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Abstract

Subgroup discovery is a data mining task that looks for interpretable subgroups in a dataset.
An example of a subgroup discovery algorithm is the SSD++ algorithm. SSD++ is an subgroup
discovery algorithm for both numeric and nominal targets that generates a rule list. This
algorithm works with the minimal description length (MDL) principle and uses Gaussian
statistics for describing the data. This means that the algorithm assumes that the samples in
each subgroup are normally distributed in order to score how good the subgroup is, however
when the actual distribution is not Gaussian, describing the subgroup using Gaussian statistics
is not optimal. Therefore we propose HistRule, a subgroup discovery algorithm based on
SSD++. Instead of using Gaussian statistics to describe the data like SSD++, HistRule uses
MDL-optimal histograms, which can fit the data no matter what the actual distribution is.
In this thesis we will be comparing the effectiveness of HistRule to SSD++ and several other
regression measures by measuring the mean squared errors of their predictions on several
datasets, and looking at the average rule lengths and complexities of the interpretable models.
These experiments have shown that on average HistRule has a lower mean squared error than
SSD++, meaning that it functions better as a predictor, however this is not a major difference.
We have also seen that HistRule takes significantly longer the learn the model than SSD++
meaning it is not suitable for larger datasets as it is now.
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1 Introduction

Subgroup discovery[Kl6][Atz15] is a data mining technique that is used for finding interesting
subsets of a dataset that stand out from the rest of the target values in the data. Subgroup discovery
is possible for targets of both numeric and nominal values, but we will be focussing only on numeric
subgroup discovery.
In this thesis we are going to work with subgroup discovery by means of rule lists. A rule list is an
interpretable predictive model that is built from a series of IF statements with at the end the ELSE
statement that is the default rule describing every sample not covered by any rule.
An example of a rule list can be seen in Figure 1. For each rule in this figure the rule itself, the
usage (i.e., how many samples are covered by each rule), the mean value of the samples in each
subgroup, and the standard deviation of the samples in each subgroup are reported. Each rule (IF
statement) forms its own subgroup.

Rule Usage Mean Std
IF 143.0 <= thalach < 162.0 AND oldpeak >= 0.8 AND
restecg = left ventricular hypertrophy AND sex = female

10 350.5 109.4

ELSE IF thalach < 125.0 AND 1.0 <= num < 2.0 5 271.6 4.2
ELSE IF 120.0 <= trestbps < 130.0 AND thal = reversal defect 20 239.4 34.9
ELSE 202 242.5 46.4

Figure 1: Example of a rule list predicting cholesterol level generated by HistRule

An algorithm used for generating such rule lists is the SSD++ algorithm[PGBvL21a][PGBvL21b].
The SSD++ algorithm is a subgroup discovery algorithm that works with the MDL principle
[Ris78][Gr7][GR19] and uses Gaussian statistics for describing the data. However when the data is
not normally distributed, describing it with Gaussian statistics is not optimal.
Therefore we introduce HistRule, a subgroup discovery algorithm based on the SSD++ algo-
rithm, but instead of using Gaussian statistics for generating the rules, it uses MDL-optimal
histograms[KM07] that are not bound by any assumption of how the data is distributed and can
thus better describe a wider range of data distributions than Gaussian statistics.
To see if HistRule performs better than the SSD++ algorithm it is based on, we will be comparing
the mean squared errors for predicting the values of samples of several datasets alongside several
other regression methods.
Contributions. In this thesis we propose Histrule. For the creation of the HistRule algorithm we
have replaced the Gaussian statistics from the SSD++ algorithm with MDL-optimal histograms
and a Python implementation of HistRule was made. A Python implementation of an algorithm
for generating MDL-optimal histograms was also made from an existing version in R.
Overview. Section 2 elaborates on some terms used in this thesis and the algorithms to which
we will compare HistRule. Most of these algorithms will be regression algorithms since we will
be comparing how well HistRule can predict numeric values. Section 3 talks in more detail about
how the SSD++ algorithm works and how it learns each rule, this section also talks about what
MDL-optimal histograms are. Section 4 is about the problem statement and Section 5 is about how
the SSD++ algorithm was modified to achieve HistRule. It also talks about how it was implemented
in Python. And finally in Section 6 we will compare the predictive performance of Histrule with
SSD++ and several other regression models.
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2 Related Work

