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Abstract

Bacterial vaginosis (BV) is the most abundant form of vaginitis, and most common in women of
reproductive age. The inflammation it brings gives discomfort to the patient through symptoms
of itch, odor, thin white-greyish vaginal discharge and a burning sensation. It also leads to a
2.7-fold increased risk of various STI’s, including HIV, chlamydia, herpes, pelvic inflammatory
disease and gonorrhea. In pregnant women, BV adds to the probability of the occurrence of a
miscarriage and a preterm birth.
A dataset created by Ravel, Brotman, et al. (2013) is used, containing longitudinal data with
bacteria abundances, pH, menstruation phase and BV status. It contains 25 women measuring
every day for 70 days. First a BV diagnosis test was done with machine learning classifier models
as well as a probabilistic dummy classifier. An attempt was done to create more meaningful
labels than the moment of diagnosis that is provided in the dataset originally. These labels are
based on: a set of rules; adjacent days; days of treatment. The best performance on a test set
in terms of f1-score on the diagnosis for these various newly defined was 0.62, with a sensitivity
of 0.46.
During the prediction tasks these labels were used to see if the patient gets BV in the next 10
or 30 days, or the next month with 30 days. BV in the next 10 days could be predicted with an
f1-score of 0.70 and a sensitivity of 0.57.
For the following 30 days the performance was an f1-score of 0.93 and a sensitivity of 0.94.
For the next 30 days, skipping ahead 30 days, the performance was an f1-score of 0.89 and a
sensitivity of 0.93.
A regression task was performed to predict the number of days until BV onsets, which was
done with a highest R2 of 0.75.
To find what bacteria and other vaginal conditions cause this condition, the feature importances
were extracted from the best performing models. Most findings were in line with recent literature,
where BV associated bacteria like Gardnerella vaginalis and Bifidobacteriaceae were found to be
important for short term BV prediction. For longer term BV prediction, Lactobacillus crispatus
was found to be more important than the iners variant. This confirms that there is a difference
in conditions leading to long term BV risk versus short term BV risk.
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Chapter 1

Introduction

1.1 The Human Vaginal Microbiome

1.1.1 An Introduction to Microbiomes

Humans have known of the existence of microbes since Antony van Leeuwenhoek observed
protozoa in 1676 (Dobell 1920), which he found to be present inside our bodies too shortly
after, while inspecting his own stool. We now know that the human body is covered by
bacteria amounting to a total of ten times more prokaryotic than human cells (Savage 1977;
T. Dobzhansky and T. G. Dobzhansky 1971; Luckey 1972). The various locations of these
microbiota include but are not limited to the creases in our skin surface, gut, urinary tract, oral
cavity, as well as the vagina. The composition of such microbiota varies widely depending on
the environment that arises in these body parts and changes dynamically through time as well
(Costello et al. 2009). In this thesis, the scope is set on the reproductive age women’s vaginal
microbiome, a term that encompasses microbes (prokaryotes, eukaryotes, archaea and viruses),
their genes as well as their surrounding environment properties (Marchesi and Ravel 2015).

1.1.2 The Healthy Vaginal Microbiome

The human vagina contains anywhere between 1010 and 1011 bacteria (C. Chen et al. 2017),
forming an ecosystem that is homeostatic and mutually serves the host and the bacteria.
The environment is made nourishing, warm and moist for the bacteria to live in, so these
microbes can in turn fend off intruding microbes through antimicrobial factors. It has been
shown that communities of various bacteria are better at resisting intruders than monocultures
(Burmølle et al. 2006). In the case of the vaginal microbiome, core functions were identified
which can be conserved despite varying presence of the bacterial taxa since there is no core
composition (Ravel, Gajer, et al. 2010). For example, the lactic acid and H2O2 produced by
vaginal lactobacilli lowers the pH to around 4.5, which is believed to suppress pathogenic
growth (Linhares et al. 2011; O’Hanlon, Moench, and Cone 2011). Therefore, the presence
of these bacteria are associated with a healthy state. It should be noted that the absence
of lactobacilli does not necessarily mean that conditions are unhealthy, since other genera of
bacteria can also produce acidic compounds to achieve similar protection.
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6 CHAPTER 1. INTRODUCTION

1.1.3 Bacterial Vaginosis

Bacterial Vaginosis (BV) is the most prevalent form of vaginitis, a broad term for inflammation
of the vagina. The term vaginitis also includes, for example, candidiasis and trichomoniasis
(Elgantri, Mohamed, and Ibrahim 2010). These reproductive tract infections and other infections,
like sexually transmitted infections (STI), are more common in and also more damaging to
women than men (HL 2006; Philip, Benjamin, and Sengupta 2013). BV alone globally accounts
for an annual cost of 13.8 billion US dollars considering all cases (Peebles et al. 2019). A BV
infection occurs in an estimate of 10-12% of reproductive age women in the UK (Carol A.
Spiegel et al. 1980; Hay et al. 1994), but an even higher prevalence of 15 to 20% is found in
pregnant women (Martius et al. 1988). In the USA, studies have shown higher prevalence of
BV in pregnant women too ranging between 15% and 30%, where proportionally more cases
are found in African American women (Goldenberg et al. 1996).
The cause for a BV infection is mainly the result of surroundings. Research has indicated that
the partner penile microbiome plays a role in BV risk (Supriya D. Mehta et al. 2020). For BV
to arise, a combined occurrence of certain bacteria is necessary (Z. S. Ma and Ellison 2021).
Gardnerella vaginalis presence should be accompanied by a secondary colonizer, like A. vaginae
or Sneathia spp., for symptomatic BV onset (Muzny et al. 2020).
In cases of BV, there is an increased risk of infertility, endometritis, and pelvic inflammatory
disease (Ravel, Moreno, and Simón 2021). BV also causes a 2.7-fold risk increase for STI’s
like HIV, chlamydia, herpes and gonorrhea (Allsworth and Peipert 2011). Pregnant women
with BV have an increased probability of preterm birth (Martius et al. 1988) and having a
miscarriage (Al-Memar et al. 2020). Besides this, symptoms include itching, unusual white-grey
thin vaginal discharge, strong odor and a burning sensation.
There are various ways to diagnose someone with BV, based on either a nugent score (positive
when it is 7 or higher) (Nugent, Krohn, and Hillier 1991; Carol A Spiegel, Amsel, and Holmes
1983), found using a Gram Stain of vaginal fluid, or by Amsel criteria (Richard Amsel et al.
1983; Eschenbach et al. 1988), which involves multiple subjective clinical tests of which at
least 3 should be positive to diagnose someone with BV.
Once BV is diagnosed, antibiotics that target the anaerobic bacteria responsible for the BV
infection can be used to treat the patient in order to restore the microbiota’s balance towards
the Lactobacillic bacteria. An example being Metronidazole, although this treatment is known
to be prone to recurrence (Deng et al. 2018). A more effective way to fight BV is by preventing
the infection through use of probiotics (Donders, Zodzika, and Rezeberga 2014).
While this thesis will be limited to using data of genomics, the importance of transcriptomics
should be noted in this research field, since some gene activation by Gardnerella vaginalis is
correlated to recurrence after metronidazole treatment. This same correlation can not be found
by examining genetic abundance (Twin et al. 2013).

