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Abstract

The goal of this research is to automate the process of determining the aesthetic quality of
an image numerically. Subsequently, this numerical value will be used in an unsupervised
evolutionary algorithm to generate visually pleasing images. To achieve this, an objective
function has to be created that is able to score images based on their qualities. These images
are generated using a dataset of elements that are extracted from ornaments. Each image
is represented in a tree-like structure, which the algorithm uses to score each image. The
objective function looks at seven different aspects of a generated image. Several experiments
are performed to see how scoring images based on these aspects influence the end results.
From these experiments, the conclusion can be drawn that the symmetry detection function
used in the objective function is not performing as desired. Therefore, the results are below
expectations. More experimentation needs to be done with different symmetry heuristics.
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1 Introduction

An Evolutionary Algorithm (EA) is an algorithm based on Darwin’s evolution theory [5] [11]. The
goal of an EA is to simulate a population of individuals whom all try to survive to create offspring.
However, only the strongest individual will be able to do this. This is also known as survival of the
fittest. Since only the strongest individuals survive in each generation, gradually the population
will be more capable of surviving.

In this research, we want to find out if it is possible to generate aesthetically pleasing images
using an EA. There are two types of EA’s that can be used to achieve this goal. These are called
supervised and unsupervised algorithms. A supervised algorithm makes use of a human as the
objective function. This means that a person scores each image generated by the EA to slowly get a
better result. The end result will depend on the person’s values for aesthetic and unaesthetic images.
This is both an advantage as well as a disadvantage of a supervised algorithm. The advantage is that
the algorithm can be controlled very precisely. However, the disadvantage is that the evolutionary
process will be subjective. Another disadvantage is the size of the experiments performed. Since
each image has to be manually evaluated, the algorithm is limited in the number of images per
generation and also in the total number of generations.

The goal of this research is to create an EA that makes use of an unsupervised evolutionary algorithm.
In an unsupervised algorithm, no people are involved. Therefore, the process of generating images
will be fully automated. To accomplish this, an objective function needs to be created which can
differentiate between images with a “low” and “high” aesthetic quality.

To generate images, a dataset of “smaller images” is provided by Ornamika; [17]. In this dataset,
images are deconstructed into smaller segments. These segments can be used to generate new
images. For example, an image that consists of three segments; a triangle, a circle and a square,
will be divided into three separate segments in the dataset. The EA will use this dataset when
generating images. The objective function will also be specifically designed to take these types of
images into account.

For this paper there are two questions we want to answer:

e [s it possible for a computer to assess the aesthetic quality of an image in a numerical way?

e [s it possible to use the previously mentioned numerical value to create an evolutionary
algorithm that generates images?

1.1 Thesis overview

The thesis is structured as follows. Section 2 contains the related work. Section 3 talks about the
implementation of the objective function and the evolutionary algorithm. Section 4 describes how
and why the experiments are performed and what the results of the experiments are. Section 5
will discuss the results from the experiments. Last, in section 6 the paper is concluded and further
research will be discussed.
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2 Related work

Richard Dawkins is the first person to generate shapes using an evolutionary algorithm [7]. To
support his arguments in the book and show the process of evolution, he has created a program that
draws 2-dimensional “biomorphs”. These biomorphs consist of straight black lines with a variable
length, angle and position. A user can select which biomorphs are allowed to create offspring. Next
random mutation would occur. Then, from the mutated offspring, the user can select which one
will be the basis for the new generation. This way the user can influence the evolutionary process
of the biomorphs. Another early example of an evolutionary algorithm used to generate structures
and textures is by Karl Sims [18]. In his research, he gives several examples of his implementation.
For instance, 3-dimensional plant structures are generated using fractal limits. Also, textures are
generated by mutating symbolic expressions. Equations that calculate the color value for each pixel
are evolved using a specific set of rules.

The concept of interactively generating images using an algorithm led to the creation of evolutionary
art (EvoArt). One of the big advantages (and disadvantages) of interactively evolving images is the
fact that humans control the evolution process. However, as mentioned previously, user fatigue is a
big limitation. Therefore, research has been done to automate the selection process. For example,
Research by DiPaola and Gabora discusses “how computer generated art can become more creatively
human-like with respect to both process and outcome” [8]. To achieve this, an automatic fitness
function is created to evolve abstract images that look like Darwin.

However, automating a fitness function to score the aesthetics of an image is not an easy task. Art
is very subjective. Trying to differentiate between “good” and “bad” art is already complex. And
even if such a distinction can be found, telling a computer to use the found distinction to score
images isn’t easy either. Al-Rifaie et al. [1] discusses this problem. In it, symmetry is discussed and
its significance in the aesthetics of an image. Also, a swarm intelligence technique is introduced to
detect symmetry. The authors believe that there still is a long way to go before human appreciation
can be translated into a computational model. The research did show promising results, however.
Another possibility in the automation process of scoring aesthetically pleasing images is to let the
computer learn the difference between good and bad, instead of defining the differentiation yourself.
For example, Ciesielski et al. [3] uses machine learning on two image databases (one containing
photos, the other containing abstract images) rated by humans to learn what features of images
are associated with a high aesthetic value. There are several more examples where the computer
tries to learn the users preference to automate the image generation process [11], [9], [2], [L5]. But
to accomplish this, a database of human-rated images is necessary.