Several regression models have been chosen to compare HistRule to. In the experiments section
(Section 6) we compare the predictive performances of these algorithms with Histrule. This section
will briefly go over each chosen regression algorithm and their main differences, followed by an
elaboration on some terms used in this thesis.

SSD++. The SSD++ algorithm[PGBvL21a] [PGBvL21b] generates a rule list for nominal and
numeric targets. A rule list is an interpretable model that splits the data into subsets with each
rule. It uses a Gaussian model for generating each rule, unlike HistRule which uses MDL-optimal
histograms. See Section 3.1 for more details on how the SSD++ algorithm generates a rule list.
CART. Classification and Regression Trees (CART)[BFOS84], are interpretable tree-based models.
For the regression trees the values of the leaf nodes are the average values of the samples in those
nodes.
M5. The M5 algorithm[Qui92] is also a tree-based regression model but different from CART it
has linear regression functions as leaf nodes.
RuleFit. Rulefit[FP08] is a rule-based model that is learned through an ensemble of regression
trees which then fits a sparse linear model to the rule ensemble.
Random Forest regression. Random Forest[Bre01] is a model for classification and regression
that is built from an ensemble of decision trees. For regression tasks random forest outputs the
average value from each tree in the ensemble as the predicted value. Unlike a decision tree, a
random forest model is not interpretable.
Gradient Boosting regression. Gradient boosting[Fri01] is an ensemble model for both classifi-
cation and regression. Like random forest, a gradient boosted trees model is built from an ensemble
of decision trees, but the main difference from random forest is how the tree ensemble is generated.
In gradient boosting each tree is built after each other, one tree at a time, to improve the overall
model. Random forest builds each tree independently in parallel.

2.1 Subgroup Discovery

Subgroup discovery[Kl6][Atz15] is a data mining technique that is used for finding interesting
subsets of a dataset that stand out from the rest of the target values in the data. It aims to describe
these subsets of the data in an interpretable way.
Subgroup discovery has a wide range of applications, it can be used for predictive tasks such as
classification and regression, or it can be used in exploring the data.
Herrera, Carmona, González and del Jesus[HCGDJ11] show a more in depth overview of subgroup
discovery and its applications.

2.2 MDL

The MDL principle[Ris78][Gr7][GR19] is a model selection principle that states that the model that
compresses the data the most, is the best model. This means that the more the data is compressed,
the more is learned of the data, and the better it can be predicted.
The MDL score is calculated in two parts, the encoding the model, and the encoding of the data
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using the model. The formal definition of the two-part description length is:

MDL = L(data|model) + L(model) (1)

Here L(model) is the code length of the model in bits, and L(data|model) the code length of the
data, given the model, in bits.

2.3 Histograms

A histogram is a way to visualize the distribution of the data. The data is distributed over ’bins’. A
bin is a small range over the data in which all samples of the data that have a value in that range,
fall. In a histogram the entire range of the data is covered by a number of non overlapping bins.
Usually bins in a histogram have the same width as each other, but it is also possible for histograms
with bins of variable width. Figure 2 shows an example of a histogram with 10 bins of equal widths.

