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Abstract

This research addresses the scansion of Latin poetry using machine learning models,
in particular neural networks. Having created training sets using the rule-based ap-
proaches by the Pedecerto and Anceps projects, we investigate the best way to scan
dactylic verse. Subsequently, we investigate the generalisability of a model trained
on dactylic meter to other scansion systems, like the iambic trimeter. We find that
an LSTM with one-hot encoding outperforms CRF when scanning dactylic meter,
with weighted F1-scores of 0.99 for the long, short and elision labels for the former
and F1-scores of 0.90 for the latter. Additionally, the models have no problems scan-
ning Latin from different authors, time periods and genres within the same metrical
system. The model does require at least 3,000 lines of poetry as training material
for a weighted F1-score of 0.98. Generalising the LSTM model trained on dactylic
verse to iambic trimeter seems unfeasible, with F1-scores of ∼0.75 for the long label,
∼0.50 for short and ∼0.85 for elision. Using word embeddings trained on syllable
level as input to the LSTM does not improve scores. Training both LSTM models
on noisy trimeter data (with anceps labels instead of dedicated long/short labels)
results in increased F1-scores for the one-hot model, but decreased performance for
the embeddings LSTM. This seems to suggest that an LSTM model performs best
when trained and tested on a specific metrical system, but that using word embed-
dings on syllable level does not help with determining syllable length information.
When testing on additional meters like the anapest, we find that the CRF model
generalises best to other meters with F1-scores of around 0.80. This in contrast to
the LSTM models which reach F1-scores of ∼0.75 for the long and ∼0.50 for the
short syllables.
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1 Introduction

Rhythm and sound are essential parts of the content of poetry. Its perception can change
by the way rhythmical patterns are presented, which is similar to experiencing different
musical styles. Such differences in style are associated with different genres and different
expectations about the content of the poem. To illustrate this, we as an audience expect
different topics and storylines when hearing a limerick compared to hearing a ballad. This
is as true for the modern as it was for the ancient world.

Within poetry, these rhythmical patterns could vary greatly, creating so-called meters,
which group the natural sounds of words to create specific rhythms [43]. In Latin, this
grouping is based on the quantity of a syllable, with some taking longer to pronounce
and others shorter (see Section 2.1). Latin poetry features a wide range of different poetic
meters, with each marking out a different genre. Some of these meters feature a simpler
rhythm with few metrical variations, while others can have far more variation embedded
in a much more complex rhythm. However, the core principles of how the sounds of po-
etry create rhythms remains the same.

Because a rhythmic meter can convey so much information about a text, the automated
scansion (i.e. syllable labeling) of poetry by a computer has been a long-standing goal.
Multiple attempts have been successful, like the Anceps [14] and Pedecerto [38] projects,
which use a rule-based and a constraint-based approach respectively (see Section 2.3).
However, in the case of Pedecerto, new rules have to be created per meter type, which
is labour intensive and infeasible for more complex meters. In the case of Anceps, the
program tries to force the labels of syllables according to the rules of the given meter,
which might be inflexible and unnatural when scanning a line of an unknown meter.

We will therefore try a machine learning approach in this research and investigate its
generalisability between meters. We train various machine learning models for sequence
labeling on the dactylic meter, consisting of the hexameter and the pentameter, which are
considered to be relatively simple rhythms with few variations. Additionally, in compar-
ison to other meters, many dactylic lines are handed down to us, providing us a sizeable
training set. We then use these models on more difficult meters and see how they perform.
The idea behind this is to see to what extent the models can understand and learn the
principles by which the lengths of syllables create rhythm. This resembles how students
learn to scan poetry. First, they learn the basic principles and get a feeling for the rela-
tionship between these principles and how they work in practice in simpler meters. Later,
this skill set is used to scan more difficult meters.

The central question in this paper is therefore as follows: to what extent are machine
learning models, in particular neural networks, able to scan more complex metrical sys-
tems when trained on simpler ones? In other words, to what extent can a neural network
learn and apply rhythm and syllable quantity principles?

If this is indeed possible, there are many interesting applications for research within Clas-
sics. One exciting possibility is the identification of metrical patterns of Latin fragments.
These fragments are lines from Latin plays that do not survive to us in their complete
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form, having only been preserved as quotations by other authors. These quotations are
often syntactical entities and not metrical ones, making it difficult to identify the meter
and therefore to learn from their content within the play. If the model could help us with
scanning these fragments, it would teach us more about the fragments and the content
of the plays. Another exciting possibility is to use the model to detect new fragments. As
mentioned, fragments are handed down to us via quotations. However, scholars believe
that many more quotations are hidden in prose texts without any attribution, as a ci-
tation from a popular play would be instantly recognisable for the audience. While it is
difficult and rather time-consuming for a researcher to search for metrical patterns within
the vast amount of prose texts, it would be trivial to let a model scan the texts and flag
any passages that could contain metrical patterns. Lastly, if the model is successful in
scanning other meters, it would be of great help to students, who would be able to check
their scansions with a computer, which is as of the writing of this paper impossible for
lesser used meters like the anapest and glyconeus.

Beyond the scope of Classics, a model trained on Latin texts could possibly be adapted to
work in other languages. To illustrate, instead of labeling quantity as done in Latin, the
model needs to label stress to allow it to function in Dutch or English poetry. And while
a rule-based approach would require a rather intense rewrite of the code base, the ma-
chine learning approach could accommodate this migration more easily by retraining on
a different data set. Additionally, a model that can find and learn rhythm in texts might
perhaps be interesting within the field of text-to-speech, allowing for a more human-like
speech synthesis in contrast to the often monotone sounding voices we have today.

Regarding the structure of this paper, Section 2 will take a look at the concept of scanning
Latin, the application of models for sequence labeling and related work within the fusion
of these two fields. Section 3 will relate about the data sets that were created to allow
the training of the models related in Section 4. After this preliminary information, Sec-
tion 5 will investigate the best approach to scanning dactylic meter and the subsequent
generalisability towards the more difficult iambic trimeter. At the end of this chapter, the
same generalisability will be tested for the anapest, tetrameter, dimeter, glyconeus and
hendecasyllable. We will then move onto the discussion in Section 6 before closing with
the conclusion in Section 7.
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2 Background

2.1 Latin scansion

Before the written word, epic works like Homer’s Iliad and Odyssey were handed down
orally. To allow for easy remembering and colourful narrating, all syllables in a line of
poetry were organised in patterns based on the length of their pronunciation [9]. Such a
pattern is called a meter and gives each line a rhythm. Furthermore, the meter indicates
the style of the poetry. For example, the dactylic hexameter was grouped under the generic
label of ‘epic’, considered an apt meter for weighty and important matters1 [24] [35].

In Latin poetry each syllable was either pronounced long, short or not at all, called elision.
We denote long syllables with ¯ and short with �. Elisions are denoted by the character
⌣ following the syllable that is elided. In the dactylic hexameter, a verse consists of six
feet, which are made up of dactyls or spondees [13, pp. 85–86]. Here a dactyl is a foot
consisting of three syllables, the first being long, followed by two short syllables. The
spondee is a foot created from two long syllables. The sixth foot always consists of a
spondee or a trochee (a long syllable followed by a short one). Lastly, the fifth foot is
most often a dactyl, though exceptions are possible.

