, 0⟩. (37)

With L = 2, N = 2, N↑ = 1 = N↓ one has 4 orbitals and 2 electrons, the wavefunction of

the system can be written as a linear combinations of the basis vectors:

BasisL=2,N=2,N↑=N↓=1 =

{|1, 0, 1, 0⟩ , |1, 0, 0, 1⟩ , |0, 1, 1, 0⟩ , |0, 1, 0, 1⟩}. (38)

Each basis state being represented by a vector |α1, α2, α3, α4⟩, where αi corresponds to the
number of electrons in orbital i. Note the wavefunctions are automatically antisymmetrised

through the basis definition, in terms of fermionic creation operators. This follows from the

anti-commutation relations given in Equation 64, in Section 6.1. Once the basis states are

generated, the eigenvalues and eigenstates of the problem are computed by representing the

Hamiltonian over these states.

4.1.1 Hilbert Space Dimension

For the general 1D Hubbard Hamiltonian given by Equation 4, the dimension of the Hilbert

space is

n = 22L. (39)

However by restricting to the case where the number of electrons N is fixed, and the number

of spin-up electrons is equal to the number of spin-down electrons (N↑ = N↓ = N
2), the

dimension becomes:

n =

(
L

N↑

)(
L

N↓

)
=

(
L
N
2

)2

. (40)

Page 18 of 54

The basis vectors satisfying N↑ = N↓ = N
2 live in this subspace and the Hubbard Hamil-

tonian can be solved over these states (the Hamiltonian is electron-number preserving and

furthermore it preserves N↓ = N↑).

4.1.2 Exact Diagonalisation

The matrix elements of the Hamiltonian, i.e. between basis states

|s⟩ = |αs1, αs2, αs2, . . . , αs2L−1, α
s
2L⟩ and |t⟩ = |αt1, αt2, αt2, . . . , αt2L−1, α

t
2L⟩ are computed via,

(H)s,t = ⟨s|H|t⟩. (41)

The diagonalisation of the matrix (H)s,t will provide the eigenvalues, Em, (total energies

of the system) and their corresponding eigenvectors ψm = (βm1 , β
m
2 , . . . , β

m
n−1, β

m
n)T . The

corresponding eigenstate for Em is the wavefunction,

|ψm⟩ =
n∑
i

βmi |αi1, αi2, αi3 · · ·αi2L−1, α
i
2L⟩. (42)

Equations 4, 38 and 41 yield the Hamiltonian Matrix corresponding to L = 2, N = 2,

N↑ = N↓ = 1:

HL=2,N=2,N↑=N↓=1 =

U + 2ν1 −(t+ t) −(t+ t) 0

−(t+ t) ν1 + ν2 0 −(t+ t)

−(t+ t) 0 ν1 + ν2 −(t+ t)

0 −(t+ t) −(t+ t) U + 2ν2

. (43)

Red font denotes terms resulting from periodic boundary conditions. For example, the action

of H on the basis state |1⟩ = |1, 0, 1, 0⟩ for the ring is,

H|1, 0, 1, 0⟩ = (U + 2ν1)|1, 0, 1, 0⟩ − (t+ t)|0, 1, 1, 0⟩ − (t+ t)|1, 0, 0, 1⟩. (44)

By ED the matrix form of the Schrödinger Equation, H|ψ⟩ = E|ψ⟩, can be solved. Note

that in the worst case, matrix diagonalisation is a procedure that requires a computational

time scaling as O(n3), where n is the dimension of the matrix to diagonalise. This dimension

n is given by Equation 40, the dimension of the Hilbert Space, resulting in a significant

scaling problem, e.g. for even N↑ = N↓, one has n =
(L

N
2

)2
:

(
4
1

)2
= 16,

(
8
2

)2
= 784 ,(

16
4

)2
= 3, 312, 400.

As a result of this scaling problem, the ED method is limited to very small systems.

Page 19 of 54

4.1.3 On-site Occupation

Following ED, the on-site occupations of the system in a given state, (e.g the ground-state)

can be found. The on-site occupation for orbital (i, σ), for a given energy level Em is given

by,

nmi,σ = ⟨ψm|n̂i,σ|ψm⟩. (45)

where |ψm⟩ is given by Equation 42. The set of on-site occupations, for each eigenstate, form

the electron density.

4.2 ML Data Set Generation and Implementation

An overview of the data set generation is visualised in a flowchart in Figure 3.

Figure 3: Data Set Generation for the ED method. Each entry in the data set consists of an
electron density (example) and a corresponding Functional energy (target).

Data sets for ML were generated for the following configurations:

1. Quarter-filling with L = 8, N = 4, N↑ = 2 = N↓ and larger allowed energy differences

than in [24]. The data set size was S = 6300, which was increased to S = 10800 using

the symmetries (described in Section 4.2.1) of the 1D Hubbard model.

2. Quarter-filling with L = 8, N = 4, N↑ = 2 = N↓. The data set size was S = 6300,

which was increased to S = 10800 using the symmetries of the 1D Hubbard model.

Page 20 of 54

3. Quarter-filling with L = 4, N = 2, N↑ = 1 = N↓. The data set size was S = 6300,

which was increased to S = 50400 using the symmetries of the 1D Hubbard model.

4. Half-filling with L = 4, N = 4, N↑ = 2 = N↓. The data set size was S = 6300, which

was increased to S = 50400 using the symmetries of the 1D Hubbard model.

For these data sets, each example is the ground state electron density {nGSiσ } resulting

from the Hamiltonian with randomly generated on-site energies {νi}. The corresponding

target is the DFT functional. The Coulomb term U was set to 10 and periodic boundary

conditions were kept throughout, resulting in a ring configuration. A Python script that

generates and solves the Hubbard Hamiltonian matrix exactly (ED) was written, which can

be found at [27]. This script returns the relevant ground-state density {nGSiσ } with the cor-

responding DFT functional F [nGSiσ] = EGS −
∑

i,σ n
GS
iσ νi.

In order to stay in line with related work [24], specific conditions were implemented. Fol-

lowing the procedure of [24], the random external potential is generated from uniform dis-

tribution with νi ∈ [−W,+W], with W varying between 0.005t and 2.5t. As in [24], external

potentials {νi} yielding ground state energies greater than 0.15t different in magnitude than

that of the homogeneous case, are discarded, in order to prevent the dataset from having

very large fluctuations in the total energy. Data Set 2 has these specific conditions. In this

way, the authors of [24] allow for random external potentials with large magnitudes, but

only actually include the data point if its corresponding ground state EGS is close to the

homogeneous ground state energy E0.

Data Set 1 was chosen to be a more general case than in [24], allowing for larger fluctu-

ations. For it, the acceptance condition for inclusion is changed from the original condition

|EGS − E0| < 0.15, (46)

to the condition

|EGS − E0| < |0.15E0| . (47)

This new acceptance condition for Data Set 2 was inspired by the fact that E0 ≈ −5.6 for

the case L = 8, N = 4, N↑ = 2 = N↓.

All energies are considered in units of t (=1), throughout the project these units are implied,

although not explicitly given. For example, a result EGS = −5.6 corresponds to EGS = −5.6t.

The openfermion [23] Python library of Google Quantum AI was used to generate instances

of the Hubbard Model. The openfermion.hamiltonians.fermi hubbard method provides a

Page 21 of 54

fermionic operator that can easily be converted to a sparse operator and then diagonalised.

The projection into the correct subspace (e.g . N = L
2 , N↑ =

L
4 = N↓) was applied, reducing

the cost of ED. Psuedocode for the ED data set generation is provided in Algorithm 1.