Figure 2: Example of a histogram

3 Preliminaries

A rule list is a series of Boolean expressions that splits the data into several subsets. A single rule
can have multiple Boolean expressions that are joined together with AND statements. A general
example of a rule with multiple conditions is: IF a AND b THEN P1(y), where a and b are Boolean
expressions (e.g. x1 < 1 AND x2 == male) and P1(y) is some distribution of the data in the subset.
A rule list can have any number of rules, with at the end of the list the default rule (the ELSE
statement). The default rule covers all the samples that are not already covered by an earlier rule.
So a generalised rule list of n− 1 rules is:
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IF condition1 THEN P1(y)
ELSE IF condition2 THEN P2(y)
...
ELSE IF conditionn−1 THEN Pn−1(y)
ELSE Pn(y)

3.1 SSD++

SSD++ evaluates candidate rules based on the minimal description length (MDL) principle. The
MDL principle states that the model that compresses the data the most, and thus have the shortest
code length, is the best model. So the best rule, has the shortest code length when encoded.
The MDL score is based on two parts: encoding the data, and encoding the model. For encoding the
data SSD++ uses Shannon-Fano encoding. Shannon-Fano encoding is a data compression method
that uses probabilities to encode the data. These probabilities can be gained from the assumption
that the data in each subgroup is normally distributed. For the encoding of the model in bits, see
the SSD++ papers[PGBvL21a][PGBvL21b] for more details as this will not be discussed in this
thesis.
In the SSD++ algorithm rules are iteratively formed in a seperate-and-conquer way, one rule at a
time. This means that after adding each rule, the samples covered by this rule are removed from
the dataset (seperate), and the following rule will be based on the remaining uncovered samples
(conquer). To form a rule with the SSD++ algorithm, candidates rules are learned by a beam
search on the uncovered samples. The rule found by the beam search that decreases the code length
the most, gets added. The beam search stops when there is no new rule that would decrease the
code length.

3.2 MDL-optimal Histograms

MDL-optimal histograms are histograms with variable bin width and allow different densities,
meaning that not every bin has to be the same size and not every bin has to have a similar number
of samples, making them very flexible. The cut points, which are where the boundaries for each
bin are, are chosen based on the MDL principle. Figure 3 shows an example of an MDL-optimal
histogram, where the bins have varied widths and densities together with the actual distribution.

In the figure the we can see that the data is not normally distributed but the histogram can
fit the distribution well. The histogram has wider bins where the data does not change much, and
thinner bins where the value changes quickly, allowing it accurately describe the data.

For generating one-dimensional, MDL-optimal histograms we will be using the algorithm by Yang,
Baratchi and van Leeuwen[YBvL20], which is an improved version of the algorithm by Kontkanen
and Myllymäki[KM07].
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Figure 3: A one-dimensional MDL-optimal histogram by Kontkanen and Myllymäki[KM07]

4 Problem Statement

In this thesis we want to make a rule list with a histogram model instead of a rule list with a
Gaussian model. We will again work with the MDL principle and thus want to encode the data and
the model to get the MDL score. Like SSD++, the data points are encoded with Shannon-Fano
encoding, to get these probabilities a model is necessary. SSD++ used a Gaussian model, but if
the distribution in a subgroup is not normally distributed, the quality of the evaluation will be
harmed. This is why in this thesis we will use a histogram model to see if we can select better rule
lists using a histogram model instead of the Gaussian model used by SSD++. Since a rule list that
compresses the data more, is a better rule list, we want to see if using histogram models will be
able to compress the data more, and thus, create a better rule list. We will test this if it is better
by comparing the predictive performance of HistRule, since a better model should have a better
predictive performance

