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Abstract

Duchenne Muscular Dystrophy is a rare disease that affects 1 in every 5,000 male births.
It is a motor disease, affecting muscle cells and leaving patients dependent on a wheelchair
at a young age. Like many rare diseases it has no cure. In this project, we proposed a
method to obtain possible drug candidates that can be used to treat the symptoms of the
disease. In addition to predictions, explanations were provided to generate evidence-based
testable hypotheses. This way, clinicians and researchers will be able to validate or reject
the proposed drug candidates. The data used in this project was structured as a Knowledge
Graph, containing information from the targeted disease (Duchenne Muscular Dystrophy),
such as symptoms, drugs, genes and ortholog genes. Predictions were obtained by training a
Graph Neural Network (GNN) and explanations were generated using a modified version of
GNNExplainer. The final model obtained notable performance scores, with an AUC-ROC
score over 0.95 and and F1-score over 0.90. Nonetheless, the main contribution of this work
is its interpretability, as explanations are provided that help researchers to validate their
drug predictions.
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Chapter 1

Introduction

1.1 Duchenne Muscular Dystrophy

According to the European Union, a rare diseases is any disease that affects less than 1 in
every 2000 people [1]. Nonetheless, despite their low prevalence, a large number of people
suffer from them: only in Europe about 36 million people are affected by rare diseases [1].
In total, there are approximately 7,000 rare diseases that affect humans, of which only 5%
have an effective treatment [2].

One of these rare diseases with no cure is Duchenne Muscular Syndrome (MONDO:0010679)
that affects 1 in every 25,000 live male births [3]. As it is an X-linked recessive diseases the
incidence in females is extremely low, of about 1 in every 50 million births [4].

The disease is caused by alterations of the dmd gene (HGNC ID: HGNC:2928), which is
responsible for the production of dystrophin. Dmd is located in chromosome X (Xp21) and
it is considered to be human’s largest gene, with more than 2.4 billion base pairs and 79 ex-
ons. The transcription and splicing of the gene takes more than 16 hours. The most frequent
type of mutations are deletions (two thirds of the mutations; although this includes muta-
tions that can cause Becker Muscular Dystrophy), that lead to a frameshift. This frameshift
leads to an early stopping of the protein translation, which causes dystrophin to be non-
functional and unstable. For this reason, other mutations that lead to an early stopping,
such as nonsense mutation, may also cause DMD. These other types of mutations include
duplications (5-10% of cases), and small nucleotide substitutions, insertions or deletions (30-
35%) [5]. De novo mutations are not rare, in fact its frequency is approximately one third [6].

The role of dystrophin is to serve as an anchor between muscle cells (actin) and the ex-
tracellular matrix (ECM). When dystrophin is affected this union becomes unstable, which
leads to a poor connection between muscle cells and the ECM.Without this connection, mus-
cle cells become fragile and begin to die, causing a progressive muscle loss in the patients [7].

Dystrophin is a protein that is mostly expressed in muscle (although it can also be
expressed in the brain [8]), for this reason most of the symptoms related to the diseases
are related to the muscular system. These symptoms usually appear at a young age (2-3
years old), and the disease is easily recognizable because children develop a waddling gait:
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1.2. Objective Chapter 1. Introduction

a distinctive way of walking produced by pelvic muscle weakness [9]. As they grow up,
patients progressively lose muscle mass and they begin to need a wheelchair around the
age of 10-12. Assisted ventilation also becomes a necessity around the age of 20. In addi-
tion to motor-related symptoms, the diseases also develops complications in other systems:
digestive disorders (weight gain/loss, nutrient imbalance, fluid imbalance, low bone den-
sity, swallowing dysfunction), cardiac issues (dilated cardiomyopathy, cardiac insufficiency,
arrhythmia), urinary symptoms (small capacity, hyper-reflexive bladder) and many other
affectations (nocturnal hypoventilation, morning headaches, fatigue, anorexia) [10][11]. Pa-
tients usually end up dying of respiratory failure at the age of 21-40 years old (depending
on whether the individual has access to ventilatory support or not) [12].

As stated above, nowadays Duchenne Muscular Dystrophy remains incurable. For this
reason, clinicians must focus on treating the symptoms of the disease. Some of the drugs
available include Givinostat (to reduce muscular fibrosis), corticosteroids (they reduce oc-
currence of severe scoliosis but they lead to worse bone metabolism and mineralization) or
Idebenone (to reduce decline respiratory function) [9]. However, many of these treatments
do not have a complete efficiency or have severe adverse effects; such is the case of steroids,
which can be used to improve muscle strength of patients, but they may also cause obesity
and short stature [13]. Additionally, other therapeutic strategies are currently under devel-
opment/investigation such as gene therapy, is being explored to restore the production of
dystrophin by editing the dmd gene [9].

Our research question was: can Artificial Intelligence (AI) be used to produce both
predictions and explanations in a drug repurposing process in rare diseases? How helpful
can this explanations for hypothesis generation be?

1.2 Objective

The main objective of this project is to develop and implement a pipeline to find marketed
drugs that can be used to treat the symptoms of the disease. This process is known as drug
repurposing; and in this case it will be performed using Knowledge Graphs (KG) and AI. In
addition to the drug candidates obtained by the model we provided human interpretable ex-
planations that help to validate the predictions (this field is known as eXplainable AI (XAI)).
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Chapter 2

Previous Work

2.1 Drug Repurposing

As described above, drug repurposing is a method that tries to find new therapeutic effects
for already existing drugs. One of the well-known examples of drug repurposing is the case
of sildenafil (Viagra), which was initially developed as an antihypertensive but it was later
discovered that it could be used to treat erectile dysfunction [14]. Regarding rare diseases,
drug repurposing is especially important as the effort, time and costs necessary to develop a
new drug are often an obstacle to both researchers and the pharmaceutical industry. In the
case of Duchenne Muscular Dystrophy, many different marketed drugs are being explored to
be used in the disease [15]. These new applications can be obtained both experimentally or
computationally. This section focuses on computational approaches for drug repurposing,
specially on those approaches that make use of Knowledge Graphs.

A Graph is a structure that is composed of nodes and edges. Nodes usually represent
real world entities and the edges represent connections between these entities. Graphs can
be directed, if edges have a direction; or undirected, if there is no direction in the edges. An
example of a directed graph would be a social network, where nodes represent people and
edges between nodes would represent if they are friends or not. There is no direction in the
edges as friendship is a reciprocal (’if I am your friend, you are my friend’). On the other
hand, an example of a directed graph would be a citation network. In this graph, nodes
would be papers, and a links would represent a paper citing other paper. In this case, edges
have a direction as the connections are not reciprocal (if paper A cites paper B, paper B
can’t cite paper A as paper B was published after paper A).

A Knowledge Graph is a type of directed graph that contains different types of nodes
and different types of edges. They usually try to capture knowledge on a certain field by
linking entities (nodes) with semantic properties. Knowledge Graphs are often structured
as list of triplets. As its own name indicates, a triplet is formed by three elements: a head, a
relationship and tail. The head is a node in our graph that points to the tail (another node
in our graph) with a certain relationship. This way, if, for example, Node A is connected to
Node B with the relationship ’is part of’, our triplet would look like this: (Node A, ’is part
of’, Node B). Figure 2.1 shows an example of a regular graph and a Knowledge Graph [16].
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Figure 2.1: Left: Example of an undirected Graph, there is only one type of node and one
type of relationship. Right: Example of a directed Knowledge Graph, there are three types
of nodes (represented by different colors) and four types of edges (represented by their edge
labels).

Several examples of drug repurposing have made use of Knowledge Graphs to obtain
their predictions. One of the simplest Knowledge Graphs makes use of just three types of
nodes: drugs, diseases, and genes. Such is the case of [17], where they developed a network-
based proximity analysis to obtain new associations between drugs and diseases. Among
their findings, it was suggested that most drugs appear to be close to the diseases they
target (almost in 60% of the known drug-disease interactions); and that of all unknown
drug-disease interactions, 40% of drugs where close to a disease, pointing that there are
many potential cases of drug repurposing.

More recently, a more complex Knowledge Graph was used to discover drug candidates
to treat COVID-19 [18]. This Knowledge Graph, other than drugs, diseases, and genes, also
incorporates other types of nodes such as biological processes, small molecules, pathways or
molecular functions. In this case, to obtain their predictions they developed an equation to
rank the drug candidates that made use of information extracted from the Knowledge Graph.

Regarding rare diseases, drug repurposing is especially important as the effort, time and
costs necessary to develop a new drug are an obstacle to both researchers and the pharma-
ceutical industry. In the case of Duchenne Muscular Dystrophy, many different marketed
drugs are being explored to be used in the disease [15]. As stated above, our objective is to
increase the number of drug candidates by developing an AI model.

2.2 eXplainable AI Methods

Explainability is a rather important element in AI that is often hard to implement. It is
especially significant in the healthcare field, where decisions may have an important impact
on people’s lives. Also, giving valid explanations can help to point in the right direction
in problem solving and increase knowledge discovery. Furthermore, the General Data Pro-
tection Regulation (GDPR) is requesting the AI industry to the ’right to explanation’ [19].
This ’right to explanation’ implies that when an is significantly affected by an automated
process/algorithm, the individual can demand an explanation [20]. In this section, several
XAI methods will be shown that can be applied to Graph AI models.

To start with, a method that can provide local explanations is (Graph)LIME [21],
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an adaptation of the more general explainability method LIME [22]. The idea behind
this method is the following: when trying to get an explanation for a given prediction,
(Graph)LIME performs small perturbations to the features of nodes, and sees how the pre-
dictions vary with respect to the initial prediction. The more the prediction changes, the
more the model is relying on that feature to obtain its prediction. This way, explanations
in this model are given in the form of a set of node features. Among its drawbacks, this
method can only be used in node classification tasks.

Another explainability method that can be found is CRIAGE [23]. CRIAGE works the
following way: given a certain link prediction, CRIAGE removes or adds a link surrounding
the object (this would be the tail in our triplet) and determines how much the prediction
is affected by this modification. In this case, explanations are given as a set of rules (ie. A
is capital of B, C is in A; thus, C is in B). One of its limitations is that explanations are
restricted to the neighborhood of the object.

Finally, the method chosen in this project: GNNExplainer. The insight of how this
method works is the following: given an initial prediction (link prediction, node classification
or graph classification) obtained through a GNN, GNNExplainers finds a subset of node
features and edges that are responsible for the prediction. This subset is obtained by
training an edge and node mask (more details will be given in the Chapter 4 Section 4.5
GNNExplainer). This method was chosen as explanations in the form of a subgraph can be
easily understandable. Also, unlike CRIAGE which is restricted to the 1-hop neighborhood
of a single node, GNNExplainer can provide more complex and informative explanations.
Additionally, it is model-agnostic, so if more powerful GNNs are developed in the future,
these new GNNs can be easily incorporated into the pipeline. Finally, one of its drawbacks is
that, despite being task-agnostic (link prediction, node classification or graph classification),
no implementation of the model for link prediction was found. Nonetheless, one of the main
contributions of this project was to provided an extension of GNNExplainer that can be
used for link prediction tasks.

2.3 Graph-based AI/ML

When applying AI to graphs, there are three main tasks that can be tackled: node classifi-
cation, link prediction and graph classification. The objective of this project is formulated
as a link prediction problem where (potential) connections between drugs and diseases will
be predicted. At the same time, there are three different models that can be applied to
solve this task: Matrix Factorization Models, Geometric Models and Deep Learning Models
[24]. In each of these models the objective is the same: obtain an embedding for each node
(and/or relationship) that will be used to obtain a certain score for a given (potential) edge.

In the context of Machine Learning, an embedding is a vector representation of an entity
that captures its latent features. In our case, for example, the idea is to create an embed-
ding (vector) for each node that captures its local neighborhood. Embeddings are also very
useful in the context of dimensionality reduction. The new vectorial space where entities
are placed is known as latent space.

In Geometric Models each node (and many times edges too) is given a certain embedding
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that is obtained by optimizing a certain objective function. One of the most well-known
geometric models is TransE [25], where embeddings are obtained by optimizing the following
loss function:

L(h, r, t) = ||h+ r − t|| (2.1)

Where h is the embedding of the head node, r is the embedding of the relationship and
t is the embedding of the tail node (node h is connected to node t by edge type r). As a
result, nodes are placed in a latent space that satisfy a certain geometric property.

In Matrix Factorization models (also known as Tensor Decomposition Models), the
Knowledge Graph is represented as an N x R x N adjacency matrix where N is the number
of nodes and R is the number of relationship types; the values of this adjacency matrix are
equal to 1 if there is a link between ni, rj and nk , 0 otherwise. The idea behind this method
is to decompose the adjacency matrix into lower dimension matrices that contain node and
relationship embeddings. A model that makes use of this method is DistMul [26], which has
the following scoring function:

S(h, r, t) = h× r × t (2.2)

, where h represents the embedding of the head node, r represents the embedding of the
relationship and t represents the embedding of the tail node. The idea behind this method
is that the score obtained can be seen as the cosine similarity between h × r and t. This
method has been applied for drug repurposing [27].