Algorithm 1 ED Data Set Generation

1: Inputs: S,L,N
2: Outputs: densities, Functionals
3: size=0
4: declare densities array
5: declare Functionals array
6: Generate basis states (e.g for quarter filling N = L

2 , N↑ =
L
4 = N↓).

7: while size < S do
8: Draw random uniform external potential νi ∈ [−W,+W], with W ∈ [0.005t, 2.5t].

9: Create H: Hubbard model instance with added
∑L

i

∑
σ νiâ

†
i,σâi,σ terms.

10: Project H into subspace using basis states.
11: Diagonalise H to get ground state |ΨGS⟩ and EGS .
12: if |EGS − E0| < 0.15 then
13: Continue
14: else
15: Calculate {nGSi }.
16: Calculate F [{niσ}] = EGS −

∑
i,σ νin

GS
iσ .

17: densities[size]= {nGSiσ }
18: Functionals[size]=F [{niσ}]
19: size = size +1

Calculating nGSj,σ = ⟨ψGS |n̂j,σ|ψGS⟩ involves the ground state

|ψGS⟩ =
n∑
i

βGSi |αi1, αi2, αi3 · · ·αi2L−1, α
i
2L⟩, (48)

specifically the probability amplitudes |βGSi |2 for each basis state i. The value of nGSj,σ can be

found by summing over all the basis states {i} and adding |βGSi |2 to nGSj,σ if the basis state

i has an electron present in position (j, σ) = αij+Lδσ↓
. Note j ∈ {1, 2, · · · , L− 1, L} and the

dirac delta term δσ↓ is due to the labelling of orbitals in the basis states, in Equation 48.

4.2.1 Data Set Extension: Symmetries

As in [24], the symmetries of the 1D Hubbard model are used to extend the size of the data

set. The 1D Hubbard model is mirror-symmetric, this means that for any external potential

νi −→ νL+1−i yields a mirror-symmetric electron density with the same total energy.

Similarly there exists a translational symmetry, such that νi −→ νi+1 yields a shifted electron

density with the same total energy. With these two symmetries the dataset is increased by

a total factor of 2L.

Page 22 of 54

4.3 ML Model

For each data set, a Deep Learning model was built to learn the functional. The data sets

were split into training(72%), validation(18%) and test(10%) sets.

4.3.1 Standardisation

Feature vector components, niσ for sites i over all the examples, and targets were normalised

as follows,

z 7→ (z − µtrain)

σtrain
. (49)

All the data sets are standardised using the training data mean and standard deviation.

Where µtrain is the mean and σtrain is the standard deviation, of the training data. Stan-

dardisation generally improves the likelihood of convergence of ML models [12], especially

deep neural networks.

4.3.2 Data Preprocessing for CNN Layers

The 1D Hubbard model has an SU(2) symmetry which combined with the conditionN↑ = N↓

guarantees that the local site occupation remains spin unpolarised, namely that ni↑ = ni↓.

This means that in the special case (N = L
2 , N↑ = L

4 = N↓), the functional depends only

on one of the two spin electron densities, for instance on {ni↓} [24]. Additionally to account

for periodic boundary conditions and to ensure each component of the electron density is

acted on by the kernel the same number of times, {ni} was extended. This resulted in new

“wrapped” electron densities. For example in the 8-site setting with the chosen kernel size

of (3,1),

{2ni↓} = {2ni↑} = {ni} =

{n1, n2, n3, n4, n5, n6, n7, n8} −→ {n1, n2, n3, n4, n5, n6, n7, n8, n1, n2, n3}. (50)

To act as an input into a 2D CNN layer, these new examples were reshaped into a 2-D

array of dimensions (L+3,1). The chosen kernel size of (3,1) could then “sweep” through the

examples, allowing the interaction between the sites at the end and the sites at the beginning

to be encoded.

4.3.3 Network Architecture

The ML algorithm were implemented using the Keras and TensorFlow Python packages

[5, 1]. For benchmarking purposes the same network design as in [24] is kept. The convo-

lution neural network used, had one CNN layer with 8 convolutional filters, followed by 2

fully connected layers each with 128 units/nodes and finally an output layer. The ReLU

Page 23 of 54

activation function, given by Equation 23, was used for the fully connected layers.

A maximum of 50 loops/epochs over the entire training data were run, optimising the

MSE loss function. Using the “Modelcheckpoint” callback in Keras the history of the model

was saved after each epoch. After each epoch the weights of the model were updated if the

validation loss improved. This ensured the model was not overfitting. The “EarlyStopping”

method was used, which stops training once the validation loss stops improving. Once this

occurred the best model (generalises best on validation data) is kept.

The architecture of [24] was kept and remained fixed throughout experiments. However

to ensure that results did not depend on the training/validation/test set splits, 5-fold cross

validation was performed. In k-fold cross validation, the original data set is randomly parti-

tioned into k equal sized subsets. For each of the k subsets, it is retained as the test data and

the remaining k− 1 subsamples are used as training data. After this has been repeated, the

results for the k different splits is averaged. Additionally, hyperparameter optimisation was

performed for the learning rate, α ∈ {0.1, 0.01, 0.001, 0.0001, 0.00001} of the Adam optimiser

[16].

4.4 ED: Results

For each data set, the experimental results of the ED method are outlined in this subsection.

4.4.1 Data Set 1: L = 8, N = 4, N↑ = 2 = N↓

For this data set the acceptance condition for energy differences was loosened such that it

became:

|EGS − E0| < |0.15E0| . (51)

This allowed for much larger variation in total energies and therefore fluctuations within the

data set. As an example, for a given split, test set predictions versus the exact test set are

plotted in Figure 4 for the case with Adam learning rate α = 0.001. Additionally in Figure 5

the corresponding model loss is plotted for each epoch, showing that the desired Functional

is learnt by the CNN network. In Table 1 the full test set MSE results are provided, for each

cross validation fold and learning rate parameter α. Following hyperparameter optimisation,

the average MSE over the test sets is 0.000151. For the learning rates α ∈ {0.1, 0.01} the per-

formance was significantly lower, and therefore in what follows, hyperparameter optimisation

was restricted to the subset α ∈ {0.001, 0.0001, 0.00001}. Overall the desired functional is

learned by the model, however the accuracy can be improved by keeping the same acceptance

conditions as in [24].

Page 24 of 54

Figure 4: Example of test set Functional
F [n] predictions vs F [n] true values.

Figure 5: Corresponding Model loss
over epochs.

MSE Split 1 Split 2 Split 3 Split 4 Split 5 Average

α=0.1 0.157 0.152 0.156 0.157 0.154 0.155

α=0.01 0.000474 0.000493 0.000536 0.000750 0.000438 0.000538

α=0.001 0.000178 0.000264 0.000171 0.000201 0.000330 0.000229

α=0.0001 0.000135 0.000134 0.000197 0.000133 0.000154 0.000151

α=0.00001 0.000362 0.000336 0.000360 0.000402 0.000328 0.000357

Table 1: Data Set 1: Cross Validation and Hyperparameter Tuning for the case L = 8, N =
4, N↑ = 2 = N↓, with more general energy acceptance conditions. MSE values up to 3
significant figures.

4.4.2 Data Set 2: L = 8, N = 4, N↑ = 2 = N↓

The original energy acceptance condition:

|EGS − E0| < 0.15, (52)

was kept and the model results are displayed in Table 2. Overall the performance improves

and following hyperparameter optimisation, the average MSE over the test sets is

1.899×10−5. This accuracy confirms that the functional has been learned by the ML model.

