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Abstract

Through the framework of data federation, coalesced analytics and modelling
can be performed on distributed data without exposing the underlying data.
These data are collected, stored and processed at the location where data
are being produced, instead of being reposited in a centralized database.
Under FAIR principles, standards are defined under which these data can
be discovered and accessed as formalized access patterns. These standards
provide the principal framework for interoperability and reusability of data,
which are essential to federation of heterogeneous data sources.

In this research we build upon these fundamental concepts by expanding
the framework of federated data for distributed data sources, which ensures
retention of data ownership and provides safeguards for data security and
privacy. Central to this is the architecture that incorporates distributed in-
formation systems as a composite computing model, which poses unique
engineering challenges and inquiry in terms of reliability of aggregates, data
quality and convergence of semantics. These challenges form the fundamen-
tal groundwork for statistical and computational methods with applications
to federated data.
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Research Questions

I. What are the ways in which we can utilize existing statistical inference tech-
niques in order to extend these analyses over heterogeneous federated data?

II. How can we utilize and enhance the graph properties of semantic data to
enable interoperability over heterogeneous data sources?
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1Introduction

„Simplicity is a great virtue but it requires
hard work to achieve it and education to
appreciate it.

— Edsger W. Dijkstra
On the nature of Computing Science

Many of the methods we use in empirical scientific research are based on
analysing granular data. These data form the basis from which evidence
can be derived in order to evaluate a theoretical model of the real world.
There are many settings however in which exposing such granular data is
not desirable or permittable [1], often supported by legislative measures and
ethical guidelines [2].

This is a considerable problem, as direct access to these data is a prerequisite
for application of any frequentist statistics. These granular data can be used
to make assumptions, construct models and test hypotheses. The most parsi-
monious and commonly used approach in practice is that of distributed data
[3]. We illustrate this approach in Figure 1.1. In this approach we directly
take data from multiple instances and append these data together. Then we
can continue just as we would perform any other analysis to approach our
research problem.

This approaches provides several advantages, such as being able to test
subsets of these different data sources or the ability to compare data sources.
This is viable approach when the data sources are public domain, all inside
the same legislative area or are all owned by one party. However, this is not
always the case.

One of the possible alternatives for this is to use synthetic data [4], which acts
as a surrogate to the original data. There are many options to generate these
data based on the type and complexity, which can range from sampling a
distribution to deep leaning techniques such as generative diffusion models.
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Query Local
Results Aggregation Cluster

Result

Fig. 1.1.: A representation of a distributed data approach to research queries

However what these techniques have in common is that they are no longer
directly sampled from the original data, and as such information is lost and
questions are raised around the reliability of such methods when used to
make inferences [5]. Instead, we consider how we could devise a technique
that can use the original data to answer research questions, without actually
directly using these data ourselves. This brings us to the concept of federated
computation, which proposes to relegate all initial computations to the most
localized level [6]. This can range from simple aggregation to fitting statistical
models and co-training machine learning models. In this research we will
focus on the application towards statistical models, which is purposefully
chosen as we seek to support analyses that discover causality.

We can then further ask ourselves how this technique may be applied to
a multitude of data sources. This is advantageous as this may increase
availability of data, increase numerical stability of our models and ultimately
reduce bias and improve reliability [7]. Instead of sending our compute
requests to a single instance, we can also sent these out to a cluster of
data sources that all reposit their data locally as we showcase in Figure 1.2.
These compute requests are handled locally as well, and from each instance
only permissible results of these computes are served out for aggregation or
comparison.

This raises several challenges. The first challenge that presents itself is the
interoperability of the different data sources. We must be sure that the
results are comparable if we want to perform reliable studies. Another
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Query Local
Results Aggregation Cluster

Result

Fig. 1.2.: A representation of a federated data approach to research queries

challenge is the ability to aggregate or compare models. A single statistic
can be easily aggregated over any number of instances, but an actual model
may require model-specific techniques [8]. Both of these aspects cannot be
achieved through analytical approaches alone. It becomes evident that in
order to develop the methodology around this broad technique, we cannot
simply rely on statistical or computational techniques alone. Instead, we
propose to use computational techniques to harmonize data across different
sources through semantics, and use composite analysis techniques to perform
statistical inferences on harmonized data.

1.1 Research Approach

The focus of the research is based around incorporating multi-disciplinary
methodologies, where we combine and optimize approaches from different
fields including statistical science, computer science and semasiology in
order to develop an overarching understanding and approach. Thus the
main breadth of application lies on consolidating the proven methodological
techniques from these fields by selecting the appropriate approaches and
defining the methods and conditions on which these can be used in unison.

We identify a research gap as the lack of a rigorous framework to connect cur-
rent techniques that support federated data. Current techniques within this
field require strong assumptions to be met, such as assumed interoperability,
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and do not present a method that incorporates the required techniques from
the point of data generation to the actual analysis [9]. For bringing federated
data into practice this is very important, as enabling the effective use of
such practice requires a design and architecture that supports federated data
techniques from the ground up.

We seek to build upon a knowledge framework where we can cross the
thread all the way from the method that is used to generate data, as the
initial starting point, to the point where data is analysed as the operational
process. To study this and be able to achieve this outcome, we will be
performing a methodological study, as in we will be laying a theoretical
foundation based on existing and proven works to build a new combined
methodological approach.

This methodological study will consist of generalizing techniques from the
statistical sciences to be applicable to computational methods. In addition,
we will study how we can incorporate semantic embeddings within our com-
putational approach to support routine computations that are interoperable
across selected instances.

1.2 Related Work

The primary context that we are interested in is that of federated data and
architecture [6], which has seen rapid developments in the recent years [7]
when the concept of federated learning was developed. This also brings
many new challenges and opportunities, which are summarized in the paper
‘Advances and Open Problems in Federated Learning’ by Kairouz et al. [9]. This
paper specifically relates to some of the open challenges in interoperability,
variability and reliability.

Since federated data provides various advantages in terms of privacy and
security, it has seen application in various domains. Applications and related
challenges are identified in the domains of health [10, 11], industry [12],
automotive [13], smart cities [14] and the internet of things (IoT) [15].

What all of these review papers have in common is that they all address the
same general theme that Kairouz addressed, with specific nuances for each
domain. For example IoT sees a very dispersed network of data sources where
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the process itself cannot be easily modified, so this requires a very up-front
approach on assuring that devices are interoperable. Industry is however
more flexible, but sees greater risks for data exposure. The domain of health
is on the extreme end of security and privacy requirements, where any
exposure of data could lead to right violations and serious consequences.

The general framework that has been proposed to approach the problem
of heterogeneous data is the use of FAIR [16], specifically the application
of FAIR data points [17]. A standardized approach for interoperability is a
commonly stated necessity across the review papers that we have identified.
This framework can be combined with methods for semantic interoperability,
which is discussed in the health domain specifically by Gansel et al. [18]. By
properly defining and structuring semantic metadata [19] to form knowledge
graphs we can perform automated reasoning [20] to deal with interoperabil-
ity over heterogeneous data and cross referencing [21] various sources to
analyse concerns around reliability.

1.3 Contributions

In this manuscript we address two distinct research questions that are funda-
mentally linked to one another. These are as follows:

Research Questions

I. What are the ways in which we can utilize existing statistical inference tech-
niques in order to extend these analyses over heterogeneous federated data?

II. How can we utilize and enhance the graph properties of semantic data to
enable interoperability over heterogeneous data sources?

To prelude these research questions, we have provided a wide coverage
of background material on the practical and sociological consequences of
increasing usage and reliance on data. Specifically, we have provided original
context on the advent of the semantic web, a deep dive in to the philosophical
background of data ownership, the importance of embedding meaning in
to data and the advent of federated data. This provides context for the two
broad research questions we have covered.
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In the first methodological part of this manuscript we covered the inquiry
towards the statistical techniques that can be utilized heterogeneous feder-
ated data sources. Specifically, we have looked at techniques that generalize
well over a wide variety of possible situations. This is what we have consid-
ered an inclusive approach, which reinforces the strength of federated data
approaches as these may provide a good avenue to perform research across
regional and legislative boundaries while adhering to compliance and ethical
standards.

Specifically, our contributions in this regard are expanding the technique
of multiple ψ distributions as composite distributions for federated analysis.
These composite distributions are in essence piece-wise functions of which the
parts are approximated as partial distributions using generalized distributions
with Dirac-δ composition. In addition, we have shown a way to apply this
generalized technique, which is challenging to perform traditional hypothesis
tests with, with the Szymkiewicz-Simpson measure to formulate a generalized
method as an application of federated analytics which can be utilized to detect
differences between complex, aggregated distributions such as composite
distributions.

In the latter half, we have expanded this framework of federated analysis
by going from the assumption of interoperability to the actual practice of
making data inherently interoperable. The technique which we have pro-
posed incorporates the usage of the FAIR data guidelines with techniques
from semantics to harmonize different data specifications towards a universal
query format. We have shown the link between FAIR data as graph data and
the link to fundamental computer science, such that we can perform graph
algorithms to discover interoperability opportunities.

This demonstrably enables the use of automated methods to reliably and
efficiently identify viable data sources, which may aid in answering research
questions without the extra overhead and potential for information loss
involved in pre-processing or transforming the original data. In addition, this
technique allows each locale to preserve privacy and data ownership, which
is an essential property of federated data techniques. Finally, we define a
localized data architecture that incorporates the aspects of FAIR data and
services as federated data points, which bring the potential of federated
analysis in to practice by automating the generation of FAIR-based data and
enabling secure, privacy-preserving queries towards these federated data.

6 Chapter 1 Introduction



2Background

„Data is a precious thing and will last longer
than the systems themselves.

— Tim Berners-Lee
A Framework for Web Science

Since the 21st century, data has played a pivotal role in social and economic
development across the globe. We are now in what is ubiquitously considered
the information age. Information that we formalize as knowledge is a product
refined from the data that we collect and store. In essence, data can be viewed
as a resource [22] that may be harnessed to produce value. These data can
range from traditional scientific measurements and samples, to more abstract
data formats such as images, audio and written text.