It is then up to the poet to turn these building blocks into rhythmic and interesting
poetry. One example of this employment is Vergil’s Aeneid 8.596.

quādrŭpĕdāntĕ pŭtrēm sŏn̆ıtū quăt̆ıt ūngŭlă cāmpum

This sentence, translated as a hoof shakes the crumbling field with a galloping sound,
describes the movement of running horses. From a metrical standpoint, the line is made
up of five dactyls and a closing trochee: the many dactyls and their short syllables imitate
the quick movement made by the horses.

An opposite effect is also possible, like in line 452 of the same book. Here Vergil describes
the forging of Aeneas’ shield by the sons of Vulcan, who lift their arms with great strength
one to another :

ı̄lli⌣ı̄ntēr sēsē mūltā v̄ı brācch̆ıă tōllunt

This time, the verse consists almost completely of spondees, except for the usual dactyl
in the fifth foot, mimicking the slow and labour intensive pounding sound of the work.

Each verse of poetry therefore consists of long and short syllables. If the syllable contains
a short vowel or a long vowel, its quantity is determined by its nature: in this case, the
syllable is long or short because it contains a long or short vowel. To illustrate:

� A short syllable contains a short quantity vowel: nŏvem, păter.

� A long syllable contains a long quantity vowel: v̄ıta, māter.

1Because of its association with epic, it is very probably that the dactylic hexameter came to be used
for quite different kinds of poetry like satire, as we will see with the texts of Iuvenal and Persius in
Section 3.
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There are general rules to determine the nature of syllables. For example:

� A diphthong, ae, au, ei, eu, oe, ui, is always long. A vowel derived from a diphthong
is also long: exclūdō, from ex-claudō.

� A final -am, -em, or -um is always short by nature.

� A final -o, -i, or -u is usually long by nature.

– However, the final -i in tibi and mihi could be long or short according to the
requirements of the meter.

� A final -a or -is is often short by nature.

– However, -a in the first declension ablative singular is always long, as is -is in
the first and second declensions dative and ablative plural.

The length of a syllable can also be determined by its position in the verse. A vowel is
considered long by position when it is directly followed by two consonants. To illustrate,
the u in ŭrbs is short by nature. However, it is long by position as it is followed by two
consonants, and should be scanned as such in the verse. The consonants can also belong
to the next word: in the case of puēllā stat, the -a of puella is short by nature (in nom-
inative case). It is however long by position because of the consonants that follow. This
is however not an absolute rule: if the first consonant is a mute (like c or p) followed by
a liquid (like l or r), the preceding vowel will not automatically be long, but might be
treated as such at the discretion of the poet.

Further points of interest are -h- being not considered a full consonant, the consonants
-x- and -z- lengthening a preceding vowel, as they are double consonants (-ks- and -ds-,
respectively), and -i- being sometimes read as the consonant -j-.

Regarding elision, there are two basic rules:

� If a word ends with a vowel, this vowel may be omitted if the next word starts with
a vowel or an h-.

– In nocte egeris, the final -e is elided, resulting in noct⌣egeris, pronounced as
noctegeris.

� If a word ends with -m, the final syllable may be elided if the next word starts with
a vowel or an h-.

– Pridem oportebat would become prid⌣oportebat, or pridoportebat.

It is important to note that these elisions may or may not occur. Deliberate avoidance of
elision is called hiatus, which is possible, although frowned upon2.

2For more information on syllable quantity, including rules and exceptions, see [6, pp. 5–6],[13, pp. 12–
14], [43] and http://www.thelatinlibrary.com/satire/scansion.pdf.
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In addition to the hexameter, this thesis also investigates elegiac couplets and iambic
trimeter. The former is a poetic meter which could be used for various themes of a
smaller scale than epic [43, pp. 103–109]. For example, authors could write about their
own love affairs, or feature as a character in their own stories. Other uses would be elegy
(reflection and lamentation) and epigrams. Regarding its meter, elegiac couplets consist
of sets of one dactylic hexameter followed by a dactylic pentameter. This pentameter is
similar to a hexameter, having two patterns of two dactyls3 followed by a longum (single
long syllable) [13, pp. 109–115]. In general, the hexameter flows into the pentameter via
an enjambement4, forming a contrast from the often rising action of the first verse with a
falling quality in the second. One great example to demonstrate this is in Catullus’ 85th

poem:

ōdi⌣ĕt ămō. Quāre⌣ı̄d făc̆ıām, fōrtāssĕ rĕqūıris?
nēsc̆ıŏ, sēd f̆ıĕr̄ı sēnt̆ıo⌣ĕt ēxcrŭc̆ıōr.

I hate and I love. Why do I do this, perhaps you ask?
I know not, but I feel it happen and am tormented.

Lastly, this paper will treat the iambic trimeter, which was the most common meter to
be used for spoken parts of tragedy, comedy, and satyr plays [13, pp. 136–138]. Each line
consists of three iambic metra, with each metron consisting of the pattern anceps, long,
short, long. Here, any syllable labeled as anceps could either be long or short, depending
on its nature and position. Furthermore, the meter allows for resolutions, turning any
long or anceps syllable into two short syllables if desirable. To illustrate, see the famous
lines from Seneca’s Medea, 170–171, in which the nurse pleads Medea not to kill her chil-
dren:

mŏr̆ıērĕ – cŭp̆ıō – prŏfŭgĕ – paēn̆ıtŭ̄ıt fŭgae
Mēdēă – f̄ıām – mātĕr ēs – cūı s̄ım, v̆ıdēs

You will die – I desire so – Flee! – I have repented of flight
Medea! – I will become her – You are a mother! – You see by whom

The first anceps has been resolved to two short syllables: mŏr̆ı.

2.2 Models for sequence labeling

The previous section has demonstrated how every syllable in a verse has a length. This
length can also be viewed as its label: long, short or elision. In natural language process-
ing (NLP) terms, the task at hand is one of sequence labeling, where every syllable in
the verse gets a label based on its natural or positional length.

Traditionally, sequence labeling has been using linear statistical models, such as Hidden
Markov Models (HMM) and Conditional Random Fields (CRF) [30] [37] [42]. Although

3Only the first two dactyls can be substituted by spondees.
4In practise, there is never a full stop within the hexameter: it flows semantically over into the

pentameter.
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achieving good results on various tasks, these methods rely heavily on hand-crafted fea-
tures and task-specific resources. For example, part-of-speech taggers for the English
language benefit from carefully designed and handcrafted word spelling features. These
are however costly to develop and, as mentioned, task-specific [32], making these models
difficult to adapt to new tasks or new domains [31].

In recent years, non-linear neural networks have been broadly applied to NLP problems
with great success. To illustrate, Collobert et al. [11] proposed a simple but effective feed-
forward neural network that independently classifies labels for each word by using contexts
within a window of fixed size. More recently, recurrent neural networks (RNN) [19], to-
gether with its variants such as the long short-term memory (LSTM) [17] [22] and gated
recurrent unit (GRU) [10] have shown great success in modeling sequential data.

In contrast to the features used by CRF models to label sequences, these non-linear neural
networks capture latent syntactic and semantic similarities between input sequences to
allow for successful labeling [3]. The input can, amongst others, be represented using
one-hot (integer) encoding, character encoding or word embeddings. These embeddings,
also known as word vectors, are trained on unlabeled data sets to capture the meaning
of words in a text corpus, which can assist in learning and generalisation. According to
Akbik et al., three types of embeddings exist [3, p. 1638]:

� Classical word embeddings [33] [39]. These are embeddings that are pre-trained on
large data sets to capture latent syntactic and semantic similarities over the entire
corpus.