4.4.3 Data Set 3: L = 4, N = 2, N↑ = 1 = N↓

Here the quarter-case is considered with L = 4 and again the same acceptance condition as

in Equation 52 is kept. The results following hyperparameter optimisation are displayed in

Table 3. The average MSE over the test sets is 0.619× 10−5, again showing that the desired

Page 25 of 54

MSE ·10−5 Split 1 Split 2 Split 3 Split 4 Split 5 Average

α=0.001 6.535 12.467 10.453 4.339 2.981 7.355

α= 0.0001 1.603 1.938 2.0673 1.917 1.967 1.899

α=0.00001 4.263 3.933 4.115 3.899 3.7412 3.991

Table 2: Data Set 2: Cross Validation and Hyperparameter Tuning for the case L = 8, N =
4, N↑ = 2 = N↓, as in [24]. MSE values up to 3 significant figures.

DFT functional has been learned.

MSE ·10−5 Split 1 Split 2 Split 3 Split 4 Split 5 Average

α=0.001 5.154 2.699 4.503 1.501 1.871 3.146

α= 0.0001 0.763 0.460 0.689 0.385 0.796 0.619

α=0.00001 2.344 1.518 1.878 0.984 1.237 1.592

Table 3: Data Set 3: Cross Validation and Hyperparameter Tuning for the configuration
L = 4, N = 2, N↑ = 1 = N↓. MSE values up to 3 significant figures.

4.4.4 Data Set 4: L = 4, N = 4, N↑ = 2 = N↓

Lastly the half-filling case with L = 4 was considered, again with acceptance conditions given

by Equation 52. The average test set MSE is remarkably low, with a value of 4.78 × 10−8.

In this case the ML model functional is almost indistinguishable from the desired exact

functional. This impressive performance is due to the chosen configuration and the structure

of data set. Next the effect of the data set structure is investigated.

MSE ·10−7 Split 1 Split 2 Split 3 Split 4 Split 5 Average

α=0.001 2.261 2.276 3.194 1.038 1.444 2.043

α= 0.0001 0.627 0.318 0.465 0.423 0.559 0.478

α=0.00001 0.957 1.287 1.145 0.987 1.034 1.087

Table 4: Data Set 4: Cross Validation and Hyperparameter Tuning for the configuration
L = 4, N = 4, N↑ = 2 = N↓ MSE values up to 3 significant figures.

4.4.5 Data Set Structure and Discussion

The varying accuracy of the ML model is a direct consequence of the data set in question.

The more complex the data set (higher fluctuations in Functional Energies) the lower the

Page 26 of 54

accuracy. From Figure 6 it is clear that Data Set 1 has far more fluctuation in F than Data

Set 2, due to the energy acceptance conditions. For Data Set 2 and Data Set 3, the difference

in fluctuations of F is even more pronounced. The performance of the ML model is nega-

tively affected by the increase in fluctuations. This is an important factor to consider for the

general approach of applying ML models to ED or VQE quantum data sets. Especially for

quantum data generated by a VQE, where there may be less knowledge/control over which

data points to admit into a training set. Despite this consideration, one can always increase

the data set sizes to improve ML performance.

Figure 6: Functional values over the 6300 data points in each data set. The ML model
average test set MSE is: 1.51× 10−4 for Data Set 1, 1.899× 10−5 for Data Set 2, 6.19× 10−6

for Data Set 3 and 4.78× 10−8 for Data Set 4.

In conclusion, the ML model learns the desired functional well across all ED data sets.

On a NISQ quantum computer exact results are not accessible and therefore in the following

Section, the impact of incorporating measurement/shot noise is investigated.

Page 27 of 54

5 Measurement Noise

Given the ED results, the exact ground-state density {nGSiσ } with the corresponding DFT

functional, F [nGSiσ] = EGS −
∑

iσ n
GS
iσ νi, could easily be found. Conversely, on a quantum

computer repetitive measurements in the relevant bases are typically required. In this section

the ground state wavefunctions from the ED method are taken and noisy measurements are

emulated. Throughout, the assumption is made that the quantum computer has yielded an

accurate ground state |ΨGS⟩, from which the properties,

1. |ΨGS⟩ ∼ {nGSi },

2. ⟨ΨGS |H|ΨGS⟩ = ⟨ΨGS |
(∑L

i,σ νiâ
†
i,σâi,σ − t

∑L
⟨i,j⟩,σ â

†
i,σâj,σ + U

∑L
i n̂i,↓n̂i,↑

)
|ΨGS⟩ =∑

k⟨ΨGS |Hk|ΨGS⟩ = EGS ,

are sought after. Note the desired DFT functional (target) requires measuring the kinetic

and Coulomb terms ⟨ΨGS |
(
−t
∑L

⟨i,j⟩,σ â
†
i,σâj,σ + U

∑L
i n̂i,↓n̂i,↑

)
|ΨGS⟩. For the electron den-

sities, since every qubit represents an orbital, one can repetitively measure |ΨGS⟩ in the

computational basis, hence the notation |ΨGS⟩ ∼ {nGSi }.

5.1 Measuring Observbles on a Quantum Computer

Since the wavefunction on a quantum computer cannot be directly accessed, one has to

repetitively measure observables. Many observables X̂ can be written as a linear combination

of polynomially (in the number of qubits) many Pauli strings P ∈ {I,X ,Y,Z} with real

coefficients hj ,

X̂ =
∑
j

hjPj . (53)

In order to estimate the value of an obervable X̂, one has to take M samples, denoted

{X1, X2, · · · , XM}, and then compute the expectation value: 1
M

∑M
m Xm. The standard

Chebyshev’s inequality,

P

(∣∣∣∑M
m Xm

M
− µX

∣∣∣ ≥ ϵ

)
≤ σ2

Mϵ2
, (54)

shows that one needs to take a number of measurements M that scales as

M ∼ 1

ϵ2
, (55)

to get with high probability, an estimate of µX , up to error ϵ. Note, in general better scaling

may be possible (such as a Chernoff bound), because often Xm’s are bounded. Next the

noisy electron density, Coulomb and Kinetic measurements are discussed.

Page 28 of 54

5.2 Noisy Electron Densities

For the electron densities, since every qubit represents an orbital, one can repetitively mea-

sure |ΨGS⟩ in the computational basis. The computational basis measurements were gen-

erated according to Algorithm 2. Here the random measurements are simulated by taking

Bernoulli trials with probabilities equal to the relevant probability amplitudes |βGSi |2, given
by Equation 42.

Algorithm 2 Generate Noisy Electron Densities

1: Inputs: |ΨGS⟩,basis states, M, L
2: Output: densities
3: Declare densities array (zero values)
4: for m in range(M) do
5: for i in basis states do
6: for j in range(2L) do
7: if Electron present in basis state position: i[j]=‘1’ then
8: densities[j]+ = bernoulli(p = |βGSi |2)
9: end if

10: end for
11: end for
12: end for
13: divide densities by M
14: Return: densities

=0

5.3 Noisy Coulomb Energy Measurements

The Coulomb terms ⟨ΨGS |
∑L

j n̂j,↓n̂j,↑|ΨGS⟩ contribute to the energy when two electrons are

present on the same site. The random measurements were performed in similar fashion to

Algorithm 2 via Bernoulli trials.

Given the ground state,

|ψGS⟩ = |
n∑
i

(βGSi |αi1, αi2, αi3 · · ·αi2L−1, α
i
2L⟩, (56)

for each basis state the occurrence of doubly-occupied sites was found and used to create a

probability matrix. As a simple example, consider the i’th basis state

|1, 0, 0, 0, 0, 0, 1, 0 : 1, 0, 0, 0, 1, 0, 1, 0⟩ = |1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0⟩, (57)

with probability amplitude |βGSi |2. The i’th row of the probability matrix is then equal to(
|βGSi |2 0 0 0 0 0 |βGSi |2 0

)
, (58)

Page 29 of 54

since the first and seventh sites are doubly-occupied. A probability matrix of shape (n× L)

was created, where each column corresponds to a probability vector for one of the L double-

occupation n̂j,↓n̂j,↑ terms. The contribution of n̂j,↓n̂j,↑ was estimated by taking n Bernoulli

trials with probability equal to the n’th column vector entry. The sampling was repeated M

times, yielding an estimate.