1.2 Related Work

Ravel, Brotman, et al. (2013) introduced a new dataset of 25 women whose vaginal microbiome
are quantified for a period of 10 weeks. This dataset is further described and explored in
Chapter 2. This thesis will use this data to perform experiments on. In their paper, Ravel et al.
describe findings on the observations of correlations between certain bacterial taxa abundance
and BV initiation or recurrence after treatment. Since the quantitative results are a result of
the DNA sequencing of 16S rRNA genes, therefore based on DNA abundance and not RNA,
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the data is a representation of the functional potential and not the activity that is found for
each species of bacteria (France et al. 2022).

A similar set of data has been used to classify woman as BV infected or healthy in previous
(Beck and Foster 2014). Since this work showed that solving this classification task accurately
is feasible, this thesis will expand on this work by exploring prediction in the future.

Classification or even prediction of BV using microbiota data, could result in earlier detection
or even prediction of BV, which could modernise the treatment process (Sharma et al. 2021).

On a population basis, microbiota data can be used to group women in four cervicotype (CT)
groups, based on which bacterium is dominant. Each CT-group is associated with a certain
probability (or risk) of BV (Supriya Dinesh Mehta et al. 2020). Using Markov chain simulations,
one can predict on a population scale which group transitions take place, and therefore, how
abundant certain risk groups are (Munoz et al. 2021). This knowledge of BV probability for a
CT group, as well as the transitions in the future, will be used to define a baseline performance
on classifying women as BV positive or healthy, and for predicting BV in the future, respectively.

1.3 Goal and Problem Definitions

This thesis aims to reveal to what extend the vaginal microbiome composition provides enough
information for Machine Learning (ML) algorithms to predict the diagnosis and the onset of a
case of BV. Inspiration for this question also came from the idea of the predictive qualities
of the penile microbiome composition, as described by Supriya D. Mehta et al. (2020). The
vaginal microbiome composition has already displayed it’s predictive qualities when used by ML
algorithms to detect BV in a patient in the paper by Beck and Foster (2014).

In order to answer this question, the dataset as introduced by Ravel, Brotman, et al. (2013)
will be used. This dataset was chosen based on it’s longitudinal nature (women are monitored
for approximately 70 days), as well as the completeness in representation of BV cases, like:
asymptomatic BV (ABV); symptomatic BV (SBV); and healthy subjects. Firstly, the diagnosis
task of detecting BV will be performed on this dataset. Then, a prediction task will be defined
for various amounts of time in the future: longer term and shorter term. Finally a regression
task will be defined to find the days until BV onsets.

In this thesis, several attempts will be made to create a BV label that carries the meaning:
symptomatic BV is present. In the dataset, the diagnosis of SBV is available as a label. Since a
disease onsets before a diagnosis occurs and remains until a treatment is performed, strategies
are built around this knowledge and further described in Chapter 2.

These labels and the data, as well as the original SBV diagnosis label, will be used to train and
test the performance of several ML algorithms, described in Chapter 3.

The approach of CT group transition probability as described by Munoz et al. (2021) will be
used as a baseline model. This baseline is described in more detail in Chapter 3 as well.

The following goals and hypotheses will be considered during the conduction of the experiments.

To inspect whether ML techniques can perform better than the baseline in the task of diagnosis
on this dataset with various definitions of BV (SBV, rule based BV (RBV), adjacency based BV
(AdBV)). SBV is expected to be very hard to predict, namely due to the low number of data
points labeled as such available, as well as the factor that human decisions on when during the
onset of BV the diagnosis is made can vary widely and may therefore not be related to the
microbiota data. The other custom labels are expected to be more easily predicted, since they
will be present more abundantly. They are also expected to carry more actual information on
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the state of the patient than a moment of diagnosis.
To observe how well one can use various ML and probabilistic techniques to predict SBV, like
regression to fit on the number of days until BV onsets or binary classification of BV occurrence
in the future.
Find relevant or important features that the ML models use and see if they align with current
literature or if there is new patterns emerging. Expected important features for diagnosis are
different from prediction in future. From the population based research with CT transitions we
know that Lactobacillus crispatus plays a more important role in long term prevention of BV
risk than Lactobacillus iners (Munoz et al. 2021). It is also expected that we encounter BV
associated bacteria as important features such as A. vaginae, Megaspherea, Bifidobacteriaceae,
Sneathia spp., Prevotella amnii, Eggerthella and Gardnerella vaginalis (X. Chen et al. 2021).



Chapter 2

Data

2.1 Description

The dataset gathered by Ravel, Brotman, et al. (2013) comprises of measurements performed on
25 women for a period ranging from 70 to 72 days. For some days, one or more measurements
are missing, therefore the number of datapoints per woman vary from 65 to 72. The occurrence
of each measurement frequency is plotted in Figure 2.1. The total number of samples is 1756,
where 1651 are complete with all measurements and labels.

Figure 2.1: The frequency of occurrence for each number of measurement days.

In the next section, the methods of dealing with incomplete measurements are described, as
well as the resulting new composition of the data. In Section 4.1, the data is explored on a
deeper level. Section 2.2 describes the way that missing labels and measurements are handled,
as well as techniques on how new labels were created to add informative value to existing
labels.