� Character-level features [28] [31]. These are trained at runtime on task data in order
to capture task and text specific subword features.

� Contextualized word embeddings [12] [40] [41]. These capture word semantics within
the context in order to detect and capture the polysemous and context-dependent
nature of words.

It is important to note that although these neural networks often outperform their fea-
ture based counterparts, it is possible to synergise them, allowing augmentation rather
than replacement. Think for example about using hand-crafted features such as word
spelling and capitalisation patterns in combination with non-linear neural networks. For
example, hybrid approaches for sequence labeling can use a bidirectional LSTM fed with
aptly trained word embeddings and a subsequent CRF decoding layer [23] [31] for better
performance.

2.3 Related Work

There is a small amount of prior work on the scansion of Latin, the first being Pedecerto,
which is a rule-based Python program for automatic scansion of Latin hexameter and
pentameter verses developed by the Università di Udine [38]. It is part of the MusisQue
DeoQue (MQDQ) digital archive [36], which contains Latin poetry texts from the archaic
period to the seventh century CE. From this archive, it has successfully scanned 247k of
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the 263k dactylic verses available as of the time of this writing. These scansions allow
scholars to find and research verses based on metrical features (like hiatus and synalepha)
and metrical patterns.

Anceps is another computer-assisted tool by A. Fedchin [14] for scansion of Latin poetry,
differing from Pedecerto by using meter as a constraint. It does this by considering all
the possible ways the syllables in a verse might be labeled in order to be consistent with
the meter. To achieve this, a dictionary of natural vowel quantities is used to have a
ground truth about syllables in specific words. These dictionaries can be specified by the
user to be period and author specific frequency-based dictionaries. For example, using
the mentioned MusisQue DeoQue database, one can build such a dictionary from the
golden age poets Horace, Ovid and Vergil. These authors usually scan the a in patris, the
genitive of pater, as short, which Anceps will keep in mind when scanning new verses.
Additionally, Anceps can assign confidence scores for each scanned verse using scansion
frequencies retrieved from MQDQ. The program can furthermore be extended to scan
other verses, although its main focus is with iambic trimeter. Lastly, the program will not
label all ancipitia in a verse, leaving it up to the user to fill these in using their knowledge
of the Latin language.

Regarding the use of neural networks for scansion, Haverals, Kestemont and Karsdorp use
a recurrent neural network (RNN) in their 2019 paper Rekenen op Ritme to scan Dutch
accent based iambic meter from the Nederlandse Liederenbank, which is a database of
50k songs from Dutch literature between the sixteenth and eighteenth centuries [21]. To
disallow any absurd scansions, Haverals et al. use a semi-supervised method by utilising
an automated syllabification tool in combination with a self written automatic lexical
accentuation program. The idea being that the predicted accentuation must not be too
different from the natural accentuation of a word. With these constraints, the RNN was
trained and tested on 198 songs from various time periods and authors. Using binary deci-
sions on which syllables are accentuated or not, the model reached an overall accuracy of
91,91% on syllable level. Similar projects to scan modern languages are ZeuScansion [1]
and Scandroid [20] for English, Metricalizer for German [7], Scansion Generator [26] for
Dutch and Aoidos [34] for Portuguese.

Methodologically related is the 2019 paper Restoring ancient text using deep learning
by Assael et al. [5], which uses a bidirectional LSTM to recover missing characters from
damaged Ancient Greek inscriptions. The model makes it possible to handle long-term
context information and is efficient in dealing with missing or corrupted characters and/or
words. To train the model, Assael et al. use the PHI database, the largest digital corpus
of ancient Greek inscriptions [25]. From this database fully preserved texts are manually
corrupted to allow for training and testing. Having provided a concatenation of word and
character embeddings, the program, named Pythia, achieves a 30% character error rate,
compared to the 57% of human epigraphists.
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3 Data

3.1 Pedecerto dactylic meter data set

The first data set used for this thesis is created via the Pedecerto project as mentioned
in Section 2.3. From the project website it is possible to download XML files of scanned
dactylic poetry. We use the authors and texts seen in Table 15.

Author Text Verses Meter

Iuvenal Saturae 3,833 H
Lucretius De rerum natura 7,365 H
Ovid Metamorphoses 11,983 H
Persius Saturae 649 H
Vergil Aeneid 9,840 H

Propertius Elegiae 3,998 E
Ovid elegiae 18,832 E

Boethius De consolatione philosophiae 76 E
Catullus Carmina 795 E
Ennius Annalium fragmenta 422 H
Horace Ars poetica 476 H
Lucanus Pharsalia 8,059 H
Statius Thebais 9,739 H
Tibullus Elegiae 1,420 E

Table 1: List of dactylic texts and their lengths in number of verses: H denotes
hexameters, E elegiac couplets. Ovid’s elegiae are all his texts using elegiac couplets.

The first five authors were selected to serve as training texts for our hexameter models,
as these texts have various lengths, different genres and time periods, giving a represen-
tative yet not too temporally far apart sample of classical Latin poetry (see Table 5). The
impact of these variabilities will be tested in Section 5. To test generalisability to elegiac
couplets and train specialised elegiac models, the elegiae from Propertius and Ovid were
selected. These texts are lengthy examples of elegiac verse and therefore great candidates
to train a model on. The seven texts listed last are used as unseen test sets to evaluate
the models we created (see Section 5.1.6). These are therefore again of various lengths,
meters, genres and time periods.

To allow the sequence labeling models used in this paper to read the scansions encoded
in the Pedecerto XML files, the texts were converted into a syllable-label list. In the
XML, every line of poetry has entries for every word, with each one having a scansion.
For example, the second word of Vergil’s Aeneid, virumque, has the scansion 1c2A2b.
Here, integers denote the foot and letters indicate the position within this foot. Lastly,
uppercase is used for long syllables and lowercase for short ones. To illustrate, the first
syllable vi has the encoding 1c, which means that it is part of the first foot (1, ārmă
v̆ı), of which it is the third syllable (c, the third letter of the alphabet). As the letter is

5Corrupted or problematic lines as indicated by Pedecerto were not included to allow for the smooth
training of the models.
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lowercased, we know that the syllable vi is short. Now, as we only need the length labels,
integers are removed and the letters are converted into a length list based on their capi-
talisation. In the case of virumque, we will get the following list: [‘short’, ‘long’, ‘short’].
Using Pedecerto’s syllabifier, virumque is syllabified into [‘vi’, ‘rum’, ‘que’]6. Next, the
two lists are combined into a list of syllable-label tuples, which looks as follows: [(‘vi’,
‘short’), (‘rum’, ‘long’), (‘que’, ‘short’)]. This is then repeated for every word of every
verse of a text, with the result being saved to disk for later use.

To illustrate, the first line of the Aeneid can be seen in Table 2. Spaces are included to
keep track of word boundaries and are encoded as ‘-’ and labeled as space. Because this
label is predicted with 100% accuracy by the models in this research, we do not include
its scores in the results of Section 5.

Syllable Label

ar long
ma short
- space
vi short
rum long
que short
- space
ca short
no long
- space
tro long
iae long
- space

qui long
- space
pri long
mus short
- space
ab short
- space
o long
ris long

Table 2: Syllable-label list of the first line of Vergil’s Aeneid.