Finally, there are Deep Learning Models that make use of Graph Neural Networks
(GNNs) to obtain their predictions. Unlike most neural networks where there is only a
unique fixed architecture (ie. a 2-Layer Convolutional Neural Network), and all samples go
through the same architecture; in GNNs there is a unique architecture for each node[28].
This architecture is built by gathering information from the neighbors of each node. The
number of layers in GNNs defines the size of the neighborhood it will be looking at. For
example, a 2-Layer GNN will gather information from the 2nd degree neighborhood of a
node (the neighbors of its neighbors). At the same time, there are two processes that
take place in each layer: Message Transformation and Message Aggregation. In Message
Transformation the information of each neighboring node is modified by going through a
regular, dense neural network. Once the information from each neighboring node has been
transformed, the modified information is aggregated: this can be done by summing the infor-
mation, obtaining the mean, applying a max pool. . . Figure 2.2 shows an example of a GNN.
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Figure 2.2: Example of the architecture of a GNN. This example is showing the architecture
for Node 1 of the undirected graph in Figure 2.1. NN stands for neural network, and
represents the Message Transformation step. Aggr stands for aggregation and represents
the Message Aggregation step.

In this work, we have used GNNs to solve the Link Prediction problem. The reason for
this is that the XAI method chosen (GNNExplainer) relies on GNNs to work.
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Chapter 3

Data

For the development of this project three main databases were used: Monarch, DrugCentral
and Therapeutic Target Database (TTD). With data from this datasources a Knowledge
Graph will be constructed that is able to correctly characterize Duchenne Muscular Dystro-
phy (by including genes, ortholog genes, diseases, drugs...). Three databases are needed as
no database on its own was able to completely characterize the disease.

3.1 Monarch

Most of the data used in this project was extracted from Monarch [29]. Monarch is a
database that integrates genomic and phenotypic data across many species. Some of the
entities that are included in the database are: genes, diseases, phenotypes, variations or
anatomical structures. It also contains drug information but it is insufficient for the purpose
of this project; for this reason, other data sources were included to increase the richness of
the data. The version used was the Monarch Initiative 2020 version and its API can be
accessed from https://api.monarchinitiative.org/api/.

3.2 DrugCentral

Drug-Target information was obtained from DrugCentral [30]. DrugCentral is a database
that contains information regarding drugs, targets and diseases, pharmacological actions of
FDA approved drugs (and also drugs approved outside the US). One of its major benefits
is that it can be accessed for free. However, it does not provide an API to easily access its
information and, instead, offers several downloadable files that contain pieces of information
from the database. One of such files is a file that contains drug-target information, which
was the one used in this project. Such file contains information linking drug IDs and
drug names to target IDs (given as a Uniprot identifier) and target names. Drug-Disease
information was obtained from other sources. The version used was version v10.12 and can
be downloaded from https://drugcentral.org/download.
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3.3 Therapeutic Target Database

The final piece of information needed for this project, Drug-Disease information, was ex-
tracted from Therapeutic Target Database (TTD) [31]. TTD is a database that contains
information related to drugs, diseases, targets and pathways. Drug-Disease information was
downloaded from the database. The version used was the November 8th 2021 version and
can be downloaded from http://db.idrblab.net/ttd/full-data-download.
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Chapter 4

Pipeline Components

4.1 Bioknowledge Reviewer

The vast majority of the data used in this project was obtained using Bioknowledge Reviewer
[32]. This tool was originally created to collect knowledge from several sources and create
a Knowledge Graph that could be later used for hypothesis generation. In this project, it
was used for the creation of the Knowledge Graph. As stated previously, the Knowledge
Graph can incorporate information from several sources: curated information from the user,
information extracted from Monarch Database, transcriptomics information and regulation
information. However, in this thesis only information from Monarch was used.

To extract information from Monarch using Bioknowledge Reviewer several seeds need
to be provided. These seeds serve as identifiers (IDs) of entities on the graph, and depending
on the type of category it fits in they use one identifier or another. For example, human phe-
notypes make use of IDs that belong to the Human Phenotype Ontology (HP:XXXXXXX),
while human genes make use of HUGO nomenclature (HGNC:XXXX).

These seeds will serve as a starting point to build our future graph. The way Bioknowl-
edge Reviewer retrieves information from Monarch is the following: first, it obtains all the
first degree neighbors from the provided seeds. Next, it obtains ortholog genes and pheno-
types from the given seeds, as well as the neighbors of these genes. An ortholog gene is a
gene that is found in two or more species and derives from a common ancestral gene. These
genes usually have a preserved function. For example, human DMD and mouse Dmd are or-
tholog genes. Finally, Bioknowledge Reviewer obtains all the edges that connect these nodes.

Other than a list of nodes and edges, Bioknowledge Reviewer also extracts additional
information from Monarch. First, it assigns each node a certain semantic group/node type.
These node types are the following (8 in total): VARI (for variations), GENE (for genes),
ANAT (for anatomical structures), DISO (for diseases and phenotypes), PHYS (for physio-
logical processes) and GENO (for genotypes). In this project we have modified the library
to make a distinction between human genes (that are classified as GENE) and ortholog
genes (that are now classified as ORTH). Additionally, each edge also belongs to a certain
edge type. Finally, edges are also given a piece of support to validate them (although this is
not present in every edge). This piece of support is usually a paper or a reference to other
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data sources.

The reason for using this tool to extract information (instead of other already-built
graphs that contain Drug-Target-Disease data) is its specificity. Because this project is
dealing with a rare disease, it is necessary to extract as much information as possible from
the pathology. This way, Bioknowledge Reviewer offers the possibility to focus on a specific
disease (by for example incorporating information from ortholog genes and phenotypes) in-
stead of staying on the superficial level, as it would happen if a more general dataset was
used.

The version used in this project was version 0.0.1 and can be found in https://github

.com/NuriaQueralt/bioknowledge-reviewer.

4.2 Edge2Vec

Edge2Vec [33] is a tool that, similar to Node2Vec [34], is used to generate node embeddings.
However, unlike Node2Vec which only used node information to generate the embeddings,
Edge2Vec is also able to incorporate information from the (type of) edges. The idea be-
hind this model is the following: create an edge-type transition matrix that stores transition
weights for different edge-types, and then use this transition matrix to obtain biased random
walks. This way, because walks are being guided by a transition matrix that is built around
edge-type information, walks will not only include topological but also semantic knowledge
corresponding to the edge types. For example, if a certain edge-type is less frequent in our
network, it will still have high chances of appearing in the walks if that edge-type has high
transition weights with other edge-types. Finally, once the biased random walks have been
built, they will be used as input to train a Word2Vec [35] model and obtain the correspond-
ing node embeddings.

There are two main steps in the Edge2Vec pipeline: creation and optimization of a
transition matrix, and training of a skip gram model. The transition matrix is constructed
making use of an Expectation and Maximization Algorithm (EM). As any other EM al-
gorithm, there is an Expectation step (E-step) where transition probabilities are updated
according to the biased random walks; and a Maximization step (M-step), where biased
random walks are obtained using the transition matrix. This process starts with all transi-
tion weights having the same value (all edge-type transitions are equally probable) and is
repeated for several iterations until convergence is reached.

Once the transition matrix has been built and random walks have been obtained, these
walks will be used to train a skip gram model (Word2Vec). A skip gram is a single-layer
neural network that works in the following way: it receives a one-hot vector of a given node
and its output corresponds to the next node probabilities. These probabilities are extracted
from the random walks. The hidden layer of the network will be used as node embedding.

For example, for a given network with K nodes, node A is followed half of the time by
node B, and half of the time by node C (according to our random walks). The input here
would be a K-length vector where position A is equal to 1 and the rest is 0; and the output
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vector would be a K-length vector with position B and C would be equal to 0.5 and the rest
would be 0. If our hidden layer has 100 neurons, each node will have a node embedding of
size 100.

The method contains many hyperparameters that need to be optimized. This is include:
number of walks per node, length of the node, size of the hidden layer, nature of the edges
(treat edges as directed or undirected), parameter p (which regulated the probability of re-
turning to the previous node) and parameter q (which regulated the probability of applying
a breadth-first search or a depth-first search).

This method was chosen as it would allow to gather the heterogeneous information of
the graph to produce the node embeddings. In the original paper Edge2Vec is implemented
in Python 2; in this project the method was updated for it to work in Python 3. It can be
accessed from: https://github.com/RoyZhengGao/edge2vec

4.3 GNN Model

To obtain the prediction a GNN model was built using DeepSnap library (Version 0.2.1)
[36]. DeepSnap library is a Python package that facilitates the creation of GNN. It is built
upon Pytorch Geometric [37], which at the same time is built upon Pytorch [38] library. It
can be used to create both homogenous GNNs (for homogeneous graphs) and heterogeneous
GNNs (for heterogeneous/Knowledge graphs). In this project we will be using it to build
an homogeneous GNN. The reason for building an homogeneous GNN instead of an hetero-
geneous GNN (which would at first look more intuitive as the data used is heterogeneous)
is that the XAI method used (GNNExplainer) is not implemented in heterogeneous GNN
(although it could theoretically handle heterogeneous graphs). However, because Edge2Vec
was used to create the node features that will serve as input in our network, heterogeneous
information is still captured in our model.

As explained before, a GNN is formed by several layers, each of which gathers infor-
mation from its neighbors. These layers make use of an aggregation function to combine
the messages from its neighbors. The framework that will be used in this work is called
GraphSAGE [39]. The main advantage that was brought by GraphSage is its scalability:
instead of working with full batches (the whole graph is seen during the training) it works
with mini-batches. Each mini-batch is a subset of computational graphs (the computational
graph is the individual GNN that is built for each node) of N nodes. By applying this
technique, the GNN can better manage larger graphs.

The initial input of the model are the node embeddings generated with Edge2Vec. The
desired output is a list of new embeddings for each node, such that the dot product between
two nodes results in a score that reflects the confidence of two nodes being connected. This
score is then fitted into a sigmoid function to get a value between 0 and 1. Values closer to
1 would indicate that two nodes have high chances of being connected, while values closer
to 0 would indicate no link between nodes. For this reason, Binary Cross Entropy was used
as loss function for this model.
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BCE = − 1

N

N∑
i=0

yi · log(ŷi) + (1− yi) · log(1− ŷi) (4.1)

To measure the performance of the model AUC-ROC was used [40]. By using AUC-ROC
(instead of just accuracy) we can select a model that has both a good sensitivity (detecting
true positive edges) and a good specificity (detecting false negative edges).

Once more, there are many hyperparameters that can need to be tuned in a GNN. Some
of these parameters are: the number of layers (K-hop neighborhood), the aggregation func-
tion (mean, sum, max. . . ), the size of the hidden and output layer, the learning rate (which
measures the size of the step that is taken during the optimization of the loss function) and
the number of epochs (the number of times the model will go through the dataset). As
usually, to the validation set was used to test and select the best model.

The version of DeepSnap used in this project was 0.2.0 and can be accessed from:
https://snap.stanford.edu/deepsnap/notes/installation.html. The version of
Torch was 1.11.0 and can be accessed from: https://pytorch.org/. The version of
Pytorch-Geometric was 2.0.4 and can be accessed from: https://pytorch-geometric.re
adthedocs.io/en/latest/index.html.

4.4 RayTune

RayTune is a library that can be used for hyperparameter optimization. As it has been
shown, both Edge2Vec and GraphSAGE contain many parameters that need to be opti-
mized. This results in a giant search space that needs to be explored, making techniques
such as grid search (where every possible combination of parameters is tried) infeasible.
To solve this issue, RayTune makes use of random search to find the best combination of
hyperparameters. This way, several trials are created by RayTune each of which contains
a random combination of parameters. The main advantage of RayTune is that these trials
can be tested in parallel, increasing the speed of the optimization process.

The version used was 1.13.0 and can be accessed from: https://docs.ray.io/en/lat
est/tune/index.html.

4.5 GNNExplainer

The method proposed to obtain explanations was GNNExplainer [41]. This method is a
local explainer, meaning that for each prediction it will return an explanation (contrary to
a global explainer that returns a single global explanation for a whole model). With this
method explanations are returned in the form of a subgraph and/or a subset of features
that are responsible for the prediction. In this work, because node features are embeddings
obtained with Edge2Vec (not interpretable), only a subgraph will be used as explanation.
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The idea behind GNNExplainer is the following: when a prediction is obtained, a cer-
tain score that the reflects that two nodes are connected and a certain score that they are
unlinked (for example, node A and node B can be connected with a score of 0.85, and not
connected with a score of 0.15). The way GNNExplainer works is that it tries to eliminate
edges (and node features) and still preserve these confidence values. The insight of this
process is that if, after eliminating certain nodes from the graph, our initial prediction does
not change, it means that our model is not using information from that node to make its
prediction.