A research paper that has much overlap with this paper is called “Studying Aesthetics in Pho-
tographic Images Using a Computational Approach” by Datta et al. [6]. In this paper, machine
learning is used to automatically infer the aesthetic quality of photographic pictures. Both a
classification and a regression model are created. To train this network, an online peer-rated
photographic database is used. Several features are extracted from the images to train the models
on. Similarly, our evolutionary algorithm will also look at different features of the generated images
to determine their aesthetic quality. The biggest difference between these two papers is the type of
images that are used in the algorithms. Very different features need to be judged in photographic
images compared to the abstract images used in this research. Also, the machine learning model is
being trained on a dataset, while the evolutionary algorithm is not. This paper concludes that a



significant correlation can be found between the visual properties of a photograph and its aesthetic
ratings.

As has already been said, art is very subjective. Therefore, the question if it is even possible
to objectively assign the aesthetic quality numerically is very valid. Datta et al. [6] compare a
classification model against a regression model. They claim that since the measurements are highly
subjective, absolute scores are less meaningful. For classification, they only have to differentiate
between a “low” and “high” aesthetic quality and not between absolute scores. Li et al. claim that
personality is highly related to personal preference [13]. Therefore, a personality-assisted multi
task deep learning framework is created. Cui et al. [1] regard the users’ behavior as “the reflection
of their perception of images and harness these additional clues to improve image aesthetics
assessment.” Many examples are available of researchers trying to objectively score images based
on user preference. In our research, personal preference is not taken into account. For the objective
function, personal preference is generalized to calculate aesthetic quality and create a baseline. The
images are not generated based on user preference.

3 Implementation

In this section, a summary will be given on how the algorithm, including the objective function, is
implemented and how an image is represented.

3.1 Structure of an image

In this research, we do not want to generate images by modifying the values of the pixels themselves.
Instead, we have a database of sub-images' provided by Ornamika [17]. Hence, the images generated
by the EA will consist of these sub-images. A representation for these type of images will need to
be constructed so that the EA will be able to modify them. This representation will also be used
by the objective function to assess the quality of the image.

The decision has been made to represent the images in a tree-like structure. This structure can be
found in figure 1. In the figure, it can be seen that one image consists of a list of units, and one
unit consists of a list of elements. An element is an object which stores all the information about
a specific artwork inside a unit. (e.g. (relative) position, rotation, size, which sub-image is used,
etc...). A unit is a grouping of elements. In the unit information is stored about which elements are
part of the unit and where this unit is located in the image. All the information of each element is
stored relative to the information of the unit. For example, the position of an element is stored
relative to the position of the unit. This way, the image can be easily modified. In figure 1, circles
are the objects that store information and rectangles are variables that are stored in the objects.
These variables can be modified by the algorithm.

An example of the representation of an image will be given using figure 2c. The list of units currently
consists of five objects. Four units are copies of each other. The fifth one is located in the middle.
The middle unit will be used to help clarify the construction of a unit. This unit consists of five
elements. Four repeating elements and one unique element of a horse. Since this unit is positioned
in the middle, the relative position will be (x : 50%, v : 50%). The relative width of the unit is also
50 percent. However, the elements inside the unit do not use the entire width that is provided. The

LA sub-image is an image that has been extracted from an artwork [17].
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¥ and y position (relative to image) |
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Figure 1: Representation of an image. Circles are objects that are part of the image. Rectangles are
components of objects.



relative height is also 50 percent. Even though the relative width and height are the same, the
actual height of the unit is smaller than the width. This is caused by the fact that the image is a
rectangle instead of a square and the unit width and height are stored relative to the image width
and height.

An element is constructed similarly to a unit. The middle element in the middle unit (the horse)
will be used to help clarify the construction of an element. The element is centered inside the unit.
Therefore, the position of the element is (z : 50%, y : 50%). The relative width is 24 percent. The
rotation factor is relative to how the image is stored. In this case, the image of the horse is stored
in the position that can be seen in the image. Therefore the rotation factor is zero degrees.

3.2 Initialisation

The process of initialisation will be described using an enumeration. The definition of all variables
can be found in table 1.

1. First, n images are generated where n is the population size

2. For each image, a random number of units will be initialised. The number of units will be
limited by a user-defined range; minUnits, maxUnits

3. Each unit will have a random size and position. The width and height and x and y position will
be stored relative to the image. This means that these variables will be stored as percentages

3.1. The width, unit Width, of a unit is generated randomly in a user-defined range; min-
UnitWidth, mazUnit Width

3.2. The height, unitHeight, is calculated using the width of the unit image ratio

3.3. The position, unitX and unitY, is generated randomly. The only limitation on generating
the positions is that units can not be placed too close to the boundaries of the image.
Therefore, units can not go out of bounds

4. For each unit, a random number of elements will be initialised. The number of elements is
limited by a user-defined range; minFElements, mazFElements

5. First, when generating elements, a sub-image from the database is chosen

6. Each element has a random size, position and rotation. These variables will all be stored
relative to the unit the element is part of. This means that these variables, except rotation,
will be stored as percentages

6.1. Each element has a random width and height, elementWidth, elementHeight, that are
initialised using a lower and upper bound; minElement Width, mazElement Width. The
height of the element depends on the image ratio of the sub-image that this element
represents

6.2. Each element has a random position; elementX, elementY. It is made sure that the
element will not exceed the boundaries of the unit.