3.2 Anceps iambic meter data set

The second data set used is created from the Anceps project [14] and contains verses in
the iambic trimeter. More specifically, we will use the data set created and curated by

6To label elisions, we must notice that the elided word has one more syllable in text form than in the
scanned form, since the scansion approximates oral delivery. For example, ille might have the scansion
2A, meaning that il is long and that le is elided. The syllable le will therefore be labeled as elision.
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Fedchin et al. for their 2022 paper Senecan Trimeter and Humanist Tragedy [15], which
contains (amongst other passages) the proofread Anceps scansions of all ten plays at-
tributed to Seneca Minor. As briefly mentioned in Section 2.3, the program Anceps does
label some syllables as anceps instead of long or short. Since we do not want our models
to predict this label, we consider this data set noisy7.

Like the scansions made by Pedecerto, we converted those made available by Anceps
to syllable-label lists. In contrast to Pedecerto, Anceps provides scansions as follows
(Seneca’s Agamemnon line 392):

de*lu_br(a) e^t a_ra*s c[ae]li^t(u)m e_t pa^tri^o_s la^re*s

In order to create the syllable-label list, the provided string was split on whitespace.
We then extract special characters from every word and convert these to labels. To il-
lustrate, we extract *_() from de*lu_br(a), meaning [‘anceps’, ‘long’, ‘elision’]8. Next,
the remaining word delubra is syllabified using the CLTK syllabifier9. The syllables and
scansions are then combined into tuples, which form the syllable-label list of the entire
text as described in Section 3.1. The texts seen in Table 3 were used to create the Anceps
data set10. As these tragedies contain more than one meter type, only those lines with
the iambic trimeter were selected.

Although it is possible to train models on this noisy data set, we cannot use it for testing.
We want our models to predict whether a syllable is long or short: predicting the anceps
label is not interesting for our use case. We have therefore manually created a dedicated
test set containing around two hundred iambic trimeter lines of Seneca’s Agamemnon
(392–588)11. Taking the proofread data set by Fedchin et al., we resolved the ancipitia
using the dictionary and the rules of the iambic trimeter. This resulting noiseless data
set will be used to test our models. To prevent overfitting, these two hundred lines were
removed from the noisy Agamemnon training text.

7From a qualitative standpoint, this data set is not noisy at all. An anceps simply means that a
syllable can be either long or short according to its length and the meter. One would have to consult a
dictionary to find out whether the syllable is long or short by nature. For example, the -us in tellus is
always long, so an anceps on this syllable would resolve to long if the meter allows it. However, from the
standpoint of our machine learning models, the anceps is noise.

8Square brackets denote diphthongs, which are always long. See caelitum.
9The Classical Language Toolkit: see http://cltk.org/. This syllabifier differs ever so slightly from

the one used in the Pedecerto project, which is an improvement upon the former, though not available for
plain text. The trimeter test set (see last paragraph of this section) is syllabified by hand as the Pedecerto
project would to prevent inconsistencies between data sets. Differences in syllabification between the
Anceps and Pedecerto data sets include for example troi-ae versus tro-iae and should be inconsequential
to the models.

10The proofread data set by Fedchin et al. only contains Seneca as a classical author. The other texts
scanned are those by neo-Latin authors. These were not included in this thesis, as we focus on classical
texts and authors.

11These lines were chosen because their continuity, being from one single messenger story, and their
difficulty, containing names and various infrequently used nautical terms.
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Author Text Verses Meter

Seneca Agamemnon 394 T
Hercules Furens 913 T
Hercules Oetaeus 1,253 T

Medea 591 T
Octavia 532 T
Oedipus 637 T
Phaedra 829 T

Phoenissae 578 T
Thyestes 656 T
Troades 810 T

Table 3: Table of iambic trimeter texts and their lengths in number of verses.
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4 Methods

As demonstrated in Section 2.1, we need to label a sequence of syllables. In this thesis
we will experiment with three different machine learning methods to achieve this.

4.1 Conditional Random Fields

The first approach uses Conditional Random Fields (CRF), proposed by Lafferty et al.
in 2001 as an improvement on their Maximum Entropy Markov Models (MEMM) [27].
As their paper states, the critical difference between CRF and MEMM is that the latter
uses per-state exponential models for the conditional probabilities of next states given the
current state, whereas CRF uses a single exponential model to determine the joint prob-
ability of the entire sequence of labels, given the observation sequence. This means that,
in contrast to MEMM where the probability of the next state is computed given the
current state and the observation, CRF is able to compute all state transitions globally
in a single model. Additionally and in contrast to MEMM, the user can specify features,
which, using their weights, can compete against each other in the various states.

For the scansion of Latin, CRF allows for a window to be specified. Sliding this window
over every verse of every text will allow the model to get a sense of the rhythm in the
text. We specify this window as follows:

previous syllable ↔ current syllable ↔ next syllable

This sequence should encapsulate most of the direct influences syllables have on each
other in Latin poetry. For example, if the current syllable ends with a consonant and
the next syllable starts with one, we know that the current syllable should be labeled as
long (see Section 2.1). The CRF is further aided by hand-crafted features, which will be
explored in Section 5.

4.2 One-hot LSTM

The second approach uses the long short-term memory (LSTM) model, which was intro-
duced by Hochreiter and Schmidhuber in 1997 [22]. It is an improvement over recurrent
neural networks (RNN) in the sense that it can remember which parts of a context are
important for the long and the short term. This is an interesting feature for scansion,
as some labels are purely dependent on the place of their syllable within the verse (see
Section 2.1). Additionally, as mentioned in Section 2.2, an LSTM model captures latent
syntactic and semantic similarities between input sequences to allow for successful label-
ing. This latent-based approach contrasts nicely to the feature-based approach of CRF.

Because an LSTM does not allow the input of character strings, we will first try a model
where all syllables are one-hot encoded (resulting in a sparse matrix). To illustrate, the
first part of Vergil’s Aeneid would look as follows:

ar - ma - space - vi - rum - que - space - ca - no

10 - 12 - 3 - 26 - 18 - 19 - 3 - 11 - 15
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Furthermore, as the LSTM requires all input to be of the same length, which verse
clearly is not, post padding was used to make all lines of even length. Regarding the
structure of the one-hot LSTM, an embedding layer with fifty output dimensions was
used, followed by a dropout of 0.1 to prevent overfitting. Subsequently a bidirectional
LSTM was implemented with a recurrent dropout of 0.1. The model was fitted via a
softmax activation and the rmsprop optimiser, using a batch size of 32.

4.3 Embeddings based LSTM

The third approach uses an LSTM like described in the previous section, but uses em-
beddings as input instead of one-hot encoded integers. Intuitively, encoding syllables as
integers loses information. For example, encoding ar as 10 and ma as 12 does not show
the first syllable ending with a consonant and the second one starting with one, indi-
cating that ar should be long. We therefore extend the previous approach by using an
LSTM with word embeddings as input. To achieve this, we employ the Flair NLP frame-
work by Zalando [4], which allows us to easily apply natural language processing models.
For example, Flair supports named-entity recognition, part-of-speech tagging and sense
disambiguation for various modern languages. Interesting for our use case is their text
embedding interface, which allows us to test and combine different word embeddings and
use these as input for an LSTM.

In contrast to using the less informative integers as input, word embeddings are dense
vector representations of words, which are trained based on word usage in a text. This
means in essence that similar words have similar vectors to represent their similar mean-
ing. Furthermore, these vectors are of lower dimensionality than the sparse one-hot dic-
tionary used in the previous section. This is beneficial for the majority of neural network
architectures [18], as these dense vectors trained on large amounts of text are a richer
representation of words than only the words themselves.

