
Master Computer Science

SNet : An Attention Mechanism Based Deep
Neural Network For URL Classification

Name: Saket Narendra
Student ID: 2759330
Date: 27/06/2022
Specialisation: Artificial Intelligence
1st supervisor: Dr. E.M. Bakker
2nd supervisor: Prof. Dr. M.S.K. Lew

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Acknowledgements

” Parasparopagraho J̄ıvānām ”

” Souls render service to one another ”

Mahavira, 24th Tirthankara of Jainism

First and foremost, I would like to thank the Gods for their blessings and strength in every step
of life.

I want to express my deep and sincere gratitude to my manager and mentors from the Advanced
Technology Team at Irdeto, Tasnim Jemli, Shane O Meachair, and Jessica Alecci, for imparting
invaluable knowledge, guidance and allowing me to conduct research. It was a great privilege
and honour to work alongside you. I would also like to extend my gratitude to my thesis
supervisors, Dr E.M. Bakker and Prof. Dr M.S.K Lew, for their critical remarks throughout the
thesis.

Last but not least, I would like to thank my father, Air Vice Marshal B Narendra Kumar,
my mother Smitha B.V, my brother Lieutenant Commander Ankit Narendra, my sister-in-law
Sarvani Muppane, our beloved dog Casper, friends and well-wishers for always supporting me.

It would not have been possible without your support and guidance.

Thank You.

2

Abstract

Malicious URLs that lead to malware, phishing attacks or which contain pirated digital
content are among the most common ways to deceive individuals into frauds, misdirect
to acquire valuable data, and illegally obtain movies, games, and other recreational
content. This work discusses differentiating between malicious and benign websites and
can be extended to any URL binary classification task. As baselines, several experiments
on large-scale datasets were conducted with two tree-based ensemble machine learning
models, namely the Random Forest and XGBoost classifier and the deep learning model,
URLNet. We also illustrate the importance of features present in the URL, which affect
the models’ predictions. Finally, we propose two novel methods involving an attention
mechanism, SNet and SNet v2, which have shown certain improvements over the baseline
methods.

Key Words: Malicious URLs, Machine Learning, Attention Mechanism, Cybersecurity

3

Contents
1 Introduction 5

2 Related Work 6

3 Fundamentals 8

4 Baseline Methods 11
4.1 Random Forest Classifier . 12
4.2 XGBoost Classifier . 12
4.3 Data Pre-Processing for Random Forest and XGBoost 13
4.4 URLNet . 16

4.4.1 Architectural Setup . 16

5 SNet 19
5.1 Attention Mechanism . 19
5.2 SNet v2 . 21

6 URL Dataset and Analysis 22
6.1 Dataset . 22
6.2 Error Analysis . 26

7 Experiments and Results 31
7.1 Results : Tree-Based Ensemble Machine Learning Models 31
7.2 Results : Deep Neural Network Models . 33

8 Conclusion and Future Scope 37

A Appendix 42
A.1 Tree-Based Ensemble Machine Learning Models 42
A.2 Deep Neural Network Models . 47

4

1 Introduction

Cybercriminals have become increasingly active in the past decade due to increased global
internet usage. These actors develop malicious websites that can pilfer valuable data and use
them in unethical or illegal ways. The malicious websites often masquerade as legitimate links,
which deceive people into clicking on them, consequently giving access to the cybercriminals to
their personal information. Websites that lead to phishing scams are among the most common
methods to steal money and information from people and often occur in emails and URLs.

URL stands for Uniform Resource Locator[1], and it is the address of a particular source of
information on the web. A URL comprises several parts, some of which are necessary to access
the web page, such as the scheme, domain name and path to the file, whereas other parts
capture features such as parameters and anchors. The structure of a URL is illustrated in
Figure.1. An example of a malicious URL being ’http://www.scandals.co.nz/’ and a benign
URL being ’http://members.tripod.com/russiastation/’.

Figure 1: An example of a URL divided into multiple parts[1]

Cybercriminals may also use URL shortening tools to shorten the link and embed malware,
include suspicious words and more special characters to masquerade malicious URLs as genuine
or benign URLs that often lead to scams. The same goes for websites that host entertainment
content. The resources are illegally obtained and posted on free-to-use websites where anyone
can download the content without paying. The developers of these pirated websites make
multiple mirror links to the same website, so even if one of the websites has been removed,
the others will continue to provide the streaming content, which might also contain malware.
Many resources are utilized for creating the content and should be safeguarded from illegal
redistribution[2].