5 Method

In order to compare SSD++ with HistRule, the SSD++ algorithm is used as the base for HistRule
with only the Gaussian model changed to a histogram model. For the histogram model used in
HistRule we have chosen MDL-optimal histograms that can compress data better than regular
histograms.
MDL-optimal histograms are far more flexible and require no assumptions about the distribution
of the data, meaning that they will fit the data that is not normally distributed much better. If the
histograms can fit the data better, it can also compress the data more, and following the MDL
principle: the model that compresses the data the most is the best model.
To encode the data, Shannon-Fano coding is used, where the probabilities are gained from histograms
instead of Gaussian statistics. To calculate the probability of a data point, given a histogram, you
need the probability that the data point falls in the bin with the corresponding value in it. You also
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need the probability that it is that specific value, given that it did fall in that bin. The probability
that the data point x is the value a would then be:
P (x = a) = P (x in corresponding bin) ∗ P (x = a|x in corresponding bin). The probability for the
entire dataset would then be P (x1, x2, ..., xn) = P (x1) ∗ P (x2) ∗ ... ∗ P (xn). For the final code
length there is also a penalty term introduced called the regret, for more details on the code length
calculation see the papers for MDL-optimal histograms [KM07][YBvL20].
The goal is to replace the code length calculation for encoding the data of each subgroup of the
SSD++ algorithm to the code length calculation of MDL optimal histograms. For a fair comparison
the encoding of the model will remain the same.

5.1 Implementation

The implementation of HistRule is based on the Python implementation of the SSD++ algorithm1

and the R implementation of the MDL histograms by Yang, Baratchi and van Leeuwen [YBvL20].
The source code for the MDL-optimal histograms were gained by request. The functions used to
calculate the code length in the Python implementation are length_rule_free_gaussian and
length_rule_fixed_gaussian, and the code length calculation for the MDL histograms in R is
the function mdlhist1d.
Figure 4 shows a flowchart of the program, note that this flowchart does not show all function calls
but only the functions and created classes related to the code length calculation of the SSD++
algorithm. In the flowchart length_rule_free_gaussian and length_rule_fixed_gaussian are
highlighted in green.

As seen in the flowchart the functions are called in a few different places in the program,
length_rule_fixed_gaussian is called by compute_default_length in the class GaussianRuleList.
compute_default_length calculates the code length of the default rule, that is, the samples that
are not covered by any rule.
Both functions are called by compute_delta_data which is used to calculate the score of a subgroup
proposed by the beam search, and both are called by add_rule which adds the rule to the rule list
and calculates the code length of the entire rule list so far.
In those three places, the code length calculation has been replaced by the mdlhist1d function.

5.2 R version

The first version made use of the R implementation of the MDL-optimal histograms. Because the
algorithm for MDL histograms has only been implemented in R and the SSD++ algorithm only in
Python, they must somehow be integrated. For this, the rpy2 library for Python was used as a bridge
between the languages to call the mdlhist1d function that was implemented in R. For convenience
a wrapper function was used instead that set all the required arguments to their proper values with
more ease. The arguments in question are left_bound, right_bound, num_candidate_cuts.
For the left_bound the value given to it is the minimal value of the data, minus 1% of the range
of the data (here range refers to max(data) - min(data)).
For the right_bound it is the maximum value of the data, plus 1% of the range of the data.

1https://github.com/HMProenca/RuleList
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Figure 4: Flowchart of the Python implementation of SSD++ algorithm

num_candidate_cuts is assigned the number of unique values in the data.

Figure 5 shows a comparison between the runtimes of the mdlhist1d function when called via the
Rscript command on the command line and when called via the rpy2 library in Python. For this
experiment the parameters for the mdlhist1d function were: Kmax = 50, max_cut_search = 1000

and cl_model = True, the data was the array [0, 1, 2, ..., 99]. The data only has 100 sam-
ples due to the fact that only smaller datasets were used during the experiments (see Section 6)
allowing a better insight into expected runtimes than a larger testing data. The results from R were
gained through an R script that called the mdlhist1d function in a for loop, and the rpy2 results
were gained by calling the mdlhist1d function in a for loop with use of the rpy2 library in Python.
It is immediately clear that there is a significant difference in runtime, where calling via rpy2 is
significantly slower than in a normal R environment. A significant portion of the time spent running
mdlhist1d was spent linking packages and compiling the C++ code the function uses with every
call, however since all the calls use the same R environment it is only necessary to link and compile
once in the first call and not in subsequent calls. Therefore a global variable was introduced to
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Figure 5: Comparison of runtimes of between rpy2 and Rscript

make sure that only in the first run the packages are linked and the C++ code gets compiled. See
Figure 6 for the runtimes of the modified code.
The difference in runtime is now much smaller, and the runtime of the rpy2 version no longer grows
much faster than the R version. The figure also shows the runtime of the Python implementation.