To decide which nodes are important and which nodes are not useful, GNNExplainer
makes use of a binary mask that decides which edges are active and which edges are inactive.
For example, if a graph has only three edges E = [A, B, C] and we apply the following mask
M = [1, 0, 1], only edges A and C would be active. The idea behind GNNExplainer is
to obtain this mask by maximizing Mutual Information, which is given by the following
equation:

MI(Y, (Gs, Xs)) = H(Y )−H(Y |G = Gs, X = Xs) (4.2)

where H(Y ) represents the entropy of the initial prediction and H(Y |G = Gs, X = Xs)
represents the entropy of the prediction using only a subset of edges Gs and a subset of
features Xs. Because H(Y ) is a constant term, the problem can be seen as a minimization
task where the conditional entropy (the entropy of the prediction after using a subgraph and
a subset of features) is minimized. Therefore, the new optimization problem would follow
the next equation:

min−
C∑

c=1

1[y = c] logPΦ(Y = y|G = Ac ⊙ σ(M), X = Xs) (4.3)

where Ac correponds to the Adjacency Matrix, ⊙ corresponds to an element-wise multi-
plication and M is a trainable continuous value adjacency mask. An additional mask can be
used to obtain a subset of features (Xs) by applying a similar element wise multiplication
(Xs = X ⊙ (MX)).

The optimization problem presented by GNNExplainer is solved by using Stochastic
Gradient Descent (STD), where Equation ?? is minimized.

To increase the performance, instead of working with the whole graph, GNNExplainer
only uses a k-hop subgraph around the targeted node, where k depends on the layers of our
GNN model; in other words, it works with the subgraph that our GNN model is using to ob-
tain its prediction (it wouldn’t make sense to use nodes further from the k-hop neighborhood
as our model isn’t using that information to obtain the predictions). By doing so, the size
of the trainable mask can be highly reduced, increasing the training speed of GNNExplainer.

Additionally, an additional term can be added to the optimization formula To avoid
getting large and complex explanations. This term corresponds to a summation over the
trainable masks and, by incorporating it, explanations are set to be as small as they can.
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Also, the size of the explanations can be fixed by applying a certain threshold to the mask
(selecting only k edges with the highest mask values).

There are additional parameters that can be tunes in GNNExplainer like the learning
rate, or the number of epochs. In the original paper, it is mentioned that because the
number of nodes in the working subgraph is usually inferior to 100, the number of epochs
needed to run the model can be relatively low, around 100-300. In this case, because a
similar environment is presented, the same hyperparameters were chosen.

In the original paper, the implementation is done for node and graph classification tasks
and it is available in Python libraries such as Pytorch Geometric. Nonetheless, in the paper
it is mentioned that it can be also applied for link prediction. In this work, an extension
for link prediction was provided by modifying the implementation offered by Pytorch Ge-
ometric. Additionally, one of the main drawbacks of this method is the consistency of the
explanations. Each time GNNExplainer is executed to obtain an explanation of a certain
prediction the explanation is different. This problem is not regarded in the paper but can
be observed when running the code provided [41] or external implementations (Pytorch
Geometric)[42]. To account for this lack of consistency, we propose a filtering method to
eliminate ‘incomplete’ explanations and keep only the ‘complete’ ones (if any). Finally, the
visualization function was also modified to allow for more personalized explanations.

The version used in this project was a modified version the version offered by Pytorch
Geometric, and can be found in https://pytorch-geometric.readthedocs.io/en/late

st/ modules/torch geometric/nn/models/gnn explainer.html.
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Chapter 5

Methods

The pipeline followed in this project can be seen in Figure 5.1. The main steps of this
pipeline are the following: first, gather information related to the diseases that can be used
to train the AI Model. This information will be captured as a Knowledge Graph; the sources
of information used can be seen in Chapter 3, and processing of the data and creation of
the graph can be seen in Chapter 5 Section 5.2 Data Preprocessing. Next, obtain a feature
vector for each node in the graph that will be used as inputs for the AI model. This was
done making use of Edge2Vec [33] (explanations of this method can be found in Chapter
4 Section 4.2 Edge2Vec). The following step is to build and train the AI model, which
was done using a Graph Neural Networks (Chapter 4 Section 4.3 GNN Model). Finally,
predictions were validated using using GNNExplainer [41] a recent and, to our knowledge,
one of the first XAI methods for GNNs(in Chapter 4 Section 4.5 GNNExplainer).

The code is freely accessible with Open License at https://github.com/PPerdomoQ/T
hesis.

Figure 5.1: Pipeline followed in this work.

5.1 Data Acquisition and Integration

Two graphs of different sizes were used to perform the experiments in this project. Each
one of them was constructed using different (number of) seeds to extract information from
Monarch. The first one (the small one) only uses two seeds: dmd seed (HGNC:2928), cor-
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responding to the gene that causes the disease, and Duchenne Muscular Dystrophy seed
(MONDO:0010679), corresponding to the disease itself. The second graph, other than the
seeds that were used in the small graph, also includes the seeds of all the symptoms and
phenotypes of the diseases (in total, 27 more seeds). For each graph, two .csv files were
obtained, corresponding to the nodes and edges of the graph. Information from DrugCentral
was downloaded as a .tsv file and information from TTD was downloaded as a .txt file.

5.2 Data Preprocessing

To construct each graph two files were needed: one that contains a list of nodes involved in
the graph, and one that contains the edges of the graph. The objective of this section is to
show how these two lists were created.

Data comes from three different sources: Bioknowledge Reviewer/Monarch, DrugCentral
and TTD. Monarch was our main source of information, so it will serve as starting point to
create the rest of the graph.

To incorporate information from DrugCentral it was necessary to modify the target IDs
given by DrugCentral to match the target IDs given by Monarch. This process is known
as ’Normalization’. As stated above, DrugCentral makes use of Uniprot IDs while Monarch
uses different IDs depending on the type of node/organism it belongs to. For example, Mus-
carinic acetylcholine receptor M1 had ’P11229’ as (Uniprot) ID, and after normalization it
had ’HGNC:1950’ as ID. However, Uniprot provides an API that can match Uniprot IDs
to IDs from other databases. This API was used to make the matching between DrugCen-
tral IDs and Monarch IDs. The API used can also be accessed throught the Web from:
https://www.uniprot.org/id-mapping. Next, only the drugs whose target genes appear
in the Monarch graph were kept.

A similar problem appeared when trying to incorporate information from TTD. In this
case, Drug IDs from TTD did not match Drug IDs from DrugCentral, and TTD did not pro-
vide any IDs for diseases. To solve the Drug IDs matching problem, drug names were used
instead. The matching was performed using Pandas Library (version 1.3.5). Drug names
from DrugCentral and TTD were changed into lowercase and compared afterwards. The
main disadvantage of this approach is that some drugs may have different names (although
most of them have a conservative name) and thus, some information might have been lost
during this process. For example, Jemperli and dostarlimab are the same compound but
have different names (the former one would correspond to the commercial name and the
second one to the compound name); however, the compound name is the one that is appears
more often in the datasets. Matching the diseases to IDs was more challenging: just names
could not be used to make the matching diseases can be assign many different terms (ie.
Type II Diabetes, Diabetes Type II, Diabetes Type 2. . . ). To solve this issue, a web tool
named SORTA was used [43]. The demo version of the tool was used and can be accessed
from https://sorta.molgeniscloud.org/menu/main/sorta/. This tool matches terms
to their corresponding Human Phenotype Ontology ID (the ID that was used by Monarch).
This way, all diseases in TTD were mapped to phenotypes in the graph. A certain score is
given to each matching that reflects the confidence of the matching. To make sure no incor-
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rect information is introduced in our model, a filtering was performed to only keep terms
that had a score of a 80 or more. This value can be modified depending on the amount of
information we are willing to loose and the amount of errors we are willing to commit. A
higher threshold value would mean less errors but more information loss; on the other hand,
a lower threshold would mean we would keep more information but more mistakes would
be made. The value of 80 was selected because, after a manual check of the results, values
above 80 were usually correct and errors increased for values below 80.

Finally, the graphs were constructed using the networkx Python library [44] version 2.3.6.
An analysis of these graphs is provided in Chapter 6 Section 6.1 Graph Analysis

5.3 Node Features

At this point, none of the nodes have any specific node features. It is possible to run a GNN
without any node specific features (this is done, for example, by giving the same feature
value to all nodes); nonetheless, this might result in poorer performance. To increase the
efficiency of the network, Edge2Vec was used to produce a specific embedding to each node
that captures information about its neighborhood. After executing Edge2Vec, each node
was given a unique feature vector.

5.4 Splitting the Data

As any other machine learning task, data needs to be split into training, validation and test
set. However, when tackling a link prediction task, there are different ways to perform this
split. In edge prediction tasks, edges can be divided into two groups: message passing edges
and supervision edges. Message passing edges are the ones that will be used by our network
to obtain the embeddings, while supervision edges are the ones that will be used to test
the performance of our model[28] [36]. Additionally, when creating the supervision edges it
is necessary to include negative examples by applying negative sampling. These negative
sample edges are edges that are not present in our original graph, and the idea is that the
network is able to distinguish true edges from false edges. In general, one negative edge is
created for each true edge [28] [36].

The first way of splitting the data is known as all-graph transductive split [28][36]. When
applying this method the division is done in the following way: in the training dataset the
supervision edges and the message passing edges are the same; in the validation dataset the
message passage edges are the training edges (message and supervision) and the supervision
edges are different from the training supervision edges; finally, the test set message passing
edges are formed by the validation edges and supervision edges are different from the train-
ing and validation supervision edges.

The second method is known as disjoint-graph transductive split[28] [28]. The division
in this case is done in the following way: training set is formed by a set of message passing
edges and supervision edges that are different from each other (unlike the all-graph where
they were the same); the validation message passing edges are the training edges and the
supervision edges are disjoined from the training supervision edges; finally the test message

18



5.5. GNN Model Chapter 5. Methods

passing edges are formed by validation edges and the supervision edges are different from
training and supervision edges. As it is seen, the main difference between all-graph and
disjoint-graph is that in the all-graph all edges are used for supervision, while in disjoint-
graph there are a portion of edges (training message passing edges) that are not used for
supervision.

Finally, the last method is known as inductive split[28][36]. Here, several copies of the
original graph are created. Next, these copies are distributed in a training, validation and
test set. These copies will have their own message passing and supervision edges, but they
must be different from those used in the other datasets.

In this project the method that was selected was the all-graph transductive split. This
method is the standard setting when perfforming link prediction tasks, as the whole graph
can be seen in all dataset splits[28]. The proportion used were 80% of edges used for training
set, 10% for validation set and 10% for test set. The training set will be used to train the
model, the validation set to select the best hyperparameters, and the test set to obtain the
global performance of the model.

5.5 GNN Model

A GraphSage model was created using DeepSnap library to obtain the predictions. The
hyperparameter optimization was performed using RayTune. The list of hyperparameter
that were needed to be tuned and the optimal values can be found in Table 6.7. In total,
30 models where created (each of them containing a random selection of parameters).

5.6 Predictions

To obtain drug candidates for each symptom, the dot product of the embedding of the
symptom and the embedding of each drug is obtained. Next, the sigmoid function is applied
to normalize the values between 0 and 1 and, after sorting the results the drug candidates
are obtained (by selecting those drugs with the highest scores).

5.7 Explanations

Once the model has been trained, the explanations are obtained using GNNExplainer. As
stated in previous sections, a modified version of GNNExplainer provided by Pytorch Geo-
metric was used [45]. In this modified version, a predict link function was added that allows
the user to handle link prediction tasks. The pseudocode of the link prediction function can
be found in Algorithm 1.

The way this modified version works is simple: instead of working around a k-hop neigh-
borhood subgraph built around a single node, the subgraph is built up using the k-hop
neighborhood of both nodes. Also, instead of having the probability of belonging to each
class, in this case, the probabilities of an edge existing and not existing are used. The rest
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of the procedure remains the same: create a training mask for the subgraph, obtain the loss
between the initial and the new prediction, and backpropagate the loss using SGD.

Once the mask has been trained, this mask is used to know which edges are active and
which edges are inactive. The main problem with GNNExplainer is that each time we ex-
ecute the explainer, the mask might change drastically. This implies that the explanations
are different each time GNNExplainer is used, reducing the confidence and reliance on the
explanations. Several attempts were developed to try and bring consistency to the expla-
nation; for example, executing GNNExplainer several times and using the mean mask as
the final mask or increasing the number of epochs of GNNExplainer. However, this still did
not solve the issue. Additionally, many times the explanation would consist in a subgraph
where the two targeted nodes would be disconnected from each other, which might bring
confusion and could be seen as a ‘bad’ explanation.