For a long time, the task of URL classification, whether containing malware, explicit content,
or ones that lead to phishing scams, has been done manually. These approaches, however, are
very labour intensive and can consume much time in a fast-changing digital world. Many URL
classifiers[3][4] use classical machine learning methods such as the Naive-Bayes method, SVMs
and Random Forests. These classical methods might be fast in classifying different web pages;
however, they fail to capture the semantic meaning of the URL. These semantics, such as the
number of special characters and the order of characters/words appearing together, may play
an essential role in influencing the predictions made by the models. They require extensive
feature engineering where the models might fail to perform well on unseen data.

The classical research methods aim to capture the URL’s features, such as HTML content,
geographical location and special characters present, with the help of TF-IDF methods. Deep
neural networks for the URL classification problem that use CNNs, RNNs and LSTMs are some
of the recent applications in Natural Language Processing[5][6][7][8][9].

5

The benchmark dataset for URL classification used in the works of URLNet[5] (state-of-the-art
URL classifier) contains about 20M URLs, with roughly 94% of the dataset being ’benign’ and
6% ’malicious’. It was collected from VirusTotal which is a pay-to-use database of malware and
known malicious links. The chosen dataset for this work from MendeleyData[10] includes about
1.5M ’benign’ URLs and 35k ’malicious’ URLs (see Table.2), making this dataset a heavily
imbalanced one yet, representative of the benchmark dataset. The data has been collected by
crawling the internet using MalCrawler[11] and the labels have been verified using the Google
Safe Browsing API[12]. In real-life scenarios, if one were to collect such URLs for the task of
URL classification, quite often they might find this imbalance between the two labels. We also
experimented with the balanced version of the Mendeley dataset by balancing the malicious
and benign samples.

This work demonstrates the experiments conducted with two tree-based ensemble machine
learning models, Random Forest and XGBoost and one deep neural network model, URLNet.
These supervised machine learning models were used as a baseline (see Section 4) to demonstrate
the performance on the selected dataset. The tree-based ensemble models though are fast to
classify, have shown that they are incapable of effectively classifying these URLs, thus not being
suitable for URL classification. On the other hand, deep neural network models have shown to
perform well for the task of URL classification. The best F1-scores and confusion matrices for
all the models with the highest true positive rate and true negative rate have been illustrated.
Statistical analysis has also been conducted on the data which shows quantitative differences
in the features present in the URL. The quantitative features such as the number of special
characters (e.g. ’/’,’@’,’.’) present in the URL may affect the data quality, and hence we show
that the predictions made by the machine learning models may be affected by these features.
This paper also introduces two novel implementations of a malicious URL classification system
called ’SNet’ and ’SNet v2’ that use an Attention mechanism[13]. The SNet is an extension
over the current state-of-the-art URLNet, by Hung Le et al.[5]. SNet v2, a variant of SNet was
implemwnted based on statistical analysis, which uses the attention mechanism directly onto
the embeddings to give more weight to the characters and words occurring in a URL. Extensive
testing shows that our model SNet and its variant, the SNet v2, perform competitively with
the state-of-the-art baseline in URL classification by obtaining higher balanced accuracy and
average precision.

The rest of the paper is organized as follows: Section 2 describes the different methods previously
used by researchers in the domain of Natural Language Processing for URL classification. In
Section 3, we describe the various metrics chosen to measure the performance of our work.
Section 4 describes the methods chosen as baselines for the comparison to our proposed model
(which is described in Section 5). In Section 6, we describe the URL dataset and the exploratory
data analysis conducted. Section 7 describes the experiments and results for the various models
chosen. Finally, we discuss the future scope and conclude in Section 8.

2 Related Work

Existing URL classification methods include classical methods such as the Naive Bayes and
SVM. Recently, reinforcement learning and deep neural networks have been successfully applied
to the problem. This section gives an overview of the most critical works on the subject.