6.3. The rotation of an element is generated randomly in steps of 45 degrees



Variable name Description Default
value
n Population size 10
minUnits The lower bound for the initialisation of the number of units | 3
in an image
mazxUnits The upper bound for the initialisation of the number of units | 10
in an image
unit Width The width of a unit -
unitHeight The height of a unit -
man Unit Width The lower bound for the initialisation of the width of a unit 20
maxUnit Width The upper bound for the initialisation of the width of a unit | 45
unitX The x position of a unit -
unity The y position of a unit -
minElements The lower bound for the initialisation of the number of elements | 3
in a unit
mazFElements The upper bound for the initialisation of the number of elements | 8
in a unit
element Width The width an element -
elementHeight The height of an element -
minFElementWidth | The lower bound for the initialisation of the width of an element | 10
mazxElementWidth | The upper bound for the initialisation of the width of an element | 25
elementX The x position of an element -
elementY The y position of an element -
Rotation The rotation of an element 0

Table 1: All variables used for the initialisation of the algorithm as described in section 3.2. The
default value is given for user defined variables. Default values are chosen from experimentation
during the development of the algorithm

3.3 Objective function

The objective function is one of the main contributors to this research. The objective function
helps to answer the research question: “Is it possible to assess the aesthetic quality of an image in
a numerical way?” The second research question; “Is it possible to use the previously mentioned
numerical value to create an evolutionary algorithm that generates images?”, is heavily dependent
on the first research question. Therefore, it is essential for the algorithm that the objective function
works correctly.

The goal of the objective function is to determine the “quality” of the image in a numerical way.
The evolutionary algorithm can use the numerical value to differentiate between the quality of the
images. Therefore, if the EA and objective function are implemented correctly, the quality of the
images should slowly increase. In this subsection, the implementation of the objective function will
be discussed.

The objective function looks at several different factors to determine the quality of an image. Each
subsection will discuss a separate part of the objective function. Every part of the objective function



will have its own weight associated with it: a;, ¢ = 1,...,7. All the scores of the separate parts of
the function will be stored in f;, ¢ = 1,...,7. All mentioned variables will be summarised in table
2.

3.3.1 Overlap

One of the components the objective function looks at is the number of overlapping elements. Each
element is placed randomly on the image. However, this can cause elements to overlap with each
other. This is undesirable because if elements are overlapping, the image will look crowded and
unstructured. We associate this with a low aesthetic value. To prevent this, a lower score will be
given when elements overlap with each other. For this, the function will look at the number of
elements that are overlapping and the number of pixels in the image that are overlapping.

For the number of overlaps, a score of 1000 will be given when there are no overlaps. For every
overlap, 250 points will be deducted. See equation 1.

For the number of pixels, a percentage is used. See equation 2.

The total score for the overlap will take the average of these two formulas. See equation 3.

score; = 1000 — (numberOfOverlaps - 250) (1)

scorea = 10 - (100 — percentage) (2)
score; + score

=g (3)

3.3.2 Emptiness

The objective function also looks at the number of empty pixels on the screen. An image that is
filled with very small elements and therefore looks very empty is unsatisfactory. The same can
be said for images that are too crowded with bigger elements. Therefore, the objective function
rewards the image if the screen is filled to a percentage the user desires.

The formula that calculates the fitness for the emptiness can be found in formula 4. ¢ is a user-defined
parameter for the preferable percentage of the screen filled (in pixels). t = pref Filled in table 2.
This function will reward the image for being close to the desired value but will punish it when it
exceeds this value. x is the actual percentage of the screen filled.

1
_%x —1)* 4100, if {0 <z <t}
Bp=1q !t (4)
100 .
—t_mo(x—m()), if {t <z <100}

3.3.3 Symmetry

One of the most important parts of this objective function is symmetry detection. We define
symmetric images as images with high aesthetic quality. In a symmetric image, the position, color,
shape, size and rotation of all elements are related and compared to each other. Therefore, this part
of the objective function is very important in answering the two research questions. Since symmetry



detection is difficult to implement ourselves, the symmetry detection algorithm from [10] is used.
This algorithm calculates a score based on how symmetric an image is. The algorithm can predict
multiple symmetries and will return a numeric value on how certain it is per symmetry found. The
higher the score, the more symmetric the image is. Elawady et al. use edge-based feature extraction
using Log-Gabor filters with a special voting scheme [10]. The paper mentions that this method
provides a great improvement over other proposed methods. However, it does not mention how the
score is calculated. Therefore, an assumption is made that the score will returned will be between 0
and 1 where 0 means no symmetry at all and 1 means that the algorithm is 100 percent confident
that there is symmetry. Since the algorithm can return multiple scores the user can define how
many found symmetries will be used. The average of these scores will be taken. The score returned
by the symmetry function, symmetryScore, is multiplied by 1000. Therefore the output will be:

B3 = symmetryScore - 1000 (5)

3.3.4 Number of units

A unit is a collection of elements. Having too many or too few units can make an image feel either
too crowded or too empty. Therefore, the objective function also looks at the total number of units;
numUnits (nU). When the number of units are inside a predefined range, minPrefUnits (minPU),
maxPrefUnits (maxPU), maximum points will be given. The bigger the difference between the
predefined range and the actual value, the lower the score. 500 points will be deducted from the
total score for every unit too little or too much. min(a,b) is a function that returns the minimum
value of a and b.

(6)

B, = 1000, if minPU < nU < mazxPU
£ ) 1000 — (500 - min(|nU — minPU|, |nU — mazPU]|)), otherwise

3.3.5 Number of elements

Similarly to the previous subsection, having too many or too few elements inside a unit can make
the unit feel too crowded or too empty. Thus, the objective function also looks at the number
of elements numElements (nE) inside each unit. If the average of elements per unit is inside the
user-defined range, minPrefElements (minPE), maxPrefElements (mazPE), the maximum score is
given. The further away the average is from the user-defined range, the lower the score will be. For
every single unit, a score is calculated. If the number of elements in the unit are inside the preferred
range, 1000 points are given for this unit. 500 points are deducted for every element outside the
preferred range. The average over all units is taken. u is the number of units. min(a,b) is a function
that returns the minimum value of a and b.