9



10 CHAPTER 2. DATA
Table 2.1: The count and frequency of the labels for the dataset as it was initially provided
by Ravel, Brotman, et al. (2013), but with manually added labels as described in Table
2.2.

Total NBV SBV ABV

Count 1651 743 15 21

% 100 45.0 0.9 1.3

2.2 Preprocessing

The two tables, one containing the label data, the other measurement data, are outer merged
on the sampleID column, such that no row is left out when either sample is missing. As a
result, samples that were present in one of the tables but not in the other will result in missing
data in the merged table.

2.2.1 Missing Labels

Compared to the Figure S1 in Additional file 4 of the paper by Ravel, Brotman, et al. (2013),
the dataset as provided by the authors is missing several SBV and treatment labels. In Table 2.2
the missing labels, which were added to the dataset manually, are described.

Table 2.2: The SampleID and label type for data alterations to make the set align with
the depicted data in Figure S1 of Additional file 4 (Ravel, Brotman, et al. 2013).

SampleID Added Label

s5.w10d7 SBV

s40.w8d6 SBV

s40.w8d7 BV Med

s40.w9d1 BV Med

s40.w9d2 BV Med

s40.w9d3 BV Med

2.2.2 Missing Measurements

There are also samples present where only certain variables were not reported, like, for example,
the pH, some or all of the bacteria abundances. To maximize the amount of available data,
the choice was made to interpolate for the missing values. However, some missing values are
found on the first or last days in the study, which makes it impossible to interpolate from two
surrounding data points. Therefore, these values should be removed (samples are described in
Table 2.3), while others are interpolated linearly. To fill both the missing single variable, as well
as the entirely missing taxa relative abundances, forward linear interpolation is used. It should
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be noted that backward would have worked similarly, since the edge cases were removed in the
previous preprocessing step.

Table 2.3: Samples that were removed due to the absence of measurement values in the
bacteria abundances or pH, excluding the ones that could be interpolated linearly using
the neighboring values. This means that these are either the first or last samples taken for
the subjects research period.

SampleID Missing column(s)

s3.w1d1 pH

s3.w10d4 Bacteria

s3.w10d5 Bacteria

s3.w10d6 Bacteria

s3.w10d7 Bacteria

s5.w1d1 Bacteria

s130.w10d6 Bacteria

s130.w10d7 Bacteria

The new counts for complete data points and corresponding labels are shown in Table 2.4.

Table 2.4: The count and percentage of the complete data point labels for the same
dataset as in Table 2.1, but with manually added labels as described in Table 2.2. The
interpolations are also included in these counts as complete data points.

Total NBV SBV ABV

Count 1748 713 17 21

% 100 40.6 1.0 1.2

2.3 Alterations and Additions

Since the dataset only includes labels for the moment of diagnosis of BV, as well as treatment
days, some methods are used to expand the number of labels, while preserving a medical
relevance. In the next few sections, each of these label types is described, as well as how they
were created.

2.3.1 Rule Based BV

The Rule Based BV (RBV), is an attempt to use logical rules to define which days around a
Symptomatic BV diagnosis, the BV is already or still present in a patient. These are the rules,
based on which the decision was made to add an RBV label to the dataset:
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1. If there is no SBV label yet, but BV treatment is performed, an SBV label will be added
on the first day of treatment.

2. If SBV is diagnosed, but treatment starts one or more days later, the days between
diagnosis and treatment including the first day of treatment will be given an SBV label.

3. If SBV is diagnosed, but no treatment is started after the diagnosis, the following days
to the diagnosis that consecutively have 2 or more symptoms are labelled with SBV.

4. All days preceding an SBV diagnosis of which all consecutively have 2 or more symptoms.

2.3.2 Adjacency Based BV

The Adjacency Based BV (AdBV) label is defined as the day of diagnosis and a number of days
before and after this day. Two number of days and a variant with and without the inclusion of
treatment days were used to make a total of four variants of this label. This includes the labels
with 7 adjacent days - meaning: the day of diagnosis; 3 days before diagnosis; and 3 days after
diagnosis - and those with 11 adjacent days, in the same way as the former but with 5 days
on either end of the day of diagnosis. Each variant is split in two variants. In the first variant
the labeled days that BV treatment is performed are stripped of their label, while in the other
variant these labels are kept the same.



Chapter 3

Methods & Materials

3.1 Train & Test Data

The dataset is split into a train and test set, with 80 and 20 percent of the data respectively,
using the train test split function from Sklearn (Pedregosa et al. 2011). The split is
stratified, in order to maintain the original ratio of positive and negative labels in both the
train and test set.
Besides the stratified split, a class weight can be assigned during training to account for a
smaller presence of the positive label as was found in Section 4.1. This parameter, along
with others as described in Section 3.2.6, are varied and an optimum is searched for with the
GridSearchCV function, also from Sklearn. Experiments are performed in 5-fold.

3.2 Machine Learning Models

A method is called machine learning when it makes use of data in order to improve performance
on a task, by adjusting it’s prediction according to training data, without being explicitly
programmed to do so. This may occur in a supervised or unsupervised manner. In the former
technique, the machine learning algorithm is provided with an input and the desired output in
order to find certain rules or parameters so it can generalize the input to match the required
output. The latter is not provided with any label, so the algorithm has to find data patterns
that provide structure in the input all by itself.
In both cases, the algorithm is trained on a set of data that is separated from the set that
performance is tested on. Depending on the task at hand, this training uses different loss
functions to process the difference between the given prediction and the expected prediction
into the model, so it can improve for next predictions.
The tasks that are defined are a binary classification task, and a regression task.
Here binary classification is the task to label a subject on a given day as either BV-positive (1)
or BV-negative (0). This is also the case for the predictions of BV occurring in the future.
The regression task is to find the number of days after which a subject will get BV on a given
day.
In the next subsections the various ML models that were used are described, as well as the
non-ML baseline model based on label probability. The latter will be used as a comparison for
minimal performance required to the ML models. The choice of the ML models was made as
to cover both unsupervised and supervised learners, linear models as well as more complex

13
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state-of-the-art models for smaller datasets.