Most of the data we produce however are not being refined or harnessed to
produce value as refining data has an opportunity cost attached [23]. The
sheer amount of data produced means that we need to be selective in the
data that we process further. Sometimes that is for a an evident reason, for
example use of sensitive data outside of the direct intended purposes exposes
risks to privacy and security.

Many of our daily interactions and transactions interact with existing data,
and they in turn bring into motion the production of new data. At the global
scale, these data are large in volume, diverse in scope and are being produced
at increasing granularity [24]. Data at such scale brings many opportunities
to extract information and produce knowledge, but also poses new risks
and challenges for society to deal with. These challenges can come in many
shapes, such as technological limitations, regulatory compliance, privacy
risks, security concerns and lack of interoperability [25].

The core problems we are looking at in this research pertain to issues related
to the veracity and granularity of data used to model phenomena. First, we
will tackle some of the core challenges and developments that will set the
conditions for the use case of a federated data ecosystem.
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2.1 The Semantic Web and the Challenge
of Scale

The vast majority of data is exchanged in real time through the internet, the
globally linked network of computational entities that serve out data and web
services. The communication between these entities is made possible using a
uniform syntax specification by the W3C [26], the machine readable protocols
that we know as the Hypertext Transfer Protocol (http) and the encrypted
variant known as Hypertext Transfer Protocol Secure (https), which operate
over the Transmission Control Protocol/Internet Protocol (TCP/IP). These
protocols determine the way a request is propagated and handled through the
world wide web, which is principally designed to connect systems together
through various hierarchies of routing hardware.

However, with the increasing scale of the internet and increasing veracity of
data and services, the limitations of this paradigm are increasingly apparent
[27]. While these existing protocols standardize connectivity between entities
and the logical exchange of data, the data and services themselves that these
entities provide and exchange do not necessarily adhere to any standard. And
while we have commonly defined file types, for instance a .csv file indicating
a table of comma separated values or .png referring to a pixel matrix encoding
standard, there isn’t any standardized way to convey meaning about or
relations between these data.

The visionary behind the world wide web as we know it today, Tim Berners-
Lee, has authored many of the standards that are foundational to networking
and data exchange. However, his idea of the world wide web didn’t end with
the machine readable syntax that is used ubiquitously to this day. Before the
internet was conceptualized, there was the idea of the semantic web [28].
It can very much be seen as an old solution to a very relevant new problem,
that of the exploding volume and veracity of data.

The semantic web is a framework that operates at a higher level than physical
infrastructure, which instead fundamentally links together the data that is
ultimately transported over the infrastructure layer. We consider that all
transactions and computes performed across the internet are ultimately com-
prised of data exchange, whether this is requesting a web page, querying a
database or interacting with a web application. If we link together meaning-
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ful relations between these data that can be traversed by machine readable
standards, we can implement the core principle of the semantic web.

According to Tim Berners-Lee, in practice the semantic web isn’t a fundamen-
tally different concept from the current world wide web:

“ The Semantic Web is not a separate Web but an extension of the
current one, in which information is given well-defined meaning,
better enabling computers and people to work in cooperation.”

In essence, the main challenges pertains to rigorously defining the way we
give meaning to data to produce information, which can in turn be linked
together to form knowledge. One of the primary challenges in bringing
these definitions in to practice this is that while it is relatively easy to get
people to agree on standards for communication by embedding them in to
our technology, i.e. using a certain structure around your message, it is much
more challenging to get people to agree on standardizing the content of the
message itself [29].

One of the ways that this problem is approached is by standardization of the
way that data standards are developed. This models the way that ontologies
are developed, by defining terms within controlled vocabularies and seman-
tics through linkages, you can formalize knowledge as a graph structure [30].
These structures can then be written using a default syntax for knowledge,
such as the Resource Description Framework [31] and the eventual develop-
ment of the Web Ontology Language [32]. Such developments do not take
away from potential disagreements on metadata specifications, semantics
and use of specific terminology, but at least provide a language description
whereby knowledge representations can be made machine readable.

The importance of these developments cannot be understated with the grow-
ing demand towards services that make use of data [25]. Most of these
data pertain to properties and activities of humans, data which is frequently
replicated across services, e.g. personal details, and containing sensitive
information. With the exponential growth of the amount of data stored
across services, it is increasingly hard to keep track of replicates of personal
data. Ensuring interoperability between an increasingly expanding amount
of different data sources takes increasing effort to the point where traditional
data processing techniques are rapidly becoming infeasible.
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2.2 On Ownership and Protection of Data

The idea of property, which may be further subdivided into public, collective
and private property, is a concept that dates back to ancient philosophy and
is still ever relevant when dealing with data. The ancient Greek philosopher
Aristotle underlined the importance of private property ownership in the
work Politics, where he argues that shared property leads to an increase in
disputes, and that shared property is more likely neglected when compared
to private property. This is at odds with the argument of Plato in his work
Republic, whom argues that the commons in society are only served well
when the state properly controls and allocates property for all to benefit,
which is a distinct argument against private property ownership.

The 19th century author on economic theory, William Forster Lloyd, recog-
nized the underlying dilemma of the commons [33]. What was privately
owned was well-maintained, but benefitted the few, while that which benefit-
ted the many, was often neglected in pursuit of endeavours more beneficial
to oneself. The problem of communal neglect is one of the primary reasons
why such services have been centrally controlled by a state entity throughout
both human history and across different cultures [34, 35].

These two perspectives are often at odds and are still relevant to this day,
but with technological and civic advancement we have new opportunities
to leverage the best of both perspectives: to ensure property ownership for
individuals while allowing for common benefit within society with lesser
centralized control. This idea is fully embraced in the idea of social en-
trepreneurship [36], a type of business where the private exchange of goods
or services leads to benefit even to third parties with no external costs. The
collective of such organizations act as the communal services once critiqued
by Aristotle, and seen as inviable by Plato, yet are increasingly thriving within
modern society.

The 21st century Nobel prize winner Ostrom demonstrated this collective,
decentralized self-regulation in regard to common resources in her book
Governing the Commons [37]. It is clear that top down governance is
not a necessity to establish beneficial commons, and that private property
ownership is not the only way for individuals to pertain interest in sustaining
goods and resources.
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The idea of personal data ownership starts at the civic level, as personal
property is a fundamental principle that is shared ubiquitously across human
societies. Consequentially, as ownership is such a fundamental principle, it
has also been an important consideration for data even prior to the advent
of the world wide web in 1983. For instance, considerations over data
protection date back to the 1960s and the first law pertaining the protection
of private digital data was conceptualized in 1970 in the German state of
Hesse [38].

The historic progress of ideas on ownership over physical property draws
parallels to current thoughts on digital data. Where we initially adhered
to a centralized approach to data management, where responsibility over
data was primarily held by those storing the data and offering only value to
those holding those data, we are seeing a move towards ideas that support a
decentralized model that distributes these responsibilities, and provides more
opportunities to enable individual contributions to the commons through
federation without exposing that individual to risks or costs that may have
traditionally existed within a centralized model, one of these technological
developments is that of federated data [7].

Many of the quintessential services and interactions that we rely on in our day
to day life, depend on complex networks of digital infrastructures to function.
Consequentially, the internet has become a fundamental part our lives in
the information era, with over 4.66 billion people globally actively using the
internet on a day-to-day basis [39]. The digital space is so integrated in our
daily lives that a part of our identity, our persona, exists on the internet and
is connected to a wealth of data that describes us, our society and the world
around us.

It is that data, that links us to the digital space, that is both the biggest
weakness and the greatest strength that we currently possess as a society.
Data itself can be seen as the new metaphorical gold of the digital age
[22], a resource that can be so valuable when used properly, that global
organizations are investing billions into their data infrastructure and analytics
operations just to harness a fraction of what is being produced through online
interactions. In contrast, these data also pertain a wealth of sensitive, private
information that could do irreconcilable damage if these were to be exposed
to the public domain.
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As such, it is of utmost importance that data pertaining to individuals are
handled with care. But how do we guarantee that this is the case? How
do we set and conform to standards for data security, and how do we even
know, as an individual, what kind of data is produced or shared about us?
With digital data processing being virtually ubiquitous for access to online
services, and the increasing complexity of the internet, these questions are
increasingly hard to answer, and consequentially, it is also harder to contain
spread of sensitive information after a data breach has occurred.

There are ample examples available over the dangers of data breaches, which
are thoroughly examined in the 2021 Data Breach Investigation Report
conducted by Widup et al. on behalf of Verizon [40]. Evidence suggests that
the vast majority of data breach incidents have an economic nature, and
are primarily conducted through social engineering, misuse of privileged
access and physical data theft. In addition, further evidence suggests that
approximately 1 out of 5 data breaches are not discovered until months
after they have occurred, in which harm to individuals may already occurred
without the possibility to take precautionary action. It is clear that still to this
day, there is a lack of transparency and control over personal data flow, which
leads to collective losses to society as a whole. The European Commission
reported that the total cost of cyber-crime, of which the majority of the
reported incidents pertain ransom or theft of centralized data, had a total
negative impact of C5.5 trillion to the global economy [41].

To bring this into perspective, the Thomson Reuters Foundation has deter-
mined that the total global investments required to meet the Paris Climate
Agreement by 2030 are estimated to be $5 trillion on an annual basis [42].
It is for this reason that we should not, under any circumstances, underesti-
mate the importance of increasing the resilience of our digital infrastructure.
With the right technology and practices, we not only make our digital space
more sustainable, but this will also allow global economies to allocate more
resources to meet the sustainable development goals that will impact all
future generations to come. Evidently, if we wish to achieve a sustainable
ecosystem for a secure digital identity, a paradigm shift in data processing
is required. The General Data Protection Regulation (GDPR) established in
2016 by the European Commission provides a strong basis for a new frame-
work on sustainable data management, but to truly tackle this problem we
require not only legislative action, but also technological safeguards on our
private data.
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2.3 The Decoupling of Data from
Meaning

The main mechanism for data to provide value in the real world is through
recombination and refinement towards application, but data without inherent
context or meaning cannot be used towards these purposes. Data without
meaning, i.e. without any form of annotation or semantic embedding, are
in essence not that much different from structured noise. What provides
value is the combination of data and the metadata descriptors that allows us
to understand what these data mean, bring these data in to practice and to
place these data in context with other data.