1000, if minPE < nE < mazPE

Yunits score; = . ) .
1000 — (500 - min(|nE — minPE|, |nE — mazPE|)), otherwise

(7)

Bs = avg(scorey, . .., score,) (8)



3.3.6 Recurring elements

The objective function will give a higher score for repeating the same elements. Repeating the same
elements can cause a pattern to occur. We associate an image with a pattern as an image with high
aesthetic quality. The function will count how many elements are repeated, and once a user-defined
value is reached, pref RepElements = k, close to maximum points will be given. x is the number
of repeating elements. The elements do not have to be inside the same unit for the repeating bonus
to count. k- 100

Be = 1000 + T (9)

10

3.3.7 Variance

The objective function will also give a higher score for having a varied image. We associate an
image with very few unique elements as monotonous. Similarly, an image with too many unique
elements can be seen as too cluttered. The function will count how many different unique elements,
numUniqueElements (nUE), there are in the image. If the number of unique elements is inside a
user-defined range, minPrefVar (minPV), mazPrefVar (maxzPV) maximum score will be given. 500
points will be deducted for every unique element outside the preferred range. min(a,b) is a function
that returns the minimum value of a and b.

1000, if minPV < nUE < maxPV
br = { (10)

1000 — (500 - min(|nUE — minPV|, |nUE — mazPV])), otherwise

3.3.8 Total fitness

The total fitness is the sum of all previously calculated values multiplied by their corresponding
weights.

7
fitness = Zai - B (11)

=1



Variable name Description Default
value

a,t=1,...,7 Weights for each part of the objective function 1

prefFilled The preferred percentage of empty pixels on the screen 20

manPrefUnits The minimum number of the preferred number of units in | 4
an image

maxPrefUnits The maximum number of the preferred number of units in | 8
an image

minPrefElements The minimum number of the preferred number of elements | 3
in a unit

mazxPrefElements The maximum number of the preferred number of elements | 8
in a unit

prefRepElements The preferred number of repeating elements, which means | 7
how many elements are repeated

minPrefVar The minimum for the preferred number of variance, which | 4
means how many unique elements there are

maxPrefVar The maximum for the preferred number of variance, which | 10
means how many unique elements there are

num Units The number of units in an image -

numElements The number of elements in a unit -

numUniqueFlements | The number of unique elements in an image -

numberOfOverlaps The number of elements that are overlapping with each other | -

Table 2: All variables used for the objective function of the algorithm as described in section 3.3.
The default values are given for user defined variables

3.4 Selection

For the selection step of the algorithm, tournament selection is used. Tournament selection is a
common method for selection in evolutionary algorithms [16]. It is a stochastic operator. This
means that two individuals will be picked at random. These two individuals will fight each other in
a “tournament”. The individual with the highest fitness wins the tournament and gets selected for
crossover. In the case of this algorithm, an individual represents an image. Therefore, the fitness of
the images will be compared and the one with the highest aesthetic quality will be selected.
There are two types of selection methods: proportional and elitist [12]. In proportional methods, the
chance of selection is proportional to the fitness of the individuals. In elitist methods, the selection
method prefers the individuals with the highest fitness. The first method promotes genetic diversity,
but a slower convergence to the global optimum. The second method promotes faster convergence,
but a higher chance of getting stuck in local optima.

For this algorithm, tournament selection without elitism is chosen. This is done to prevent the
algorithm from getting stuck in local optima. This means that there is no guaranteed chance for
the individual with the highest fitness to be selected for the next generation. Also, according to
Miller and Goldberg; “tournament selection is easy to implement and works well on parallel and
nonparallel architectures” [10].

10



3.5 Mutation

The mutation step is supposed to add some randomness to the images in the hope that the quality
of the image will improve. Below is a list of all possible mutations on an image. The list has been
split into unit-specific mutations and elements-specific mutations

e Mutations on units
— Move unit: move a unit randomly in the x/y direction for a user-defined minimum and
maximum distance; minUnitDistance, mazxUnitdistance.

— Resize unit: increase or decrease the size of a unit randomly in a user-defined range;
minResize, marResize

— Delete unit: delete a random unit from an image

— Add new unit: add a new unit to an image. This unit is generated randomly as described
in section 3.2

— Copy unit: copy a unit and place it randomly inside the image

e Mutations on elements

— Move element: move an element randomly in the x/y direction for a user-defined minimum
and maximum distance; minFElementDistance, maxElementDistance. These variables are
stored relative

— Resize element: increase or decrease the size of an element randomly in a user-defined
range. This uses the same variables as resizing a unit

— Delete element: delete a random element from a random unit

— Add new element: add a new element to a random unit. This element is generated
randomly as described in section 3.2

— Change element: change an element into another element
— Copy element: copy an element and place it randomly inside the unit

— Rotate element: randomly rotate an element clockwise or counterclockwise in a step size
of 45 degrees. This means that an element can be rotated 0, 45, 90, or 135 degrees

Variable name Description Default
value

minUnitDistance The minimum distance a unit can be moved 0.5
maxUnitdistance The maximum distance a unit can be moved 20
minElementDistance The minimum distance an element can be moved 0.1
maxBlementDistance The maximum distance an element can be moved 20
minResize The minimum factor for resizing a unit or an element 0.1
mazResize The maximum factor for resizing a unit or an element 3

Table 3: All variables used for the mutation step of the algorithm as described in section 3.5

11



3.6 Crossover

For crossover, single point crossover is used. This is done the keep the algorithm relatively simple.
Since all the units are independent of each other and the position (in the genome) and order of the
units are irrelevant, more complicated crossovers (e.g. partially mapped crossover, cycle crossover)
would only make the algorithm itself more difficult to implement, without having any relevant
impact. Therefore, single point crossover is used.