3.2.1 Gradient Boosted Classifier & Regressor (gbc/gbr)

Gradient boosting makes use of an ensemble of weak predictors, called decision trees, to form
a classification or regression model. The optimization in a boosting manner is powered by a
gradient descent along a loss function that can be differentiated. Instead of bagging, which
is used in Random Forest, which trains each model in the ensemble equally, boosting trains
models in a way that allows new models to learn from the mistakes that older models made
(T. Chen and Guestrin 2016). As a result, newer models continue to evolve and eventually
create a powerful ensemble. The additive training method is modified in the XGBoost version
used in this chapter. The successor tree’s output integrates the results of all predecessors.
This model makes use of supervised learning, using the correct answer to influence how it will
classify datapoints in the future during training.

3.2.2 Support Vector Machine (SVM)

A SVM seeks to create a hyperplane between the two classes in a binary classification task to
maximize the margins between the hyperplane and the two classes (Cortes and Vapnik 1995).
This supervised learning model is linear by default, but the kernel can be changed to use a
polynomial, sigmoid or radial basis function (rbf). These different kernels allow the model to
separate data that is not linearly separable.

3.2.3 k-Nearest Neighbor (k-NN)

The k-nearest neighbors algorithm (k-NN) in statistics was created by Evelyn Fix and Joseph
Hodges (Fix and Hodges 1989) and later improved by Thomas Cover (Cover and Hart 1967).
It is a non-parametric supervised learning technique. Regression and classification are two uses
for it. The input in both situations consists of a dataset’s k closest training samples. Whether
k-NN is applied for classification or regression determines the results.
The result of k-NN classification is a class membership. The class that an object is allocated
to based on the majority vote of its k closest neighbors is determined by the item’s neighbors.
The result of k-NN regression is the object’s property value. Which is determined as the average
value of the k nearest neighbors.

3.2.4 Baseline Probabilistic Model

For the baseline model, the frequency of labels in the dataset for each CT-group, taken from a
training set, is used as a BV probability parameter p. To perform a prediction in the test set, a
number n is generated between 0 and 1. If the generated number n is smaller than p for the
CT of that data point, a BV label 1 is outputted. Otherwise, 0 is outputted.
For predictions of BV in the future, CT group transition probabilities are taken into account
for the calculation of future BV probability. This was done by counting the occurrences of
CT-transitions for the training set. For each datapoint we can now find a vector v (1x4) with
the probability of transitioning for each CT-group and multiply this with the vector w (4x1)
of BV probabilities for each CT-group, to find the future BV probability f. Then, the same
number generation is applied to determine the output of the model.
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This classifier functions as a dummy classifier to determine a minimum performance that our
other models should acquire to be better than guessing. The idea is based on the Markov Chain
model made by Munoz et al. (2021), combined with the Dummy Classifier class from Sklearn
(Pedregosa et al. 2011).

3.2.5 Labels to Predict

In this section the labels that are meant to be predicted by the ML models are defined.

BV in Future Binary Classification

For each data point we create new labels to indicate if the test subject gets BV in the future
for 3 different time frames. In the following 10 days; in the following 30 days; and in the next
month, meaning a gap of 30 days and the month that follows after is considered.

This is a binary label for classification, and was applied to every newly introduced BV type as
well as the original SBV label.

Days Until BV Onsets

For a data point, we look ahead in time if the patient gets BV, and if she does, then the data
point will get the label of the number of days until she gets BV. This value is zero if the patient
has BV in the data point itself. In the regression task to predict the number of days until BV
occurs some labels can not be given, since there may not be any case of BV anymore or at all.
Therefore, the maximum duration of the study is used as a label value, which is 72 days.

This label was also created using each of the newly introduced BV types as well as the original

3.2.6 Parameter Grid Search

For the classification tasks, the parameters in the grid searches that were performed are shown
for the gbc, k-NN, SVM and the linearSVM in Tables 3.1, 3.2, 3.4 and 3.3, respectively.

Table 3.1: The parameters that were grid-searched in the experiment for the gbc model.

Parameter Values

Learning rate [0.01,0.02,0.03]

Subsample [0.9, 0.5, 0.2]

# estimators [100, 500, 1000]

Max depth [4, 6, 8]

For the regression tasks, the loss parameters for linearSVM regression models are different. All
other models were grid searched as described previously, but the loss function grid search for
the linearSVM was changed to the following two values: epsilon insensitive and squared epsilon
insensitive.
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Table 3.2: The parameters that were grid-searched in the experiment for the k-NN model.

Parameter Values

n neighbors [3, 5, 7, 11]

Weights [uniform, distance]

Algorithm [ball tree, kd tree]

Leaf size [15, 20, 30, 40, 50, 60]

p [1, 2]

Table 3.3: The parameters that were grid-searched in the experiment for the svm model.

Parameter Values

Kernel [rbf, poly, sigmoid]

Gamma [scale, auto]

Max iterations [10000, 20000]

C [0.1, 1, 10, 100, 1000]

Class weight [balanced]

Table 3.4: The parameters that were grid-searched in the experiment for the linearSVM
model.

Parameter Values

Loss [hinge, squared hinge]

Dual [True, False]

Max iterations [10000, 20000]

C [0.1, 1, 10, 100, 1000]

Class weight [balanced]
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3.2.7 Performance Metrics

To measure performance several metrics are used, which will be defined in this section. The
abbreviations and visualization of the terms used in this section are shown in Table 3.5.

Table 3.5: A general example of a confusion matrix for diagnostic applications.

Predicted

0 1

A
ct
u
a
l

0 True Negative (TN) False Positive (FP)

1 False Negative (FN) True Positive (TP)

This confusion matrix shows the standard examples that can occur in terms of diagnostic
performance, which will be used to calculate various metrics in the next subsections.

Sensitivity

Sensitivity, also referred to as recall or true positive rate, describes the probability of a positive
prediction, given that the sample actually is positive. In this case, a patient is labelled as
’has BV’, while she actually does have BV. Mathematically, this is described as shown in
Equation 3.1, where true positive is TP and false negative is FN.

sensitivity =
TP

TP + FN
(3.1)

This metric is most useful to increase performance for in this case, since the priority should be
to find all the cases in advance, even if this results in some false positives. If performance in
this metric can be increased while maintaining a low number of false positives, in other words,
while maintaining a high precision, then this is even better.