To solve these issues, we propose the following procedure. First, we make the assump-
tion that a complete explanation is one that connects the two targeted nodes. If drug A
can treat disease B, there must be some common pathways that allows A to interact with
B. This way, the procedure starts by running GNNExplainer for several iterations. In each
iteration, networkx is used to check if, in the subgraph generated by GNNExplainer, a path
exists between both nodes. If no path is found, it continues with the next iteration; if it
does exist, it stops iterating and that subgraph is considered to be the final explanation. If
no subgraph is found that satisfies the ’pathway’ condition, the last subgraph is returned
as possible explanation.

In total 7 symptoms were selected (Muscular Dystrophy, Respiratory Insufficiency, Ar-
rhythmia, Congestive Heart Failure, Dilated Cardiomyopathy, Progressive Muscle Weakness
and Cognitive Impairment), that try to capture all the main areas that are affected by the
disease (muscular, respiratory, cardiac and intellectual symptoms). For each of these symp-
toms, explanations were obtained for each of the three drug candidates. This process was
done for the predictions coming from the small graph and for those coming from the large
graph. This makes a total of 42 explanations (21 for each graph).

Regarding the parameters of GNNExplainer, because the graphs are highly connected,
explanations were generated by using the 1-hop neighborhood around the graph. Using a
higher k-hop neighborhood is not recommended as the amount of nodes in the subgraph
increases exponentially which can difficult the understanding of the explanation. This hap-
pens because both graphs are scale-free graphs, and thus, by increasing the number of hops
there is a higher chance that a ’hub-node’ is hit, and the number of nodes escalates expo-
nentially (see Chapter 6 Section 6.1) Graph Analysis.

Additionally, the maximum size of the explanations was set to 15 (this means that no
more than 15 edges will be part of the explanation). This way, we will avoid obtaining too
complex explanations with many edges that might be impossible to follow. This was done
by selecting the edges whose mask values are among the 15th highest values.

Finally, the maximum number of iterations was set to 10. In other words, if after 10
iterations GNNExplainer has not found an explanations that connects the drug candidate
with the targeted symptom/phenotype it will conclude that no ’complete’ explanation was
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found, and the last explanation produced by GNNExplainer will be the one that will serve
as final answer.

Figure 5.2: Explanation after removing non-important edges. Left: Explanation keeping all
the edges. Right: Explanation removing non-important edges.

To visualize the explanations, a custom visualization function was developed improving
the one provided by Pytorch Geometric [46]. In first place, the possibility of visualising the
edge types have been incorporated. Additionally, in this new formula several customizable
parameters have been added. Now, it is possible to only visualize the active edges of the
explanation, removing non-important edges. This will allow for cleaner visualization of the
subgraph. Figure 5.2 shows how an explanation is modified after applying this option. Fi-
nally, it is also possible to remove unconnected clusters from the explanations. This way,
if an explanations is formed by several clusters, there is the possibility of just viewing the
ones that contain the drug candidate and the targeted disease/phenotype. Figure 5.3 shows
how the explanation is modified after applying this filter.
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Figure 5.3: Explanation after removing unconnected clusters. Left: Explanation keeping all
the clusters. Right: Explanation removing additional clusters.
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Chapter 6

Results

Results for the the main elements of the project can be found in this section. Firstly, an
analysis of the structure of both the small and the large graph was developed. Next, an
evaluation of the training of the GNN model, where training curves and performance metrics
can be seen. Additionally, an examination of the predictions themselves, checking if there
is evidence in the literature that supports them. Finally, an evaluation of the explanations
provided by GNNExplainer.

6.1 Graph Analysis

In this section an analysis of both graphs was performed. Starting with the small graphs
(2 seeds), the final graph contained 10786 nodes, 93905 directed edges (if converted to
undirected, the number of edges would be 58435). The average node degree of the graph
( 2×numberofedges

numberofnodes ) was 10.83, being the node with the highest degree the human dmd gene,
with a total degree of 1683. The diameter of the graph was 6, meaning that the longest
shortest path between two nodes is 6 (in other words, one can travel from one node to an-
other in 6 steps or fewer). The final feature that was obtained was the clustering coefficient,
which measures the extent to which a graph is clustered together. This measurement is ob-
tained by dividing the total number of triangles of the graph by the total number of triplets
(triangles + ’potential triangles’). In a complete graph (where all nodes are connected to
all nodes) this clustering coefficient is equal to 1, while in a tree-like graph this coefficient
is equal to 0. In our small graph this clustering coefficient was equal to 0.33. A summary
of the features can be found in Table 6.1
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Table 6.1: Table showing features of the small graph.

Property Value

Number of Nodes 10786
Number of Directed Edges 93855
Number of Undirected Edges 58435
Average Degree 10.83
Highest Degree 1683
Diameter 6
Average Clustering Coefficient 0.33

Additionally, by looking at the node degree distribution the graph (Figure 6.1) can
be classified as a scale free network. Scale free networks are those whose node degree
distribution follow a power law: P (k) = kγ , where γ is usually a value between 2 and 3. In
other words, this networks have a large number of nodes with low degree which are usually
connected to few nodes of high degree, known as hubs. This networks have usually specific
characteristics, for example, if a node is eliminated from the graph the general topological
structure of the network is not affected. Also, one can travel from one node to another with
relative few steps by traveling through hubs (low graph diameter).

Figure 6.1: Degree distribution of the small graph in logarithmic scale.

Regarding the node types, the most abundant node type was DISO (Diseases and Phe-
notypes), followed by ORTH (Ortholog genes). In total 337 drugs were introduced in the
graph (98% of the drugs come from DrugCentral/TTD, only 2% were provided by Monarch).
There was a total of 24 edge types, being the most abundant the type is ’in 1 to 1 orthology
relationship with’; making sense being ORTH the most abundant node type. The rest of
the node and edge types can be seen in Table 6.2 and Table 6.3.
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Table 6.2: Number and percentage of each node type in the small graph.

Node Type Count Percentage

DISO 5419 50.24%
ORTH 3009 27.90%
VARI 1112 10.31%
GENO 610 5.66%
DRUG 337 3.12 %
GENE 229 2.12%
PHYS 50 0.46%
ANAT 20 0.19%

Table 6.3: Number and percentage of edge types in the small graph.

Edge Type Count Percentage

in 1 to 1 orthology relationship with 35650 37.96%
in orthology relationship with 25242 26.88%
has phenotype 15730 16.75%
interacts with 9824 10.46%
is part of 1465 1.56%
has affected feature 1101 1.17%
expressed in 1079 1.14%
enables 983 1.04%
pathogenic for condition 976 1.03%
targets 518 0.55%
involved in 432 0.46%
likely pathogenic for condition 182 0.19%
contributes to condition 171 0.18%
has role in modeling 134 0.14%
is allele of 96 0.10%
is substance that treats 86 0.09%
colocalizes with 84 0.09%
source 29 0.03%
is causal germline mutation in 16 0.02%
has genotype 7 0.01%
contributes to 5 0.01%
causes condition 3 0.003%
is marker for 1 0.001%
is causal germline mutation partially giving rise to 1 0.001%

A metagraph was also created to see how different node types interact with each other.
Edge types were not included in this metagraph for clarity in visualisation. This metagraph
can be seen in Figure 6.2
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Figure 6.2: Metagraph of the small graph.

In the case of the big graph, the total number of nodes was of 83665, with a total of
1984774 directed edges (1440418 edges if converted into an undirected graph). The average
degree in this case was of 34.43, being the node with the highest degree the physiological
process Protein Binding with a total degree of 4817. The diameter of the graph was of 7,
which shows one of the features of scale-free networks: despite increasing the number of
nodes 8 times and the number of edges 20 times, the diameter of the large network only
increased one unit with respect to the small graph. In this case, the clustering coefficient is
equal to 0.48, showing that the large graph is more clustered together. Table 6.4 shows a
summary of the features of the large graph.
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Table 6.4: Table showing features of the small graph.

Property Value

Number of Nodes 83665
Number of Directed Edges 1984774
Number of Undirected Edges 1440418
Average Degree 34.43
Highest Degree 4817
Diameter 7
Average Clustering Coefficient 0.48

The node degree distribution resembles the one of the small graph: the majority of nodes
are nodes of low degree, but there is a few number of nodes with a large degree. This can
be seen in Figure 6.3.

Figure 6.3: Degree distribution of the large graph in logarithmic scale.

Finally, regarding the node types, in the large graph DISO (Diseases and Phenotypes) is
most abundant type of node, followed by ORTH (Ortholog genes). In this case, the number
of drugs has increased to 1565. The number of edge types in the large graph is 29, being
the most abundant one ’has phenotype’. Once more, it makes sense being DISO the most
abundant node type (as the ’has phenotype’ edge type always points to a disease). The
amount of other node and edge types can be seen in Table 6.5 and Table 6.6.
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Table 6.5: Number and percentage of each node type in the large graph.

Node Type Count Percentage

ORTH 45641 54.55%
DISO 25636 30.64%
GENO 5919 7.07%
GENE 2958 3.54%
DRUG 1565 1.87%
VARI 1125 1.34%
PHYS 801 0.96%
ANAT 20 0.02 %

Table 6.6: Number and percentage of edge types in the large graph.

Edge Type Count Percentage

has phenotype 836138 42.13%
in 1 to 1 orthology relationship with 520547 23.23%
in orthology relationship with 333288 16.79%
interacts with 226174 11.40%
expressed in 14589 0.74%
is part of 9427 0.47%
colocalizes with 8112 0.41%
involved in 7790 0.39%
enables 7053 0.36%
targets 5070 0.26%
has role in modeling 3449 0.17%
causes condition 2479 0.12%
contributes to condition 2203 0.11%
is allele of 1167 0.06%
has affected feature 1137 0.06%
pathogenic for condition 1024 0.05%
is causal germline mutation in 900 0.04%
is substance that treats 599 0.03%
contributes to 198 0.01%
likely pathogenic for condition 185 0.01%
is causal loss of function germline mutation of in 179 0.01%
is reference allele of 130 0.01%
is marker for 97 0.005%
has genotype 67 0.003%
is causal susceptibility factor for 42 0.002%
source 32 0.002%
is causal somatic mutation in 16 0.001%
is causal gain of function germline mutation of in 15 0.001%
is causal germline mutation partially giving rise to 12 0.001%

A metagraph was also created for the large graph and can be seen in Figure 6.4. It is seen
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that it follows the same structure than the metagraph created for the small graph. However,
it must be taken into account that edge types were removed from the metagraph (instead of
having multiple edges between nodes, a unique edge appears if there is a connection between
two node types); should edge types be included the resulted metagraph would have been
different (as the large graph has more edge types).

Figure 6.4: Metagraph of the large graph.

6.2 GNN Results

In this section the training and performance of the GNN will be analyzed. In total, two
GNN were used to obtain results, one trained on the small graph and one trained on the
large graph. The hyperparameter optimization was developed using RayTune and the op-
timal values can be found in Table 6.7. These hyperparameters where obtained by training
several GNN models (Random Search) on the small dataset; and were later used to train a
GNN model on the large graph.
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Table 6.7: table showing the different options of hyperparameters that were tested as well
as their optimal values.

Process Hyperparameter Options Optimal Value

Edge2Vec

Number of walks 2, 4, 6 2
Walk Length 3, 5, 7 7
Embedding Dimension 32, 64, 128 32
Edge Direction Undirected, Undirected Directed
p 0.5, 0.7, 1 0.7
q 0.5, 0.7, 1 1
Epochs 5, 10 10

GNN

Hidden Dimension 64, 128, 256 256
Output Dimensión 64, 128, 256 64
Layers 2, 4, 6 2
Aggregation Function mean, sum mean
Dropout 0, 0.1, 0.2 0.2
Learning Rate 0.001 - 0.1 0.07
Epochs 100, 150, 200 150

Starting with the model trained on the small dataset (GNN-Small), the AUC-ROC score
is surprisingly high from the beginning of the training, starting at 0.96 (Figure 6.5). After
the training, the model achieved a AUC-ROC score of 0.98 in the training set, and 0.97 in
the validation/test set.

Figure 6.5: Training curve of the GNN using the small graph.

The ROC curve obtained on the test set can be found in Figure 6.6. Other performance
scores obtained are precision, recall and the F1 Score, and can be found in Table 6.8 (the
threshold used was 0.8).
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Figure 6.6: ROC on the test dataset using the small graph.

Table 6.8: Precision, recall and F1-score obtained on each dataset, trained on the small
graph.