In this implementation, crossover always happens at the center of the genome for the number of
units. For example, when combining two images, if the first image has five units and the second
image has three, the first image will give two units to the second image and receive only one unit
from the second image. Both images end up with 4 units. If an odd number of units are present, the
number of units given will either be rounded up or down, depending on if the image that receives
the units has more or less units.

4 Experiments & Results

4.1 Testing the objective function

This experiment is performed to evaluate the performance of the objective function. This is closely
related to the first research question: “Is it possible for a computer to assess the aesthetic quality of
an image in a numerical way?”

For the first experiment, an image will be created that is supposed to have a high aesthetic quality.
Next, random mutations will occur on this image. Using these random mutations, we can see how
the objective function reacts. This image and the images where mutation has occurred can be
found in images 2a through 5c. Images 2b through 5d show the corresponding scores given by the
objective function. The image on which all mutations will occur is figure 2c. The value of each
variable used by the objective function can be found in table 4.

Images 2a and 2c are created by hand to represent a simple aesthetically pleasing image. Figure
2a is perfectly symmetric. Figure 2c¢ is also symmetric apart from the asymmetric horse in the
middle. When looking at figure 2b and 2d, it can be seen that both images get a maximum score
for the number of units, number of elements and preferred number of repeating elements. However,
figure 2a does not reach the maximum score for the variation of the elements in the image. This
is because the image only has 3 unique elements, while the preferred minimum value is 4. Even
though there are no overlapping elements present in the image, the scores given by the objective
function are not maximum on this subject. The reason for this is that in the code an imperfect
method is used to check for overlap. This method, however, speeds up the process itself. Since the
maximum score for overlap in all images is close together, this small difference from the actual
total maximum score can be neglected. There is a small difference in the score for the percentage
of the screen filled. Since figure 2c has an extra unit, it is closer to the desired value of the number
of pixels on the screen. The most interesting difference can be found in the symmetry scores of the
images. This will be discussed in more detail in section 4.1.1.

Images 2e and 3a are very similar in how the mutation has affected the scores given by the objective
function. Figure 2e has copied a random unit and pasted it somewhere on the image. In this
particular case, the copy has been pasted on top of the top left unit. Also, random rotations have
taken place. 3a has moved the bottom right unit in the negative x and y-direction. When looking

12



at figure 2f and 3b, it can be seen that the score given for the number of overlapping elements
is significantly lower in figure 2e than in figure 2c. The same can be said about figure 3a. This
is to be expected because the mutations caused overlap to occur. Also, the score for overlapping
elements in figure 3a is almost double that of figure 2e. This is because the former image has 2
units overlapping entirely and the latter image only has partial overlap.

In figure ba a random unit is added to the image. This unit causes overlap to happen. So much
overlap is happening that the score for overlapping elements is negative.

Figure 5e is an image purposely designed to have low aesthetic quality. It consists of two different
units which both have been copied and moved once.

4.1.1 Symmetry

In all images, the biggest difference can be found in the symmetry score. There are three different
symmetry scores shown. The best symmetry score, the average of the top three symmetry scores
and the average of the top five symmetry scores. A comparison of these scores can be found in
figure 7. The first thing that stands out is the fact that the score given for symmetry is significantly
lower than the other scores. See figure 2d for example. There are a few possible causes for this. In
section 3.3.3 the assumption is made that the score returned by the symmetry detection function
will be between 0 and 1. This assumption is most likely incorrect. However, we do know that a
higher score means that the algorithm is more confident in having detected symmetry. Therefore, a
solution to this problem would be to increase the weight of this segment of the objective function
to equalize the scores.

However, when comparing image 2a to image 2c we can see that image 2c¢ has a higher symmetry
score. This can also be seen in figure 7. This is odd since image 2a is perfectly symmetric and
image 2c has an asymmetric element in the center. One would expect that image 2a would receive a
higher score. Elawady et al. use edge detection to make an educated guess [10] about the symmetry.
Even though image 2c is less symmetric, more “information” is present in the image. Apart from
the horse, four other elements are added that are symmetric. Therefore, more data is present in the
image for the algorithm to make an educated guess. Since more data is present, the algorithm can
be more confident in saying that this image appears to be symmetric. This theory is supported
even more when comparing image 2a to an image used for testing in the research done by Elawady
et al. [10]. This comparison can be found in image 6. When looking at figure 6a, we can see that
the algorithm does find the correct symmetry axis. The red line is the most confident guess. The
score given for this red line is ~0.115. But when looking at image 6b, we can see that the score for
its most confident guess is ~0.322. This is almost triple the score for image 6a.

Therefore, it is plausible that when the images are generated, the symmetry detection algorithm
will cause the generated images to be more crowded and full. However, the segment of the objective
function that looks at the percentage of the screen filled (section 3.3.2) should combat this.

Also, even though the symmetry scores of images 2a and 2c are illogical, they are significantly
higher than the symmetry score for image 5e. Image 5e is an image created to not be aesthetically
pleasing.