This issue presents itself more commonly than one may at first realize, for
instance take a study where a large array of sensors produce data, which are
collected for further analysis. Within this study, the data has a clearly defined
meaning to the researchers and they can specifically apply it towards their
research goals. However, if this data were to be presented as an independent
data set, this meaning would be lost. Adding baseline metadata such as
column names and time stamps would be insufficient to be able to retrieve
the real meaning and context of such data [19]. This in turn limits the ability
of further processing this data in to information, and thus limiting knowledge
generation.

Another example can be found in the commonly used technique of data
scraping, where through an automated process data are extracted from
the web according to a specific rule set. The data that is being scraped is
essentially a subset of the total data that is being transmitted, for example a
line containing a specific keyword from a text, the outward links on a page
or an image from a specific cell.

With methods that are commonly use to bundle together scraped data, not
only is the surrounding context lost, but typically the lineage and provenance
used to generate these data are not properly recorded [43]. This means that
there may be less confidence in any inferences from these data and that there
is no way to verify subsequent analyses when interpreted as being publicly
sourced.
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In the book Understanding Variation [44] by Dr. Donald Wheeler, one of the
key texts on data process control, he highlights the importance of embedding
meaning with data:

“ No data have meaning apart from their context.”

This statement does not come from mere conjecture, but is based on the foun-
dations of the work of Dr. Walter A. Shewhart, whom laid the groundwork
for the field of statistical quality control (SQC). Within SQC he formulated
two of the core principles that signify the importance of context [45], which
can be generalized to any process that is centered around the application of
data to make observations, predictions or decisions.

1. Data should always be presented in such a way that preserves the
evidence in the data for all of the predictions that might be made from
these data.

2. Whenever an average, range, or histogram is used to summarize data,
the summary should not mislead the user into taking any action that
the user would not take if the data were presented in a time series.

Shewhart’s first rule is very centered around the concept of data provenance
and lineage, while the second rule focuses on the representation of the
meaning of data. The practical meaning of data is not just isolated to a
factual statement of purpose, i.e. through metadata or a descriptor, but may
also vary based on the observer.

2.4 The Federated Data Methodology

The concept of federated data dates back to 1985 with a publication by
Heimbigner & McLeod on a new type of distributed architecture that could
be used to construct a decentralized information system that samples from
multiple sources with different permissiveness [46]. This was introduced as
a federated database, which features a virtualisation layer that compresses
data from multiple autonomous sources down into a single repository that
uses a federated dictionary that indexes the external sources. The concept
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of using a single dictionary to manage a scalable cluster can be leveraged to
coalesce and query data from disparate data sources [47].

In 2016 Konečný et al. published the paper “Federated Learning: Strategies
for Improving Communication Efficiency" [7], which introduced the concept of
constructing models that use a high volume of data locally, and transferring
those models instead of data to perform distributed analyses. Initially this
paper focused on applications where bandwidth was limited, as this tech-
nique could essentially compress training data by using a trained model as a
representation of the data.

Fig. 2.1.: A representation of a federated data cluster producing a remote composite
distribution model from individual local distributions

With the computational field increasingly focused on distributed computing,
this sparked renewed interest in the idea of federated data. Such applications
typically work on decentralized data that are standardized to a single, uniform
data format. Building models locally, and then unifying those models from
uniform data formats, can be used to coalesce models without exposing the
underlying data. We show an example of this in Figure 2.1.

However, with computation across different heterogeneous data sources
comes a significant overhead in data processing. Recent applications in
federated learning, such as multi-institutional collaboration [48] have noted
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the extensive pre-processing that was required to standardize the data sources
before remote computational tasks could be performed.

The problem of data standardization and interoperability is not new, and
has been noted by Berners-Lee with the inception of the semantic web [49].
This challenge is just not limited to the machine-readability of underlying
data, but central to this issue is the semantic interoperability of associated
metadata elements [18]. A crucial element of the semantic web is the use of
persistent and globally unique identifiers for resources [50], which allows for
unambiguous querying for specific data. This consequentially means that any
given semantic concept expressed through data is linked through a unique
identifier.

Pivotal to federated learning is decentralization of data, where the model
is remotely trained without access to data. This enables secure and privacy-
preserving computation [51]. The strong requirements on data standardiza-
tion for federated learning poses serious challenges when there is no direct
data access, which requires standardization at time of data generation or data
processing. The usage of semantics provides a key component to harmonize
data from different data sources through computationally unique, persistent
identifiers. Within research domains, this can be implemented by using
domain-specific ontologies [52, 53], based on dynamic controlled vocabular-
ies [54] that form unique semantic identifiers. Data that is generated based
on the same ontology, even if their implemented structure is heterogeneous,
can be converged towards a uniform format by using the properties of node
class equivalence and graph isomorphism.
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Part I

Statistical Methods

„The greatest value of a picture is when it
forces us to notice what we never expected to
see.

— John W. Tukey
Exploratory Data Analysis

With the sheer scale of modern day data production, it is attractive to leverage
volume to approach problems and answer questions. However, this also
brings many problems. Data can have quality issues, may be biased, may
not fully explain a phenomena and is typically sampled from from a limited
frame. Many of the statistical methods that have already been developed can
be used to identify and approach some of these contemporary issues.

Specifically, we are interested in methods that apply to data from distributed
sources; because the current data landscape isn’t just large in volume, but also
spread across many different sources. If we want to leverage and combine
multiple sources, especially when preserving privacy and data ownership, we
have to take extra precaution to ensure the data is appropriate in structure
and quality to be able to provide reliable answers to our queries in scientific
investigation. In this section we show the equivalence between mixture and
composite distributions, formulate a generalized model fitting technique for
composites and apply these techniques to construct composite hypotheses
which can be used to perform analyses.



3Composite Distributions

The first step of any data-centric methodology is to build a quantitative
hypothesis. This is typically structured around an existing operational process
or a hypothetical scenario. The hypothesis generalizes and specifies a model
of compounded factors within the process or scenario space and implicitly
places a decision boundary, essentially discretizing from the model. In order
to evaluate the hypothesis, we need to control for factors that we specify as
experimental variables and gather experimental outcomes.

From the chosen control, the null and alternative hypotheses follow and
between them lies the decision boundary, which is known as the critical value.
Typical hypotheses are bounded to a binary decision, for instance you may
have a hypothesis to test for different outcomes for a treatment protocol.
However, hypotheses ultimately rely on the underlying distribution. If the
exact distribution is unknown or of some composite type, we need to apply
different techniques in order to test a hypothesis.

3.1 Definitions

The process of hypothesis testing involves building the evidence required
to either reject or fail to reject a null hypothesis. Evidence is in the form of
data that has been sampled from a (specific) population P. However, when
performing analyses on empirical data we should not only be looking at the
data themselves, but also consider the context surrounding the data. The
context is defined by the population from which data has been sampled, the
sampling methodology that was utilized and the subsequent application of
the data to answer hypotheses.

Whenever we sample data, we are dealing with many unknown factors. This
is why the sampling process behalves like a stochastic process [55], where
each time we sample a data point from some population we get a different
result. In the totality of the process of hypothesis, sampling and modelling
we are concerned with four distinct statistical spaces:
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Composite Set Spaces

• Hypothesis space H
The set of all possible hypotheses Hi ∈ H within the chosen experimen-
tal frame that are congruent across the partial distributions.

• Sample space Ω
The set of all possible sampled support points Ω belonging to any
individual partial distribution si ∈ Sj of the composite distribution in
an experiment.

• Feature space F
The set of all possible feature properties fi ∈ F , often weighted by
some weight πi that can be derived from the sample space.

• Parameter space Θ
The set of parameters θ that a stochastic process can functionally map,
e.g. n-dimensional to 2-dimensional mapping f : θ1...θn → R2.

At the very essence the hypothesis space forms the set of questions that we
can ask in our experiment and the sampling space contains all the possible
outcomes. To answer these questions using our outcomes, we need to
know how our experimental parameters effect the outcome and how specific
features [56] of the outcomes are mapped on to the hypothesis.

A data complex generating process from which data points can be derived can
be defined as a collection of random variables X1, X2, ...Xn, which together
follow some composite distribution. Let ψ be some unknown distribution
from the distribution family Ψ and {θ1, ...θn} ∈ ΘΨ be the parameterization
of ψ, we can define a single random variable generating points X as the
projection X : Ωψ → R.

Given that X follows some parameterized distribution as X ∼ ψ(θ1, ...θn), we
let the composite be a collection of n-dimensional points derived from the
individual random variables and their parameterization as column vectors
(XT

1 , ...X
T
n ) assuming X1...Xn are independent and identically distributed

random variables.
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3.2 Gaussian Mixture Distributions

Take a data generating process over ΨN as a mixture of Gaussian distributions
X1 ∼ N (µ1, σ

2
1), X2 ∼ N (µ2, σ

2
2) and X3 ∼ N (µ3, σ

2
3) we define the Gaussian

probability density function ∀x ∈ X,NX(µ, σ2) = 1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

.

Given parameterization sets µi = {−1, 0, 2} and σ2
i = {1, 1, 0.75} we get the

distribution shown in Figure 3.1.

X1 X2 X3−5 50

0.5

X

fX

Fig. 3.1.: The composite point frequency distribution of X1, X2 and X3

In the above figure we see the specified random variables X1, X2 and X3

indicated in green together form a complex composite distribution as shown
in blue. In this example, the resulting distribution is a bimodal Gaussian
mixture [57]. This composite indicates the likelihood distribution of the
points that we can sample when randomly choosing from X1 through X3,
with equal probabilities for all distributions from the mixture if we draw from
the composite.