Precision

The precision metric is used to indicate how many of the instances found are actually relevant.
Precision is calculated as shown in Equation 3.2, where TP means true positive and FP stands
for false positive.

precision =
TP

TP + FP
(3.2)

Since being sensitive to finding BV cases is more important than being precisely sure that all
the cases we find are actually BV, this metric is not the highest priority. However, a situation
where we find all cases, but with a very high number of false positives should also be prevented.
Therefore, this metric is also reported on, and the next metric, the F1-score, combines this
precision metric with the sensitivity.



18 CHAPTER 3. METHODS & MATERIALS

F1-score

The F1-score is defined as the harmonic mean of the sensitivity and the precision, and calculated
as shown in Equation 3.3.

F1 =
TP

TP + 1
2
(FP + FN)

(3.3)

Since the F1-score captures the trade-off between recall and precision well, this metric can be
considered as the main objective to perform high on. In a case where several models perform
equally well in the F1-score, the one with the highest sensitivity should then be considered as
the best one.
The F1-score can also be calculated with the negative label in mind. This metric, which will be
referred to as the negative F1 (neg F1), will be used to evaluate how well healthy cases can be
identified or predicted, together with the next metric: specificity.

Specificity

The specificity is essentially the same as sensitivity, where the negative sample is considered
instead of the positive. Equation 3.4 describes how this is calculated.

specificity =
TN

TN + FP
(3.4)

This metric shows how well a healthy person can be identified as such.

Mean Absolute Error (MAE)

The mean absolute error is the average taken for all data points of the absolute for the predicted
value minus the actual value. This is defined as shown in Equation 3.5.

MAE =

∑n
n=1 |predicted− actual|

n
(3.5)

This value is reported on and optimized for in the regression task.

Mean Squared Error (MSE)

The mean squared error is the average taken for all data points of the square for the predicted
value minus the actual value. This is defined as shown in Equation 3.6.

MSE =

∑n
n=1(predicted− actual)2

n
(3.6)

This value is also reported on and optimized for in the regression task.

R2

R2, or the coefficient of determination, is defined as the proportion of the output’s variance. It
describes how well a model is fit on the data.
R2 is calculated using the residual sum of squares (SSres) and the total sum of squares
(SStot). The former being the sum of the squared errors made by the model and the latter
being the sum of the squared difference between the actual values and the mean of all values.
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Equations 3.7, 3.8 and 3.9 show the calculation for SSres, SStot, and how these are used to
calculate R2. Actual value is indicated as y, the predicted value as f.

SSres =
n∑

n=1

(yn − fn)
2 (3.7)

SStot =
n∑

n=1

(yn − y)2 (3.8)

R2 = 1− SSres

SStot

(3.9)

This is the last value that is reported on and optimized for in the regression task.

3.3 Software & Data Availability

Requests for the code that was used in the conduction of the experiments can be sent through
email to Stijn Oudshoorn. The same goes for the preprocessed data used during the experiments.
The original data was made public by Ravel, Brotman, et al. (2013).

mailto:stijnoudshoorn@gmail.com


20 CHAPTER 3. METHODS & MATERIALS



Chapter 4

Results

4.1 Data Exploration

During the exploratory phase of the thesis research, some gbc and gbr models were trained to
predict the number of days where nugent BV occurred in the future in two ways: BV in the
next month and BV the following 2 months. While the exploration was done without the same
pre-processing steps as in the experiments that are described in the next section, some findings
are still noteworthy.
Age was the most important feature in the gradient boosting regression models, this could be
a form of overfitting since the model could learn which measurement belongs to which patient
by their age. Therefore this feature was removed, which did not result in a decrease in model
performance (R2). Exploration and other experiments continued without age as a feature.
For the model predicting the days of nugent BV next month, that performed as shown in
Figure 4.1, the feature importances stand out: Gardnerella vaginalis, expectedly scored highest,
0.27; and Bifidobacteriaceae, appears second unexpectedly with a score of 0.14.

Figure 4.1: The predicted vs the actual number of days that nugent BV occurs in the next
month.

The model predicting nugent BV in the following 60 days, the performance of which is shown
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in Figure 4.2, shared the Bifidobacteriaceae being second place in the feature importances with
a value of 0.11, but more interestingly had Parvimonas micra as the most important feature
with a value of 0.30. This is in line with earlier findings suggesting that Parvimonas micra could
be an important biomarker for BV (Z. S. Ma and Ellison 2021).

Figure 4.2: The predicted vs the actual number of days that nugent BV occurs in the next
2 months.

Although the NBV exploration does show an acceptable performance and some logical feature
importances, the label itself is not strictly connected to symptomatic BV, which is what we
attempt to predict in this thesis. Therefore, the other newly created BV labels are used in the
remaining experiments.
To explore how well the new variations of BV labels and healthy data points are separable from
each other, a t-SNE visualization (Maaten and Hinton 2008) is made using a Standardscalar
from Sklearn (Pedregosa et al. 2011) with default settings on the preprocessed data. The
results are depicted in Figure 4.3.
As could be expected, in this reduced dimensionality, the healthy and BV labels do not appear
linearly separable. Different clusters are visible where similar data points are of the same label.
However, other clusters also contain both positive and negative labels.

4.2 BV Diagnosis

The diagnosis experiment results are described here, for each of the label types as defined
earlier. The data that was used from here on out is the preprocessed version. From the results
of earlier research by Beck and Foster (2014), the hypothesized outcome is that the ML
models outperform the guessing baseline classifier. Firstly, this results of the baseline model are
presented. Then, the best machine learning model performance reported on, as well as how
they were found in the grid search. Lastly the features that were most important to this model
will be shown, if this model type allows for feature importance extraction.
The remaining results for the same experiment, that did not perform the best, are shown in
Appendix A.
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Figure 4.3: T-SNE dimensionality reduction plots of the standard scaled numerical data
in 6-fold, where in each plot the hue of healthy and BV diagnosed women is based on a
different labeling rule.
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4.2.1 Baselines

In Table 4.1 the highest sensitivity performance results of the BV-probability CT-group associa-
tion classifier in a 5-fold experiment are depicted for each label type.