Dataset Precision Recall F1-Score

Training 0.93 0.96 0.95
Validation 0.93 0.93 0.93
Test 0.93 0.93 0.93

Similar results where obtained for the GNN trained with the large graph. Once more, it
starts with a high AUC-ROC score from the beginning (0.93 in the training set) reaching a
final AUC-ROC score of 0.98 in the training set, as well as a score of 0.98 in the validation
and test set. The training curve is shown in Figure 6.7.
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Figure 6.7: Training curve of the GNN using the large graph.

The ROC Curve can be seen in Figure 6.8. Additionally, other metric scores (precision,
recall, F1-Score) where computed and can be found in Figure 6.9.

Figure 6.8: ROC on the test dataset using the large graph.
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Table 6.9: Precision, recall and F1-score obtained on each dataset, trained on the large
graph.

Dataset Precision Recall F1-Score

Training 0.96 0.93 0.95
Validation 0.96 0.92 0.94
Test 0.96 0.92 0.94

Both models (the one trained with the small graph and the one trained with the large
graph) yield to good performance,

6.3 Predictions

In this section, the drug candidates proposed by each model were examined. For each
symptom, the drugs with the three highest scores were reported. Because the objective is
to find new indications for drugs; if any of the reported drugs already appears in the graph
as a treatment for the targeted symptom, this drug will be skipped and the next one with
the highest score will be selected. For example, if aprindine is selected as the drug with
the highest score to treat arrhythmia, but the relation ’aprindine is a substance that treats
arrhythmia’ is already present in our graph, aprindine won’t be reported as a possible drug
candidate. Additionally, for a certain drug to be considered a possible drug candidate it
needs to have a score above 0.75 in the case of the small graph and 0.8 in the case of the
large graph (the threshold values that maximizes the F1-Score).

For each possible drug candidate, a bibliographical search was carried out to find out if
in that drug is already been used to treat the symptom. If during the bibliographical search
the drug was contraindicated or if it causes that symptom, this will also be pointed out.

Complete information regarding the drug candidates obtained using the small graph can
be found in Table 8.1. Additionally, Table 6.10 shows the amount of drugs that contained
supporting evidence, contraindication evidence or no evidence at all. It is seen that only
a fifth of the drug candidates contain supporting evidence in the literature, and that the
vast majority of the candidates (65.43 %) do not contain any evidence at all. There is
a small percentage of them that are actually contraindicated to treat the targeted symp-
tom/phenotype. Finally, a list of all drugs and its amount of supporting/contraindicating
evidence can be found in Table 6.11.

Table 6.10: Table showing the percentage of drugs containing supporting evidence, con-
traindication evidence or no evidence at all. The data used corresponds to the small graph.

Property Value

Supporting Evidence 20.99 %
Contraindication Evidence 13.58 %
None 65.43 %
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Table 6.11: Table showing the amount of times each drug appears as one of the top 3 drug
candidates with highest score treat one of the 27 symptoms. It is also shown the amount
of supporting evidence and contraindication evidence for each drug. This information was
obtained using the small graph.

Drug Appearances Percentage With Evidence
With
Contraindications

Entrectinib 25 92.59 % 0 8
Axitinib 19 70.37 % 1 1
Nintedanib 12 44.44 % 2 0
Levosimendan 7 25.92 % 6 0
Disopyramide 6 22.22 % 2 0
Doxorubicin 2 7.40 % 0 2
Aprindine 2 7.40 % 2 0
Amiodarone 1 3.70 % 1 0
Acepromazine 1 3.70 % 0 0
Mezlocillin 1 3.70 % 0 0
Sunitinib 1 3.70 % 0 0
Fedratinib 1 3.70 % 0 0
Carvedilol 1 3.70 % 1 0
Queracetin 1 3.70 % 1 0

The same approach was followed in the case of the large graph. Complete information
regarding the drug candidates for each symptom (as well as the supporting evidence) can
be found in Table 8.2. Additionally, the percentage of drugs with supporting evidence,
contraindication evidence or no evidence at all can be seen in Table 6.12. In this case, the
number of drug candidates with evidence have increased with the respect to the drug can-
didates obtained with the small graph (27 % in the large graph vs 21 % in the small graph),
and the number of drug candidates with no evidence have been reduced (58% in the large
graph vs 65% in the small graph). The number of drug candidates with contraindications
remains almost the same (13% in the small graph vs 14% in the large graph). Finally, a list
of all drugs and its amount of supporting/contraindicated evidence can be seen in Table 6.13.

Table 6.12: Table showing the percentage of drugs containing supporting evidence, con-
traindication evidence or no evidence at all. The data used corresponds to the large graph.

Property Value

Supporting Evidence 27.16 %
Contraindication Evidence 14.82 %
None 58.02 %
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Table 6.13: Table showing the amount of times each drug appears as one of the top 3
drug candidates with highest score. It is also shown the amount of supporting evidence
and contraindication evidence for each drug. This information was obtained using the large
graph.

Drug Appearances Percentage With Evidence
With
Contraindications

Fedratinib 19 70.37 % 0 3
Methylprednisolone 14 51.85 % 9 5
Sorafenib 10 37.03 % 2 1
Bosutinib 8 29.63 % 1 1
Sunitinib 7 25.93 % 3 0
Resveratrol 5 18.52 % 4 0
Ruxolitinib 3 11.11 % 1 1
Midostaurin 3 11.11 % 0 0
Adefovir dipivoxil 3 11.11 % 0 0
Patisiran 2 7.40 % 0 0
Tofisopam 1 3.70 % 1 0
Nintedanib 1 3.70 % 0 0
Silodosin 1 3.70 % 0 0
Milrinone 1 3.70 % 1 0
Vincristine 1 3.70 % 0 0
Primidone 1 3.70 % 0 0
Daunorubicinol 1 3.70 % 0 1

6.4 Explanations

Evaluating explanations is a complex and subjective task, as there is no ground truth to
compare with. Usually, when developing an XAI method a synthetic dataset is used to
test the correctness of the explanations. However, with real-world data this approach is
unfeasible. In this work, to evaluate the explanations, several symptoms and some of their
predictions were selected. Then, for these predictions an explanations is produced. Once the
explanation has been obtained, the explanation is analyzed and, if possible, it is compared
to the one that is found in the literature.

A complete list of explanations (42 explanations, 21 for each graph) can be found in the
Appendix. As stated in the previous section, explanations were classified into complete and
incomplete explanations. Complete explanations are those that show a connection (path)
between the drug candidate and the targeted symptom/phenotype (Figure 8.2). They are
considered complete as they allow for an easy human-understandable interpretation. On
the other hand, incomplete explanation are those were the explanation is composed of two
separated clusters (one for the drug and one for the disease)(Figure 8.6) or by a unique
clusters where either the drug or the disease is missing (Figure 8.11).

The global analysis of the explanations generated can be seen in Table 6.14 (amount
of complete and incomplete explanations in each supporting evidence type) and Table 6.15
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(amount of supporting evidence on each type of explanations). This analysis was performed
taking into account explanations from both graphs. In total the same number of complete
and incomplete explanations was obtained (21 each). However, when looking at each cat-
egory separately, it is seen that when there is evidence GNNExplainer tends to produce
complete explanations, and oppositely when there is no supporting evidence or when the
drug is contraindicated GNNExplainer the resulting explanation is usually incomplete. As
it can be seen in Table 6.15, when a complete explanation is created, almost 2/3 of the time
the explanation contains supporting evidence; while when the explanation is incomplete,
only 1/4 of the times it contains supporting evidence.

Table 6.14: Table showing the number and percentage of complete and incomplete expla-
nations on each supporting evidence type.

Complete
Explanations

Percentage
Complete
Explanations

Incomplete
Explanations

Percentage
Incomplete
Explanations

With Evidence 13 68 % 6 32 %
With Contraindications 3 30 % 7 70 %
No Evidence 5 38 % 8 62 %

Total 21 50 % 21 50 %

Table 6.15: Table showing the number and percentage of explanations with no evidence,
with supporting evidence and with contraindications on each type of explanation.

With Evidence
Percentage
with
Evidence

With
Contraindications

Percentage
with
Contraindications

No
Evidence

Percentage
No
Evidence

Complete
Explanations

13 62 % 3 14 % 5 24 %

Incomplete
Explanations

6 28% 7 33 % 8 38%

An additional analysis was performed, this time considering each graph separately. This
can be seen in Table 6.16 and Table 6.17. There are clear difference between the explana-
tions obtained in the small graph and the large graph. Firstly, the small explanations are
more likely to be complete (72 % on the small graph vs 28 % on the large graph), while the
large graph produces more incomplete explanations (72 % on the large graph vs 28 % in the
small graph) (Table 6.16).
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Table 6.16: Table showing the number and percentage of complete and incomplete expla-
nations on each supporting evidence type and on each graph.

Complete
Explanations

Percentage
Complete
Explanations

Incomplete
Explanations

Percentage
Incomplete
Explanations

Small
Graph

With Evidence 9 100 % 0 0 %
With Contraindications 1 17 % 5 83 %
No Evidence 5 83 % 1 17 %
Total 15 72 % 6 28 %

Large
Graph

With Evidence 4 40 % 6 60 %
With Contraindications 2 50 % 2 50 %
No Evidence 0 0 % 7 100 %
Total 6 28 % 15 72 %

Table 6.17: Table showing the number and percentage of explanations with no evidence,
with supporting evidence and with contraindications on each type of explanation and on
each graph.

With Evidence
Percentage
With Evidence

With Contraindications
Percentage
With Contraindications

No Evidence
Percentage
No Evidence

Small
Complete
Explanations

9 60 % 1 7 % 5 33 %

Incomplete
Explanations

0 0 % 5 83 % 1 17 %

Large
Complete
Explanations

4 67 % 2 33 % 0 0 %

Incomplete
Explanations

6 40 % 2 13 % 7 47 %

Throughout this section explanations have been classified into complete and incomplete.
However, an explanation being complete does not make it a good explanation. Judging
and evaluating an explanation is a tough task as there is no objective metric to evaluate
them. In this work two different approaches are proposed to grade the explanations: a
more subjective one, where the explanation was evaluated with own biological knowledge;
and a more objective one, where a manual literature search and curation was performed to
check if the suggested explanation has already been reported. This way, for example, an
explanation of the type ’Drug A targets Gene B, Gene B interacts with Gene C, and Gene
C causes Disease D’ can make biological sense. On the other hand, an explanation of the
type ’Drug A treats Disease B, Disease B is caused by Gene C, Gene C causes Disease D’
does not make full biological sense (Drug A could treat Disease B by targeting a gene other
than Gene C; this way, the same treatment could not be applied for Disease D; an example
of this can be seen in Figure 8.3)

The objective evaluation is undoubtedly more unbiased and equitable metric. Nonethe-
less, subjective evaluations are significant for many reasons. Firstly, there are Drug-Disease
interactions that are not fully understood (specially with side effects and contraindications).
This way, analyzing the proposed explanations might shed a light in the interaction. And
secondly, there might be explanations that make sense but are not present in the literature.

The results after applying this evaluation can be found in Table ??. In total, after the
objective evaluation only one explanation was found to have supporting evidence, and two
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links contained unclear interactions (both were of type contraindications). Regarding the
subjective evaluations, 4 out of 21 explanations were considered bad explanations (Figures
8.15, 8.12, 8.8 and 8.3) and 17 were found to be good explanations.
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Chapter 7

Discussion and Conclusion

7.1 Main Findings

In this work, a complete pipeline has been developed that allows not only for the obtainment
of drug candidates for rare diseases, but also the creation of explanations that will help to
validate those drug candidates. In addition to this, two different Knowledge Graphs have
been provided that can be used by researchers for knowledge discovery and in particular to
do research on new treatment avenues in Duchenne Muscular Dystrophy.

7.2 Our Method

Starting with the creation of the Knowledge Graphs, the resulting graphs allowed for a
comprehensive characterization of the disease, containing large quantities of the three main
elements necessary for a drug repurposing task: genes (3308 in the small graph, 48599 in
the large graph; summing genes and ortholog genes), drugs (337 in the small graph, 1565 in
the large graph) and diseases (5419 in the small graph, 25636 in the large graph). Addition-
ally, the graphs satisfy the scale-free property, which has been observed in many biological
networks [47] [48]. The quality of the data must also be highlighted, as it has been obtained
from curated databases. Nonetheless, the construction of the network is relatively slow
process, specially the Bioknowledge Reviewer step as it has to gather thousands (or even
millions) of nodes and edges. It can take 6 to 8 hours to build up the small graph; and a
couple of days for the large graph.

The training of the network, however, was performed much faster, in no more than 20
minutes for the small graph, and no more than 45 minutes for the large graph. This process
could be cut down shorter even more if early stopping had been applied, as from epoch 40
onward the performance barely increases.