In this case the composite distribution with even weights would be defined
as XC = 1

3N (−1, 12) + 1
3N (0, 12) + 1

3N (2, 0.752) such that total probability∫ ∞

−∞
XC = 1, which can be used as a sampling distribution to simulate

the composite of the three individual distributions. It is evident that this
definition only holds if the probabilities are independently distributed. Note
however, that this is distinctly different from joint distribution sampling,
which samples from the i.i.d. random variables at the same time as n-
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dimensional set data points. Sampling from a composite only returns a
single data point as all distributions reside on the same dimension and are
aggregated from distinct partial distributions.

3.3 Generalized Composite Distributions

As the law of total probability states that the total probability over the entire
sampling distribution needs to be one, we can define a generalized rule that
holds for all distributions: ∀ψ :

∫
ψ = 1. When we consider composite

distributions, we get mixtures of partial distributions X ∼ ψ that already
adhere to the law of total probability to be valid probability distribution. It
then follows that we can weigh each of the partial distributions such that the
summation of all the partials once again equals 1.

For any possible composite distribution we can then define for the probability
density function as the sum of partial distributions.

p(x; Θ) =
n∑
i=1

πiψi(x | Θi) (3.1)

For this equation the law of total probability holds as the sum of weights

π1...πn that
n∑
i=1

πi = 1. In reference to the composite distribution, the weights

indicate the expected probability that a random sample from the composite
comes from a specific partial distribution.

If a distribution is generated from a sub-sample of data points from some
unknown distribution, then the known discrete set of data points form the
support [58]. The support of each partial distribution, by means of clustering,
in contrast to the total support forms the probabilistic weighting πi of ψi
assuming some data point x ∈ X and distribution parameterization Θi. The
support plays an important role in measuring and estimating the reliability
and confidence of data sources when evaluating composite models from
distributed data.

By formulating the support as the probability of distribution i being drawn
from, where i is one of the n individual partial distributions, we can formu-
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late the link between mixture distributions and composite distributions as
follows. First we take the composite probability density function in ∀ψi ∈ Ψ
with parameters Θi then we get the following composite probability density
function.

pc(x; Θ)


π1ψ1(x | Θ1)

...

πnψn(x | Θn)

(3.2)

Now we normalize π1...πn to the support ratio between the partial sψ and
the total distribution Sψ, such that composite pΘ(x) follows the law of total
probability. We draw a selection parameter ϕ from a uniform distribution as
ϕ ∼ U(0, 1) to perform the selection.

pc(x, ϕ; Θ)



si

Si
ψ1(x | Θ1), 0 ≤ ϕ1 < ϕ2

... ,
...

si

Si
ψn(x | Θn), ϕn−1 ≤ ϕn ≤ 1

(3.3)

Under the assumption that for a composite distribution the ratio
si
Si

is equiva-

lent to the selection weights πi, requiring the distributions to be i.i.d., we can
assume that pc(x, ϕ; Θ) is equivalent to p(x; Θ). Thus any mixture distribution
where selection is performed on the magnitude of its cardinality ratio is
congruent to a composite distribution.
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4Fitting ψ-partials to
Composite Distributions

To build a composite model we need to estimate the number of partial
distributions n, the type of distributions ψ1...ψn, the parameterizations of
the individual distributions Θ1...Θn and their weights π1...πn. However in a
typical situation we can only estimate the complete composite distribution
when sampling, the partial distributions that form the composite are unknown
[59]. If we assume a composite is a Gaussian mixture, we can approach this
by using an expectation–maximization (EM) algorithm [60, 61].

4.1 The EM Algorithm

With the EM algorithm we perform an iterative optimization procedure in
order to find a set of distributions Ψ and their parameters Θ that result in a
locally maximum likelihood towards a sample of data from the composite
distribution. [62]. First we define the density mass function as the slope
of the probability curve. We assume we draw samples x from a continuous
random variable with sampling distribution X : Ω → R such that for any
specific point P(X = x) = ϵ and

∫ x1

x0
P(X) = 1 where the closed interval is

bounded by x0 and x1.

Then we have the parameterized probability density function by tak-
ing the derivative over the interval D = [x0, x1] by using ψ(x,Θ) =

lim
δx→0

P(X ≤ x0)− P(X ≤ x0 + δx)
δx

. Since for a continuous function any sin-

gular P(X = x) = 0, we find ψ(x,Θ) = δP(X ≤ x)
δx

.

From this we can find the expectation of any continuous ψ parameterized
with Θ as E[ψ|Θ] =

∫
xψ(x θ0...θn)δx. For the likelihood L of a mixture of

n distributions and parameterisations we use the probability distribution

we have previously defined p(x)Θ =
n∑
i=1

πiψi(x | Θi), then L(Θ1, ...,Θn) =

p(x1, ..., xn; Θ1, ...,Θn). Assuming that the distributions are i.i.d we can use
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the product rule such that L(Θ1, ...,Θn) =
n∏
i=1

p (xi; Θ1, ...,Θn) =
n∏
i=1

pΘ (xi),

which we can substitute back to get the likelihood function.

LΘ =
n∏
i=1

k∑
j=1

(
πjψj(xi | Θj)

)
(4.1)

Using a log-transform we can eliminate the product, which will provide the
same solution space as the log-transform is monotone a transformation. In
other words, the arg maxΘ LΘ provides the same parametric solutions for Θ
as arg maxΘ logLΘ. Then we can use the transform to get the log-likelihood
that we can optimize.

LΘ =
n∑
i=1

log
 k∑
j=1

(
πjψj(xi | Θj)

) (4.2)

Since we have a double summation, we are essentially constructing a diagonal
matrix of n data points and k partial distributions. One of the ways to
approach this is to computationally limit the problem by introducing the
Heaviside step function H [63, 64], for which Hψ(xi) = 1 if xi ∈ ψj and
Hψ(xi) = 0 if xi /∈ ψj. This gives us the composite log-likelihood function
resulting in a likelihood matrix, which we can iteratively solve using EM [65]
by randomly initializing πi and then instead estimating whether xi ∈ ϕj using
its expectation under the assumption of some random weight πj given to
each partial.

LΘ,H



n∑
i=1

log [π1ψ1(xi | Θ1)] , ∀j ̸= 0 H1(xi) = 1 ∧Hj(xi) = 0

... ,
...

n∑
i=1

log [πkψk(xi | Θk)] , ∀j ̸= k Hk(xi) = 1 ∧Hj(xi) = 0

(4.3)

Now we can again use the mixture composite distribution equivalence to per-
form a back substitution to get the sum of the logs of the mixture distribution
with the step function method.
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LΘ,H =
n∑
i=1

k∑
j=1

(
Hj(xi) log[πjψj(xi | Θj)]

)
(4.4)

Now all that remains is to define the E- and M-fuctions for our EM algorithm.
First, for the E-step we look to maximize the expected value of our optimiza-
tion value, in this case we want to maximize the expected value of H. In a
practical sense this means that we want to find the configuration in which
points xi have a high likelihood to belong in partial distributions ψ1 through
ψk. This means we define the H expectation in our equation as follows.

LΘ,H =
n∑
i=1

k∑
j=1

(
E[Hj(xi) | Θ1, ...,Θn] log[πjψj(xi | Θj)]

)
(4.5)

Then the expectation to be maximized can be isolated using Bayes [62].

E[Hj(xi) | Θ1, ...,Θn] = πjψj(xi; Θj)∑k
l=1 π̂lψl(xi; Θl)

(4.6)

Given the expectation, we can maximize the expectation in the M-step using
Equation 4.6.

π̂j, Θ̂j ← arg max
π,Θ

E[Hj(xi) | Θ1, ...,Θn] (4.7)

Now we can use maximum likelihood estimation to iteratively optimize the
fit of some other candidate k-composite distribution to the observed data
x1...xn by finding the weights that maximize the expectation and then using
the new weights and parameters to advance to the next iteration [66]. The
optimization is constrained to the sum of weights equating to 1. In Figure 4.1
we show an example of two fits, one using a single Gaussian to the left and
one showing a better fit with two Gaussians.

This also reveals a limitation of this method, as the amount of partial dis-
tributions k has to be defined at the start of the optimisation phase. We
could always find a very close fit if we use enough distributions as the fourier
transform of a Gaussian is a Gaussian in itself [67, 68]. However, doing
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Fig. 4.1.: Two possible fit configurations to model partial distributions of XC using
k = 1 and k = 2 respectively

so means significantly overfitting on the sample data and will not produce
a generalizable model. Instead, k can be selected by setting some fitting
boundary, i.e. a α = 0.05 coverage over the composite, optimizing models
using k = 1 . . . k = kmax and then selecting the most parsimonious model
that meets the coverage requirement.
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5Dirac δ-Composition

A more generalized way to treat composite distributions is to view it as a
generalized transformation function over the number set R. This can be
achieved by using the Dirac δ-function to build δ-Composite Distributions.
The Dirac δ-function is special in that it performs a linear mapping of any
continuous function over a vector space, such as a distribution over a sample
space, to an associated field of values at the zero point of the function in R
[69].

This technique is also known as the normalisation of given state vectors,
which may simplify the evaluation of generalized distribution functions in a
composite. First we will evaluate the Diract δ-function, then we will show
how this can be utilized to formulate any ψ to generalize the composition of
distributions from partials [70].

5.1 The Dirac δ-Function

Remember that we defined the Heaviside step function H as the composite
function that maps a real valued domain to the discrete set {0, 1}.

H(x) =

0, x ≤ 0
1, x > 0

(5.1)

We can then expand this function for any pivot point a with a transpose.

H(x− a) =

0, (x− a) ≤ 0
1, (x− a) > 0

=

0, x ≤ a

1, x > a
(5.2)

This forms a piece-wise function that can be formalized as the mapping
function H : R → {0, 1} for any value of a. In Figure 5.1 we show the
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behaviour of the step function at a = 0, any change to a transposes the
stepping point on the x-axis.

−1 −0.5 0 0.5 1

0

0.5

1

x

H
(x

)

Fig. 5.1.: Heaviside Step Function

However, as this function is not symmetric, a common convention is used
called the half-maximum convention. Following this convention, any stepping
function’s value on the break-point is the average between the upper bound
and the lower bound. We show this in Figure 5.2.
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H
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)

Fig. 5.2.: Heaviside Step Function using the Half-Maximum Convention

This piece-wise function and its a-expansion, where x = a gives the mean of
H can be defined as follows.