5.3 Python version

In order to try to further speed up the code, a Python implementation of the mdlhist1d function
was made in order to reduce the overhead caused by rpy2. Because the expensive part of the original
R program was done in C++, if the C++ code were to be reused in the Python implementation
the runtime would not be negatively impacted. To include the required C++ code into the Python
implementation pybind11 was used.
The original code in R made use of the SCCI package in order to calculate the regret, however there
is no Python implementation of the SCCI package. To solve this, from the C++ source code of the
SCCI package2, the functions necessary to calculate the regret were used together with pybind11 in
order to calculate the regret in the Python implementation. Figure 6 shows a comparison between
the Python implementation and the improved R implementations.
Considering that the first run of the R implementation takes on average around 8 seconds where it
links all packages and compiles the C++ code, the Python implementation performs only slightly
slower than the original R code and better than the rpy2 implementation, but without taking 8
seconds on the first run and can thus be considered an improvement.

2https://github.com/cran/SCCI
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Figure 6: Comparison of runtimes of the modified function between rpy2 and Rscript and the
Python implementation

6 Experiments

To test the effectiveness of HistRule, it will be compared with the following models:

• SSD++,

• CART,

• M5,

• RuleFit,

• RandomForestRegressor,

• GradientBoostingRegressor,

In the experiments the predictive power will be compared because a better rule list should compress
the data better, leading to better predictive performance, and we want to see if HistRule creates a
better model than SSD++. The main focus will be on comparing to the SSD++ algorithm, but
several other regression models are also included for comparison.
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6.1 Experiment setup

The datasets used for testing are the same as in the SSD++ paper and were sourced from their
testing Github repository3. A description of the datasets can be found in Table 1, this table shows
how many samples these datasets have, how many categorical features and how many numeric
features the chosen datasets have. Due to the prohibitive execution time of HistRule on the default
settings (see Table 2), only the smaller datasets have been used.

Dataset Samples Categorical Numeric

cholesterol 297 7 5
autoMPG8 392 0 6
dee 365 0 6
ele-1 495 0 2
forestFires 517 0 12
concrete 1030 0 8
abalone 4177 0 8

Table 1: Description of benchmark datasets

For the experiment each dataset was split into a training set 80% of the size of the full dataset 10
times, resulting in 10 different training sets, and 10 corresponding testing sets consisting of the
remaining 20% of the data. Each model was trained on the same 10 training sets for each dataset.
For each algorithm the mean squared error (MSE), given by MSE = 1

n

∑
(yactual − ypredicted)

2, is
measured on the test sets to test its predictive power, as well as its execution time.

The training sets for this experiment were generated with the train_test_split function from
sklearn, for the 10 training sets the random states were: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
The settings for SSD++ are the default settings, for a fair comparison HistRule is also run with
the same settings for these experiments. Additionally the settings for generating the MDL-optimal
histograms are: Kmax = 50, max_cut_search = 100, cl_model = false. These are lower settings
than in the small experiment in Section 5 to try to speed the code up.
For CART the DecisionTreeRegressor from sklearn was used with its default settings except
for ccp_alpha, which performs post-pruning on the generated tree. The value for ccp_alpha was
chosen by means of cross validation on the training set. For this, the training set was further split
into another training and testing set, on which the values for ccp_alpha were tested. The value
that had the highest score on the testing set, was chosen. For more details, see the sklearn tutorial
for post pruning decision trees4.
M5 was run with rpart in R.
The Python implementation of RuleFit5 was used with its default settings.
For the RandomForestRegressor the sklearn implementation, RandomForestRegressor, was used
with its default settings.