Regarding embeddings, the main question we address in this thesis is to find out whether
these word embeddings and the generalisation they bring can also work for syllables. We
might be able to know a word by the company it keeps [16], but does the same hold for
syllables? In other words, does the company of syllables convey latent information about
their lengths? We tackle this question in Section 5.2.2 and onwards.

4.3.1 Embedding types

As briefly mentioned in Section 2.2, multiple ways of training word embeddings exist. In
this paper, three different embeddings are experimented with:

CharacterEmbeddings are character-level embeddings of words, which are able to
capture low level morphological and orthographic information [28, pp. 260–261]. This
sensitivity to lexical aspects within words derives from the use of characters as atomic
units [29, p. 1528], which is interesting for our use case: the combination of characters
conveys information about the length of the syllable. Another benefit is the compactness
and simplicity of the model, as it stores only one vector per unique character. Its main
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difference from traditional word representation models is therefore having only a single
vector per character type, which are concatenated together to form word embeddings [29,
pp. 1521–1522]. We use the implementation provided by Flair to create these embeddings.

FastTextEmbeddings are word embeddings with subword features [8]. Here each word
is represented as a bag of character n-grams, with each character n-gram being repre-
sented by a vector (comparable to the Skip-gram model). Word embeddings are then
represented as the sum of these representations. In essence, FastText learns word rep-
resentations by taking subword information into account, which allows for learning the
specific morphology of words. In addition to the subword feature detection, FastText can
handle unknown words/syllables, as their embeddings are created from their substrings.

FlairEmbeddings are contextualized character-level embeddings [3]. To create these, a
character language model is taken to model words as sequences of characters, without
any explicit notions of the words themselves. Next, these character embeddings are put
together and contextualised by their surrounding text, which allows for the same word
to have different embeddings depending on its use in the context. Akbik et al. found that
these embeddings captured syntactic-semantic word features well and could disambiguate
words in context [3, p. 1647], which would be apt for our use case. A syllable is for ex-
ample long by position based on its context.

In order to train these three types of embeddings, we create one large text from all the
syllabified training texts (first seven texts from Table 1). Here, we represent syllable
boundaries with a whitespace and word boundaries with a hyphen. For example, the first
three lines of the Aeneid would look like this:

ar ma - vi rum que - ca no - tro iae - qui - pri mus - ab - or is
i ta li am - fa to - pro fu gus - la vi ni a que - ve nit
li to ra - mul tum - il le - et - ter ris - iac ta tus - et - al to
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5 Analysis and Results

This chapter will consist of three main parts. In the first part, a CRF and one-hot LSTM
model will be trained and tested on dactylic verse to examine whether hexameters and
pentameters can be scanned and whether different training size, author, genre and time
period influence results. The second part will focus on scanning iambic trimeter using
the one-hot LSTM and LSTMs with different combinations of word embeddings as input.
This is done by training the models on dactylic and on iambic trimeter. The third part
tests the best performing models on small test sets of five additional meters to get a
feeling for the accuracy of the different models.

The quality of labels is given by their F1-scores. Here, we call a score of 0.85 or higher
satisfactory, 0.95 or higher good and scores of 0.98 or higher excellent.

5.1 Scanning dactylic meter

Recalling the idea of this thesis as written in the Introduction, we will first train models
on the dactylic hexameter. If a model is able to scan this meter well, we will investigate
its ability to scan the similar dactylic pentameter. The best model will then be used to
scan iambic trimeter in Section 5.2.

5.1.1 CRF and one-hot LSTM

The first question that needs answering is to what extent machine learning is capable of
scanning Latin poetry. To find out, we picked Vergil’s Aeneid as a testing ground, which
is one of the longest continuous pieces of poetry from the classical Latin period. The text
consists of around 10,000 hexameter lines with little over 150,000 syllables. On this text,
we train and test a CRF and one-hot LSTM model.

Tabel 4 shows the F1-scores12 for the CRF and one-hot LSTM models after k-fold cross-
validation (k = 5). As is clearly visible, the CRF model achieves satisfactory results of
0.927, 0.880 and 0.951 for the long, short and elision labels respectively. It is however
completely outclassed by the one-hot LSTM model13, which has excellent F1-scores of
0.996, 0.993 and 0.990 for the aforementioned labels.

Long Short Elision

CRF 0.9269 0.8800 0.9507
One-hot LSTM 0.9956 0.9929 0.9895

Table 4: Model quality (F1-scores) of the CRF and one-hot LSTM models on Vergil’s
Aeneid using k-fold cross-validation (k = 5).

12We show the F1-scores in this and following experiments, as the precision and recall scores were
extremely similar for the one-hot LSTM on the dactylic meters. The CRF shows more variation: Long,
precision: 0.9402, recall: 0.8924. Short, precision: 0.8416, recall: 0.9119. Elision, precision: 0.9335, recall:
0.8788.

13The LSTM model was trained for 25 epochs. Its structure is given in Section 4.2. Experiments with
this structure such as additional layers or more nodes did not yield better results.
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As mentioned in Section 4.1, a CRF model can be enhanced with features. In addition to
solely providing the previous, current and next syllables, two enhancements were tested.
First, the last and last two characters of the previous and current syllables were added
as features, as well as the first and first two characters of the next syllable. These were
specifically featured like this, because these two letters, either vowel or consonant, have
the most influence on the label of any syllable. To illustrate, the feature dictionary of qui
from the first line of the Aeneid, arma virumque cano troiae qui primus ab oris, looks as
follows:

1. qui

(a) last character current syllable: i

(b) last two characters current syllable: ui

(c) first character next syllable: p

(d) first two characters next syllable: pr

(e) last character previous syllable: e

(f) last two characters previous syllable: ae

In this line, feature (d) results in qui being long by position (two consonants in the next
syllable), which should be useful information for the CRF.

The second enhancement specifies whether a syllable contains a diphthong, which is al-
ways long in Latin poetry. Additionally, a boolean was specified whether the first or last
syllable was a consonant. In all three cases, the first and last syllable of a sentence were
labeled with the beginning-of-speech (BOS) and end-of-speech (EOS) tags respectively.

The first enhancement of featuring first and last characters of syllables outperformed the
base model slightly, with around 0.01 to 0.02 improvement in F1-score for all labels. Inter-
estingly, the addition of the diphthong and consonant features decreased quality slightly.
Therefore, the best CRF model we could create contains the BOS and EOS tags, the
entire syllables and the first enhancement as described.

Therefore, to conclude this subsection, the one-hot LSTM model clearly outperforms the
CRF model in terms of F1-scores on Vergil’s Aeneid. We will thus continue with the
LSTM model in the next sections.

5.1.2 Effect of different genres and time periods

As seen in the previous section, the one-hot LSTM model is capable of scanning Vergil’s
epic from the first century CE. But what about other authors, genres and time periods?
To evaluate this, four additional authors were selected and tested with the one-hot LSTM.
Like before, the LSTM model was evaluated on the text of the given author using k-fold
cross-validation (k = 5) and 25 epochs. From Table 5 we learn that the one-hot LSTM
is able to achieve good to excellent F1-scores for all labels over all authors (excluding
Persius), genres and time periods. To illustrate, the quality of the Iuvenal model does
not differ too much from the one of Vergil, although being from a much later period and
an entirely different genre. However, as mentioned, there is one outlier: Persius’ model
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Author Title Genre Period Verses
F1-score

Long Short Elision
Iuvenal Saturae Satire 2nd CE 3,833 0.9812 0.9695 0.9490
Lucretius De rerum natura Epic 1st BCE 7,365 0.9943 0.9910 0.9842
Ovid Metamorphoses Epic 1st (B)CE 11,983 0.9963 0.9952 0.9829
Persius Saturae Satire 1st CE 649 0.9135 0.8458 0.4382
Vergil Aeneid Epic 1st BCE 9,840 0.9956 0.9929 0.9895

Table 5: One-hot LSTM weighted average F1-scores for different authors, genres and
time periods.

performs much worse, especially on the elision label. Since his text has the shortest length,
we will investigate the impact of training set size in the next section.