H(x− a) =


0, x < a

0.5, x = a

1, x > a

(5.3)

From this function we can also derive a continuous step function Ha, which
instead of using the mean, connects the lower and upper bound together
through a linear function which translates both ends 1

2a from the centre.
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Ha(x) =


0, x < −1

2a

1
a
(x+ 1

2a), x = −1
2a ≤ x ≤ 1

2a

1, x > 1
2a

(5.4)

In Figure 5.3 we demonstrate this using a = 1, which results in a linear step
section between x = −1

2 and x = 1
2 .
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a
(x

)

Fig. 5.3.: Continuous Step Function using a Linear Interpolation

However, while this new step function is continuous, if we look at the
derivative we now find discontinuous points at −1

2a and 1
2a respectively. We

take the derivative of Ha and show.

δ

δx
Ha(x) =

0, |x| < 1
2a

1
a
, |x| ≥ 1

2a
(5.5)

And this gives us the the illustration in Figure 5.4, we can clearly see here
that there is a discontinuity for which the derivative is not a continuous
function.
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Fig. 5.4.: Derivative of the Continuous Step Function using a Linear Interpolation
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We observe here that the size of the interval in which
δ

δx
Ha(x) = 1 depends

on the magnitude of a. We also further note here that when a = 0, we get the

original Heaviside step function H(x) as it follows H(x) = lima→0
δ

δx
Ha(x).

Thus if we take the limit of a to zero on the derivative of Ha(x), we get the
derivative of H(x). We can now define the Dirac-δ function as the derivative
of the Heaviside step function.

δ(x) = δ

δx
H(x) (5.6)

The magnitude of δ(x) is inversely proportional to the size of a, thus when
a → 0, δ(x) → ∞, while it is 0 at all other x. This is a unique property as
this allows δ(x) to map to any pivot x0 of any continuous function, hence
δ(x) allowing to form generalizable functions. For any possible mapping
function f : R→ R we can integrate f(x) with respect to pivot x0 to get the
magnitude of f(x0).

∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0) (5.7)

For probabilities this has a very interesting property. Since the integral over
any valid probability density function must be 1 according to the law of total
probability, we can estimate any point probability over f using the Dirac-δ
function. The standard Dirac-δ is visualized in Figure 5.5.
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Fig. 5.5.: Visualisation of the Dirac-δ function
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5.2 Composing Generalized ψ-Functions

With the definition of the Dirac-δ function we can define generalized functions
that are a mixture of discrete and continous variables [70]. Since probability
density functions are R→ R mappings, we can thus use the Dirac-δ function
to generate generalized ψ-functions. First let us define the expected value µψ
of any continuous distribution ψ as the integral of each x times the probability
p at x.

X ∼ ψ(Θ)

µX = E[X] =
∫ ∞

−∞
xψ(x; Θψ)δx

(5.8)

Now remember from Equation 5.7 that for any pivot x0 we can map to
f(x0) by integrating with the Dirac-δ function. For any continuous function,
x− x0 → 0, such that δ(x− x0)→ 1. Thus for continuous functions the δ(x)
term disappears from the integral. However, for discrete random variables
this is not the case.
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aδ(x− x0)

Fig. 5.6.: Dirac-δ function with pivot x0 = −0.5 and magnitude a = 0.5

Derivation

To show this let us first step back to using the Heaviside function from
Equation 5.1. Say now we have the delta x − x0, then if x > x0, then
H(x − x0) = 1. For any discrete distribution we can define the probability
density function as the derivative of the cumulative density function Ψ as
δΨ(x; Θψ)

δx
. Since for the cumulative density function, we want every xi be

the sum of all x ≤ xi, we can sum up all the probabilities by defining for any
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x ≤ xi that H(x ≤ xi) = 1 by using the delta trick on the probability mass
function p for any x ∈ X.

X ∼ Ψ(Θψ)
Ψ(x; Θψ) =

∑
xi∈X

p(xi | Θψ)H(x− xi) (5.9)

Here we note that δ
δx
H(x) = δ(x). Thus we then take the derivative of the

cumulative distribution function as described in Equation 5.9.

ψ(x; Θψ) = δΨ(x; Θψ)
δx

=
∑
xi∈X

p(xi | Θψ) δ
δx
H(x− xi)

ψ(x; Θψ) =
∑
xi∈X

p(xi | Θψ)δ(x− xi)
(5.10)
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6Evaluating ψ-Composites

Previously we have addressed sampling data as evidence for testing hypoth-
esis. In this chapter we will further address this topic with techniques for
fitted ψ-distributions. A typical case of hypothesis testing is to test whether a
sample of limited data points conforms to some metric, instead we propose a
technique where we computationally fit aggregated composite models and
then computationally integrate against the ψ-function. In addition, we will
cover how to perform composite hypothesis tests against multiple distribu-
tions and tests against composite distributions.

6.1 Numeric Overlap Method

There are various ways to perform hypothesis tests through inferential statis-
tics, such as the student’s t-test, paired t-test, f-test, chi-square test, the
Wilcoxon test and ANOVA to name some of the most commonly used tests
[71]. However, what all these tests have in common is that they either assume
that the data follows some normalized distribution with set parameters or
they may require direct access to the data to perform the test in the case of
non-parametric testing.

An alternative is to use a model-agnostic hypothesis test, for which we
propose to use the integral overlap O [72] as a computational method to test
for model equivalence and monitor composite model inter-rater agreement
on a specified variable.

To test hypotheses H ∈ H using the O-method we use the process of com-
putational inference. To do so we can select any k distributions to compare,
which may also include the uniform distribution U , which allows for a gener-
alization of tests for µ. This test statistic is in essence a derivative descriptor
over a set of evidence that the hypothesis is to be tested on. For instance, we
can use U to estimate the critical boundary for any significance level α.

For instance take a standard normal as shown in Figure 6.1, giving us a
random variable X ∼ N (0, 1). The two-tailed critical region as shown can be
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derived by taking the union between the distribution of X and forming the
union over U(a, b), where a and b are the upper and lower boundary that form
an area of 1− α. In this case we are evaluating a two-tail measure, so with
the law of total probability we can take the total probability 1 and subtract
the cumulative probability distribution up until x = 1 to get the distribution
of the possible boundary values where the surface area equals to 1−α. Since
there are many possible solutions for this, the solutions themselves occupy a
distribution derivative of ψ.
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Fig. 6.1.: N (0, 1) using U(a, b) overlap with critical values for significance level
α = 0.05 shown in the shaded area in intervals [−∞, a] and [b,∞]

Since this example is symmetrical, both sides occupy exactly 0.025 of the
area under the curve. To evaluate this simple example computationally, we
first define the probability density function f for this curve for the random
variable X ∼ N (µ, σ2) as f : X → R, see Equation 6.1.

fX(x) = 1
σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]

(6.1)

Now we consider the cumulative distribution function FX , which is the
integral over the probability distribution function fX defined as FX(x) =∫ x

−∞
fX(x)δx. For the Gaussian case this can be evaluated as the following

equation.

FX(x) = 1
σ
√

2π

∫ x

−∞
exp

[
−1

2

(
z − µ
σ

)2
]
δz (6.2)
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We can solve Equation 6.2 computationally with methods such as Newton-
Cotes [73] or Simpson’s rule [74] by approximating from the root x0 = α on
the right hand side of FX . Since this example is symmetric, we can trivially
find the solution FX(α2 ) ≈ 1.96. For distributions that are not symmetrical
around µ, we can only use this method to find a right- or left-tail solution. A
two-tail solution requires evaluating a sample of all possible combinations
(x, α− x) where ∀x, x ∈ [0, α], which gives us a distribution over all possible
solutions.

The primary type of tests we are interested in is tests for the overlap coefficient
O, which can determine the agreement or similarity between ψ-partials or Ψ
composite distributions. We show an example in Figure 6.2, where we have
marked the intersection area between the two distributions. The more both
distributions overlap, the more similar the distributions are.
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Fig. 6.2.: N (0.5, 12) in blue and N (2.5, 1.52) in green with shaded overlap

We define O as the ratio between the surface area of the intersection and
the surface area of the union. This is an expansion of the Szymkiewicz-
Simpson measure [75] to the continuous case in R. Since it holds that for any
distribution limx→∞ F (x) =

∫∞
∞ (x)dx = 1, we can simplify this expression to

O(ψ1, ψ2) = G(x)
2−G(x) where g(x) defines the overlap curve between ψ1 and ψ2

and G(x) =
∫∞

−∞ g(x)δx.

To evaluate the overlap, we may use the Newton-Raphson method [76] to
find all intersections between ψ1 and ψ2. Given the intersections, we can
construct a composite distribution function with k + 1 piecewise components
where k is the number of intersecting points. In Figure 6.2 we have one
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intersecting point computationally approximated at x0 ≈ 1.587. This gives us
a new composite probability density function as follows.

g(x) =

N (0.5, 12), x ≤ 1.587
N (2.5, 1.52), x > 1.587

(6.3)

We can then define the surface area function as a sum of integrals defined in
Equation 6.4. Note that for G(x) =

∫∞
−∞ g(x)δx ≤ 1, as g(x) maximizes under

ψ1 = ψ2 to total probability. For disjoint distributions we find G(x) → 0,
which are maximally dissimilar distributions.

G(x) =
∫ ∞

−∞
g(x)δx =

∫ 1.587

−∞
N (0.5, 12)δx+

∫ ∞

1.587
N (2.5, 1.52)δx (6.4)
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Fig. 6.3.: Composite distribution Ψ in blue and Gaussian distribution N (2, 1.12) in
green with marked overlap

We can utilize this method measure O between two distributions. In
Figure 6.3 we show for instance a composite that evaluates to G(x) =∫ x0

−∞
N (2, 1.12)δx +

∫ x1

x0
Ψ(x,ΘΨ)δx +

∫ ∞

x1
N (2, 1.12)δx. In essence, we can

generalize this to the set summation in Equation 6.5.