When looking at figure 7, a similar pattern can be seen between the best score, average of top 3
scores and average of top 5 scores. The ratios of the scores returned by the algorithm remain the
same. Therefore no significant advantage can be found in using for example the average of the top
5 scores over the using only the best score.
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Figure 2: Figures 2b, 2d, 2f are respectively the objective scores of figures 2a, 2c, 2e. Figures 2a and
2¢ are manually created images. They have a transparent background. Subsequently, all mutations
on these images also have a transparent background. Figure 2e is a mutation on figure 2c
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Figure 3: Figures 3b, 3d, 3f are respectively the objective scores of figures 3a, 3c, 3e. Figures 3a, 3c

and 3e are mutations on figure 2c
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Figure 4: Figures 4b, 4d, 4f are respectively the objective scores of figures 4a, 4c, 4e. Figures 4a, 4c

and 4e are mutations on figure 2c¢
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Figure 5: Figures 5b, 5d, 5f are respectively the objective scores of figures 5a, 5¢, 5e. Figures ba
and Hc are mutations on figure 2c. Figure 5e is purposely created to not be aesthetically pleasing
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(a) Symmetry axis on figure 2a. The background of this image is transparent, even though it is shown as
black.
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(b) Symmetry axis on an image provided by [10]

Figure 6: The symmetry axes with scores generated by the symmetry algorithm as described in
section 3.3.3
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Figure 7: Symmetry scores of each image where the average of the top 1, 3 and 5 found symmetries
is given

Variable name ‘ Default value ‘
ai=1,....7 1
prefFilled 20
minPrefUnits
maxPrefUnits
minPrefElements
maxPrefElements
prefRepElements
manPrefVar
mazPrefVar 10

Table 4: Values of the parameters used by the objective function corresponding to the figures 2
through 5 and figure 7 in section 4.1. The definition of the variables can be found in table 2

4.2 Measuring the performance of the evolutionary algorithm

In this subsection, the evolutionary algorithm itself will be executed. From the results of this
experiment, it is possible to conclude if the method used to develop the algorithm works or if
other implementations need to be used. First, the values of the parameters need to be defined. If a
parameter is not mentioned, the default value will be used. The changed parameter can also be
found in appendix A. The default values can be found in their respective table. The definition of
which weight corresponds to which part of the objective function can be found in table 5.
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Weight \ Part of objective function

o Overlap

Qo Emptiness

Qs Symmetry

oy Number of units

Qs Number of elements
g Recurring elements
ar Variance

Table 5: Weights with their respective parts of the objective function

The values of the parameters will be defined based on the findings in the previous section. There we
noticed that the oy, as and ag had significant impact on the aesthetic value of an image. Therefore
these weights will be increased. oy and ap will be increased to a value of 2. Because in the previous
section the discovery was made that the value returned by the symmetry function was significantly
lower, a3 will get a value of 20. ay, a5, ag and a; were considered to have a lower impact. Therefore
the values for the respective weights will be lowered to 0.5. The result of the first experiment can
be found in figure 8a and the objective scores can be found in figure 10a. When looking at the
total fitness, it can be seen that the score is almost 50000. Moreover, the total fitness exists almost
entirely out of the symmetry score. The other functions have close to zero influence on the total
fitness.

Therefore, for the second experiment, the weight for the symmetry score is lowered from 20 to 2. All
other values remain the same as in the previous experiment. The results of the second experiment
are more balanced than the previous experiment. However, the symmetry score is close to zero and
does not influence the total fitness. Thus for the next two experiments, the weight for the symmetry
score is slowly increased to increase its influence. The third experiment increases the weight for
symmetry score to 10 and the fourth experiment increases the weight to 15.

The results of the first, third and fourth experiment (respectively figure 8a, 8c, 8d) look somewhat
unfilled and empty. Therefore, for the fifth experiment, the weight for the emptiness of the image
will be increased from 2 to 3. Also, to make sure that the end result of the image contains the
preferred number of units oy will be increased to 1.

For the sixth experiment, the weight for the symmetry score is again increased. This time from 15
to 18. In experiment five (figure 10e), the symmetry score still has no relevant impact on the total
fitness. For the seventh experiment, a similar thought pattern is followed. The symmetry score is
found to still not have a relevant impact on the total fitness. Therefore the weight is increased
to 20. This is the same value as in experiment one. However, considering that in the previous
experiments the symmetry score did not “explode” as much as in experiment one, it is very likely to
say that that was an anomaly. This statement is supported even more when looking at the results
of experiment seven in figure 11a. Experiment eight has the same parameters as experiment seven.
However, the subset of available images for the algorithm is changed.

When looking at the total fitness of the first eight experiments (Figures 10a through 10b), it can
be seen that the total fitness fluctuates significantly. Therefore, the best result of a generation can
be worse than the previous generation. For example, in the last 200 generations of experiment
seven (Figure 11a), the total fitness score diminishes significantly. For these experiments; the
population size is kept relatively low since the algorithm is computationally heavy. However, with
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a low population size, there is a bigger chance that none of the generated images in the next
generation have a higher fitness score. Thus, for experiment nine the population size is doubled
from 10 to 20 and the total number of generations is halved from 1000 to 500. Hopefully, starting
from this experiment and forward the total fitness score fluctuates to a lower degree.

Experiment ten follows a similar pattern of doubling the population size and halving the total
number of generations. The population size is increased to 40 and the number of generations is
decreased to 250. Experiment eleven has the same parameters as experiment ten (including the
same population size). The number of generations is increased to 1000.

5 Discussion & Limitations

In this research we set out to answer two questions: “Can a computer define the aesthetic value of
an image in a numerical way?” and “Can we use the previously defined numerical value to generate
images using an evolutionary algorithm?” To help answer these questions, we will discuss the results
given in section 4.

First, the question “Can a computer define the aesthetic value of an image in a numerical way?”
will be discussed. Defining the aesthetic value of an image is a complicated task. For the images
used in this research, the objective function has been split into seven parts. Each part independently
judges a characteristic of the image and returns a score based on if the characteristic is (partly)
present in the image. The total of these scores is the numerical value of the aesthetic quality of
the image. In figure 2d the numerical values corresponding to image 2c returned by the 7 parts
of the objective function can be found. Figure 2c is an example of a simple aesthetically pleasing
image. The maximum that each part can return (except for the symmetry part) is 1000. In the
research done by Elawady et al. [10] no maximum return value is defined for the symmetry function.
Because of this the return value can be significantly higher than other values, as can be seen in
figure 10a. However, this can be solved by adjusting the weights correctly.