5.4 Noisy Kinetic Energy Measurements

Simultaneously measuring all qubits in the computational basis (eigenvectors of the Pauli-Z

operator), the electron densities and double occupancy can be determined on a quantum

computer. Thus the measurement noise can simply be emulated using Bernoulli trials. For

the kinetic energy observable, rotating into the basis in which the kinetic energy operator is

diagonal, is required on a quantum computer. The rotation into the diagonal basis is possible

on a quantum computer by Bogoliubov transformations, which can be implemented through

a Givens rotations circuit [14].

In order to simulate this shot noise, the Kinetic operator T̂ was first diagonalised:

T̂ = V †DλV, (59)

where the matrix representation of T̂ is the projected Hamiltonian Ĥ with all diagonal entries

set to zero. Using the basis change matrix V † the ground state is rotated,

ΨGS 7→ V † ·ΨGS =

β
′
1

β
′
2

...

β
′
n−1

β
′
n

, (60)

followed by conversion to probabilities,

β
′
1

β
′
2

...

β
′
n−1

β
′
n

7→

|β′
1|
2

|β′
2|
2

...

|β′
n−1|

2

|β′
n|

2

. (61)

Page 30 of 54

The eigenvalues of the kinetic operator are randomly sampled according to the probabilities

given by Equation 61, where eigenvalue j is chosen with probability |β′
j |
2
. This was repeated

M times and averaged to yield the estimate.

5.5 Noisy ML Models

The ED data sets from the previous section were used to generate 250 noisy versions for

each data set, with varying number of measurementsM , where the values ofM ∈ [102, 106.3]

were log-scaled. This range for M was chosen for all data sets, after it was observed that

the noisy model performance converged with the exact model at M ≈ 106 for Data Set 1.

Then the ML model was applied to each of the these data sets, where the same process was

applied as in Section 4.3. However due to the added noise, Equation 50 does not hold and

the wrapped electron densities were set to:

{ni} = {ni↓ + ni↑} =

{n1, n2, n3, n4, n5, n6, n7, n8} −→ {n1, n2, n3, n4, n5, n6, n7, n8, n1, n2, n3}. (62)

5.6 Nosiy Measurements Results

The Deep Learning network was run on all measurement noise data sets and the following

measures recorded for test set MSE:

1. fNoise(XNoise) vs FNoise −→ Pure noise measure.

2. fNoise(XNoise) vs FExact −→ Noise model against exact Functionals.

3. fNoise(Xexact) vs FExact −→ Exact inputs into noisy model.

4. fExact(Xexact) vs FExact −→ Exact noiseless model for comparisons.

Where fNoise is a model trained on noisy training data and XNoise and Fnoise are noisy

electron densities (examples) and noisy Functionals (targets), respectively. Note that in the

proposed hybrid scheme, the Deep Learning model only sees the pure noise measure during

training. Then once it is trained it can take Xexact as inputs and correspondingly the third

measure is of importance. With these four measures the performance of the model can be

evaluated for each data set.

5.6.1 Data Set 1: L = 8, N = 4, N↑ = 2 = N↓

The red line in Figure 7 is simply the MSE between the noisy and exact Functionals, with

varying M , over the entire data set. The MSE involves squared terms, which from Equation

55, results in an expected slope of -1 in a log-scaled plot. This is seen in Figure 7, meaning

Page 31 of 54

the method chosen to emulate shot noise succeeded. The black line indicates the exact

noiseless model result from the previous section and is independent of M . The ML model

is always trained on the noisy data and its fNoise(XNoise) vs FNoise MSE is shown in blue.

As expected, this value asymptotically reaches the exact model performance as M increases.

The positioning of the orange and green line reveal insights into the ML models ability to

learn the desired Functional. The orange line represents fNoise(XNoise) vs Fexact and is lower

than the blue line. Additionally the green line, representing fNoise(XExact) vs Fexact, is lower

than the orange line. Therefore it is clear that the ML model, fNoise, achieves a degree of

noise mitigation, for low M . Whereby, the model learns the Functional more so than the

noise within the data set.

As expected, for low M , the noisy model MSE is not near the desired the exact model

MSE. Then asM increases, the noisy data converges towards the exact data and correspond-

ingly all the model measures converge.

Figure 7: Test Set MSE plot for Data Set 1, for the case α = 0.0001. MSE are averaged
across the 5 Cross Validation folds and shaded regions denote minimum and maximum MSE
values across folds.

Page 32 of 54

5.6.2 Data Set 2: L = 8, N = 4, N↑ = 2 = N↓

The results are visualised in a plot of MSE versus the number of shots M , in 8. For this

data set, the effect of measurement noise on the performance of the ML model is similar

in nature to that of Data Set 1. The one noticeable difference is that for very low M the

fNoise(XNoise) vs Fexact MSE is lower than the fNoise(XExact) vs Fexact MSE, as there is

a lot of noise in the data. However as M approaches 103 the ML model can again learn

to focus more on the Functional rather than the shot noise in the data, and the green line

descends below the orange line.

Figure 8: Test Set MSE plot for Data Set 2, for the case α = 0.0001. MSE are averaged
across the 5 Cross Validation folds and shaded regions denote minimum and maximum MSE
values.

5.6.3 Data Set 3: L = 4, N = 2, N↑ = 1 = N↓

The results for the quarter-filling case with L = 4 are shown in Figure 15 which displays the

same overall behaviour as Data Set 1. For brevity Figure 15 is provided in the Appendix

Section 8.1.

Page 33 of 54

5.6.4 Data Set 4: L = 4, N = 4, N↑ = 2 = N↓

The Data Set 4 results are displayed in Figure 9. The achieved MSE for the exact ML

model is orders of magnitude lower than that of the other data sets. Also, when adding shot

noise, the ratio of noise to the fluctuations within the data set is far larger, resulting in the

behaviour seen in Figure 9. As with Data Set 2, the green line is not always below the orange

line, due to the noise within the data. An error was made in choosing the same range for M

as in preliminary experiments. In future work the range of M should be increased so that

the convergence of the model measures can be fully observed. However, one takeaway from

these results, is that if the data set in question has low fluctuations in Functional energies,

and one is satisfied with a level of MSE, such as ∼ 10−6, then the ML model is effective at

shot noise mitigation. Visually this can be interpreted as the green line being lower than the

red line for a given MSE, such as ∼ 10−6.

Figure 9: Test Set MSE plot for Data Set 4, the case α = 0.0001. MSE are averaged across
the 5 Cross Validation folds and shaded regions denote minimum and maximum MSE values.

5.7 Discussion

The effect of shot noise on the ML model was investigated for the data sets from Section

4. The emulated shot noise showed the correct error scaling given by Equation 55. In the

previous section, the ML model trains on exact data, and learns the Functional from exact

Page 34 of 54

data. In this section, the ML model sees the exact data with added shot noise and manages

to mitigate some of the noise effects. As expected, the noisy ML model measures defined

in Section 5.6, all converge asymptotically with M to the exact ML model. Overall, the

potential for noise mitigation is a positive result, however its usefulness depends on the level

of accuracy one wishes to achieve.

So far it has been assumed that the exact ground state can be prepared on a quantum

computer, which is not NISQ applicable. Therefore in the following section the VQE method

is implemented for generating the data sets.