5.1.3 Effect of training set size

As seen in Table 5, a model trained on the text of Persius scores relatively low with F1-
scores of 0.91, 0.85 and 0.44 for the three labels. This might be explained by the number
of lines in the training set. Notice for example how the second lowest scores are those by
the Iuvenal model, which is trained on the second smallest training set. A valid question
is therefore what training size an LSTM needs for good results. In other words, how does
the quality of a model develop with the training set size? To answer this, all texts were
normalised to 3,600 randomly picked lines (except Persius of course). For every text a
test set was created of 720 lines via an 80/20 split. Then, starting with a small training
set of 100 lines, models were trained for 25 epochs and tested on the test set. When
finished, the training sets were repeatedly increased with 100 lines and tested again, until
all potential training lines were used.

As seen in Figure 1, a minimum of 1,000 lines is needed for an F1-score of 0.95. Further-
more, a training set of 3,000 lines seems to be the threshold for a quality of 0.98. The
main takeaway is that more lines in the training set is advantageous for the model, as
seen by the high scores of the larger texts in Table 5.

5.1.4 Cross author evaluation

In this section we address the question to what extent a model trained on one author
or text is able to scan the lines of another author or text. In Figure 2 three plots are
shown for each of the three labels. In each plot the F1-scores are given to show the model
quality of the given predictor (y-axis) on the given predictee (x-axis). For example, if we
train a model on the entire text of Iuvenal and let it predict the verses of Lucretius, we
see F1-scores of 0.9774 for the long label and 0.9618 and 0.9267 for the short and elision
labels respectively. For the diagonals the cross-validated results from Table 5 are used:
training on Vergil’s entire Aeneid and testing the model on that same text would after
all return overfitted results.

Two things are worth discussing here. First, a model trained on a sufficiently large num-
ber of lines is capable of scanning not only the training author, but also other texts,
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Figure 1: One-hot LSTM F1-scores for different training set sizes on test sets of 720
lines per author.

independent of genre and time period. Although the F1-scores are highest within the
same author, the difference overall is not higher than 0.03. For example, Vergil predicts
the long label for Ovid with a quality of 0.9917, which is almost as good as Ovid pre-
dicting itself (0.9963, see Table 5). Second, we noticed in the previous two sections that
a model cannot be trained on the small number of lines from Persius. However, the other
models are performing beautifully on Persius’ text, with each model being able to scan
all Persius’ labels with a good quality of more than 0.95. This in contrast to the Persius
model itself, which has great difficulty predicting the short and elision labels of other texts.

Therefore, in conclusion, we do not need a large quantity of text from a specific author
in order to scan their text accurately: within the hexameter meter, we can use a model
trained on another larger text, independent of time and genre.

5.1.5 Generalisability to elegiac couplets

In the previous sections we successfully trained an LSTM to scan hexameters. To inves-
tigate the model’s generalisability to other meters, we will now examine elegiac couplets,
which consist, as related in Section 2.1, of pairs of a hexameter verse followed by a pen-
tameter verse. We ask two questions. First, to what extent is the one-hot LSTM model
able to scan an elegiac couplet when trained on this meter? And second, what is the
extent of the generalisability between the two meters?

The first answer can be found in Table 6, showing good F1-scores for models trained on
Ovid’s and Propertius’ elegiac couplets (5-fold cross-validation and 25 epochs were used
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(a) long (b) short

(c) elision

Figure 2: Cross author evaluation F1-scores for the one-hot LSTM model.

again, see Table 1 for more information about the texts). The one-hot LSTM does not
seem to have a problem with scanning a combination of hexameters and pentameters,
especially when given an adequate training set as is the case with Ovid’s elegiae (18,832
lines).

Long Short Elision

Ovid 0.9966 0.9960 0.9832
Propertius 0.9743 0.9656 0.9135

Table 6: Model quality (F1-scores) of the one-hot LSTM model on Ovid’s and
Propertius’ elegiae.

To answer the second question, Vergil’s Aeneid is added to represent a model trained on
hexameters. Figure 3 shows that although Vergil is able to predict the labels from Ovid
and Propertius well enough (0.88 for long and 0.80 for short), it is clearly outperformed
by both elegiac models. Propertius, having only 3,998 verses to train on, outperforms
Vergil with 9,840 training verses when testing on Ovid (long and short labels). In line
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(a) long (b) short

(c) elision

Figure 3: Cross author evaluation F1-scores for the one-hot LSTM model on elegiac
couplets and Vergil’s Aeneid.

with what we have seen before, the larger training set of Ovid directly results in a higher
model quality when compared to Propertius. Lastly, we see that the Vergil model is still
best in predicting Vergil (cf. Table 5). It is however interesting to see Ovid’s elegiae per-
forming this well on Vergil’s hexameters. This indicates that a model trained on elegiac
couplets, being hexameters and pentameters, is able to scan both hexameter and pen-
tameter indifferently.

5.1.6 Best training set for scanning dactylic meter

The previous section suggested that it is possible to train a model on pentameters and
hexameters to achieve a high quality on texts of one or both meters. It is therefore
now worthwhile to find out which training set returns the best results for scanning both
dactylic meters independently or simultaneously. We create four new models. The first one
is only trained on Vergil’s Aeneid called Verg. The second one is trained on the hexameter
texts of Iuvenal, Lucretius, Ovid, Persius and Vergil, and is called Hex. Our third model
is trained on the elegiac couplets of Ovid and Propertius, and is called Ele. The fourth
and final model is trained on the texts of Hex and Ele combined, and is called Hex ele.
These four models are then tested on seven unseen texts to evaluate their performance
(see Table 1). The texts of Boethius, Catullus and Tibullus feature both hexameter and
pentameter verses, with Ennius, Horace, Lucanus and Statius having only hexameters.
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(a) long (b) short

(c) elision

Figure 4: One-hot LSTM model quality (F1-scores) when combining hexameter and
elegiac texts. Models tested on unseen dactylic texts.

The results are shown in Figure 4. The first point of interest is how the elegiac model
scores better on elegiac texts than on hexameter texts, whilst the hexameter model scores
better on hexameter texts than on elegiac texts. Additionally, the Verg model is scoring
similar or lower than the Hex model across labels on almost all authors14. Most notewor-
thy is the result of the Hex ele model, which consistently outperforms the other models.
Table 7 shows the average F1-scores for each label over the seven unseen authors, which
clearly demonstrates the superiority of the Hex ele model. This confirms again that more
text is advantageous. Furthermore, texts with the dactylic meter, either hexameter or
pentameter, can be scanned most accurately when a model is trained on both pentame-
ters and hexameters.

14The exception being Tibullus’ elegiac couplets, on which the hexameter models struggle as a whole
for long and short.
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Long Short Elision

Ele 0.9894 0.9818 0.9829
Hex 0.9572 0.9278 0.9880

Hex ele 0.9936 0.9890 0.9924
Verg 0.9544 0.9242 0.9477

Table 7: Averaged F1-scores from the created one-hot LSTM models on seven unseen
dactylic texts.