G(x) =
∑

xa,xb∈Xint

∫ xb

xa

ψi(x; Θψ)δx (6.5)
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Where Xint is the set that contains the lower and upper limits and all the
intersection points as Xint = {−∞, x0, ...xk,∞}. The ψi that is used for
each integral is based on the slope, for any interval [a, b] if δ

δx
ψi(x; Θψ) < 0,

then ψi is used to evaluate that interval. Naturally, for any intersection
where δ

δx
ψi(x; Θψ) > 0, then the ψ that is not ψi is used as the surface for

the previous interval. By summing each of these intervals together, the
overlapping area between complex curves can be efficiently estimated.

Now for any given hypothesis we can evaluate 1−O(ψ1, ψ2) < α as a method
to test overlap hypotheses for generalized ψ-distributions. Note that overlap is
a much more general estimation of similarity than t-tests, and also provides a
very powerful testing criteria for time series or geographic data by comparing
the evaluation of the ψ-distribution at different levels for t.
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Part II

Computational Methods

„Language is a process of free creation; its
laws and principles are fixed, but the
manner in which the principles of generation
are used is free and infinitely varied.

— Noam Chomsky
Language and Freedom

One of the most critical issues in any complex organisation or research
programme is managing research data. Even the most advanced analytical
techniques ultimately rely on the availability and quality of data. While there
are many ways to deal with this issue, such as developing data pipelines
and using linked object stores, the data themselves are rarely interoperable
with each other. This results in data rarely being re-used, especially across
different organisations or beyond the borders of nations.

The first step in tackling this issue is to formalize the method for data re-use,
namely by embedding semantics as metadata within the data generating
process using standardized ontologies. With this method, we can demon-
strate that using graph algorithms we can make composite data, such as
federated data, from multiple distributed data sources. In addition, we will
conceptualise and showcase a generalized federated data architecture based
on FAIR which has formed the basis of the computational solution in place at
over a dozen physical sites.



7Knowledge Graphs

Data is at the core of empirical research, so it is of utmost important that
the generation, storage and handling of data are met with high standards
in terms of reliability and accuracy. This includes being able to trace the
provenance on how the data was generated, storing data in such a way
that it is universally accessible under pre-defined conditions and that data is
handled in a reliable and secure manner.

The typical research data that you would come across are in the form of
tabular data or object files [77]. Generally, these are relatively compact
and simple to manage within the scope of a single research project. More
complex research programmes might use domain-specific storage solutions
or databases to store scientific data. However, no matter the technology used,
if data cannot be unambiguously understood and processed, then it is of no
use outside of the direct sphere of the research.

As we have discussed in the introduction, this is a significant issue both
within any large data ecosystem. Enormous amounts of data are essentially
inaccessible, either because they are not properly indexed or because there is
no sensible way to process or use the data. For applications in federated data,
where we only have access to metadata and aggregated models or metrics [7],
it is essential that the meaning, described through formalized semantics, is
embedded within data for unambiguous interpretation and parsing. Without
a formally described way on how to interpret and place data within context,
there isn’t any way to transform these data into information or knowledge
that can provide value to operations or research.

7.1 Graph Representations

At the basis of formalizing interpretability in data is a fundamentally different
data format, graph data. Graph data differs from tabular data in that graphs
have a structure and ordering, with linkages between nodes that represent
data classes and data points. This allows graph data to store knowledge: the
combination of factual representations and the interactions between different
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facts [78]. Tabular data is typically described through columnar metadata,
which includes column names, measures and different properties which is
stored within a tabular data store or file as data themselves. This concept is
considered data as metadata.

Metadata within graph data takes on a unique role, as the metadata of a graph
are classes that uniquely describe properties of the data. These properties
are associated with nodes and linkages, which describe either the class of
a node or a relation between two classes within a graph. Linkages can be
unidirectional or bidirectional, which also means that in order to evaluate
graph data, they need to be traversed in order to find specific combinations
of results [20].

A regular directed graph is defined as a pair of sets G2 = (N,L), where N are
the nodes in the graph and L are the links connecting different nodes together
represented as pairs of nodes in L ⊆ N × N . For example if N = {x1, x2}
then we can represent the directed link x2 → x1 as the 2-tuple in the link set
L = {(x2, x1)}. In Figure 7.1 we showcase an example graph. However, if
we want to embed different types of relationships between nodes using the
2-tuple definition of a graph is insufficient.

Nodes 
a 
b 
c 
d 
e 
f

Links 
(a,d) 
(d,a) 
(b,d) 
(e,c) 
(e,d)

c

a

e

b

d

f

Fig. 7.1.: An example of a directed 2-tuple graph

For a knowledge graph we consider the 4-tuple definition, which is specified
as G4 = (N,L,R, f). In addition to the nodes and linkages, we add a set
of relationships classes R. While nodes classes are unique, a relationship
class may be repeated within the same graph. The mapping function f in
this case generates the set ∀l ∈ L,∃r ∈ R, f : r → l. If we apply this to our
previous example, we can for instance say (x2, x1)→ "constraints" if we want
to indicate that x2 is constraining variable x1.
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The formalisation of classes, attributes, logic, axioms and the relationships
between classes are considered ontologies, and as such you could argue that
G4 is also an ontology. In essence N and R are controlled vocabularies, while
L are relationships and f is a logical mapping function. Using an ontology,
we can create instances of the ontology or perform ontology matching, the
latter which we will cover in the next chapter.
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Fig. 7.2.: An ontology represented as a graph and an instance of the ontology

In Figure 7.2 we show a possible instance created from an ontology. Here
edges b, d and e are instances of the ontology vocabulary classes X,W, V .
Using ontologies to produce knowledge graphs for specific use cases, i.e. by
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associating subclasses with data points or additional attributes, provides an
essential property for interoperability of data. If we consider federated data
sources, we can only traverse metadata. Thus if we can devise algorithms
that operate over an ontology, agnostic of any underlying data points or
instancing, we can be assured that this algorithm will run on any instance of
the ontology [79].

This property of knowledge graphs can be compared to the rows and columns
of a table. The node classes in an ontology supporting a knowledge graph
are similar to the attributes in a table, they describe all the data instances
in a column. In the context of knowledge graphs provide the meaning an
explain ability that allows us to potentially combine, compare or interact
with different data sources that are similar in meaning. The knowledge graph
instance forms the equivalent of the row in a table, as it stores data points
that are associated with the unique node classes.

X W V

Fig. 7.3.: Representation of knowledge discovery across instances of an ontology

One of the powerful properties of knowledge graphs is the ability to perform
knowledge discovery [80]. With this technique we can apply graph traversal
to find meta-relationships between different instances of the same ontology.
Expert knowledge from the ontology can be embedded in operational models,
because we can learn from linked data and can can also build models that
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utilize these causal relationships between nodes [81]. In addition, we can
even express the type of the causality through the classification of the link.

In Figure 7.3 we provide a simple representation of knowledge discovery.
This can even be applied to incomplete subsets of the ontology, for example
we can discover a meta-relationship of multiple instances of a class resolving
to similar instance values of another class [21]. In the case of federated data,
we will not be able to see these individual instances of data, so instead we
can make inferences over the resulting composite data. For example using
the ψ-composite overlap technique we discussed in the previous part, we can
discover the rate of agreement within a certain class and then analyse the rate
of agreement with directly adjacent classes. This is an important property for
the reliability of a model, as an unreliable super-class will propagate through
its sub-classes.

7.2 Attribute Grammars

Graphs are abstract concepts that cannot be directly used in computational
methods without a proper syntax. One of the ways to represent a graph
is through a series of statements or rules, that represent a formalisation of
the production function f we have introduced in the previous section. To
be able to read and understand sequences of semantic embeddings, we do
not only need understanding of the individual components, but also how
those components may be formed and the rules governing combinations of
components [82]. These rules are expressed as a formal grammar, which
provide the production rules for a language. The way graph syntax can be
expressed is through a formal grammar.

A formal grammar G is much like a knowledge graph G expressed as a 4-
tuple. We define the formal grammar as G4 = (N,Σ, P, S), where N are
non-terminal terms, Σ are terminal terms and N ∩ Σ = ∅. P represents the
production rules, which can be in the shape α→ β and define the different
variations of possible syntax that can be generated over the total set of
symbols N ∪ Σ. S ∈ N is the start symbol, which together with rules around
S in P form the entry point for generating a graph syntax. Take for instance
a knowledge graph, if we want to produce a sensible graph we always start
with a node belonging to some class. Then we can produce other nodes
with potential edges between them. We cannot produce edges that are not
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connected to anything. A formal grammar can express these conditions for
structuring the syntax of a valid and machine readable graph.

A basic grammar G4 that can be used to produce directed graphs over a set
of classes x0, ..., x1 can be produced by formalizing the production rules.

N = {S, P,R,N, L}
Σ = {X , >, (, )}

P = {S → PS, S → P, P → (R), R→ N,

R→ N > N,N → X}
S = S

(7.1)

Where we assume that x is the variable for the node symbols. This is what
we consider a context-free grammar, as in the production rules none of the
left-hand terms have more than one term, e.g. they do not consider their
surrounding context. This will result in a series of p-separated production
rules that formulate the structure of a graph. For example the graph in
Figure 7.1 can be produced by the grammar in Equation 7.1 using X =
{a, b, c, d, e, f} as:

S → PS → (R)S → (N > N)S →
(X > X )S → (a > d)S → ...→

(a > d)
(d > a)
(b > d)
(e > c)
(e > d)

(f)

(7.2)

Which are the exact production rules required to reproduce the directed
graph of Figure 7.1. However, as we have seen in this context we have to
redefine X to contain the definite symbols a, b, c, d, e and f . In this case this
set is our controlled vocabulary. In addition, we also cannot define classes
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to linkages without running into the same issue of having to redefine our
grammar for every graph. The method that may be used to deal with this
issue are attribute grammars.