When looking at figure 2d, we can see that the scores for this image are maximal on most parts of
the objective function. However, the symmetry score returned is extremely low. In fact, this is the
case for all images discussed in section 4.1. When comparing the symmetry scores from section
4.1, something strange stands out. The symmetry score for figure 2c¢ is higher than the score for
figure 2a. This comparison can best be seen in figure 7. This anomaly has also been discussed in
section 4.1.1. Figure 2a is perfectly symmetric and therefore the highest score from the symmetry
function is expected. Figure 2c is an exact copy of figure 2a with an asymmetric unit added in the
center. Subsequently, a lower score is expected in comparison to figure 2a. However, this is not the
case. Also, when testing the symmetry function on a photographic image of a leaf, a higher score is
returned compared to figure 2a even though the leaf is definitely not perfectly symmetric. This
comparison can be found in figure 6. From these findings, we can already tell that the symmetry
function can be unreliable and may cause problems when implemented in an evolutionary algorithm.
The symmetry function is a key part of the objective function and is supposed to do most of
the heavy lifting. When looking for symmetry; shape, size, color, rotation, position and more are
compared to figure out if an image is symmetric. A perfectly symmetric image where all elements
are positioned aesthetically and another asymmetric image using the same elements in random
positions (without overlap) would get the same fitness score if the symmetry part is left out of the
objective function. That is why an inconsistent symmetry function can cause problems.
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Figure 8: Results of the first six experiments relating to section 4.2. The best image of the last

generation is shown
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Figure 9: Results of the last five experiments relating to section 4.2. The best image of the last

generation is shown
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The difficult part of the symmetry detection function is that we want to be able to detect partial
symmetry. We want to reward images that are more symmetric than other images, even though
neither are perfectly symmetric. Furthermore, the function can not be computationally heavy, since
it is applied in an evolutionary algorithm. One possible solution to an inconsistent symmetry function
could be to force symmetry on the generated images. This can be done by creating templates
where the positions of the elements and units are forced. This, however, limits the algorithm
substantially and would decrease the number of possible outcomes depending on the number of
available templates. Also, the research question if a computer could generate an aesthetically
pleasing image would only be partially answered, since the end results would be influenced by
human preference.

Another possibility would be for the algorithm to focus only on generating units and scoring
these units independently. Detecting symmetry would be significantly easier with only four or five
elements in an image instead of twenty to twenty-five elements. These generated units can then be
used to construct an image. The algorithm would effectively be split into two parts. To see if this
would be possible, the symmetry detection algorithm needs to be tested to see if it performs better
on less complex images. If not, research needs to be done in other partial symmetry detection
heuristics. It would also be possible to create a very simple symmetry function yourself, that only
looks at position and shape. If an own symmetry detection algorithm is created, characteristics
like size and rotation would possibly need to be removed to keep the algorithm relatively simple.
Other characteristics like color would need their own segment in the objective function. When
researching into other partial symmetry detection heuristics, it needs to be taken into account that
the algorithm can not be computationally heavy. A deep learning method could be used, but for
that a database with training data needs to be created.

To answer the second question: “Can we use the previously defined numerical value to generate images
using an evolutionary algorithm?” an evolutionary algorithm is created. Images are represented
in a tree-like structure for easy modification. For selection, tournament selection is used and for
crossover, one point crossover is used. When the initial images are generated, the algorithm is
given complete freedom and is limited by almost nothing. This is done in the hopes that the
objective function will correct faults in the image itself, instead of limiting the algorithm and
therefore potentially limit the end result. For example, this means that in the initial generation a
lot of overlapping elements can be present. Subsequently, this should result in a low fitness score.
A low fitness score means that it is more difficult for this image to survive the selection step of
the algorithm. The results of the evolutionary algorithm can be found in figures 8 and 9 with
corresponding fitness scores in figures 10 and 11. When looking at the images, it can be observed
that most images are not very symmetric. Only figures 8a and 9e have a high symmetry score. For
the first image, something strange happened in the objective function causing the symmetry score
to be significantly higher than the other scores. The scores can be seen in figure 10a. From this, we
would expect the image to be (very) symmetric. However, when looking at figure 8a, this does not
seem the case. The elements do seem to be centered along the middle y-axis of the image. Also, all
the elements are of similar shape, size and color. But this image is not symmetric. For the next four
experiments, the weight for symmetry is kept relatively low and therefore symmetry has close to
zero influence on the total score. It seems like most images focus on minimizing the overlap between
elements. However, as said before, the symmetry function also influences other characteristics
of the images. The positioning of the elements for example. If the symmetry detection function
is not working properly, then the only thing that influences the positions of the elements is the
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check if the elements are overlapping. Therefore, most positions will be random and the position
of elements will have very little correlation to each other. For experiment 6, the objective score
for symmetry increases slightly in the second half of the experiment, as can be seen in figure 10f.
But when looking at figure 8f, the image shows no trace of symmetry. Most elements are blue, but
this could very well be a coincidence. One common similarity between these first six experiments
is that the total fitness score fluctuates a lot. When looking at experiment 7, figure 11a, this can
be seen even better. The final fitness score is almost the same as the fitness score the algorithm
started with. Since no elitism is used in selection, this can happen. Therefore, in experiments 9,
10 and 11 the population size is increased. Another possibility would be to introduce elitism, as
discussed in section 3.4. However, this has not been tried for this set of experiments. Increasing
the population also causes the execution time of the algorithm to increase. To counter this, the
number of generations has been decreased for experiments 9 and 10. These experiments did show
less fluctuation in the total fitness and therefore for experiment 11 the number of generations was
increased to its original value. When comparing the total fitness score of experiment 11 (figure 11e)
to for example experiment 8 (figure 11b) we can see that the fluctuation has decreased significantly.
However, the execution time of experiment 11 was significantly longer. Even though experiment 11
was able to reach a higher total fitness than the previous experiments, the end result (figure 9¢) of
the algorithm is not very aesthetically pleasing. We do see some sort of a pattern emerge with a
yellow cross followed by two other yellow shapes and a red shape above the middle yellow shape.
However, the rotation of the yellow crosses is already different from each other. Also, to call this
pattern aesthetically pleasing would be a stretch. If we look at generation 774 of experiment 11
(figure 12), this pattern can be seen more clearly. One potential reason for the symmetry function
to delete the top two units of the pattern is that it is easier for the function to find symmetries in
less complex images. Therefore, it will automatically tend to give a higher score to less filled and
less cluttered images. This theory is also supported by figure 11e. Just before generation 800, there
is a significant increase in the symmetry score. At the same time, as the symmetry score increases,
the score for the number of empty pixels on the screen decreases. This theory does contradict the
previously mentioned theory that the symmetry function prefers more filled images, since more
information is available for the edge detection itself.