3https://github.com/HMProenca/SSDpp-numeric
4https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html
5https://github.com/christophM/rulefit
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For the GradientBoostingRegressor the sklearn implementation, GradientBoostingRegressor,
was used with its default settings.

6.2 Results

Table 2 shows the average runtime of HistRule and SSD++ for each dataset in seconds, Table 3
shows the average MSE of each model with the 10 different training sets for each dataset, and table
4 shows the standard deviation of these MSEs.

Dataset HistRule SSD++
cholesterol 961.2 87.7
autoMPG8 814.8 52.5
dee 1716.9 22.2
ele-1 83.6 2.6
forestFires 8164.8 360.0
concrete 9037.0 300.7
abalone 2231.4 1400.7

Table 2: Average execution time in seconds

Dataset HistRule SSD++ CART M5 RuleFit GradientBoosting RandomForest
cholesterol 3287.72 3286.13 4081.33 1868.91 3394.80 3445.52 3144.34
autoMPG8 12.26 12.35 13.14 9.07 7.70 7.95 7.40
dee 0.64 0.89 0.26 0.16 0.16 0.16 0.16
ele-1 458790.85 481793.78 536584.54 376128.84 419324.91 444438.20 431864.94
forestFires 6520.97 7147.07 4447.27 4683.64 3900.69 3781.25 3555.58
concrete 72.19 74.86 50.66 67.59 19.89 27.01 24.53
abalone 6.09 6.31 5.69 6.17 4.63 4.71 4.83

Table 3: Average test MSE of each algorithm per dataset

Dataset HistRule SSD++ CART M5 RuleFit GradientBoosting RandomForest
cholesterol 959.34 871.43 2609.52 288.90 1027.00 988.32 833.81
autoMPG8 2.95 2.51 2.64 0.72 2.04 2.04 2.21
dee 0.09 0.21 0.05 0.01 0.02 0.02 0.018
ele-1 83542.49 109727.78 154830.41 36534.18 114420.56 148035.80 110138.24
forestFires 4007.54 4239.30 5816.26 1199.28 5528.72 4807.02 4787.90
concrete 5.58 3.95 7.36 7.55 2.73 3.73 3.32
abalone 0.57 0.65 0.41 0.25 0.34 0.31 0.29

Table 4: Standard deviation of MSE for each algorithm per dataset

From Table 3 it is seen that HistRule performs similarly to the SSD++ algorithm, and is for nearly
all of these datasets slightly better than SSD++. Also the standard deviations of HistRule and
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SSD++ are similar. However HistRule is also significantly slower than SSD++, as seen in Table
2. The table also shows that like SSD++, HistRule does not outperform the other regression models.

Another aspect to compare is the average number of rules and the complexity of these rules, for
this comparison only the interpretable models, so HistRule, SSD++ and CART, are compared.
Table 5 shows the average number of rules on the same 10 training sets as in the previous exper-
iment, Table 6 shows the average length of the rules. The average rule length of both HistRule
and SSD++ is the average number of conditions in the rules, for the CART model the number
of rules are the number of leaf nodes and the average rule length the average depth of these leaf nodes.

Dataset HistRule SSD++ CART
cholesterol 5.8 0.8 8.3
autoMPG8 13.8 6.7 31.6
dee 13.8 2.9 16.2
ele-1 15.1 7.0 13.7
forestFires 28.3 17.6 5.7
concrete 43.1 16.4 245.5
abalone 43.8 24.1 25.9

Table 5: Average number of rules

Dataset HistRule SSD++ CART
cholesterol 2.1 2.4 3.23
autoMPG8 2.15 2.11 5.17
dee 1.8 1.59 3.93
ele-1 1.74 1.91 3.8
forestFires 3.01 3.48 2.68
concrete 2.94 3.29 9.02
abalone 2.77 2.61 5.09

Table 6: Average length of rules
As seen in Table 5, HistRule has a much greater number of rules than SSD++ but on average they
have a similar rule length that is shorter than the average rule length of CART.