Table 4.1: The best baseline performance metrics on the diagnosis task.

label F1 neg F1 Sensitivity Precision Specificity Test size

SBV 0.0 0.99 0.0 0.0 0.99 350

RBV 0.08 0.96 0.07 0.08 0.97 350

7 ABVin 0.15 0.95 0.13 0.19 0.96 350

7 ABVex 0.06 0.95 0.05 0.06 0.95 350

11 ABVin 0.11 0.90 0.11 0.11 0.90 350

11 ABVex 0.11 0.92 0.11 0.11 0.92 350

Intuitively, the more frequent a label is, the higher the probability based guesser should score on
it. This is not the case for the label of 11 adjacent BV days including and excluding treatment,
when compared to it’s counterpart with just 7 adjacent days where treatment days are included.
The F1-score is 0.04 lower for both where it was expected to be higher.

4.2.2 Model Performance

The highest performing model and label combination on this task is the gbc on 11 adjacent
days of SBV including the treatment days. The results, among other models on the same task,
are shown in Figure 4.4.
All models score a higher F1 score than the baseline model does on the same label. Though
the linear and non-linear support vector machine both sacrifice F1 score performance on the
healthy label, resulting in a lower score than the baseline. The best results by the gbc model
were achieved using the parameters as shown in Table 4.2.

Table 4.2: The parameters with which the gbc performed best of all models on the task of
diagnosing BV.

Learning Rate Max Depth # estimators subsample

0.03 8 500 0.9

Other label performance results are shown in Figures A.1 and A.2 of Appendix A for the
baselines and the machine learning models, respectively.

Feature Importances

Since the best model was a gbc, the feature importances were extracted and the 5 most
important ones their values are visualized in Figure 4.5.
The remaining feature importances from the gbc models trained on the other label types are
depicted in Appendix A, Figure A.3.
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Figure 4.4: The performance metrics for the best performing models on the task of
diagnosing BV where the surrounding 11 days of a SBV diagnosis are labelled as BV,
including days where treatment takes place.

Figure 4.5: The feature importances for the best performing gbc model and label combina-
tion which scored as shown in Figure 4.4 on the diagnosis task.
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4.3 BV Prediction

In this section, the results of the experiments where prediction of BV is done are described.
The approaches are split in a classification and a regression task. The classifiers attempt to
predict the presence of BV in various time ranges, while the regressors do the same for the
continuous integer values of the number of days until BV onsets. Both are described in more
detail in Section 3.2.5. Here too the baseline model results are depicted first, followed by the
ML models performances. Then, the best parameters found in the grid search are given, as
well as the corresponding feature importances if available for the model type.
Again, the remaining results for this experiment, that were not the best performing, can be
found in Appendix A.

4.3.1 BV Prediction 10 days in the future

Baselines

In Table 4.3 the highest sensitivity performance results of the BV-probability CT-group associa-
tion classifier in a 5-fold experiment are depicted for each label type.

Table 4.3: The best baseline performance metrics on the 10 days ahead prediction task.

label F1 neg F1 Sensitivity Precision Specificity Test size

SBV 0.00 0.99 0.00 0.00 0.99 350

rule based BV 0.07 0.96 0.07 0.06 0.96 350

7 ABVin 0.09 0.94 0.09 0.09 0.94 350

7 ABVex 0.10 0.94 0.11 0.09 0.94 350

11 ABVin 0.25 0.92 0.26 0.25 0.91 350

11 ABVex 0.21 0.93 0.21 0.20 0.93 350

Intuitively, the more frequent a label is, the higher the probability based guesser should score on
it. This is not the case for the label of 7 adjacent BV days including treatment, when compared
to it’s counterpart where treatment days are excluded. The F1-score is 0.01 lower in where it
was expected to be higher.

Model Performance

The highest performing model and label combination on this task is the gbc on the rule based
BV label, regarding F1-score. The results, as well as that of the other models on the same
task, are shown in Figure 4.6.
All models, except the linear support vector machine, score a higher F1 score than the baseline
model does on the same label. A noteworthy outlier is the high sensitivity found by the svm,
though it scores significantly lower in precision while achieving this. The best results by the
gbc model were achieved using the parameters as shown in Table 4.2.
Other label performance results are shown in Figures A.4 and A.5 of Appendix A for the
baselines and the machine learning models, respectively.
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Figure 4.6: The performance metrics for the best performing model F1-score wise, the gbc,
and the other ML models on the task of predicting BV where the rule based BV diagnoses
are labelled as BV.

Learning Rate Max Depth # estimators subsample

0.03 6 1000 0.9

Table 4.4: The parameters with which the gbc performed best of all models on the task of
predicting BV in the next 10 days.
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Feature Importances

Since the best model was a gbc, the feature importances were extracted and the 5 most
important ones their values are visualized in Figure 4.7.

Figure 4.7: The feature importances for the best performing gbc model and label combina-
tion which scored as shown in Figure 4.6 on the BV prediction task for the next 10 days.

The remaining feature importances from the gbc models trained on the other label types are
depicted in Appendix A, Figure A.6.

4.3.2 BV Prediction this month

Baselines

In Table 4.5 the highest sensitivity performance results of the BV-probability CT-group associa-
tion classifier in a 5-fold experiment are depicted for each label type.
The results are in line of the expectations considering the frequency of each label.

Model Performance

The highest performing model and label combination on this task is the gbc on the label for 11
adjacent days of BV excluding the treatment days, which goes for all the considered metrics.
The results, as well as that of the other models on the same task, are shown in Figure 4.8.
Only the gbc model performs higher in the F1-score, while maintaining a higher negative
F1-score than the baseline model. The parameters found in the grid search that resulted in this
performance are shown in Table 4.6.
Other label performance results are shown in Figures A.7 and A.8 of Appendix A for the
baselines and the machine learning models, respectively.
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Table 4.5: The best baseline performance metrics on the one month ahead prediction task.

label F1 neg F1 Sensitivity Precision Specificity Test size

SBV 0.00 0.99 0.00 0.00 1.00 350

rule based BV 0.06 0.96 0.07 0.06 0.95 350

7 ABVin 0.12 0.93 0.13 0.10 0.92 350

7 ABVex 0.06 0.95 0.05 0.06 0.95 350

11 ABVin 0.16 0.90 0.17 0.15 0.89 350

11 ABVex 0.15 0.91 0.18 0.13 0.89 350

Figure 4.8: The performance metrics for the best performing models on the task of
predicting BV in the following month where the surrounding 11 days of a SBV diagnosis
are labelled as BV, including days where treatment takes place.