In short, the symmetry function seems to be the limiting factor here. Since the symmetry function
is not working as desired, each element is not fully judged in relation to the other elements. If two
elements are positioned perfectly symmetric, the symmetry function will not reward it maximally.
The current way the evolutionary algorithm is set up does allow for potential patterns to emerge,
as can be seen in figure 12, but not much more than that. This image has the potential to be
aesthetically pleasing but is not quite there yet. Further research needs to be done in other symmetry
heuristics to compare performances. Also, it could be interesting to introduce elitism.

5.1 Limitations

Time constraints and Computational resources: Because of COVID-19 this study has been
performed from a home office. Therefore, all experiments have also been run from the home office.
The computer in the home office lacks computational power in comparison to the computers at
Leiden University. Also, the code for the symmetry function that was provided by Elawady et al. [10]
was inefficient when combined with the code written for this research. The lack of computational
power and inefficient code caused the experiments to take a long time. For example, experiment 11
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(figure 9¢e) took a little over 39 hours to complete. Also, when the experiment was running the home
computer could not be used for other purposes. This limited the length and number of experiments
substantially.

EE* eﬁz*

Figure 12: Best result of generation 774 of experiment 11

6 Conclusions and Further Research

This research was conducted to answer two questions: “Is it possible for a computer to assess
the aesthetic quality of an image in a numerical way?” and “Is it possible to use the previously
mentioned numerical value to create an evolutionary algorithm that generates images?” For this, an
image database from Ornamika [17] was used and images were represented in a tree-like structure.
To assess the quality of images, an objective function was created that looks at seven different
aspects of the image. A score is given for each different aspect and the total of these scores is the
numerical value for each image. Next, this objective function was used to create an evolutionary
algorithm that generates these images.

When experimenting with this setup, we noticed that this setup does allow for some sort of patterns
to emerge. Even though this happens, we are not yet able to call the generated images aesthetically
pleasing. This is mostly caused by the symmetry function 3.3.3 not working as desired. This caused
the results of the experiment to be below expectations. Further research needs to be done to use
this setup to generate visually appealing images.

6.1 Further research

The algorithm does show potential, but more experimentation needs to be done to generate
aesthetically pleasing images. Currently, the objective function is heavily dependent on the symmetry
function. However, as said before, the symmetry function performs subpar. It would be interesting
to see how the algorithm would perform with a different symmetry function. For this, more research
needs to be done on other partial symmetry detection algorithms. Also, it might be possible to split
the symmetry function into smaller functions and add them to the objective function. For example,
the algorithm could divide the image in a grid-like structure and check for simple symmetry this way.
It would also be interesting to look more at the colors used in an image. Color is an important aspect
of the aesthetic quality of an image. But currently, there is not a specialized part of the objective
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function that judges this aspect. It would be interesting to experiment more on potential interesting
qualities of an image and expand the objective function. Moreover, the currently used symmetry
function is very inefficient. Splitting this function into multiple smaller parts and integrating that
in the code should speed up the algorithm significantly. Therefore, it should be easier to run larger
experiments. It would also be interesting to introduce elitism to speed to execution time of the
algorithm.
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A Appendix

A.1 Parameter values for the experiments

’ Experiment ‘ 2 ‘ Qs ‘ oy ‘ Qs ‘ Qg ‘ ar ‘ n ‘ Number of generations
20 1 0.5]0.5]0.5|0.5]10 | 1000
2 |05[05]05]0.5]10 | 1000
10| 05|05 ]0.5 (0.5 |10 | 1000
15| 05]05]05 (0.5 |10 | 1000

15 |1 051050510 | 1000

[y

Experiment 1
Experiment 2
Experiment 3
Experiment 4
Experiment 5

NN NN O
W W W W W W W NS

Experiment 6 18 | 1 0.5]0.5|0.5 |10 | 1000
Experiment 7 20 |1 0.5]0.5| 05|10 | 1000
Experiment 8 20 | 1 0.5105 0.5 |10 | 1000
Experiment 9 20 |1 0.5]10.5]05 |20/ 500
Experiment 10 20 |1 0.5]10.5]05 |40 250
Experiment 11 20 | 1 0.5105 05|40 | 1000

Table 6: All parameters of each experiment described in section 4.2. Bold faced values have changed
in comparison to the previous experiment. Unmentioned parameters use default values.
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