6

Classical Machine Learning Methods

To demonstrate the importance of the attributes of a URL, Singh et al.[14] performed a holistic
analysis by combining many attributes to classify malicious webpages. They combined HTML
content, geographical location, and JavaScript-based attributes. Singh et al. worked on the
benchmark dataset from Mendeley Data[10], which is also used in our work. Similar to the works
of Singh et al., Weedon et al.[4] also showed the importance of lexical features (e.g. URL length,
domain length, number of special characters) present in the URL by performing experiments
on a small-scale dataset with the Random Forest classifier. Thirumoorthy et al.[3] worked on
two classifiers, namely, Naive Bayes and SVM, for text classification. In their work, the feature
selection is based on the TF-IDF method. By selecting features based on term frequency,
they illustrated that such a feature selection method can improve the classification accuracy.
Though TF-IDF methods can work well on smaller documents, they have some limitations,
such as not considering the semantic similarities between the words and characters. Alejandro
et al.[15] demonstrated the usage of Random Forests showing that feature engineering can be
very beneficial for a more efficient analysis of phishing URLs. Data representation plays a vital
role in any natural language processing task as high dimensional data may cause the model to
perform poorly.

Reinforcement Learning (RL)

The works of Tianyang et al.[16] demonstrated a task-friendly representation that identifies
important words or task-relevant structures without explicit structure annotations, which thus
yields competitive performance towards learning a structured representation for text classification.
Yin et al.[17] proposed two integration schemes named combination and hybridization, which
are presented to attain synergy between different RL techniques. Shared long-term memory is
used to accumulate the relevant knowledge exploited from multiple user experiences.

Deep Neural Network Models (DNN)

Convolutional Neural Networks have played a significant role in problems such as text classi-
fication in recent years. Le Cunn et al.[18] proposed Very Deep Convolutional Networks for
Text Classification, where they showed that by increasing the depth of the CNN, the accuracy
increased. On the other hand, Le et al.[6] demonstrated that a shallow-and-wide convolutional
neural network at the word level is highly effective for text classification. However, increasing
the depth of such convolutional models with character/word inputs might not bring significant
improvements. It is necessary to consider the various conditions for CNNs to work well, such as
feature parameter sharing and dimension reduction. In our proposed model SNet[5], we employ
these conditions by reusing the weights and having the appropriate filter sizes. RNN-based
deep learning architectures have also been widely used for malicious webpage classification,
where Ebubekir et al.[7] worked towards finding meta tag information contained in the web
page that can be used to classify a web page as malicious or benign. They illustrated that the
meta tag information of a website, such as the words present on the website and the URL, can
be used to classify webpages. This inspired us to include some meta tag information such as
the top-level domain, ’https’ tag and more for URL classification.

Multiple methods exist for the problem of URL classification, such as LSTMs, RNNs and

7

transformers. PhishingNet[8], proposed by Yongjie et al., makes use of CNN and RNN fused via
a three-layered CNN to build accurate feature representations of URLs, on which the phishing
URL classifier is trained to identify phishing websites. In PhishingNet, the attention is applied
sequentially, first to the characters and then to words, hence limiting the capabilities of the
attention mechanism in a way in which importance is not given to characters, words and
character-level words individually. SNet (see 5) overcomes the limitations of PhishingNet by
applying attention to the character-level branch and word-level branch, which is further divided
into the character-level representation of words.

Shi et al.[9] proposed an Extensive Pyramid Network that makes use of the self-attention
mechanism[19] to capture the semantic relationship between the words in the sequence. They
also use recurrent layers to obtain the order information and convolutional layers to get the
local contextual information. RNNs/LSTMs face the issue of a long-range-dependency problem
which can negatively affect the model’s performance by not allowing the model to remember
important information. Since these structures encode the given text into a vector of fixed size,
it is incapable of remembering long text sequences. We did not choose these models for our
work since they face the problem of long-range dependency and take up a lot of training time.
Hence, the attention mechanism is a solution to overcome this problem by giving importance to
such essential features and being able to remember longer sequences. The attention mechanism
has been quite successful for various NLP tasks. Its ability to selectively focus on essential
features while ignoring the rest has made the attention mechanism the go-to method for our
work.

Many classical machine learning models might produce good results; however, such methods
may fail to capture the correlation of the characters and words, essential in classifying the
URLs, resulting in poor URL classification performance. It is necessary to overcome some of the
problems and limitations mentioned by combining several methods, including URL attributes
as features, meta tag information, and performing feature engineering by using term frequency
for supervised machine learning models. Inspired by the works of Yongjie et al.[8] and Shi et
al.[9], we apply an attention mechanism to URLNet to have a well-performing classification
system called the SNet and SNet v2.