An attribute grammar is an extension to a formal G4 grammar, which allows
embedding of semantics attributes such as classes, templates, instances and
typed values within a grammar without fundamentally changing the context-
free grammar that is responsible for the base syntax [83]. This extension
is given by allowing any term x ∈ N ∪ Σ to have attributes associated with
them, denoted by using a dot-specification. For instance, we could now say
that X has the attribute instance associated with it, then we can define in the
grammar the semantic rule PX : X .instance := “a” if we want to assign the
string a to the instance attribute of X .

Naturally, we want to perform dynamic assignments. This can be done
through semantic rules that are embedded within the production rules P ,
which provide a meaningful relationship to the syntax being produced. In
addition, because of this feature, we can generalize the grammatical rules
significantly by referring to the superclass and producing sub-classes through
attribute assignment. The most basic example of this is an inheritance
assignment rule, which can be formulated as:

Superclass→ Subclass [Superclass.type = Subclass.type] (7.3)

This rule for instance says that any expression containing Superclass can
be subject to a production rule that turns it into a Subclass while retaining
the same type attribute. In essence, this semantic rule within production is
what describes the semantic classification of relationship linkages that we
discussed in the previous section.

This can also be applied to perform logic or arithmetic, for instance we can
embed formulas in the graph that describe knowledge that has been defined
in the ontology. We can provide a simple example which uses the length,
width and height attributes of a class to generate a new associated volumetric
class.
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Object→ Object > Volume [ Volume.value := Object.length ∗
Object.width ∗
Object.height ]

(7.4)

If we now return to the set of rules we defined in Equation 7.1 we can
redefine these rules with the attribute grammar addition to embed semantics.
In this case our issue was that there was no way for us to define a finite set of
terminals without changing the grammar itself. Now, we propose to use the
attribute grammar to define the value of the terminal rather than embedding
it as a term. In addition, our link production rules can now embed rules to
set the type of relationship class between two nodes.

N = {S,R,N, L}
Σ = {X , >, (, )}

P = {S → (R)S [R.instances &= S.instances],
R→ Ni [Ni.instance := S.pop[.instancesi]],

R→ Ni > Nj [Ni ̸= Nj;> .relation := R.instancei,j],
N → X [X .instance := N .instance]}

S = S

(7.5)

Now if we instantiate S with our class instance list such that S.instances =
{a, ..., f} and S.relations = R, we can build or validate a semantic graph
according to the attribute grammar production rule set.
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8Graph Interoperability

One of the primary use cases of embedding semantics in graphs is that we
can apply automated reasoning methods to these graphs, such as converging
different data sources for interoperability and embedding semantic graphs
in graph-based models. This has great significance in methods for federated
learning and analysis, as we are often dealing with disparate data sources.

Ontologies form meaningful standards on which data sources can be based
or mapped, which provide avenues to make parts, denoted as sub-graphs,
of the complete data interoperable. Data at different federated instances do
not necessarily need to entirely match, as we can perform analyses on these
sub-graphs to find meaningful relationships or patterns that combine expert
knowledge from an ontology.

In the previous section we have discussed that graph data can either be
produced from an ontology, or an ontology can be mapped onto an existing
data source. In this section we show a method that enables us to utilize
these mappings to make heterogeneous data from different restricted sources
interoperable.

8.1 Semantic Convergence

Data across repositories and studies originate from data generating processes.
These processes can vary from empirical research data to qualitative surveys,
which results in data that can present itself in a wide range of formats,
according to different standards and may differ in meaning depending on
the domain of application. This makes re-use of data especially challenging,
which is an issue within the federated data methodology.

The very essence of federated data is to support continuous re-use of data
without direct data access, which can only be supported if the meaning of
data is known ahead of time. The proposed way to deal with this is by
embedding semantics in the accessible metadata that describe the format
of the actual data instances. If these standards exist over many different
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repositories within a federated data cluster, then there is the opportunity to
apply the ontology matching technique.

To perform this, we must define a graph algorithm that can perform ontol-
ogy matching. There are various possible techniques that focus on differ-
ent aspects of graphs, such as maximally-matchable edges [84], maximum-
cardinality matching [85], bipartite matching [86] or using a heuristic like
the Hosoya index [87]. However, as our techniques are aimed to maximize
the generalisability of our techniques across repositories, we decide to go for
a very generalistic approach with subgraph isomorphism matching.

Subgraph Isomorphism

The subgraph isomorphism detection algorithm works by comparing two G4

graphs, G1 and G2. It then finds whether G1 contains any subgraph that is
isomorphically congruent with any subgraph in G2. In other words, G1 is
subgraph isomorphic with G2 if there exists a bijective mapping between
G1 and G2. For this to hold it must also hold that for the bijective mapping
f : NG1 → NG2 such that for ∃x∃y : adj(x, y) ∩ adj(f(x), f(y)) ̸= ∅. We
describe this procedure in Algorithm 2 using a double adjacency queue.

Algorithm 1 Baseline Subgraph Isomorphism
1: M := ∅
2: for all n ∈ NG1 do
3: if n ∈ NG2 then
4: P := n
5: Q1 ← NG1 [n]
6: Q2 ← NG2 [n]
7: for all q ∈ Q1 do
8: if q ∈ Q2 then
9: P ← P ∪ q

10: Q1 ← Q1 ∪NG1 [Q1.pop(q)]
11: Q2 ← Q1 ∪NG2 [Q2.pop(q)]
12: end if
13: end for
14: if |P | > 1 then
15: M ←M ∪ P
16: else
17: DISCARD P
18: end if
19: end if
20: end for
21: return M
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While this algorithm will find all possible subgraph isomorphisms between
G1 and G2, the algorithm itself scales very poorly when applied to larger
graphs since it needs to perform breath-first search through both graphs
with a double queue. . For a complete search this is unavoidable, as finding
subgraph isomorphisms is a NP-complete problem [88]. However, we can
modify the problem in such a way that we can find a more optimised solution
using the properties of our semantic data.

We propose to leverage selected pattern queries in source ontologies to
match towards any n graphs to match semantic feature F . By matching a
feature, either as a full or partial match described in a binary matrix, we can
circumvent the dual traversal complexity. Instead, we use the source ontology
as a feature mapping that can then be transferred to other graphs. Any graph
that matches a feature in the source ontology, is (partially) interoperable
with another graph that matches the same feature. In Figure 8.1 we show a
feature from a source ontology being matched with two distinct graphs.

Source Ontology

α

β λ

α

Partial Match

α

λ

β

Exact Match

Fig. 8.1.: A schematic for partial and full ontology mapping from a source ontology
towards heterogeneous target knowledge graphs
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In essence, instead of searching for any possible isomorphism between two
graphs, we search for specifically indexed features in individual graphs. The
availability of such k-features can be recorded in a binary index matrix I of
size n× k, which can be used to find similar features in any n graphs.

Algorithm 2 Ontology Matching Subgraph Isomorphism
1: M := ∅
2: T := ∅
3: F := GF
4: for all NF ∈ F do
5: if n ∈ N /∈ T then
6: T ← T ∪ n
7: end if
8: end for
9: for all n ∈ T do

10: z ← z ? z : n
11: if n ∈ G and (n ∈ NG[z] or |M | < 1) then
12: z ← z ∪ n
13: M ← P ∪ T .pop(n)
14: end if
15: end for
16: if |M | > 1 then
17: return M
18: else
19: return ∅
20: end if

In this instance we only need one graph traversal, as we only have to parse
the source ontology and then check if our adjacency list contains any acces-
sible matching elements. Upon finding a match, we update our ontology
accordingly, otherwise we move on to the next element. Since we only have
to consider adjacency for the source ontology feature, we do not have to
continuously update our adjacency graph, but instead we iterate over all
matches to see if they are adjacent. This allows us to split the algorithm in
two individual loops, instead of using an inefficient nested loop. We can
continue this process until the entire adjacency list is empty and return any
matching subgraphs.
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9Federated Data Architecture

In order to bring the statistical and computational techniques we have dis-
cussed in the previous chapters in to action within a federated data frame-
work, we need to look at the bigger picture. Data and their resulting models
do not live in isolation, but in the sphere of data generating processes and
their context, sensory equipment or data capturing technology, data pipelines
and databases that store data. In addition, societal effects and legislature can
also have a strong impact on data, as we have seen with data protection acts,
biases in data, reliability issues or even the potential for fraud [25].

These are grand challenges when dealing with federated data, which es-
sentially aims to build a single virtualised repository from multiple physical
sites and storage solutions. In comparison to cloud-based techniques, vari-
ous levels of access may be provided across sites and direct data access is
restricted [6]. Instead, metrics and models are calculated on-site, parsed
to the virtualised entity and then built into a composite model spanning all
participating sites.

While this provides strong safeguards for privacy, security and data ownership,
it also brings up questions in terms of reliability and quality of data [89, 90].
In the section covering statistical techniques we already covered how to work
with composite distributions and how to measure large deviations from the
norm, but we must also look at the process itself in order to ensure that
analyses resulting from federated data are reliable. This means that within
a federated data architecture, care should be taken that the complete data
lineage and provenance is recorded and available for audit.

In order to address the concerns around data access, ownership, interoperabil-
ity, reliability and usage we will use the framework of FAIR data and services.
We will show that this framework is suitable for usage in a federated setting
and we will illustrate the general structure of FAIR data points as federated
data repositories to design a scalable federated research infrastructure.
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9.1 FAIR Data

In 2016 Wilkinson et al. [16] developed a set of principles named the
FAIR data principles, which aim to improve data re-use and support proper
research data management and stewardship. One of the most fundamental
issues in research is that data is not commonly re-used after a study has been
concluded, while these data are not only costly to acquire, but may also in
some cases not be acquired again. Furthermore, re-use is data is vital for the
scientific process, repeat studies depend on accessibility of the original data
sources and require provenance to replicate the experimental setup.

FAIR Principles

• Findable
Data are properly indexed and have a universally unique, persistent
identifier associated with them.

• Accessible
Access and permission control surrounding the data are properly de-
scribed, data are accessed through a universal, open communication
protocol.

• Interoperable
Data is properly described with semantic metadata and follows open
standards for machine readable data representations.

• Reusable
Data are reposited in a findable, accessible and interoperable format
with full provenance, data lineage and licensing.