Page 35 of 54

6 VQE Method

A promising class of methods for finding the ground state of quantum many-body prob-

lems are variational methods. The variational quantum eigensolver (VQE) [22] is a hybrid

quantum-classical approach to produce a ground state of a quantum Hamiltonian H. In

this section the VQE method is simulated on a classical computer, where exact energy mea-

surements ⟨Ψ|H|Ψ⟩ are used as inputs to the classical optimiser. Throughout this section,

measurement/shot noise is not considered and all the noise present in the data stems from

imperfect VQE optimisation. In order to implement the quantum simulation of the fermionic

system the qubits need to be mapped via the Jordan-Wigner Representation.

6.1 Anti-Commutation relations and Jordan-Wigner Representation

In the computational basis the operators in H acting on a qubit can be expressed as:

â† =

0 0

1 0

 =
X − iY

2
, â =

0 1

0 0

 =
X + iY

2
, n̂ =

0 0

0 1

 =
I− Z

2
. (63)

For fermions, these operators acting on a Fock state need to satisfy the anti-commutation

relations:

{âi†, âj†} = {âi, âj} = 0, {âi, â†j} = Iδij . (64)

Note in this subsection the indices i, j cover all orbitals, both spin-up and spin-down, such

that i ∈ [0, 1, · · · , 2L − 1, 2L]. The required Fock Space anti-commutation relations don’t

hold, for example, âi
†âj

† = âj
†âi

†. The Jordan-Wigner Representation overcomes this by

interspersing Z operators into the construction as follows:

â†i −→ Z:iâ
†
i ,

âi −→ Z:iâi
(65)

Where Z:i =
∏i−1
j=0 Zj . The on-site nuclear terms, on-site Coulomb repulsion terms and

hopping terms become (j > i):

â†i âi = n̂i −→
(
I− Zi

2

)
, (66)

ninj −→
1

4
(I− Zi)(I− Zj), (67)

â†i âj + â†j âi −→
1

2
(XiXj + YiYj)Zi:j . (68)

Page 36 of 54

Importantly when two qubits are adjacent in the qubit ordering then the corresponding

hopping term has 2-qubit locality. The 1D Hubbard model therefore requires few Jordan

Wigner strings.

6.2 Hamiltonian Variational Ansatz

The 1D Hubbard Hamiltonian can be separated into two parts. One being the non-interacting

Hamiltonian H0 = hh + hν :

hν =

L∑
i,σ

νiâ
†
i,σâi,σ,

hh = −t
L∑

⟨i,j⟩,σ

â†i,σâj,σ.

(69)

Here hh and hν represent the hopping and on-site terms respectively. The full Hamiltonian

H is then the sum of H0 + hu, where hu is the interaction:

hu = U

L∑
i

n̂i,↓n̂i,↑. (70)

Let |Ψ0⟩ be the ground state of the non-interacting Hamiltonian and |ΨT ⟩ be a trial state

of the full Hamiltonian. If the state can |Ψ0⟩ be prepared on a quantum circuit, then

assuming no gap closes, it is possible to adiabatically evolve from |Ψ0⟩ to the ground state

of the full interacting Hamiltonian [8]. This can be achieved by breaking the annealing

into short time steps dt and evolving for a total time T , this annealing is a sequence of

(T/dt) different unitary rotations by Hamiltonians interpolating between H0 and H [8].

This could be implemented on a quantum computer using a Trotter-Suzuki method which

further decomposes this sequence into a sequence of unitary rotations by individual terms in

the Hamiltonian.

In this work the Hamiltonian Variational Ansatz of Wecker, Hastings and Troyer [8] was

used. This method considers arbitrary angles for the rotations in the sequence, rather than

choosing them from a Trotterization of an annealing process, allowing for a shorter sequence

(resulting in a shorter circuit depth). Once the state |Ψ0⟩ is prepared, a quantum circuit can

yield the trial state:

|ΨT ⟩ =
S∏
b=1

(
Uu(

θbu
2
)Uh(θ

b
h)Uν(θ

b
ν)Uu(

θbu
2
)

)
|Ψ0⟩. (71)

This method involves a repeating pattern and performs S repetitions or steps. In each of

these steps there are 3 variational parameters θbh, θ
b
u, θ

b
ν , where b = 1, . . . , S. The Unitaries

Page 37 of 54

Uα(θ) implement the exponential eiθhα exactly, where α ∈ [u, h, ν].

6.3 Hamiltonian Variational Ansatz Implementation

The parameterised circuits were implemented using Cirq [10] and Openfermion and the VQE

implementation was based on related works [3, 9, 32]. The qubit layout was chosen to be

a line of qubits, with each qubit representing a spin orbital. The ordering was kept as in

Equation 37, resulting in low Jordan-Wigner string counts, where all spin-up qubits/orbitals

appear before all spin-down. Next the initial state preparation procedures are detailed.

6.3.1 Initial State Preparation

The ground state of the non-interacting Hamiltonian (U = 0) can be efficiently prepared

[15] and act as the initial state for the VQE. The Hamiltonian H0 is quadratic in fermionic

creation and annihilation operators and is also particle number conserving. With Open-

fermion the circuit which prepares the initial state can be efficiently produced. This method

is described in detail in [14], where the algorithm prepares a Slater determinant using Givens

rotations (Equation 72). The initial prepared state |Ψ0⟩ can then be acted on as in Equation

71.

The overlap between the initial prepared state |Ψ0⟩ and the desired ground state of H

is important for the VQE’s succcess. In the scenario with U = 10, i.e. strong interaction

between the fermions, the overlap may not be sufficiently large. Therefore an alternative

initial state preparation method was also experimented with. Here parameterised Givens

Rotations were implemented, which are particle-conserving Unitaries. These operations are

rotations in the plane spanned by two coordinates axes. In quantum computational chemistry

the Givens rotation is typically defined as:

G(θ) = e
−iθ(Y X−XY)

2 =

1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

, (72)

acting on the subspace spanned by |10⟩ and |01⟩. For example in the case of 4 sites at half-

filling, the parameterised Givens rotations acted as displayed in Figure 10. This alternative

initial state preparation can help with providing a reasonable overlap, at the cost of intro-

ducing additional parameters for the classical optimiser. The two initial state preparations

were experimented with and the best performing method kept for data generation. Next the

Page 38 of 54

ansatz gates used for the hopping, Coulomb and on-site terms are detailed.

Figure 10: Givens rotations layout as in [32], for the case L = 4, N = 4, N↑ = 2 = N↓.
Note that each gate is parameterised, however the upper (spin-up) gates share the same
parameters as the corresponding lower (spin-down) gates. Image taken from [32].

6.3.2 Ansatz: Unitary Gates

The Number Preserving (NP) unitary [3] is a general number-preserving, 2 qubit gate of the

following form,

UNP (θh, θu) =

1 0 0 0

0 cos θh i sin θh 0

0 i sin θh cos θh 0

0 0 0 eiθu

. (73)

This parameterised unitary accounts for all kinetic and Coulomb terms in H. The Coulomb

terms are accounted for by the eiθu term which acts on the |11⟩ state. The unitary is thus

applied between Coloumb interacting qubit pairs, with (θh = 0, θu = U
2 θu). Similarly the

hopping terms are accounted for via (θh = −tθh, θu = 0), which correspond to e
−itθh(XX+Y Y)

2 .