Learning Rate Max Depth # estimators subsample

0.03 8 500 0.9

Table 4.6: The parameters with which the gbc performed best of all models on the task of
predicting BV in the following month.
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Feature Importances

Since the best model was a gbc, the feature importances were extracted and the 5 most
important ones their values are visualized in Figure 4.9.

Figure 4.9: The feature importances for the best performing gbc model and label combi-
nation which scored as shown in Figure 4.8 on the BV prediction task for the following
month.

The remaining feature importances from the gbc models trained on the other label types are
depicted in Appendix A, Figure A.9.

4.3.3 Classification next month

Baselines

The same baseline is used as for the previous classification task on the following month, results
of which are therefore depicted in the previous subsection in Table 4.5.

Model Performance

The best performing model and label combination on this task is once again the gbc model
on the label for 7 adjacent days of BV excluding the treatment days, which again goes for all
the considered metrics. The results, as well as that of the other models on the same task, are
shown in Figure 4.10.

Again the gbc model performs higher than the baseline in the F1-score, while also maintaining
a higher negative F1-score. The parameters found in the grid search that resulted in this
performance are shown in Table 4.7.

Other label performance results are shown in Figures A.7 and A.10 of Appendix A for the
baselines and the machine learning models, respectively.
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Figure 4.10: The performance metrics for the best performing models on the task of
predicting BV where the surrounding 7 days of a SBV diagnosis are labelled as BV,
excluding days where treatment takes place.

Table 4.7: The parameters with which the gbc performed best of all models on the task of
predicting BV in the next month.

Learning Rate Max Depth # estimators subsample

0.02 6 1000 0.9
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Feature Importances

Since the best model was a gbc, the feature importances were extracted and the 5 most
important ones their values are visualized in Figure 4.11.

Figure 4.11: The feature importances for the best performing gbc model and label combi-
nation which scored as shown in Figure 4.10 on the BV prediction task for the next month.

The remaining feature importances from the gbc models trained on the other label types are
depicted in Appendix A, Figure A.11.

4.3.4 Regression Task: days until BV onsets

The regression task was trained using one of the three regression performance metrics (MAE,
MSE or R2) as the one that should be optimized for. Only the best one will be reported on in
this case. No baseline is included in this experiment since the same guesser could not be used
for the continuous integer values that are predicted in this task.

Model Performance

The best performance on all of the regression metrics is achieved by the gbr model on 7
adjacent days of SBV excluding the treatment days. The results, among those of other models
on the same task, are shown in Figure 4.12. This best performance was found while optimizing
for the R2 metric.

The gbr model outperforms all others. The parameters found in the grid search that resulted in
this performance are shown in Table 4.8.

Other label performance results are shown in Figures A.14, A.16 and A.12 of Appendix A for
the machine learning models. It should be noted that the remaining labels were predicted nearly
as well as this one by the gbr model.
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Figure 4.12: The performance metrics for the best performing models on the task of
predicting the amount of days until BV onsets where the surrounding 7 days of a SBV
diagnosis are labelled as BV, excluding days where treatment takes place. This performance
was achieved by optimizing for the R2 metric.

Table 4.8: The parameters with which the gbr performed best of all models on the regression
task of predicting the number of days until BV onsets.

Learning Rate Max Depth # estimators subsample

0.02 8 1000 0.5
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Feature Importances

As the best performing model was a gbr, the feature importances were extracted and the 5
most important ones and their values are visualized in Figure 4.13.

Figure 4.13: The feature importances for the best performing gbr model and label combi-
nation which scored as shown in Figure 4.12 on the task of predicting the number of days
until BV onsets.

The remaining feature importances from the gbr models trained on the other label types are
depicted in Appendix A, Figures A.15, A.17 and A.13.
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Discussion

In order to find to what extend vaginal microbiota taxa abundance data has predictive qualities
for BV, ML models were trained on various classification and regression tasks. These tasks
included BV diagnosis, prediction in the following 10 days, 1 month or the next month, as
well as the number of days until BV onsets. The longitudinal dataset that was used only held
labels for the moment of diagnosis. Therefore, various labels were created to represent the
likely presence of BV. In order to confirm that the models were learning how to classify a
datapoint as BV positive or healthy, feature importances were extracted. An indicator that this
is successful could be that a model performs well on a task and gives a high importance to
features that align with the relevant bacteria indicated in the literature.

The hypothesis resulting from the t-SNE visualizations, that the datapoints would not be easily
separated, at least not linearly, appears proven. Since the linear svm performed worse than
the baseline model in most cases. The gradient boosting trees based model outperforming in
every task at hand was therefore to be expected, as they have been proven among the best
algorithms in machine learning (T. Chen and Guestrin 2016). Since the amount of data was
limited, the choice was made not to make use of deep learning techniques. However, this could
be an interesting follow-up to this thesis. More so if the amount of data available increases
significantly.

Even though the number of available datapoints was just 1748, the best performance of the ML
models on the test set on the diagnosis task was an F1-score of 0.62, with a negative F1-score
of 0.97. The most important features for this model align with findings in the literature (X.
Chen et al. 2021). As expected, Lactobacillus iners is important in the diagnosis classification
task, as this is associated with a lower risk of BV short term. Bifidobacteriaceae was also
found among the most important features. The perianal presence of at least one type of this
bacterium is associated with BV (Swidsinski et al. 2010), and therefore its presence can be
expected. As was hypothesized, the SBV label in the diagnosis task was particularly hard to
predict compared to the newly created labels. With the svm being the sole exception that
outperformed the baseline model.

In the short term future of a prediction 10 days ahead, one could expect similar important
features as with the diagnosis. All but one of the best model features do indeed overlap with the
diagnosis best model. Prevotella disiens, associated with a healthy vagina, was found instead
of Bifidobacteriaceae.