An example of the top four rules generated by SSD++ on the autoMPG8 dataset can be seen
in Figure 7. Figure 8 shows the top four rules on the same dataset, with the same training set,
generated by HistRule.

Rule Usage Mean Std
IF Cylinders >= 318.0 AND Acceleration < 78.0 55 13.8 1.6
ELSE IF Horse power < 2451.0 AND Acceleration >= 78.0 46 35.3 4.3
ELSE IF Cylinders >= 250.0 AND Acceleration < 80.0 51 16.8 2.6
ELSE IF Horse power >= 2870.0 AND Acceleration < 80.0 AND 35 19.6 1.7
Displacement >= 85.0

Figure 7: Top four rules on the autoMPG8 dataset by SSD++

Rule Usage Mean Std
IF Horse power >= 4055.0 AND Acceleration < 74.0 33 12.8 1.5
ELSE IF Horse power >= 3415.0 AND 72.0 <= Acceleration < 74.0 7 13.6 1.3
ELSE IF Horse power >= 4055.0 20 15.5 1.3
ELSE IF Horse power < 2451.0 AND Acceleration >= 78.0 AND 45 35.6 4.0
Displacement >= 85.0

Figure 8: Top four rules on the autoMPG8 dataset by HistRule
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From these rules we can see that HistRule generates smaller rules than SSD++. Because the rules
are smaller, HistRule generated rule lists also have more rules. This can also be seen in Table 5
where HistRule has a noticeably larger average number of rules than SSD++.

For a deeper look into these rules, the data distributions of the samples in each rule are plotted. In
Figure 10 are the distributions of the top four rules by SSD++, and in Figure 11 are the distributions
of the top four rules by HistRule. Figure 9 shows the distribution of the entire autoMPG8 dataset.
In these figures it can be seen that both SSD++ and HistRule form rules where the samples in
that rule distributed similarly to a normal distribution.

Figure 9: Distribution of target values of the autoMPG8 dataset

7 Conclusions and Further Research

In this thesis we have proposed HistRule, a rule list based subgroup discovery algorithm for numeric
targets that was based on the SSD++ algorithm. The SSD++ algorithm uses a Gaussian model to
describe the data, and thus assumes that the data in each subgroup is normally distributed. In
contrast, HistRule uses MDL-optimal histograms instead. By removing the need for a Gaussian
assumption in the SSD++ algorithm, and in its place using MDL-optimal histograms we have created
the HistRule algorithm. Histrule should, due the adaptive nature of MDL-optimal histograms, be
far more flexible for describing the data and would thus no longer need any assumption of how the
data is distributed. This allows HistRule to compress non normally distributed data more, resulting
in a better model according to the MDL principle.
In the experiments we have shown that it indeed performs slightly better as a predictor than the
original SSD++ algorithm. We have done this by comparing the mean squared errors for their
predictions, however it is only a slight difference, and it also takes significantly longer to learn the
rule list which is less than ideal.
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Figure 10: Data distributions of the top four rules by SSD++

Figure 11: Data distributions of the top four rules by HistRule

7.1 Future Work

Due to the significantly slower runtime, the HistRule algorithm is not viable for larger datasets as
it is now with the default settings, and would thus need to be sped up.
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Making a full C or C++ implementation of the algorithm for calculating the MDL-optimal histograms,
is a possible suggestion for speeding up HistRule, since most of the execution time of HistRule is in
calculating these histograms.
A second option to speed up the code would be to fine tune the settings of HistRule, since it
currently has the same default settings as SSD++. These new settings should try to lower the
runtime without impacting the performance too much, an obvious candidate here would be lowering
the beam_width for the beam search, which as its default value has 100, thus limiting the number
of candidate subgroups that need to be evaluated.
A more in-depth optimization for the parameters of the algorithm for generating the MDL-optimal
histograms is also an option, with as goal trying to find a good balance between speed and
performance.
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