The external potential terms are accounted for by single phased qubit gates,

T (θν) = eiθν =

 1 0

0 eiθν

 . (74)

Note each qubit corresponding to a fermionic mode at site j is acted on with θν = νjθν ,

where νj is the random external potential at site j. The same parameter θννj is used for

both the spin-up and spin-down modes at site j. The ansatz is implemented as given by

Equation 71, where different layers can have different parameters. Note the the Hamiltonian

Page 39 of 54

Variational ansatz is a special case of the NP ansatz [3]. In order to preserve spin and remain

in the correct number-preserving subspace many parameters must be fixed to be identical

or set to 0. In total, the number of variational parameters per ansatz layer is 3. With these

unitary gates, the VQE method was implemented using Cirq and Openfermion to generate

data sets for the ML method.

6.4 VQE Method: Data Generation

As in Section 4 and 5, energy acceptance conditions were set for including data points into

data sets. In general this is not a realistic possibility for larger system sizes, due to the

infeasible cost of ED. However for comparing the ML model performance, between VQE

and ED data sets, the same acceptance conditions were kept, whereby exact ground state

energies were found via ED. If the acceptance conditions were satisfied, the VQE method

was run for the data point in question.

The Cobyla and L-BFGS optimisers were tried using Scipy [34] and it was found that Cobyla

performing the best and was used throughout. The reason for Cobyla performing better than

L-BFGS with the chosen ansatz is to be investigated in future work, it could be due to dif-

ficult optimisation landscapes for the inhomogeneous Hubbard cases being studied. This

choice of non-gradient based optimiser acted on exact energy measurements ⟨Ψ(θ)|H|Ψ(θ)⟩.
After the VQE optimisation procedure is complete, the quantum circuit yields a state |Ψ(θ)⟩
given by Equation 71, corresponding to the lowest energy configuration found. Note that

this state is not guaranteed to be the desired ground state and may have low fidelity with it.

In order to generate the data set, for each data point, the state |Ψ(θ)⟩ is directly accessed

and electron densities {nV QEiσ } are found as in Section 4. The corresponding Functional

Energy or target for ML is then calculated as:

F [nV QEiσ] = EV QE −
∑
i,σ

nV QEiσ νi, (75)

where EV QE = ⟨Ψ(θ)|H|Ψ(θ)⟩ for the Hamiltonian H resulting from external potential ν.

As in Section 5, when the VQE data is generated, the corresponding ED data is also saved,

resulting in an exact data set and its corresponding noisy VQE data set.

6.5 VQE Results

Overall the ML method is similar to Section 5 and the same measures from Section 5.6 are

chosen:

1. fV QE(XV QE) vs FV QE −→ Pure VQE measure.

Page 40 of 54

2. fV QE(XV QE) vs FExact −→ VQE model against exact Functionals.

3. fV QE(Xexact) vs FExact −→ Exact inputs into VQE model.

4. fExact(Xexact) vs FExact −→ Exact model for comparisons.

With these measures the performance of ML model can be evaluated and it can be determined

whether noise mitigation is achieved as in Section 5. Next the varying success of the VQE

optimisation for different cases with L = 8 and L = 4 is discussed.

6.5.1 L = 8

For the case with 8 sites or 16 qubits, the VQE optimisation performed poorly. Extensive

experimentation with the VQE configuration was performed, including different initial state

preparations, varying ansatz depths, freeing up extra variational parameters and different

parameter initialisations. See Appendix Section 8 for further details on VQE attempts.

Overall for the quarter-filling case, L = 8, N = 2, N↑ = 1 = N↓, the resulting states produced

were not accurate enough for ML purposes. Unfortunately this ruled out the ability to obtain

comparative results for Data Set 1 and Data Set 2 in Sections 4 and 5. As an illustrative

example of the large differences between ground state energies and VQE energies, see Figure

11. The red line denotes the energy w.r.t to the initial state and the green line denotes the

desired ground state energy. The VQE method does not yield energies close to the desired

ground state. Whilst this plot is only for a given data point with random external potential

ν, this behaviour was observed for almost all data points. Next VQE results for the smaller

system sizes with L = 4 are presented.

Figure 11: Example plot of VQE performance with varying ansatz depth. The initial state
preparation method was that of the non-interacting Hamiltonian as detailed in Section 6.3,
similar results are observed for the alternative Givens rotation method.

Page 41 of 54

6.5.2 L = 4

Due to a smaller system size, the VQE method achieved better optimisation and data sets

could be produced for the MLmodel. Following experimentation with the VQE configuration,

two data sets were produced, each corresponding with Data Set 3 and Data Set 4 from

Sections 4 and 5. The depth of the circuit was chosen to be 4, as the performance plateaued

for larger depths. For the quarter-filling case, with L = 4, N = 2, N↑ = 1 = N↓, the VQE

yielded many states with high overlap with desired ground states. This can be seen in the

left of Figure 12, where the fidelities |⟨Ψ(θ)|ΨGS⟩|2 are plotted for each data point. However

there exist many points with low overlap, which negatively affect the ML models ability to

learn the desired Functional. This issue is more pronounced for the half-filling case with

L = 4, N = 4, N↑ = 2 = N↓ as seen in the right of Figure 12. The variability in the VQE’s

success is substantial and this may be related to the physics of the Hubbard model at half-

filling, where it is a Mott insulator. The accumulation of points with fidelities close to 0 and

0.5 suggest that these points have optimisation landscapes that contain difficult regions such

as barren plateaus. In spite of this, the ML model was still applied to both VQE data sets

for completeness.

Figure 12: Fidelities |⟨Ψ(θ)|ΨGS⟩|2 of data points generated by the VQE method for the
quarter-filling case, L = 4, N = 2, N↑ = 1 = N↓ on the left and the half-filling case L =
4, N = 4, N↑ = 4 = N↓ on the right.

Page 42 of 54

6.5.3 VQE Results: ML Model

Given the VQE data sets for L = 4, the ML Model was implemented as in Sections 4 and 5.

Previously there were 250 data sets to compare against the exact results, for varying levels

of shot noise. Now there is a single ML model trained on the VQE data set, along with an

exact model for comparison. Therefore to illustrate the ML models performance, the MSE

over test sets for each cross validation split are plotted in Figures 13 and 16. As in previous

sections, an Adam learning rate of α = 10−4 performed best. From the figures it can be

seen that the ML model fails to learn the Functional when trained on VQE generated data.

Additionally the noise mitigation seen in previous sections is not present, whereby the blue

line is now lower than the orange and green lines.

Figure 13: Test Set MSE plot for the VQE results in the quarter-filling case, L = 4, N =
2, N↑ = 1 = N↓, with (α = 10−4).

6.6 VQE: Discussion

The ML model attempts to learn the DFT Functional, which maps

fDFT : {nGSiσ } 7→ F [{niσ}] = EGS −
∑
i

νin
GS
i = ⟨ψGS |(T̂+ Û)|ψGS⟩. (76)

Unfortunately, the VQE method yielded numerous states that have low fidelity with the

desired ground state. This had a negative impact on the accuracy of the electron densi-

Page 43 of 54

ties {nV QEiσ }, which ultimately acted as misleading inputs into the ML model. In order

to investigate this, the differences in electron densities, XExact − XV QE are compared to

XExact−XNoise from Section 5. The XNoise data set for comparison is taken as the one with

the closest FNoise vs FExact MSE to that of the VQE data set. E.g, for quarter-filling this

corresponds to Data Set 3 with M = 2053 measurement shots. In other words, we investi-

gate the error in electron density (inputs), for data sets with the same MSE in Functional

energies (outputs). This shines light on the fact that even if the VQE yields a state with

energy close to that of the exact ground state, the electron density can be far from the actual

ground state density. In contrast, in Section 5, the exact ground state is found and gaus-

sian/shot noise added, resulting in two very different forms of noise/error. In Figure 14 this

is clearly visualised. These large differences (outliers) in the resulting VQE densities prevent

the ML Model from effectively learning the desired Functional. However, if the VQE method

is improved and more accurate ground states produced, the ML method performance will

increase, which is the focus of future work.