3 Fundamentals

In this section, we discuss and define several well-known metrics used to measure the performance
of the baselines and the proposed model. These metrics help to understand how well the models
perform (These metrics are calculated using the python library scikit-learn[20]).

Confusion Matrix

A confusion matrix is used to evaluate the performance of a classification model. It aims at
comparing the actual target value to the prediction made by the machine learning model. With
the help of the confusion matrix, one can determine whether the model is getting confused in
classifying the two classes.

A confusion matrix A is such that Ai,j are the number of observations that are in class i

8

and predicted to be in class j. In our case we have only 2 classes (malicious and benign); we
consider A0,0 to be true positives, A0,1 as false negatives, A1,0 as false positives and A1,1 as
true negatives. An example of a confusion matrix is given below in Table.1

Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) True Positive (TP) False Negative (FN)
Negative (-1) False Positive (FP) True Negative (TN)

Table 1: Confusion Matrix

The threshold used in our work to calculate the confusion matrix is 0.5. When we call the predict
method of an estimator instance from scikit-learn[20], 0.5 is used as the default threshold. This
threshold ensures that the given probability of having 1 is greater than the probability of having
0.

Accuracy Score

Accuracy is defined as the ratio of the sum of the labels that have been correctly identified as
positive and negative by the model to the sum of all the actual and predicted labels. It is given
by Equation 1,

Accuracy = TP + TN

TP + TN + FP + FN
(1)

Accuracy score may not be an appropriate metric to evaluate the performance of the model on
an imbalanced dataset as the model may easily predict the majority class (benign URLs) but
not the minority class (malicious URLs).

Precision Score

The precision score is the ratio of true positives to that of all the positive labels. The intuition
behind precision is to not classify a label that is negative as positive and vice versa. High
precision indicates low number of false positives and vice-versa. It is given by Equation 2,

Precision = TP

TP + FP
(2)

Recall Score

The recall score is the ratio of true positives to that of the sum of true positives and false
negatives. The intuition behind this metric is the model to be able to find all the positive labels.
High recall indicates low number of false negatives and vice-versa. It is given by Equation 3

Recall = TP

TP + FN
(3)

9

F1 Score

The F1 score which is also known as F-measure is the harmonic mean between precision and
recall. The F1 score is a good metric of performance when the dataset is imbalanced. The
relative contribution of precision and recall are equal in the F1 score. It can be calculated using
Equation 4,

F1 = 2 × Precision × recall

Precision + Recall
(4)

Precision-Recall Curve

Class imbalance is a common problem in the binary prediction domain. This happens when
the number of negative samples (benign URLs) outnumber the positive samples (malicious
URLs). The Precision-Recall curve is specifically informative in imbalanced datasets because the
precision and recall do not consider the true negatives and remain unaffected by the imbalance
in the data.

According to the definition of precision[2] and recall[3], the higher the precision, the stronger
the model is in classifying an observation as positive. If recall is higher, the more positive
observations have been classified correctly as positive. The precision-recall curve shows the
trade-off between the two which gives us an optimal value for multiple thresholds.

Average Precision

The Average Precision (AP) is a method of condensing the precision-recall curve into a single
number that represents the average of all precisions. It is the weighted sum of precisions at
each threshold where the weight is increasing in recall. It is given by Equation 5,

AP =
∑

n

(Rn − Rn−1)Pn (5)

where, Rn and Pn are the precision and recall at the nth threshold respectively. The number of
thresholds is at most equal to the number of samples as several samples may have the same
underlying continuous value from the classifier. For imbalanced datasets, the average precision
can be used as one of the primary evaluation metrics.

Sensitivity

Sensitivity is the true positive rate of a model or in other words the ability to correctly identify
positive classes. It can be calculated with the help of a confusion matrix and is given by
Equation 6,

Sensitivity = TP

TP + FN
(6)

Specificity

Specificity is the true negative rate of a model or in other words the ability to correctly identify

10

negative classes. It is given by Equation 7,

Specificity = TN

TN + FP
(7)

Balanced Accuracy Score

In cases of imbalanced datasets, the balanced accuracy score calculates the average of recalls
obtained for each class in binary classification. This can be calculated by Equation 8,

Balanced Accuracy = Sensitivity + Specificity

2 (8)

Balanced Accuracy accounts for both the positive and negative outcome classes and does not
mislead with imbalanced data. For this reason, balanced accuracy score can be considered as
one of the primary metrics to evaluate the performance of a model.