5.2 Scanning iambic trimeter

In the first part of this chapter we have successfully taught a one-hot LSTM to scan
hexameters and pentameters. The second part will investigate whether the LSTM learned
the core principles and patterns of scansion, and whether it can now apply these to scan
a completely different meter: the iambic trimeter.

5.2.1 One-hot generalisability to iambic trimeter

The previous sections demonstrated a rather seamless transition from scanning hexam-
eters to scanning pentameters. Using the Hex ele model, we will now investigate the
generalisability to the iambic trimeter. We will do this by testing the model on the
Agamemnon data set as described in Section 3.2. Table 8 shows the results. We add the
weighted average F1-score, which is the mean of all per-class F1-scores while considering
each class’s support. This is interesting as the elision label has a high score, but low class
support (± 17,000 elisions versus 500,000 long and 335,000 short labels in Hex ele).

Long Short Elision Weighted average

One-hot LSTM 0.7463 0.5298 0.9143 0.6646
CRF 0.8431 0.7488 0.8085 0.8046

Table 8: One-hot LSTM and CRF F1-scores on the trimeter test set.

It is clear that our one-hot LSTM model, when trained on dactylic meter, is not very ca-
pable of scanning iambic trimeter. Alas, it is even outperformed by a CRF model (trained
on the Hex ele texts) on the long and short labels. Although the quality for elision re-
mains satisfactory, it is clear that further investigation towards the scansion of trimeter
is needed15.

5.2.2 Trimeter and word embeddings

This section will improve the one-hot LSTM by changing its input from integers to
word embeddings. As discussed in Sections 2.2 and 4.3, word embeddings convey more
information than simple integers. In this section we will therefore investigate whether

15Training the LSTM for less epochs to possibly prevent overfitting on the dactylic meter did not yield
better results. Epochs of five, ten, fifteen and twenty were tested.
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embeddings contain phonological information and improve model quality and generalis-
ability. This will be done with the Flair framework (see Section 4.3).

As related in Section 4.3.1, we will experiment with Character, FastText and Flair em-
beddings. Table 9 shows the F1-scores for the embeddings and the tried combinations
of embeddings. As before, we train and test on the Hex ele data set using k-fold cross-
validation (k = 5). We notice that the highest score is reached when combining all three
embeddings. We will therefore use this combination in the following experiments, calling
this model the embeddings LSTM. If we compare the results with Table 7, we see that
the embeddings LSTM outperforms its one-hot counterpart ever so slightly. The question
now is whether embeddings as input proves useful on the iambic trimeter data set.

Long Short Elision Weighted average

Character 0.9711 0.9559 0.9013 0.9640
FastText 0.9931 0.9901 0.9782 0.9938
Flair 0.9834 0.9759 0.9159 0.9847

FastText + Flair 0.9955 0.9936 0.9905 0.9961
Character + Flair + FastText 0.9965 0.9951 0.9909 0.9969

Table 9: F1-scores of different word embeddings tested on the Hex ele data set using
k-fold cross-validation (k = 5).

First we train the embeddings LSTM on the Hex ele data set using 25 epochs and a
70/20/10 split for training, testing and validating respectively. Table 10 shows the results
of both LSTM models when testing on the trimeter data set. The embeddings LSTM
clearly loses from the one-hot model, with much lower F1-scores for the short and elision
labels. It therefore seems that using word embeddings as input does not improve the gen-
eralisability of the dactylic LSTM to the trimeter16. With regards to this generalisability,
a more complex model seems to be counter productive.

Long Short Elision Weighted average

One-hot LSTM 0.7463 0.5298 0.9143 0.6646
Embeddings LSTM 0.7425 0.4572 0.8552 0.6319

Table 10: Dactylic one-hot and embeddings LSTM F1-scores on the trimeter test set.

Therefore, in summary, it does not seem that the tested LSTM models, when trained on
dactylic meter, are easily generalisable to the iambic trimeter.

5.2.3 Weak supervision based on patterns

The previous section demonstrated that generalisability from dactylic meter to the trime-
ter does not achieve the high accuracy we aim for. This section will therefore test whether
scanning trimeter is simply too difficult, or whether it can be done when training on a

16Training with different embedding combinations did not yield better results. Tested on the trimeter
test set were CharacterEmbeddings, Flair, FastText and FastText + Flair.
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trimeter data set. Using the noisy data set as described in Section 3.2, the one-hot and
embeddings LSTMs, as well as the word embeddings themselves, are trained again. The
only difference is that we do not allow the label anceps to be predicted by the models.
For example, if the model is most confident that the syllable in question is an anceps, we
check whether long or short has a higher confidence: we then go with the winner. The
results can be seen in Table 11, which shows a large improvement in model quality for
the one-hot LSTM when trained and tested on iambic trimeter. The embeddings model
in contrast is performing worse with this data set, reaching only half the F1-score for the
short label. Similar results were seen when training the word embeddings on the Hex ele
data set instead of on the 7,193 lines of the noisy Anceps data set. Explanations for this
bad performance could be the rather small data set, or the embeddings model having
trouble with the noise. For example, when asking the model on its second most confident
label after anceps, it wants to predict elision and space rather than long and short. As
we do not allow the former two labels to be predicted, we cannot put much confidence in
its decision for either long or short.

Long Short Elision Weighted average

One-hot LSTM 0.8643 0.8370 0.8966 0.8543
Embeddings LSTM 0.7123 0.4081 0.8194 0.7040

Table 11: F1-scores for the one-hot and embeddings LSTM models trained on the noisy
Anceps data set and tested on the trimeter test set.

5.3 Scanning other meters

The scansion of iambic trimeter is difficult for a dactylic model. But does this mean that
the dactylic LSTM cannot scan any other meters, or that it is just unable to scan the
trimeter? We therefore need to answer the question to what extent we can generalise the
machine learning models to other meters. To do this, we selected five additional meters
(see Table 12) and manually scanned around ten lines for each. Although this returns
data sets that are far too small to draw reliable conclusions, it does give us an indication
about the generalisability. Having tested the CRF, one-hot and embeddings LSTMs again
on these texts, we see the results as shown in Table 13. As with the trimeter, the one-hot
LSTM outperforms the embeddings LSTM, although both show low F1-scores for the
short label. More importantly however is that both are outclassed by the CRF, which
achieves similar results on the new meters as it did on the trimeter. It therefore seems that
the simple CRF is the best model when generalising to other meters, with the LSTMs
preferring to be trained and tested on the same metrical system, preferably without noise
in the data set.
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Author Title Meter Lines Syllables

Seneca Medea Anapest 787–796 102
Seneca Medea Glyconeus 75–92 144
Catullus Carmina Hendycasyllable 1.1–10 115
Seneca Medea Iambic dimeter 849-855 60
Seneca Medea Trochaic tetrameter 740–747 127

Table 12: Information on the five data sets with different meters.