It was also seen that during the performance of the network was surprisingly high after
few epochs of training. This, however, was not the case when modifying some of the opti-
mal parameters; for example, after slightly changing some parameters (walk length = 10,
number of walks = 5, E2V embedding size = 32, GNN layers = 4), the training starts with
a worth performance (although it ends up reaching similar performance values) (Figure 8.1).
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Analyzing the predictions, it is interesting to see how there are drugs that ’monopolize’
the predictions. For example, in the small graph Entrectinib appears as a drug candidate
in 25 of the 27 symptoms/phenotypes explored (92.5% of the symptoms). However, it is
clearly not a good recommendation, as there is no evidence that it is able to treat any of
the targeted symptoms and, in fact, is contraindicated in a third of them. The same occurs
with Axitinib and Nintedanib. In the large graph a similar situation to the one happening
in the small occurs in the large graph: there are drugs that are represented and that they
are mostly contraindicated to treat the symptoms/phenotypes. However, while in the small
graph it occurred with three different drugs (Entrectinib, Axitinib and Nintedanib), in the
large graph it only occurs with Fedratinib (as Methylprednisolone is also a candidate for 14
of the 27 symptoms (51.8 % of the symptoms) but it is able to treat 9 of them (33.33% of
the symptoms))

Interestingly, Suritinib, one of the drugs that appear to be a good candidate to treat the
symptoms of the disease according to both models (using the small and the large graph),
has been considered as a good drug candidate to treat Duchenne Muscular Dystrophy and
in 2019 appeared to be in preclinical trials [15]. This drug belongs to the group of tyrosin
kinase inhibitors, and many other drugs that belong to this category have been proposed
by our model (Fedratinib, Sorafenib, Bosutinib, Ruxolitinib and Midostaurin). Similarly,
Mezlocillin, an antibiotic used to treat Gram-negative bacterial infections, has also been
proposed by our model; while Gentamicin, another Gram-negative antibiotic, was in 2019
in clinical trials to treat Duchenne Muscular Dystrophy [15].

It should also be noted that the hyperparameters adopted for the large graph were the
ones that obtained the best performance in the small graph. Should hyperparameter opti-
mization been applied to the large graph, the results might have been better. Nonetheless,
this process would have taken much more computational time.

With respect to the explanations, there are few that were supported by bibliographi-
cal evidence. Nonetheless, this does not mean that the explanations are useless. An good
example of this would be the explanation for the Methylprednisolone-Muscular Dystrophy
link (Figure 8.23). The explanation is simple: ’Methylprednisolone treats Duchenne Muscu-
lar Dystrophy, Duchenne Muscular Dystrophy has Muscular Dystrophy as phenotype; thus
Methylprednisolone can treat Muscular Dystrophy’. In this case the explanation does not
contain supporting evidence but the explanation still makes sense. It could be argued that
Methylprednisolone should have been previously link to Muscular Dystrophy as this infor-
mation was already known, but this could be easily fixed by incorporating more information
to our graph.

Additionally, half of the explanations that were analyzed appeared to be incomplete:
either composed by two separate clusters or by a unique cluster that only contained infor-
mation about one of the nodes (mostly the disease). This might not be helpful to provide
a human-understandable hypothesis of the connection and might seem wrong at first sight;
but it would make sense from the GNN perspective. For example, a possible reason for the
GNN to believe that a connection between Drug A and Disease B should be connected is the
fact that one of the nodes is a drug and the other is a disease, and drugs are usually linked
to disease. In our network, a characteristic of diseases is that they are usually surrounded
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by genes with ’has phenotype’ edges; and this is what is seen in the explanations. Similarly,
drugs are usually surrounded by genes with ’target’ edges, and diseases with ’is substance
that treats’ edges. To sum it up, the GNN is suggesting a connection between 2 nodes
because it ’understands’ one is a drug and the other a disease; and it ’understands’ this
because one is surrounded by ’target’ and ’is substance that treats’ edges, and the other by
’has phenotype edges’. If this were the case, our GNN model would need to be improved to
eliminate this reasoning; however, other possibility is that the whole explanation is wrong,
and in that case the problem would be in GNNExplainer. Finding out were the issue might
be is a difficult task and needs to be explored in the future.

It was also seen that small graph usually produces more complete explanations, while in
the large graph incomplete explanations appear to be more numerous. This could happen
due to the difference in the graph structure itself: the small graph has a smaller clustering
coefficient than the large graph (see Section Graph Analysis), which leads to more edges
being present in the subgraphs produced by GNNExplainer. This way, because the 15th
edges with the highest scores are selected, is more likely to find a path between drug and
disease/phenotype in the small graph than in the large graph. Another interesting differ-
ence is that explanations generated with the small graph tend to have a higher ’sensitivity’,
while explanations generated with the large graph tend to have a higher ’specificity’. When
an incomplete explanation is produced using the small graph it is very unlikely that the
explanation will contain supporting evidence (0 explanations were found to have evidence if
the explanation was incomplete in the small graph). Similarly, when a complete explanation
is produce in the large graph, it is very likely that the explanations has supporting evidence
or contraindication evidence (67% of complete explanations had supporting evidence and
33 % of complete explanations had contraindication evidence). For this reason, if one re-
mains skeptical about the explanations themselves, this quality of the explanations might
be used as filter/validation. For example, if an incomplete explanation is obtained with
the small graph, it is unlikely that it is trustworthy (none of the incomplete explanation
had supporting evidence). Similarly, if a complete explanation is obtained using the large
graph, it is likely that there is some interaction between the drug and the disease (all of
the complete explanations generated with the large graph had either supporting evidence
or contraindication evidence).

7.3 Comparison with Previous Works

Unlike other drug repurposing approaches that make use of a graph composed of drugs, dis-
eases and genes [17] [49], our approach also includes additional information (physiological
process, ortholog genes, anatomical structures...). This approach has recently proven to be
useful when little information is available for the disease (for example, to find drugs that
can be used to treat Covid-19 [18]). Also, this additional information can be used to create
more complete explanations.

Comparing this work to previous approaches is a tough task. Many approaches have
been developed for in silico drug purposing, approaches that go from molecular simulations
[50], to Knowledge Graph analysis [18]. However, approaches that have been specifically
developed for drug repurposing in rare diseases are not that common, and even less are the
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ones than make use of AI to solve the problem [51] [52]. This way, the unique nature of this
project makes it hard to compare.

If compared to other drug repurposing task such as [27], our model obtains a higher
AUC-ROC score than the proposed by Lakizadeh et. al. In their method, ever, they used
a Matrix Factorization approach to solve the link prediction task. A much more similar ap-
proach was the one proposed by [53], where a Graph Neural Networks were used to obtain
the predictions for several rare diseases. In this approach the AUC-ROC score obtained was
of 0.953, inferior to the one obtained by our proposed model.

But where the proposed model stands our is in its interpretability, a crucial feature in
the biomedical field. To the best of our knowledge, no other method/pipeline has been
developed were drug predictions come together with a human-interpretable explanation. In
this aspect, our model distinguishes from other approaches, facilitating and speeding up the
drug repurposing process. Being able to obtain the reason behind a prediction produced
by an AI model can give researchers an argument to either trust or doubt the suggestion [54].

On this last aspect, there is still work to be done. More precise and complete explanation
should be expected on the biomedical field, where people’s lives are on the line.

7.4 Future Work

In this section several suggestions for improving and further developing the work described
in this project will be provided. One of the great advantages of the structure of this project
is that we are using a modular pipeline; this means that different parts of the workflow
(data, features, GNN and explanations) can be independently modified and the pipeline
can still be run. For example, if one is interested in using another node feature embedding
algorithm instead of Edge2Vec (for example, use Node2Vec), one can just modify that small
section of the code and still run the rest of the pipeline.

To begin with, alternative data sources could be used. For example, in this work Drug-
Central and Therapeutic Target Database where used as data sources for drug information.
However, there are other databases that might offer more complete and refined informa-
tion. An example of such database is Drug Bank [55], which is one of the most widely used
databases in drug repurposing. Its main drawback, however, is its accessibility; as it is not
freely available to everyone (academics and researchers can ask for free limited version of
the database).

Additionally, it would be interesting to run the project reducing or increasing the number
of node types. In this work, 8 different types of nodes were used, but other drug repurposing
approaches have opted for using just three (drugs, diseases and genes/proteins). There were
two reasons for using more node types during this project: first, because the targeted dis-
ease is a rare disease, the available information (specially drug related) is limited. This way,
by incorporating additional information such as ortholog genes, we are able to incorporate
drugs that are being tested in animals, for example. Secondly, using more types of nodes
might help to improve the explanations, as more node types can make the explanations
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richer. Nonetheless, it might we worth to train a simpler model with fewer node types and
compare the results to the ones obtained in this work.

Also, it would be useful to include information regarding side effects of drugs. This might
bring up two potential benefits but at a certain cost. One of the main benefits is that this
information can be extremely useful for drug repurposing. For example, if a drug A has a
side effect which is ’weight loss’, this could be useful to treat a disease such as obesity. Such
is the case of Liraglutide [56], initially used to treat diabetes and now used to treat obesity.
The other benefit is that, in our current model, some of the predictions produce or worsen
the disease they are suggested to treat. This might occur because the model understands
that the drug has a certain effect on the disease but it is not able to capture the nature of
this effect. By incorporating side effect information this issue might also be solved. However,
in order to implement this information, the architecture of the GNN has to change. With
the current model, the GNN does not distinguish between different types of relationship;
this way, if we incorporate side effect information and a certain prediction is made, it would
not be possible to know if the network is suggesting whether the drug can treat the disease
or if the drug can cause the disease. To solve this issue, it would be necessary to use an
heterogeneous GNN. In an heterogeneous GNN an embedding would be obtained for each
relationship, and this way it would be possible to distinguish between different edge types.
However, because GNNExplainer can only be used in homogeneous GNNs, explanations
could not be provided (unless a modification is applied to GNNExplainer that allows for its
use in heterogeneous GNN.

Furthermore, ontologies could be incorporated into the data to increase the quality of
our data. Even better, it would make our project more ’FAIR’ [57], making our project not
only understandable by humans, but also by machines.

Lastly, one final addition that could be incorporated to the data used is to include more
specific drug-gene information. This information can be really useful, as two drugs can
target the same gene but produce completely different effects. This way, substituting the
’target’ relationship by more specific alternative such as ’activates’ or ’inhibits’ may bring
more accurate results.

It was also seen that the graph construction step was very time-consuming, taking a
couple of days to build a large graph. More exploration should be done in this field to try
and accelerate the process. As a suggestion, reducing the number of ortholog genes might
increase the speed of this step. This could be done by not considering ortholog genes that
come from species that are distant from humans (for example, zebra fish or E. Coli). The
performance of the models should not be compromise by this, as drug experimentation is
usually performed in rodents (mice, rats) and a large non-rodent animal (pigs, dogs, pri-
mates) [58].

Regarding the network structure, it was decided to use GraphSAGE as network archi-
tecture because of its good scalability on large graphs [39]. Nevertheless, there many other
possibilities that could be explored. Once more, this can be easily done as the Python
libraries used in this pipeline (DeepSnap and Pytorch Geometric) already include many
different architectures that can be implemented without difficulty.
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It was also seen that when obtaining the predictions there were several drugs that ap-
peared as suggestion to treat almost every symptom, but had almost not evidence supporting
them. This ’promiscuous’ drugs only add noise to our model, and it would be interesting to
see how predictions may change after eliminating this drugs. The criteria to decide which
drugs are considered to be regarded as ’promiscuous’ still needs to be discussed, but it
should definitely consider the percentage of symptoms it is predicted to treat, as well as the
number of evidence the drug has (recall the case of Methylprednisolone, that was suggested
for more than half of the symptoms, but had evidence treating a third of them).

As stated above, should the explainability method change, heterogeneous GNNs could
be applied instead of the proposed homogeneous GNNs [59]. This way, information from the
edge types could be incorporated directly, without the necessity of Edge2Vec. Additionally,
edge weights could also be incorporated as additional information to the network. This
weight could be for example, the number of evidence that support the corresponding link.
This information could also be useful for the researcher, providing more rich explanations
that can help the researcher to judge whether it is trustworthy or not. For example, if the
links that appear on the explanation contain high weights it would mean that there is strong
evidence supporting the explanation. On the contrary, if weights are low it would mean that
there is few evidence supporting the connections of the explanation.

Finally, as it can be observed in our results, GNNExplainer gave some inconsistent ex-
planations. This could be caused by the size and complexity of our data. This inconsistency
could make the users of this pipeline skeptical about its explanations and for this reason
more exploration should done in this element of the pipeline to make it a more robust model.
Also, an heterogeneous version of the explainer could be developed by, maybe, modifying
the mask that is applied to the edges. This, however, could be a unique project on its own.