Youden’s J Statistic

The Youden’s J statistic[21] is a threshold value which maximizes the precision and recall. It is
given by Equation 9,

J = Precision + Recall − 1 (9)

The index of maximum value of precision and recall corresponds to the index of the best value
of threshold. In this work, we use the Youden’s J score to indicate the best threshold value on
the Precision-Recall curve.

In cases of balanced datasets, the classification report includes Accuracy, Precision, Recall and
F1 score which determine the performance of the data. Though for imbalanced datasets, it
is very common for the model to predict the majority class (in our case the benign URLs).
Hence, it may lead to erroneous conclusions as the accuracy score might be too high. For such
cases, the average precision and balanced accuracy score can be used. Since we want to find
the positives in our classifier, Balanced Accuracy performs well. Both classes are given equal
weight, hence the score is lower than what accuracy predicts. In order to maximize the precision
and recall value and to obtain the optimal threshold, we can use Youden’s J score.

4 Baseline Methods

This section describes the methods chosen as baseline for comparison to our proposed model.
We have chosen two tree-based ensemble machine learning algorithms (implemented with
scikit-learn[20]), and one based on deep neural networks, for URL classification, namely,

1. Random Forest

2. Xtreme Gradient Boosting (XGBoost) and

3. URLNet

11

The ensemble based methods were chosen as baselines because they are easy to use, understand
and are extremely fast in classifying malicious and benign URLs. Though for NLP tasks, deep
neural networks have proven to perform well. Hence, URLNet was chosen as one of the baselines
as it is the state-of-the-art model for URL classification,.

4.1 Random Forest Classifier

A Random Forest[22] model is an ensemble learning strategy that utilizes the advantage of
’majority voting’. It is made up of several trees that have been trained using bagging, also known
as bootstrap aggregation. Bagging randomly selects a sample of data from the entire set. Each
model is created using row sampling to replace the samples (Bootstrap Samples) supplied by
the original data. Bootstrapping refers to the stage of row sampling with replacement. Each
model is trained individually, producing results. The Random Forest model produces an output
based on the average of individual tree outcomes, called aggregation. As a result, increasing the
number of trees in a forest can increase the Random Forest’s performance. If the decision trees
are unstable, then there is a good chance the models might overfit the data since the trees
used by Random Forest are shallow ‘weak-learners’, and hence not likely to overfit individually.
This occurs because even a minor modification in the tree’s structure might result in severe or
unsatisfactory effects. A Random Forest model can produce good results even with the default
hyperparameters.

Though the Random Forest classifier works well, as mentioned above, it also has some drawbacks.
Random Forest models are not very interpretable, and if the dataset is vast, it can create many
trees that may consume more memory, thus slowing down the training process.

4.2 XGBoost Classifier

XGBoost, or ”eXtreme Gradient Boosting”[23] is a machine learning ensemble algorithm. The
XGBoost classifier is widely used due to its ability to handle missing data, being computationally
as well as cache efficient. The model prunes the trees backwards; in other words, it applies a
’depth-first’ approach, increasing the computational performance. It is a model that minimizes
overfitting thanks to built-in regularization. Boosting outperforms bagging, and Gradient
Boosting is a strong boosting ensemble technique. XGBoost is less sensitive to overfitting and
learns from past mistakes because it is regularized. It has been shown to work well even without
hyper-parameter adjustment. The models created by gradient boosting make predictions on
the residual terms of the previous models, which are then combined. Gradient boosting uses
the gradient descent algorithm that minimizes the loss when the newer models are added. The
sequential addition of the models may make the model more robust and efficient.

The XGBoost model is efficient, accurate, feasible, and performs parallel computations making
it a widely used classifier. It works well with large datasets and can be simple to use. For these
reasons, we chose the XGBoost as one of our baselines.

12

4.3 Data Pre-Processing for Random Forest and XGBoost

URLs can be split into multiple components as shown in Figure.1. We split the URL into its
different components such as the address, scheme, netloc, path and file with the help of a
URL parser (python module urllib.parse), which helps split the URLs. We check whether the
URLs contain IP addresses by checking their hexadecimal form and string matching. If they are
present in the URL, it will return 1; else, 0. These are checked for each URL present in the
dataset and assigned a representative value for those URLs. The dataset used for classification
with supervised machine learning models is obtained from Mendeley Data (see 6). It contains
URLs in their raw format and some extracted attributes such as the geographic location, the
length of JavaScript code, and class labels for benign and malicious webpages.