More than ever, the advancement of scientific research relies on empirical
data. The FAIR principles guide the practice of stewardship and standards
that aim to increase data reuse. The more data that is available, the more
potential there is to derive value from data and the easier it is to verify
scientific findings to a high degree of reliability.

At the forefront of this is the development of research infrastructure, such as
the tooling and systems that enable us to produce, leverage and manage FAIR
data. This poses significantly more challenging than regular data ecosystems,
since some of the key issues that FAIR addresses were typically avoided for a
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reason. Such developments are time consuming, often requiring significant
overhead, and also require significant expertise to properly implement. For
this reason data stewardship is of increasing importance, as it would be
infeasible to expect researchers of every discipline to be aware of the exact
conditions and procedures on which FAIR data rely.

The FAIR principles ultimately follow the fundamentals of the semantic web,
the envisioned semantic layer on top of the regular internet protocol that
drives the web. At the very essence, FAIR data from this perspective is
an extension to semantic data, with specific additions to improve index-
ing and accessibility that is relevant when used across different research
programmes.

9.2 Data Localization

When dealing with the process of localizing the creation and management
of metadata we will need to consider not only the intricacies of the specific
domain for which we engineer, but also the data governance framework of
the locale in which we are operating. One of the central contexts within data
governance is data ownership as noted by Janssen et al. [91], which may
pertain to the legal aspects of possession of, responsibility over and rights
to a specific element or set of data. In practice it is often challenging to
determine exactly who the owner of a piece of data is, as also demonstrated
by Al-Khouri [92]. The further data is removed from the origin, the more
challenging the question of data ownership becomes.

A crucial element that is required in order to determine, and document,
data ownership is data provenance provided by rich metadata. These are
the metadata that provide specifications regarding to the lineage of data
through the lifespan emerging from specification, to data generation and
ultimately removal or archiving. How these metadata are structured within a
specific domain is a subject of contemporary research [93]. However, there
are aspects of metadata provenance, as common data elements, that are used
across all domains, which are the provenance we are interested in when
looking at data localization. Provenance in such regard is also cited as a key
element to data reuse [94], providing both the legal and semantic framework
from which these data originated through a localized context.
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In order to reconcile the need for localized data ownership, especially when
handling sensitive data across national borders, with the FAIR principles,
the concept of the FAIR Data Point (FDP) arose [17]. By utilization of FAIR
metadata engineering during the data creation process, and repositing these
data in locally managed storage points, strong safeguards are provided both
in terms of provenance and data ownership [95] that can be applied within
federated data as federated data repositories.

Ensuring that data is FAIR at point of creation provides significant technical
challenges, but also provides significant advantages over making data FAIR
post hoc [96]. To address the technological challenges, we propose to use
the CEDAR ecosystem [97] as a technology to perform ad-hoc generation
of FAIR data. Using an ad-hoc process, which is based around the use of
community-specified base ontologies, will provide significant advantages
when tackling data interoperability and reusability challenges, and provides
a strong baseline from which to further develop a FDP ecosystem.

9.3 Federated Data Repositories

The concept of the FAIR Data Point (FDP) as a federated data repository
is centered around the practical implementation of the FAIR principles as
first described by Wilkinson et al. [16], which describes a data manage-
ment framework which enhances data interoperability and reuse. However,
implementing these strategies in existing data, a process that is named
FAIRification, is both time consuming and often not feasible due to lack of
provenance [96] or due to ambiguity present within the data.

The manual implementation of FAIR principles and curation of metadata
within a study may be an expensive, laborious and ambiguous process due to
the lack of a specific technological implementation to support these methods
[98]. Without direct benefits for the principal investigators of the study,
there is little incentive to truly leverage the benefits of FAIR. Despite FAIR
being a requirement for an increasing amount of scientific grants and fund-
ing opportunities, in order to improve reusability of scientific data [99],
reusability remains limited if there is a lack of common technological or se-
mantic standards in order to make FAIR metadata interoperable and machine
actionable.
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The FDP provides the much needed technological framework in order to
support bringing the FAIR principles into practice. This also allows for the
introduction of the concept of shared ontologies, such as the gene ontology
by Ashburner et al. [100], into the framework of FAIR data and services.
In order to ensure interoperability and reusability of data [101], it is not
only needed that community-based metadata standards are developed as
indicated by Wilkinson et al. [16], but these domain metadata standards as
ontologies also need to be dynamic through the use of ontology services to
support metadata specification and curation.

The importance of dynamic, shared ontologies also signifies for the impor-
tance of these ontologies to be FAIR [102]. As ontologies may change over
time, it is important that provenance over such changes is retained to ensure
machine interoperability of past data for reuse beyond the scope of ever
changing scientific vocabularies. In Figure 9.1 we provide a diagram that
illustrates the process in which FAIR data can be generated for data reuse
through FAIR metadata templates, supported by dynamic ontology services.
The environment in which both metadata templates are curated, and data is
generated and stored, forms the baseline of the FDP.

Metadata

Linked Data

Metadata

Linked Data

Metadata

Linked RDF  
Data

Controlled 
VocabularyOntology 

Service

Data 
Generation

FAIR Metadata 
Template

FAIR Data

Domain 
Standards

Study 
Design

Data 
Reuse

Fig. 9.1.: The process for data reuse through FDP based metadata templating.

Central to developing the FDP as a federated data repository is the seman-
tic linkage. An ontology service provides the central provenance over all
controlled vocabularies, terminologies and semantic linkages from which
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localized FAIR metadata templates can be produced. Domain experts con-
tribute to the ontology service by implementing domain standards, while
those who want to perform a study can leverage this by building forms or
data pipelines around these specifications.

Once data is being generated through a FAIR metadata template, it is con-
sidered intrinsically interoperable with other data that has been generated
in accordance with the same template. In addition, since FAIR provides a
specification for machine readability and accessability, data can easily be
coalesced, levering the a priori knowledge from the semantic embeddings.

These type of data are typically formatted using the Resource Description
Format (RDF), which is a machine readable syntax that can be used to
formally describe graph data [31]. Just like directed labelled graphs, RDF
is centered around the concept of triples. This consists of a source node, a
semantic link descriptor and the target node.

As we have shown in our discussion of attribute grammars, production
rules in this format can be used to describe any possible semantic graph.
Attributes can be associated to nodes and links by pointing the descriptor to
a uniform resource identifier (URI) referencing to a comprehensive attribute
specification [50]. The graph can then be pared by utilizing a parameter
specification for attribute values, or attribute values can even be encoded
within the graph itself without making modifications to the base syntax.

Baseline queries are performed using either customized APIs or a RDF query-
ing language such as SPARQL. Utilizing CEDAR, a standard REST API end-
point has been implemented which can query data in accordance to a seman-
tic specification. In a federated framework, this querying is done by another
internal microservice that then processes the data. External queries are trans-
lated to the format that an internal data repositing service can understand,
and they are validated against an authentication service before being parsed.
In ?? we show an abstract version of a querying routine.

Any incoming query according to the specification is accompanied with a
required API key, indicating the level of access or granularity that can be
returned. Data access policies do not just relate to credentials, but also to
a legal rule-set that can differ between geographies. The backend services
communicate directly with the data repository, query data internally, process
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Fig. 9.2.: The basic framework of a FAIR Data Point.

it according to the specific needs and requirements, and then returns a
response in the form of a metric, model or synthetic data set. Typically the
range of internal queries is pre-specified, and custom query input is validated
through an audit process.

In appendices A and B we present a complete diagram on the process level of
repositing and sharing of federated data, furthermore in appendices C and D
we provide a deeper level technical specification for each of these internal
processes respectively. This implements a complete FDP as a federated data
source, which can enable FAIR data production and secure federated data
queries across FDP instances.
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10Discussion

„The Web as I envisaged it, we have not seen
it yet. The future is still so much bigger than
the past.

— Tim Berners-Lee

Throughout this research we have discussed the challenges surrounding
contemporary data use and proposed federated data as a potential solution
for some of these problems. There we also noted that embedding semantics
in data can provide some very powerful properties, which are just as viable
outside use of the federated data methodology. To this extent we have
covered two main branches of research, namely the analytical branch and
the computational branch.

At the begin of this research we posed two primary research questions, which
we have covered over the two main sections in this research. Below we will
cover our conclusions in regard to these questions.

I. What are the ways in which we can utilize existing statistical inference tech-
niques in order to extend these analyses over heterogeneous federated data?

In order to answer this question we will look at the analytical section cover-
ing statistical methods. Therein we developed the technique of composite
statistics as a branch from generalized mixture models, δ-function and ψ-
composition. We recognize that in most federated use case, we will come
across piece-wise distributions that are challenging to work with using stan-
dard statistical analyses.

With composite statistical techniques, we can estimate generalized distribu-
tion functions for any set of partial distributions originating from a multitude
of different sources, which can then be analysed and approximated with gen-
eral statistical techniques. In particular, we have shown a technique called
the overlap method which can be applied reliably to any possible distribution
across a federated data cluster without prior assumptions.
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II. How can we utilize and enhance the graph properties of semantic data to
enable interoperability over heterogeneous data sources?

In the section on computational methods we covered methods that describe
data formatted as knowledge graphs that can be syntactically generated
through attribute grammars. These knowledge graphs can provide avenues
for semantic convergence, the process of finding similar meaning in disparate
data from federated sources, that is vastly different in content.

Here we proposed an ontology matching method for subgraph isomorphism,
where we optimise knowledge discovery based on features F that are con-
tained within a source ontology. Finally, we designed a federated data
architecture based on the FAIR data principles and FAIR data points, which
focusses on providing interoperability across a scalable architecture while
ensuring data ownership through complete data localisation.

Bringing this all together we recognize the need for the development of
techniques and methodologies that specifically support the federated data
framework. By developing methods that embed semantics in data a priori as
FAIR data, a lot of potential issues can be avoided while providing opportu-
nities to leverage an increase in interoperability of data across sources. At
the same time, existing concepts such as the semantic web closely match in
principal application towards a uniform and scalable technological fabric and
may provide a key ingredient in having a more widespread application of the
federated data methodology.
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