7.5 Conclusion

In conclusion, the proposed model has proven to obtain strong evaluations scores, provid-
ing drug candidates which are in many cases supported by bibliographical evidence. More
importantly, even when the prediction does not have any bibliographical support, this work
offers the possibility of obtaining explanations that may help the researcher to validate its
finding. To our knowledge, no other drug repurposing work offers the possibility of obtaining
human-understandable explanation. Despite explanations generated by GNNExplainer be-
ing limited to node classification, in this project an extension was implemented that allows
for its use in link prediction tasks. Additionally, a method to improve the consistency of the
predictions and filter the ones that provide more complete information was also developed.
Nonetheless, there is much to improve in the field of explainability, specially in the biomed-
ical field were decisions can have an important impact on people’s lives. In this project a
small improvement has been done to bring more consistency to explanations, but they still
have too much variance. In this project the focus has been placed in Duchenne Muscular
Dystrophy; but, in general, the pipeline developed in this projects offers itself as an easy
to use tool that can be extended to other rare diseases and that scientist can use to obtain
drug candidates and supporting explanations.
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Appendix

8.1 Pseudocode

Input: GNN,NodeIdx1, NodeIdx2, G
Output: Gs,m, Mask
Emb = GNN(G) // Obtain embeddings

InitialPred = Emb[NodeIdx1] · Emb[NodeIdx2] // Get initial prediction

Gs = Subgraph(G,NodeIndex1, NodeIndex2) // Obtain subgraph

Mask = InitializeMask(Gs) // Initialize Mask

for Epoch in Epochs do
Gs,m = ApplyMask(Gs,Mask) // Apply Mask to subgraph

NewEmb = GNN(Gs,m) // Get new embeddings

NewPred = NewEmb[NodeIdx1] ·NewEmb[NodeIde2] // Get new

prediction

Loss = GetLoss(InitialPred,NewPred) // Calculate loss

Mask = Backpropagate(Mask, Loss) // Backpropagate loss

end
return Gs,m, Mask

Algorithm 1: GNNExplainer Link Prediction Pseudocode. GNN stands for the
trained GNN model. G stands for the Graph.
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8.2 GNN training with alternative parameters

Figure 8.1: Training curve of the GNN using the small graph with alternative hyperparam-
eters values.

8.3 Drug Candidates on the Small Graph

Symptom ID Drug Candidate Score Supporting Evidence

Muscular
dystrophy

HP:0003560
Levosimendan 0.849 https://pubmed.ncbi.nlm.

nih.gov/30796500/

Disopyramide 0.848 https://pubmed.ncbi.nlm.

nih.gov/7045292/

Entrectinib 0.845 None

Respiratory
insufficiency

HP:0002093
Entrectinib 0.954 None
Axitinib 0.925 None
Doxorubicin 0.915 May produce respiratory dys-

function: https://grantome
.com/grant/NIH/R01-HL146

443-01

Gowers sign HP:0003391
Entrectinib 0.963 None
Axitinib 0.945 None
Nintedanib 0.932 None

Global
developmental
delay

HP:0001263
Entrectinib 0.985 Can produce developmental

delay: https://www.ncbi.n

lm.nih.gov/pmc/articles/

PMC8341080/

Axitinib 0.974 None
Nintedanib 0.968 None

Hyporeflexia HP:0001265
Entrectinib 0.923 None
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Axitinib 0.905 None
Nintedanib 0.872 None

Proximal muscle
weakness

HP:0003701
Entrectinib 0.961 Can produce muscle weak-

ness: https://www.drugs.

com/sfx/entrectinib-side

-effects.html

Axitinib 0.944 None
Nintedanib 0.925 https://pubmed.ncbi.nlm.

nih.gov/29991677/

Intellectual
disability

HP:0001256
Entrectinib 0.947 None
Axitinib 0.921 None
Doxorubicin 0.884 Can produce cognitive im-

pairment: https://pubmed

.ncbi.nlm.nih.gov/340556

43

Calf muscle
pseudohypertrophy

HP:0003707
Disopyramide 0.813 None
Entrectinib 0.784 None
Axitinib 0.776 None

Elevated serum
creatine kinase

HP:0003236
Entrectinib 0.929 Can increase more: https:

//www.oncolink.org/cance

r-treatment/oncolink-rx/

entrectinib-rozlytrek

Levosimendan 0.920 None
Disopyramide 0.915 None

Abnormal EKG HP:0003115
Levosimendan 0.777 https://pubmed.ncbi.nlm.

nih.gov/20814559/

Aprindine 0.747 https://pubmed.ncbi.nlm.

nih.gov/10068848/

Disopyramide 0.713 https://pubmed.ncbi.nlm.

nih.gov/9141608/

Arrhythmia HP:0011675
Levosimendan 0.890 https://ccforum.biomed

central.com/articles/1

0.1186/cc1595\#:$\sim$:

text=Effects\%20of\%20le

vosimendan\%20on\%20card

iac\%20arrhythmia\%20in\

%20patients\%20with\%20s

evere\%20heart\%20failur

e,-J\%20Lilleberg\%20\%2
6\&text=Levosimendan\%20

(LS)\%20is\%20a\%20nove

l,oxygen\%20consumption\
%2C\%20and\%20induces\%2

0vasodilation.
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Amiodarone 0.792 https://www.aafp.org/pub

s/afp/issues/2003/1201/p

2189.html\#:$\sim$:text

=Amiodarone\%20is\%20a\%

20potent\%20antiarrhythm

ic,deaths\%20in\%20high
\%2Drisk\%20patients.

Isradipine 0.953 https://pubmed.ncbi.nlm.

nih.gov/8480504/

Waddling gait HP:0002515
Entrectinib 0.976 None
Axitinib 0.964 None
Nintedanib 0.947 None

Dilated
cardiomyopathy

HP:0001644
Entrectinib 0.967 Can produce heart disease:

https://www.drugs.com/co

ns/entrectinib.html

Levosimendan 0.950 https://pubmed.ncbi.nlm.

nih.gov/25863426/\#:$\si

m$:text=Conclusions\%3A

\%20Levosimendan\%20seem

s\%20to\%20improve,supp
ort\%20while\%20awaiting

\%20heart\%20transplanta

tion.

Nintedanib 0.933 None

Flexion contracture HP:0001371
Entrectinib 0.980 None
Axitinib 0.975 None
Nintedanib 0.958 None

Specific learning
disability

HP:0001328
Entrectinib 0.871 None
Axitinib 0.862 None
Acepromazine 0.830 None

Skeletal muscle
atrophy

HP:0003202
Entrectinib 0.962 None
Axitinib 0.946 None
Nintedanib 0.925 https://pubmed.ncbi.nlm.

nih.gov/29991677/

Hypoventilation HP:0002791
Axitinib 0.781 None
Entrectinib 0.769 None
Mezlocillin 0.759 None

Calf muscle
hypertrophy

HP:0008981
Entrectinib 0.978 None
Axitinib 0.977 None
Disopyramide 0.976 None

Motor delay HP:0001270
Entrectinib 0.991 None
Sunitinib 0.985 None
Fedratinib 0.978 None

Generalized
hypotonia

HP:0001290
Entrectinib 0.995 None
Axitinib 0.988 None
Nintedanib 0.983 None
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Cardiomyopathy HP:0001638
Levosimendan 0.899 https://www.ncbi.nlm.nih

.gov/pmc/articles/PMC658

8712/

Entrectinib 0.848 Can produce myocarditis: ht
tps://pubmed.ncbi.nlm.ni

h.gov/34315748/

Carvedilol 0.837 https://www.ncbi.nlm.nih

.gov/pmc/articles/PMC4

055878/\#:$\sim$:text=P

athways\%20through\%20wh

ich\%20carvedilol\%20exe

rt,for\%20beneficial\%2
0effects\%20in\%20cardio

myopathy.

Hyperlordosis HP:0003307
Entrectinib 0.970 None
Axitinib 0.959 None
Disopyramide 0.932 None

Congestive heart
failure

HP:0001635
Entrectinib 0.863 Can produce heart failure: ht

tps://www.rozlytrek.com/

ntrk/how-rozlytrek-may-h

elp/possible-side-effect

s.html

Aprindine 0.857 https://pubmed.ncbi.nlm.

nih.gov/6871919/

Nintedanib 0.835 None
Delayed speech
and language
development

HP:0000750
Entrectinib 0.986 None
Axitinib 0.977 None
Nintedanib 0.969 None

Scoliosis HP:0002650
Entrectinib 0.994 None
Axitinib 0.989 None
Nintedanib 0.981 None

Progressive muscle
weakness

HP:0003323
Levosimendan 0.864 https://www.frontiersin.

org/articles/10.3389/fph

ys.2021.786895/full

Entrectinib 0.985 Can cause weakness: https:

//www.drugs.com/sfx/entr

ectinib-side-effects.htm

l
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Axitinib 0.960 Can cause weakness: https:

//www.mayoclinic.org/dru

gs-supplements/axitinib-

oral-route/side-effects/

drg-20075455?p=1\#:$\si

m$:text=This\%20medicin

e\%20may\%20cause\%20ser

ious,trouble\%20talking
\%2C\%20or\%20vision\%20

changes.\

Cognitive
impairment

HP:0100543
Entrectinib 0.952 Can induce cognitive disor-

ders: https://www.ncbi.n

lm.nih.gov/pmc/article

s/PMC8149347/\#:$\sim$:

text=Cognitive\%20disord

ers\%20included\%20event

s\%20reported,(0.2\%25)\
%20\%5B20\%5D.

Axitinib 0.931 https://www.neuro-
central.com/reversing-
alzheimers-symptoms-
in-mice-with-axitinib-
treatment/

Quercetin 0.991 https://www.ncbi.nlm.nih

.gov/pmc/articles/PMC373

6941/\#:$\sim$:text=In\

%20vitro\%20research\%20

also\%20suggests,simila
r\%20to\%20that\%20of\%2

0caffeine.

Table 8.1: Table showing the drug candidates with the highest scores for each symp-
tom/phenotype obtained with the small graph. Any evidence that supports the prediction
will be shown in the Supporting Evidence column. If the drug is contraindicated for the
given symptom/phenotype it will also be shown in this column.

8.4 Drug Candidates on the Large Graph

Symptom ID Drug Candidate Score Reference

Muscular
dystrophy

HP:0003560
Methylprednisolone 0.993 https://pubmed.ncbi.nlm.

nih.gov/17541998/

Resveratrol 0.963 https://www.nature.com/a

rticles/s41598-020-77197

-6
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Tofisopam 0.919 https://extrapharmacy.ru

/grandaxin-tofisopam-50m

g-60tabs

Respiratory
insufficiency

HP:0002093
Methylprednisolone 0.984 https://jintensivecare.b

iomedcentral.com/article

s/10.1186/s40560-018-032

1-9

Fedratinib 0.981 None
Sorafenib 0.975 Can cause pneumonia: http

s://www.ncbi.nlm.nih.gov

/pmc/articles/PMC3961597

/

Gowers sign HP:0003391
Fedratinib 0.994 None
Bosutinib 0.991 None
Nintedanib 0.990 None

Global
developmental
delay

HP:0001263
Fedratinib 0.995 None
Sorafenib 0.994 None
Bosutinib 0.994 None

Hyporeflexia HP:0001265
Fedratinib 0.996 None
Sunitinib 0.994 None
Bosutinib 0.994 None

Proximal muscle
weakness

HP:0003701
Fedratinib 0.997 Can produce muscle weak-

ness: https://medlineplu

s.gov/druginfo/meds/a619

058.html

Bosutinib 0.995 None
Methylprednisolone 0.995 Can produce weakness: http

s://erj.ersjournals.com/

content/21/2/377.2\#:$\

sim$:text=Methylprednis

olone\%20is\%20often\%20

given\%20in,weakness\%20
following\%20high\%2Ddos

e\%20steroids.

Intellectual
disability

HP:0001256
Fedratinib 0.996 None
Sorafenib 0.995 None
Bosutinib 0.995 None

Calf muscle
pseudohypertrophy

HP:0003707
Methylprednisolone 0.970 https://www.britannica.c

om/science/pseudohypertr

ophy

Ruxolitinib 0.967 https://www.sciencedirec

t.com/science/article/pi

i/S147148921630100X

Fedratinib 0.948 None

Elevated serum
creatine kinase

HP:0003236
Methylprednisolone 0.994 Can increase creatinine: http

s://www.ncbi.nlm.nih.gov

/pmc/articles/PMC4275145

/
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Fedratinib 0.989 Can increase more: https:

//jamanetwork.com/journa

ls/jamaoncology/fullarti

cle/2330618

Bosutinib 0.982 Can increase more: https:

//www.sciencedirect.com/

science/article/pii/S215

2265017305840

Abnormal EKG HP:0003115
Methylprednisolone 0.982 Can affect EKG: https://pu

bmed.ncbi.nlm.nih.gov/29

668335/

Patisiran 0.879 None
Silodosin 0.878 None

Arrhythmia HP:0011675
Methylprednisolone 0.989 Can produce arrhythmia: ht

tp://www.ijps.ir/articl

e\ 2090.html\#:$\sim$:te

xt=Cardiac\%20dysrhythmi

as\%20have\%20been\%20re

ported,turn\%2C\%20may\
%20initiate\%20cardiac\%

20dysrhythmias.