For longer term, Lactobacillus crispatus was expected to be more important. This was indeed
found in the prediction of BV in the following month. Also noteworthy, is that the same BVAB1
species was found to be important in following month prediction, which is in line with the

35



36 CHAPTER 5. DISCUSSION

findings by X. Chen et al. (2021). Atopium vaginae was also found to be an important feature,
aligning with findings that the co-presence of this bacterium and Gardnerella vaginalis plays a
role in BV onset. Another finding that was also done in other research is the importance of
Aerococcus christensenii presence for BV after one month. More precisely, this is associated
with recurrent BV after 1 month (Xiao et al. 2019).
The same hypothesis of the L. crispatus importance for longer term prediction does not hold
for the next month prediction in the best performing model. Lactobacillus vaginalis was found
to be important for this prediction task, while other important features overlapped with the
other findings. This Lactobacillus genus accompanies L. crispatus dominated microbiota in
79 percent of cases (Jespers et al. 2017). Therefore, this encounter could also be expected
in longer term BV prediction, and might explain the absence of L. crispatus in the feature
importance top 5.
In the regression task, the substantial performance of 0.75 for the R2 metric was reached. No
new feature importances were found in this experiment, as they overlap with the findings in
the future BV prediction experiments.
As a follow-up to this thesis to further confirm the findings of the feature importances, the
same features could be used in another dataset to perform similar predictions. When the
non-important features are omitted, and the same performance can be reached, this would
further confirm that the models used these features for their learning.
A more general observation is that the tasks with more positive labels are performed better by
the models, even if there are fewer data points in total for these tasks, such as BV prediction
in this month or the next month. Also noteworthy, is that the best performing newly created
label type was different for each task.
Another approach that could result in more informative data, rather than more abundant data,
is to switch from genetic data, which expresses functional potential, to transcriptomics data
(France et al. 2022).
In future work, new approaches could be searched for to effectively predict BV in a materially
cheap way, like using questionnaire data (Noyes et al. 2018). This could provide women with a
low effort way to see if they are likely to have BV.
Another topic to research could be to predict the recurrence of BV after treatment. This
information could be used to compare new treatments, so that current plans of treatment can
be improved upon with a clear window of reference. Some data to research this topic was
provided by Deng et al. (2018).
In conclusion, depending on the task at hand, models will rely more on certain bacterial features
than others. This is in line with findings from previous work. For the field of BV research, a clear
consensus should be found on which BV type is most relevant to research to ideally help women
prevent BV, or otherwise cure it with lower risk of recurrence. Once this consensus is reached,
large scale research, like the one resulting in the dataset used in this thesis, should provide the
field with more information to work with. This could help prevent cases of damaging STI’s,
risks during pregnancy and general inconvenience in the lives of millions of affected women.
Making sure the BV label is provided on every day a patient has it, for example, could already
get rid of a lot of uncertainty in similar future work. In the expansion of the available data, it
is critical to find a diverse group to participate in the study, to ensure that any resulting tools
are able to generalize well across the whole population.
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(a) (b)

(c) (d)

(e) (f)

Figure A.1: The confusion matrices for the best found performance on the test data in
a 5-fold repetition for the baseline CT to BV probability model on the diagnosis task of
each BV label type.
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(a)
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(d)

(e)

(f)

Figure A.2: The model performances for the best found ML models on the test data in a
5-fold repetition of the diagnosis task for each BV label type.
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(a) (b)

(c) (d)
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Figure A.3: The feature importances for the best found performances by the gbc model on
the test data in a 5-fold repetition of the diagnosis task for each BV label type.
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A.2 Prediction: 10 Days
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(a) (b)

(c) (d)

(e) (f)

Figure A.4: The confusion matrices for the best found performance on the test data in
a 5-fold repetition for the baseline CT to BV probability model on the 10 day ahead
prediction task of each BV label type.
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(a)

(b)

(c)
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(d)

(e)

(f)

Figure A.5: The model performances for the best found ML models on the test data in a
5-fold repetition of the future 10 days task for each BV label type.
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(a) (b)

(c) (d)

(e) (f)

Figure A.6: The feature importances for the best found performances by the gbc model on
the test data in a 5-fold repetition of the future 10 days task for each BV label type.
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A.3 Prediction: This Month
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(a) (b)

(c) (d)

(e) (f)

Figure A.7: The confusion matrices for the best found performance on the test data in
a 5-fold repetition for the baseline CT to BV probability model on the 1 month ahead
prediction task of each BV label type.
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(a)
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(d)

(e)

(f)

Figure A.8: The model performances for the best found ML models on the test data in a
5-fold repetition of this month prediction task for each BV label type.
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(a) (b)
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Figure A.9: The feature importances for the best found performances by the gbc model on
the test data in a 5-fold repetition of this month BV prediction task for each BV label
type.
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A.4 Prediction: Next Month
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(a)
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(d)

(e)

(f)

Figure A.10: The model performances for the best found ML models on the test data in a
5-fold repetition of the next month prediction task for each BV label type.
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(a) (b)

(c) (d)

(e) (f)

Figure A.11: The feature importances for the best found performances by the gbc model
on the test data in a 5-fold repetition of the next month BV prediction task for each BV
label type.



62 APPENDIX A. SUPPLEMENTAL FIGURES

A.5 Regression: Days Until BV Onsets

A.5.1 R2 Optimized
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(d)

(e)

(f)

Figure A.12: The model performances for the best found ML models on the test data in a
5-fold repetition of this month prediction task for each BV label type.
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(a) (b)

(c) (d)

(e) (f)

Figure A.13: The feature importances for the best found performances by the gbr model
on the test data in a 5-fold repetition of this month BV prediction task for each BV label
type.
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A.5.2 MAE Optimized
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(d)

(e)
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Figure A.14: The model performances for the best found ML models on the test data in a
5-fold repetition of the regression task optimized on the MAE for each BV label type.
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(a) (b)

(c) (d)

(e) (f)

Figure A.15: The feature importances for the best found performances by the gbr model
on the test data in a 5-fold repetition of the MAE optimized days until BV regression task
for each BV label type.



70 APPENDIX A. SUPPLEMENTAL FIGURES

A.5.3 MSE Optimized
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(d)

(e)

(f)

Figure A.16: The model performances for the best found ML models on the test data in a
5-fold repetition of the MSE optimized regression task for each BV label type.
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(a) (b)

(c) (d)

(e) (f)

Figure A.17: The feature importances for the best found performances by the gbr model
on the test data in a 5-fold repetition of the MSE optimized regression task for each BV
label type.
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