Figure 14: Differences in electron densities for the quarter-filling case, L = 4, N = 2, N↑ =
1 = N↓. Both data sets have MSE of ∼ 2 × 10−3. The VQE data is given on the left and
the shot noise data on the right. Each marker represents a density ∆niσ of which there are
2L = 8 (shown vertically) for each data point.

Page 44 of 54

7 Conclusion and Future Work

In this thesis a potential hybrid scheme was investigated, which combined the techniques

and problems from Physics, Machine Learning and Quantum Computing. The focus of the

thesis was the Hubbard model, which can be solved exactly via ED for finite system sizes.

For larger system sizes this is not generally the case and thus the Hubbard model is a promi-

nent target for quantum computers, where future NISQ devices are aiming to solve larger

Hubbard model instances than classically feasible. DFT is currently one of the most widely

used approaches for quantum chemistry, and in this thesis the existing work of Sanvito [24]

was extended to the field of Quantum Computing. The existing work shows that the exact

form of the DFT functional for the 1D Hubbard model can be learnt using ML. Here, this

work investigated using NISQ-like data for training the ML model.

Throughout, 4 different configurations of the Hubbard model were considered, including

system sizes with L = 4 and L = 8. Two L = 8 configurations were based on [24] and

for L = 4, half-filling and quarter-filling cases were considered. Firstly, the ML model was

reproduced for the ED data and the desired DFT Functionals were accurately learnt. Next,

shot noise was introduced to account for measurement noise on a quantum computer. The

ML model was applied to data sets with varying levels of shot noise and learned the desired

Functional, as well as achieving a degree of noise mitigation. This noise mitigation is a result

of the ML model’s ability to learn the functional more so than the measurement noise. Lastly

the VQE method was investigated and overall the VQE method was not very successful. For

L = 8, the optimisation procedure was difficult and secondly the ML model did not train

well on the simpler (L = 4) VQE data. The ansatz of [3] was implemented, however the

important generality of the NP Unitary gate could not fully utilised. This is because the

original ML model paper [24], required spin preservation and the need to remain in the cor-

rect subspace. In future work the VQE method will be further experimented with for the

L = 8 case. Additionally the Coulomb term U = 10 should be decreased, as in hindsight

this value should have been set lower. A lower value of U will result in easier to prepare

ground states, as there is a larger overlap between the initial non-interacting state and the

full Hamiltonian. This also alleviates the need for additional Givens rotation parameters for

the VQE.

Overall, the important distinction between forms of noise in NISQ era data has been

highlighted in this project. If a quantum computer prepares ground states perfectly and

only shot noise exists, then this application or proposed scheme is sound. Realistically for

NISQ devices, the perfect ground state will not be produced. The VQE noise present in

this work is inherently a mismatched form of noise to this model. However, with different

Page 45 of 54

ansätze, a different ML model and training, the results could improve. Hence, it is not clear

yet how the method will perform with better VQE data and this is the focus of future work.

Page 46 of 54

Acknowledgements

I would like to express my gratitude to the Applied Quantum Algorithm group for making

this research possible, being extremely welcoming and even providing me with a workspace. I

am indebted to my project supervisors Dr. Jordi Tura, Stefano Polla and Emiel Koridon for

their feedback and guidance during the thesis. Throughout, help has always and continues to

be available. I am also grateful for the opportunity to partake in AQA seminars, events and

journal clubs, which have been a great experience. Lastly I would like to thank my supervisors

for proof-reading the thesis and providing corrections, along with useful feedback.

Page 47 of 54

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal

Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat

Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin

Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on

heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Edgar Anderson. The species problem in iris. Annals of the Missouri Botanical Garden,

23(3):457–509, 1936.

[3] Chris Cade, Lana Mineh, Ashley Montanaro, and Stasja Stanisic. Strategies for solving

the fermi-hubbard model on near-term quantum computers. Phys. Rev. B, 102:235122,

Dec 2020.

[4] K. Capelle, C. A. Ullrich, and G. Vignale. Degenerate ground states and nonunique

potentials: Breakdown and restoration of density functionals. Physical Review A, 76(1),

jul 2007.

[5] Francois Chollet et al. Keras, 2015.

[6] Taco Cohen and Max Welling. Group equivariant convolutional networks. In Maria Flo-

rina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International

Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Re-

search, pages 2990–2999, New York, New York, USA, 20–22 Jun 2016. PMLR.

[7] Elbio Dagotto. Correlated electrons in high-temperature superconductors. Rev. Mod.

Phys., 66:763–840, Jul 1994.

[8] Matthew B. Hastings Dave Wecker and Matthias Troyer3. Towards Practical Quantum

Variational Algorithms. arXiv e-prints:1507.08969, 2015.

[9] Nathan Wiebe Bryan K. Clark Chetan Nayak Dave Wecker, Matthew B. Hastings and

Matthias Troyer. Solving strongly correlated electron models on a quantum computer.

arXiv e-prints:1506.05135, 2015.

[10] Cirq Developers. Cirq, August 2021. See full list of authors on Github: https://github

.com/quantumlib/Cirq/graphs/contributors.

Page 48 of 54

[11] Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quantum

hamiltonian complexity. Foundations and Trends® in Theoretical Computer Science,

10(3):159–282, 2015.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[13] Robin Haunschild, Andreas Barth, and Bernie French. A comprehensive analysis of

the history of dft based on the bibliometric method rpys. Journal of Cheminformatics,

11(1):72, 2019.

[14] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio

Boixo. Quantum algorithms to simulate many-body physics of correlated fermions.

Physical Review Applied, 9(4), apr 2018.

[15] Zhang Jiang, Kevin J. Sung, Kostyantyn Kechedzhi, Vadim N. Smelyanskiy, and Sergio

Boixo. Quantum algorithms to simulate many-body physics of correlated fermions.

Physical Review Applied, 9(4), apr 2018.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[17] W. Kohn. Nobel lecture: Electronic structure of matter—wave functions and density

functionals. Rev. Mod. Phys., 71:1253–1266, Oct 1999.

[18] E. Lieb and F. Wu. Physical Review Letter 20, 1445 (1968).

[19] Elliott H. Lieb and F. Y. Wu. Absence of mott transition in an exact solution of the

short-range, one-band model in one dimension. Phys. Rev. Lett., 20:1445–1448, Jun

1968.

[20] G. D. Mahan. Many Particle Physics, Third Edition. Plenum, New York, 2000.

[21] G.D. Mahan. Many-Particle Physics. Physics of Solids and Liquids. Springer US, 2012.

[22] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The

theory of variational hybrid quantum-classical algorithms. New Journal of Physics,

18(2):023023, feb 2016.

[23] Jarrod R. McClean, Kevin J. Sung, Ian D. Kivlichan, Yudong Cao, Chengyu Dai,

E. Schuyler Fried, Craig Gidney, Brendan Gimby, Pranav Gokhale, Thomas Häner,

Tarini Hardikar, Vojtěch Havĺıček, Oscar Higgott, Cupjin Huang, Josh Izaac, Zhang

Jiang, Xinle Liu, Sam McArdle, Matthew Neeley, Thomas O’Brien, Bryan O’Gorman,

Isil Ozfidan, Maxwell D. Radin, Jhonathan Romero, Nicholas Rubin, Nicolas P. D.

Sawaya, Kanav Setia, Sukin Sim, Damian S. Steiger, Mark Steudtner, Qiming Sun, Wei

Page 49 of 54

Sun, Daochen Wang, Fang Zhang, and Ryan Babbush. Openfermion: The electronic

structure package for quantum computers, 2017.