Fedratinib 0.980 None
Sorafenib 0.979 None

Waddling gait HP:0002515
Fedratinib 0.991 Can produce gait: https://

www.accessdata.fda.gov/d

rugsatfda\ docs/nda/2019

/212327Orig1s000Multidis

ciplineR.pdf

Sorafenib 0.990 Can produce gait: https://

www.ncbi.nlm.nih.gov/pmc

/articles/PMC4094497/

Midostaurin 0.990 None

Dilated
cardiomyopathy

HP:0001644
Methylprednisolone 0.993 https://pubmed.ncbi.nlm.

nih.gov/25614863/

Adefovir dipivoxil 0.980 None
Milrinone 0.966 https://pubmed.ncbi.nlm.

nih.gov/10488574/\#:$\si

m$:text=Conclusion\%3A\

%20Milrinone\%20lactate\

%20is\%20an,and\%20IV\%2
0of\%20heart\%20failure.

Flexion contracture HP:0001371
Fedratinib 0.997 None
Sorafenib 0.996 https://pubmed.ncbi.nlm.

nih.gov/35274715/

Bosutinib 0.995 None

Specific learning
disability

HP:0001328
Fedratinib 0.984 None
Sorafenib 0.978 None
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Sunitinib 0.977 https://pubmed.ncbi.nlm.

nih.gov/27046396/

Skeletal muscle
atrophy

HP:0003202
Fedratinib 0.995 None
Ruxolitinib 0.994 None
Sunitinib 0.993 https://www.ncbi.nlm.nih

.gov/pmc/articles/PMC441

3636/

Hypoventilation HP:0002791
Methylprednisolone 0.990 https://jintensivecare.b

iomedcentral.com/article

s/10.1186/s40560-018-032

1-9

Resveratrol 0.966 None
Fedratinib 0.993 None

Calf muscle
hypertrophy

HP:0008981
Methylprednisolone 0.978 https://www.ncbi.nlm.nih

.gov/pmc/articles/PMC287

9072/

Fedratinib 0.977 None
Resveratrol 0.976 https://journals.plos.or

g/plosone/article?id=10

.1371/journal.pone.00835

18

Motor delay HP:0001270
Fedratinib 0.995 None
Sunitinib 0.994 https://www.ncbi.nlm.nih

.gov/pmc/articles/PMC658

6148/

Vincristine 0.993 None

Generalized
hypotonia

HP:0001290
Fedratinib 0.982 None
Sorafenib 0.980 None
Primidone 0.980 None

Cardiomyopathy HP:0001638
Methylprednisolone 0.995 https://pubmed.ncbi.nlm.

nih.gov/7971647/

Resveratrol 0.974 https://onlinelibrary.wi

ley.com/doi/full/10.1002

/fsn3.92

Adefovir dipivoxil 0.971 None

Hyperlordosis HP:0003307
Methylprednisolone 0.986 https://www.ncbi.nlm.nih

.gov/pmc/articles/PMC489

7302/

Fedratinib 0.982 None
Sorafenib 0.980 None

Congestive heart
failure

HP:0001635
Methylprednisolone 0.979 https://www.sciencedirec

t.com/science/article/pi

i/S1071916414005843\#:$\

sim$:text=Methylprednis

olone\%20improved\%20HF\

%20outcomes.,of\%20pati
ents\%20from\%20the\%20s

tudy.
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Daunorubicinol 0.957 Can produce cardiotoxicity:
https://www.sciencedirec

t.com/topics/medicine-an

d-dentistry/daunorubicin

ol

Adefovir dipivoxil 0.946 None
Delayed speech
and language
development

HP:0000750
Fedratinib 0.994 None
Midostaurin 0.993 None
Sunitinib 0.993 None

Scoliosis HP:0002650
Sorafenib 0.995 None
Fedratinib 0.995 None
Midostaurin 0.994 None

Progressive muscle
weakness

HP:0003323
Methylprednisolone 0.999 Can cause weakness: https:

//pubmed.ncbi.nlm.nih.go

v/14629908/

Resveratrol 0.985 https://pubmed.ncbi.nlm.

nih.gov/33239684/

Patisiran 0.960 None

Cognitive
impairment

HP:0100543
Sunitinib 0.997 None
Ruxolitinib 0.997 Can produce cognitive im-

pairment: https://pubmed

.ncbi.nlm.nih.gov/246613

73/

Bosutinib 0.997 https://pubmed.ncbi.nlm.

nih.gov/34484904/

Table 8.2: Table showing the drug candidates with the highest scores for each symp-
tom/phenotype obtained with the large graph. Any evidence that supports the prediction
will be shown in the Supporting Evidence column. If the drug is contraindicated for the
given symptom/phenotype it will also be shown in this column.
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8.5 Explanations Small Graph

Figure 8.2: Explanation of drug candidate Levosimendan as possible treatment for Muscular
Dystrophy. Classified as complete explanation.

55



8.5. Explanations Small Graph Chapter 8. Appendix

Figure 8.3: Explanation of drug candidate Disopyramide as possible treatment for Muscular
Dystrophy. Classified as complete explanation.

Figure 8.4: Explanation of drug candidate Entrectinib as possible treatment for Muscular
Dystrophy. Classified as complete explanation.
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Figure 8.5: Explanation of drug candidate Entrectinib as possible treatment for Respiratory
Insufficiency. Classified as complete explanation.

Figure 8.6: Explanation of drug candidate Axitinib as possible treatment for Respiratory
Insufficiency. Classified as incomplete explanation.
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Figure 8.7: Explanation of drug candidate Doxorubicin as possible treatment for Respiratory
Insufficiency. Classified as complete explanation.

Figure 8.8: Explanation of drug candidate Levosimendan as possible treatment for Arrhyth-
mia. Classified as complete explanation.
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Figure 8.9: Explanation of drug candidate Amiodarone as possible treatment Arrhythmia.
Classified as complete explanation.

Figure 8.10: Explanation of drug candidate Isradipine as possible treatment for Arrhythmia.
Classified as complete explanation.
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Figure 8.11: Explanation of drug candidate Entrectinib as possible treatment for Dilated
cardiomyopathy. Classified as incomplete explanation.

Figure 8.12: Explanation of drug candidate Levosimendan as possible treatment for Dilated
cardiomyopathy. Classified as complete explanation.
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Figure 8.13: Explanation of drug candidate Nintedanib as possible treatment for Dilated
cardiomyopathy. Classified as incomplete explanation.

Figure 8.14: Explanation of drug candidate Entrectinib as possible treatment for Congestive
heart failure. Classified as complete explanation.
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Figure 8.15: Explanation of drug candidate Aprindine as possible treatment for Congestive
heart failure. Classified as complete explanation.

Figure 8.16: Explanation of drug candidate Nintedanib as possible treatment for Congestive
heart failure. Classified as complete explanation.
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Figure 8.17: Explanation of drug candidate Levosimendan as possible treatment for Pro-
gressive muscle weakness. Classified as complete explanation.

Figure 8.18: Explanation of drug candidate Entrectinib as possible treatment for Progressive
muscle weakness. Classified as incomplete explanation.
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Figure 8.19: Explanation of drug candidate Axitinib as possible treatment for Progressive
muscle weakness. Classified as incomplete explanation.

Figure 8.20: Explanation of drug candidate Entrectinib as possible treatment for Cognitive
impairment. Classified as complete explanation.
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Figure 8.21: Explanation of drug candidate Axitinib as possible treatment for Cognitive
impairment. Classified as complete explanation.

Figure 8.22: Explanation of drug candidate Quercetin as possible treatment for Cognitive
impairment. Classified as complete explanation.
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8.6 Explanations Large Graph

Figure 8.23: Explanation of drug candidate Methylprednisolone as possible treatment for
Muscular dystrophy. Classified as complete explanation.
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Figure 8.24: Explanation of drug candidate Resveratrol as possible treatment for Muscular
dystrophy. Classified as incomplete explanation.

Figure 8.25: Explanation of drug candidate Tofisopam as possible treatment for Muscular
dystrophy. Classified as incomplete explanation.
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Figure 8.26: Explanation of drug candidate Methylprednisolone as possible treatment for
Respiratory insufficiency. Classified as complete explanation.

Figure 8.27: Explanation of drug candidate Fedratinib as possible treatment for Respiratory
insufficiency. Classified as incomplete explanation.
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Figure 8.28: Explanation of drug candidate Sorafenib as possible treatment for Respiratory
insufficiency. Classified as complete explanation.

Figure 8.29: Explanation of drug candidate Methylprednisolone as possible treatment for
Arrhythmia. Classified as incomplete explanation.
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Figure 8.30: Explanation of drug candidate Fedratinib as possible treatment for Arrhythmia.
Classified as incomplete explanation.

Figure 8.31: Explanation of drug candidate Sorafenib as possible treatment for Arrhythmia.
Classified as incomplete explanation.
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Figure 8.32: Explanation of drug candidate Methylprednisolone as possible treatment for
Dilated cardiomyopathy. Classified as incomplete explanation.

Figure 8.33: Explanation of drug candidate Adefovir dipivoxil as possible treatment for
Dilated cardiomyopathy. Classified as incomplete explanation.
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Figure 8.34: Explanation of drug candidate Milrinone as possible treatment for Dilated
cardiomyopathy. Classified as incomplete explanation.

Figure 8.35: Explanation of drug candidate Methylprednisolone as possible treatment for
Congestive heart failure. Classified as incomplete explanation.
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Figure 8.36: Explanation of drug candidate Daunorubicinol as possible treatment for Con-
gestive heart failure. Classified as incomplete explanation.

Figure 8.37: Explanation of drug candidate Adefovir dipivoxil as possible treatment for
Congestive heart failure. Classified as incomplete explanation.
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Figure 8.38: Explanation of drug candidate Methylprednisolone as possible treatment for
Progressive muscle weakness. Classified as complete explanation.

Figure 8.39: Explanation of drug candidate Resveratrol as possible treatment for Progressive
muscle weakness. Classified as complete explanation.
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Figure 8.40: Explanation of drug candidate Patisiran as possible treatment for Progressive
muscle weakness. Classified as incomplete explanation.

Figure 8.41: Explanation of drug candidate Fedratinib as possible treatment for Cognitive
impairment. Classified as incomplete explanation.
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Figure 8.42: Explanation of drug candidate Sorafenib as possible treatment for Cognitive
impairment. Classified as complete explanation.

Figure 8.43: Explanation of drug candidate Bosutinib as possible treatment for Cognitive
impairment. Classified as incomplete explanation.
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8.7 Explanation Evidence

Table 8.3: Table showing the analysis of the explanation. The Good/Bad column shows
the subjective evaluation. The Supporting Evidence Link shows if the Drug-Disease link
contains supporting evidence. The Supporting Evidence Explanation Explanation shows if
the explanation itself has supporting evidence.

Graph Drug Disease Good/Bad Supporting Evidence Link Supporting Evidence Explanation

Small

Levosimendan
Muscular
Dystrophy

Good Yes -

Disopyramide
Muscular
Dystrophy

Bad Yes -

Entrectinib
Muscular
Dystrophy

Good No -

Entrectinib
Respiratory
Insufficiency

Good No -

Doxorubicin
Respiratory
Insufficiency

Good Contraindication
Unclear:
https://grantome.com/grant/NIH/R01-HL146443-01

Levosimendan Arrhythmia Bad Yes -
Amiodarone Arrhythmia Good Yes -
Isradipine Arrhythmia Good Yes -

Levosimendan
Dilated
cardiomyopathy

Bad Yes -

Aprindine
Congestive
heart failure

Bad Yes -

Nintedanib
Congestive
heart failure

Good No -

Levosimendan
Progressive
Muscle Weakness

Good Yes https://www.frontiersin.org/articles/10.3389/fphys.2021.786895/full

Entrectinib
Cognitive
impairment

Good Contraindication -

Axitinib
Cognitive
impairment

Good Yes -

Quercetin
Cognitive
impairment

Good Yes -

Large

Methylprednisolone
Muscular
Dystrophy

Good Yes -

Methylprednisolone
Respiratory
Insufficiency

Good Yes

Sorafenib
Respiratory
Insufficiency

Good Contraindication
Unclear:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961597/

Methylprednisolone
Progressive
Muscle Weakness

Good Contraindication -

Resveratrol
Progressive
Muscle Weakness

Good Yes -

Sorafenib
Cognitive
impairment

Good Contraindication -
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