Meter
CRF One-hot LSTM Embeddings LSTM

Long Short Elision Long Short Elision Long Short Elision
Anapest 0.89 0.85 1.00 0.81 0.62 1.00 0.82 0.66 1.00
Glyconeus 0.87 0.75 n/a 0.82 0.53 n/a 0.79 0.48 n/a
Hendycasyllable 0.84 0.76 0.89 0.76 0.51 0.89 0.75 0.45 0.89
Iambic dimeter 0.83 0.70 n/a 0.77 0.41 n/a 0.78 0.42 n/a
Trochaic tetrameter 0.86 0.77 1.00 0.78 0.59 1.00 0.78 0.53 1.00

Table 13: CRF, one-hot LSTM and embeddings LSTM F1-scores for different meters
when trained on the Hex ele data set.
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6 Discussion

This thesis tried to answer the question to what extent machine learning models are
able to scan more complex metrical systems when trained on simpler ones. The previous
section showed that the LSTM models performed very well when trained and tested on
the dactylic meter, and badly when trained on this meter and tested on another. By car-
rying out testing on larger data sets of verses in meters beyond the dactylic and iambic,
this finding could be corroborated, but there is sufficient evidence from these results to
suggest this trend. It is therefore worth discussing what improvements could be made in
future research.

The first improvement relates to the syllabification of the Latin verses, which has been
applied rather rigidly to the words. For example, in the spoken language, a word like
sacrum would be syllabified as să-crum, with a short ă. However, a poet could use their
poetic freedom to read sacrum as sāc-rum: here the first syllable would take longer to
pronounce and would therefore be scanned as long. Additionally, the poet could require
letters from following syllables to be taken with previous syllables. For example, the words
leḡıt autem would, in the flow of the meter, be pronounced as leğı-tautem, turning the
long ı̄ into a short one. This playfulness and nuance is lost in the rigid syllabification
used in this thesis. As a solution one could remove all whitespaces and see the verse as a
continuous string of sounds. This would mean that the model has to label specific parts
of this continuous string, determining for itself which vowel needs which label. It would
be extremely interesting to see whether we could provide the following single input:

armavirumquecanotroiaequiprimusaboris

and retrieve a list of fifteen labels from this line. In that case, the syllabification as a
whole is unnecessary and nuances might be picked up more easily by the program. This
could then also help the flexibility of the model when we train on the dactylic meter and
test on others. However, these exceptions are far outnumbered by the regular instances
which should experience no adverse effect from the used syllabification. The suggested
model could thus result in a worse performing model as well.

The second improvement is rather small and has to do with the pre-processing of the
texts, which lowercased all verses. This has been done because some text editions like to
start a sentence with a capital, even though Romans only used capital letters, therefore
having no distinction between the two cases. In essence, this means that the Ar from
Vergil’s first line would be the same entity as any other ar in the text. However, in the
case of proper names, we lose accuracy, as these often have some uncommon scansions,
especially if they are from Greek origin. Indeed, after a qualitative investigation of Vergil’s
Aeneid, many lines with Greek proper names were scanned incorrectly. Although these
are also hard for students, it might be worthwhile to investigate any improvement when
allowing capitalisation for proper names.

Regarding the experiments, normalisation improvements should be made in future re-
search. For example, in Section 5.1.6, the texts of Ovid and Vergil are directly compared
to each other. However, Ovid’s model has around twice as many lines to be trained on
as Vergil’s. We allowed this because normalisation in combination with Propertius would
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bring the number of lines down to four thousand lines, which would introduce the problem
of having not enough training verses. Nevertheless, it does give Ovid’s model an unfair
advantage when compared one-to-one with Vergil. The same holds true when comparing
the Hex ele with the Hex and Ele data sets.

In the same vein, we compare results from the one-hot LSTM with the embeddings
LSTM. Although compared when trained on the same texts, and both for 25 epochs, the
structures of the models might differ, as Flair treats its LSTM implementation as a black
box. To illustrate, our one-hot LSTM has an embeddings layer with fifty dimensions,
followed by a dropout layer and one bidirectional layer with one hundred dimensions.
For the embeddings LSTM we used the same number of neurons and the same dropout.
However, the exact structure we could not replicate, as Flair does not allow tinkering
with its LSTM structures without making substantial changes to the source code. Future
comparisons should therefore be made with identical LSTM implementations to truly
compare between integer and embedding inputs. Because Flair does not allow such cus-
tomisation as of the moment of this writing, a custom implementation might be necessary.

Staying with the topic of embeddings, more interesting embedding types exist such as the
Pooled Flair Embeddings [2] and ELMo Embeddings [40], which could result in better
performance. Additionally, other machine learning methods that can extract syntactic
and phonological information could be tried. Especially those that can work with char-
acter strings, like the CRF model, as these can directly read the important information
about length embedded in the letters themselves. If staying with syllables as input, it
would be interesting to add word features to each syllable. For example, the syllable ma
could have the feature word stem being mater. The model should then learn that this
syllable is always long.

Regarding the evaluation on the models, we started with hexameters, moved to elegiac
couplets and the iambic trimeter before ending with five additional meters. It would be
worthwhile to create test sets for multiple meters beforehand and evaluate models on
all sets simultaneously. Now we disregarded the CRF early because of the better results
from the LSTM on the hexameter. Regarding generalisability to other meters, the simple
CRF clearly outperformed the more complex LSTMs, which became apparent only later
because of the approach taken in this thesis. Future research could therefore benefit from
improvements to the CRF model, for example increasing the window size or the addition
of more complex features as mentioned in the previous paragraph.

Lastly, an in-depth qualitative analysis of the scansions made by the dactylic model on
other meters should be performed. This could tell us where and why the model goes wrong,
which could shed light on possible improvements and fixes. Most probably the increased
variability between the hexameter and trimeter is at play. In dactylic hexameter there is
a binary decision between dactyls and spondees, regardless of long and short syllables.
In contrast, iambic trimeter has no underlying binary decision in the same way, because
of resolutions (turning an anceps or long syllable into two short ones), which makes the
distinction between elements of the meter fuzzier. The decision for resolution is simply
more complex than choosing between a dactyl and a spondee, which likely results in the
observed lower model quality when training on dactylic meter and testing on trimeter.
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7 Conclusion

In this thesis we tried to answer the question to what extent machine learning models, in
particular neural networks, are able to scan more complex Latin metrical systems when
trained on simpler ones? Here the idea was to let models learn the principles of Latin
scansion on the dactylic meter and to apply these to other meters. We find that both
CRF and LSTM models are able to scan the hexameter meter, with the latter outper-
forming the former. We furthermore found that the LSTM is able to scan the dactylic
meter indifferent of author, genre or time period, but requiring a minimum training set of
3,000 verses for F1-scores of 0.98 and higher. The generalisability between metric systems
using an LSTM seems however harder, as the LSTM, having either one-hot encoding or
word embeddings as input, did not produce satisfactory results when scanning the iambic
trimeter and the other meters tried. We did see more successful results for the one-hot
LSTM on the iambic trimeter when training on a noisy trimeter set of Senecan texts.
This approach is however not feasible for other meters, as there are simply not enough
verses handed down to us to reliably train an LSTM on. This thesis therefore found that
the best way to scan different meters when trained on the dactylic meter is to use the
CRF model with customly created features. However, the quality of the model needs
improvement for it to be used in the field of Classics.

As mentioned in the discussion, future research could benefit from a rethinking of the
input. The experiments showed that machine learning is capable of scansion and that it
benefits from having the entire verse as input, as seen with the LSTM. However, the way
the Latin words are syllabified to serve as input might be too rigid. Additionally, convert-
ing the syllables to integers or word embeddings might lose the phonological information
embedded in the letters themselves. It would therefore be worthwhile to investigate a
machine learning model that can read the letters of the entire verse as a continuous se-
quence of sounds and label these accordingly.

To facilitate future research and the reproduction of our experiments, we have released
our code, data sets and experiments on Github: https://github.com/Ycreak/Latin_
scansion_with_neural_networks.
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