Cybercriminals may perform several actions to generate malicious URLs and can be described
as follows,

1. URL Shortening: Cybercriminals can use URL shortening tools that shorten the links
and embed malicious content and malware into the URLs. These shortened URLs can
redirect a person to the websites that the cybercriminal would want them to click (e.g.
bit.ly, tinyurl.com/23fdd).

2. Suspicious Words: Most malicious URLs contain suspicious words that can often be easily
recognised. Links that lead to scams include words such as ’urgent’, ’lucky’, ’free’, ’pay’,
’bank’, and ’won’ may be considered suspicious and hence tagged as malicious.

3. Directory Mimicking: The number of directories in the URL is usually delimited by a
’/’, which shows the number of directories in that particular URL. If a URL is long-lived
or has been in existence for a while, it would most likely contain more directories, and
perhaps more special characters present in them as well. Cybercriminals in the modern
age may mimic these benign URLs by embedding malware and luring people by uploading
explicit content in clickable links, leading to phishing in malicious URLs.

4. Special Characters: The cybercriminal may also include multiple special characters in
the URL, which can mimic the characteristics of a benign URL. The number of special
characters present in the URL was taken into consideration. These special characters
include ’@’,’#’,’%’,’/’,’.’,’:’. Along with the special characters, other characteristics
include the length of the URLs, length of top-level domain and number of digits. All the
characteristics are combined to give us features used by the machine learning models.

We include the features mentioned in the works of Singh et al.[14], Ebubekir et al.[7], Weedon
et al.[4] and Le et al.[5] such as different attributes of a URL for classification. This has
shown that qualitative features (e.g. presence of top-level domain, https, etc.) and quantitative
features (e.g. length of URLs, number of special characters, etc.) present in the URL may
help classify the URLs. These features are pre-processed by converting them into vectors using
the scikit-learn’s[20] TF-IDF vectorizer. The data is then label-encoded to encode the target
variables as 0 or 1. Finally, a pipeline is implemented which applies column transform, with
whose help the generated features can be concatenated to form a single feature space, and
the final estimator can be sequentially applied. These features are then passed to our chosen

13

baselines of ensemble machine learning models to classify URLs as malicious or benign. The
architecture showing the flow of information is depicted in Figure.2

14

https://www.google.com

String matching for suspicious words
Count directories

Count https
Count %
Count ?
Count -
Count =
Count @
Count .

Count numbers
Count letters

Length of URL
Length of hostname

Length of top-level domain

TF-IDF
vectorizer

Convert features
to vectors

Label Encoder
Encode the

target variables
as 0 and 1

Pipeline
Applies column

transform

Predictions by
Supervised

Machine
Learning
Models

Raw String of URL

Malicious URL Benign URL

Figure 2: Architecture showing the preprocessing steps leading to the features used by the
classifiers

15

4.4 URLNet

URLNet has been introduced by Hung Le et al.[5]. The URLNet architecture is one of the
baselines used in this work as a state-of-the-art model in the problem of URL classification.
Our proposed model, the SNet[5], is a modification on the URLNet architecture. In this work,
URLNet is used on the Mendeley Data[10] which is a large scale dataset containing many
URLs(see 6).

4.4.1 Architectural Setup

The input to the model is a raw string of URL. Consider there to be a set of T URLs,
(u1, y1), ..., (uT , yT), where uT = 1, ..., T represents the URL and yT ∈ {−1, +1} represents
the label of the URLs with +1 being a ’malicious’ URL and -1 denoting a ’benign’ URL.

The first stage in the classification process is to create a feature representation ut −→ xt,
where xt ∈ Rn is the n-dimensional feature vector that represents the URL ut. The next
stage is to create a prediction function(CNN), f : Rn −→ R, which is a rating that predicts
a URL instance’s class assignment denoted by x. The method’s prediction is symbolized by
ŷt = sign(f(xt)). The goal is to discover a function which can reduce the number of errors
across the entire dataset. This is accomplished by minimizing a loss function.