[24] James Nelson, Rajarshi Tiwari, and Stefano Sanvito. Machine learning density func-

tional theory for the hubbard model. Phys. Rev. B, 99:075132, Feb 2019.

[25] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition. Cambridge University Press, 2010.

[26] Robert G. Parr and Yang Weitao. Density-Functional Theory of Atoms and Molecules.

Oxford University Press, jan 1995.

[27] Eric Prehn, Stefano Polla, and Emiel Koridon. Investigating deep learning of dft func-

tionals in the nisq era. https://github.com/aQaLeiden/DFTQML, 2022.

[28] David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust

to massive label noise, 2017.

[29] K. Schönhammer, O. Gunnarsson, and R. M. Noack. Density-functional theory on a

lattice: Comparison with exact numerical results for a model with strongly correlated

electrons. Phys. Rev. B, 52:2504–2510, Jul 1995.

[30] Medha Sharma and M.A.H. Ahsan. Organization of the hilbert space for exact diago-

nalization of hubbard model. Computer Physics Communications, 193:19–29, 2015.

[31] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning

from noisy labels with deep neural networks: A survey, 2020.

[32] Stasja Stanisic, Jan Lukas Bosse, Filippo Maria Gambetta, Raul A. Santos, Wojciech

Mruczkiewicz, Thomas E. O’Brien, Eric Ostby, and Ashley Montanaro. Observing

ground-state properties of the fermi-hubbard model using a scalable algorithm on a

quantum computer, 2021.

[33] Adrian P Sutton. Electronic structure of materials. Clarendon Press, 1993.

[34] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,

David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan

Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,

Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J

Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef

Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.

Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0

Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.

Nature Methods, 17:261–272, 2020.

Page 50 of 54

[35] S. Yamada, T. Imamura, and M. Machida. 16.447 tflops and 159-billion-dimensional

exact-diagonalization for trapped fermion-hubbard model on the earth simulator. In SC

’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, pages 44–44,

2005.

Page 51 of 54

8 Appendix

8.1 Additional Figures

Figure 15: Test Set MSE plot Data Set 3, for the case α = 0.0001. MSE are averaged across
the 5 Cross Validation folds and shaded regions denote minimum and maximum MSE values.

Page 52 of 54

Figure 16: Test Set MSE plot for the VQE results in the half-filling case, L = 4, N = 4, N↑ =
2 = N↓, with (α = 10−4).

8.2 VQE Attempts

The following various methods were experimented with when implementing the VQE in

Section 6.

8.2.1 Different Initial State Preparations

The two methods are discussed in Section 6.3. For each VQE attempt, first the the ground

state of the non-interacting Hamiltonian (U = 0) was prepared using existing openfermion

methods. Depending on the overlap between this initial state and the desired final state,

the Givens Rotation method was used as an alternative. Note that in reality on a quantum

computer, knowing the exact overlap may not be possible. Hence, (especially for high values

of U) the Givens Rotation initialisation is likely required.

8.2.2 Varying Ansatz Depths

Each VQE was run for varying ansatz depths, in order to find an appropriate depth. A

sample of Hamiltonians (each resulting from different external potentials) were tested with.

Between 20-40 samples were considered for each VQE, in order to select the depth. Note

Page 53 of 54

that NISQ devices will preform far better with low depth circuits and therefore a conscious

effort was made to choose lower depths (as long as performance was the same as higher depth

circuits). Once a depth was chosen, the depth remained fixed throughout the entire data set

generation.

8.2.3 Extra Variational Parameters

The VQE ansatz of depth M has the variational parameters (ignoring Givens Rotation

parameters θ⃗G),

θ = {θ1U , · · · , θM−1
U , θMU , θ

1
h, · · · , θM−1

h , θMh , θ
1
ν , · · · , θM−1

ν , θMν } = {θ⃗U , θ⃗h, θ⃗ν} (77)

Where θ⃗h, θ⃗U , θ⃗ν account for hopping, Coulomb and on-site terms, respectively. In this set up

the total number of variational parameters is 3M . An ansatz method following a coarse and

then fine-tuning approach was tested. Here, first the normal VQE was run using parameters

as in Equation 77. Once it converges on a final set of parameters θ⋆, a new VQE is run, with

initial parameters θ⃗⋆h and θ⃗⋆U , along with extra parameters for on-site terms. The number

of θ⃗ν parameters is increased from M to LM , where now each site j has its own variational

parameter within every layer. The initial values of θmνj (m’th layer and j’th site) are set to

θmν . This fine-tuning VQE was run following the original VQE and the performance remained

similar. Note that the total number of parameters is increased from 3M to 2M +ML, which

suggests that on this may not be feasible for larger system sizes and circuit depths, due

to NISQ circuit noise and optimisation difficulties. Nonetheless, future work will continue

experimentation with freeing up additional parameters.

8.2.4 Parameter Initialisation

For all ansätze, the initialisation of parameters θ has to be chosen. Random initialisation

within the range [0, 0.5] were tested and performance was found to be variable and therefore

this method was not chosen for data set generation. An attempt was made to mimic adiabatic

evolution, whereby the initial parameters gradually increased in each layer of the ansatz.

However, the final parameters, after optimisation, were far off from the adiabatic inspired

initial parameters. A trend was seen, where the parameters in the first (few) layers of the

ansatz obtained larger values, and ensuing layers had final parameters small in magnitude.

In other words, the last few layers only slightly adjusted the larger evolution of the preceding

layers. Following experimentation, all parameters were set to 10−5 for data set generation,

representing a small initial evolution.

Page 54 of 54

	Introduction
	Problem Statement
	Background and Theory
	The Hubbard Model
	Density Functional Theory
	Functionals and Functional Derivatives
	Hohenberg-Kohn Theorems DFTtheory

	DFT Application to the 1-D Hubbard Model
	Machine Learning
	Supervised Learning Algorithms
	Measuring Accuracy of Supervised Learning Algorithms
	The Learning Goal: The Hubbard Model Density Functional

	Neural Networks
	Convolutional Neural Networks
	Quantum Simulation
	Variational Quantum Eigensolver (VQE)

	Exact Diagonalisation
	Solving the 1D Hubbard Model Exactly
	Hilbert Space Dimension
	Exact Diagonalisation
	On-site Occupation

	ML Data Set Generation and Implementation
	Data Set Extension: Symmetries

	ML Model
	Standardisation
	Data Preprocessing for CNN Layers
	Network Architecture

	ED: Results
	Data Set 1: L=8,N=4,N=2=N
	Data Set 2: L=8,N=4,N=2=N
	Data Set 3: L=4,N=2,N=1=N
	Data Set 4: L=4,N=4,N=2=N
	Data Set Structure and Discussion

	Measurement Noise
	Measuring Observbles on a Quantum Computer
	Noisy Electron Densities
	Noisy Coulomb Energy Measurements
	Noisy Kinetic Energy Measurements
	Noisy ML Models
	Nosiy Measurements Results
	Data Set 1: L=8,N=4,N=2=N
	Data Set 2: L=8,N=4,N=2=N
	Data Set 3: L=4,N=2,N=1=N
	Data Set 4: L=4,N=4,N=2=N

	Discussion

	VQE Method
	Anti-Commutation relations and Jordan-Wigner Representation
	Hamiltonian Variational Ansatz
	Hamiltonian Variational Ansatz Implementation
	Initial State Preparation
	Ansatz: Unitary Gates

	VQE Method: Data Generation
	VQE Results
	L=8
	L=4
	VQE Results: ML Model

	VQE: Discussion

	Conclusion and Future Work
	Bibliography
	Appendix
	Additional Figures
	VQE Attempts
	Different Initial State Preparations
	Varying Ansatz Depths
	Extra Variational Parameters
	Parameter Initialisation