To use the lexical features, we obtain a feature vector x from URL u. The special characters
present in a URL help to act as a delimiter for the URL. All characters and words are combined
to give a dictionary, and hence all the unique characters and words become features. If there
are M distinct features present in the URL, each URL is mapped to a vector xt ∈ RM . Many
quantitative features such as the number of ’/’,’@’,’.’,’:’ have also been made use of as we
discuss its importance in Section 6

The URLNet architecture is depicted in Figure.3 and consists of the following modules :

Char-level branch

In URLNet, Convolutional Neural Networks have been used at both character-level as well as
word-level branches. Since a URL u consists of sequence of characters (delimited by special
characters), we represent this by a matrix u −→ x ∈ RL×k where instance x is made of
continuous components xi, i=1,...,L in a sequence, where the component can be a character or
word present in the URL. The individual component is a k-dimensional vector which is randomly
initialized and learned by the model. Each such component is represented by an embedding
xi ∈ Rk. The sequences are padded to the same length L.

With the help of a convolutional operator, over the instance x ∈ RL1×k where k = 32 and L1
= 200, a CNN would convolve and therefore generate new features.

Every segment of the input is divided by a pre-defined stride value, from which the output of
this convolution layer applies a filter W with a nonlinear activation.

16

There are 4 different convolutional filters W ∈ Rk×h where h=3,4,5,6. Hence, the model learns
the sequential patterns in a sequence of 3, 4, 5, 6. We employ 256 filters for each filter size.

Subsequently, after the convolution layer, a max-pooling layer is applied that selects the
maximum elements from the region of the feature map that is covered by the filter. These
features are then passed to a fully connected layer regularized by dropout followed by four more
fully connected layers which ultimately leads to the output classifier.

Word-level branch

The word-level branch has a similar structure and flow of data like the char-level branch where
both make use of CNNs. The word-level CNN takes a series of input URLs from which the
order of words appearing together are considered. The training corpus’s unique words, which
can comprise alphabets and numerals, are extracted. The < PAD > token is used to make
the length of the words consistent. The number of words occurring only once in the training
corpus can be very high as the dataset increases. This can cause memory constraints in the
model leading to slower training. To tackle this issue, all the words which occur only once are
replaced with an < UNK > token. This can help reduce memory usage and speed up the
training process.

Since many special characters occur in the URL, it is vital to consider their importance. The
special characters that occur in the URLs are considered unique words. To take these special
characters and words into consideration, the word embeddings can be considered the sum of the
word embeddings and the character embeddings of that word. There are two matrices involved
here: an embedding matrix EMw for words and another embedding matrix for characters
EMc. The character embedding matrix is different from the embedding matrix used for the
character-level representation of the URL as the character embedding matrix for words aims to
represent the words at a local level.

We acquire the representation URLw ∈ RL2×k based on EMw while getting the URL Matrix
representation. Then, using EMc, we get a matrix representation L3 × k of each word in a
URL, where each word is padded or shortened to become a sequence of L3 = 20 characters.
This matrix added together gives the word a vector embedding of 1 ∗ k. Then we obtain the
Character-level Word embedding, which has the URL matrix representation URLcw ∈ RL2×k.
The sum of these two matrices, URLw + URLcw, yields the final URL matrix representation.

Once the matrix representation is obtained for word-level branch (or char-level word repre-
sentation), it is passed to the Convolutional Neural Networks which then performs the same
steps as mentioned for the char-level branch. For combined features of the char-level as well
as word-level branches, once the convolution is applied to both branches and is passed to the
fully connected layer, the output for both branches are concatenated. The features from this
concatenation are then passed on to four fully connected layers ultimately leading to the output
classifier.

17

Figure 3: Architecture of URLNet[5]

18

5 SNet

The SNet architecture is a modification of the URLNet architecture[5]. This work describes
how the attention layer applied to the features improves the performance of the URLNet as it
is an endeavour to duplicate the action of selectively focusing on few relevant features such as
special characters and words appearing together. We added an attention mechanism to the
URLNet architecture in order to give more emphasis on the features that are passed by the
CNN. By doing so, the model quickly learns which features (e.g. number of ’/’, ’.’, etc.) to give
importance to while neglecting others. We make use of the attention mechanism inspired by
Vaswani et al.[19], Bahdanau et al.[13] and Yongjie et al.[8]. The entire network is depicted in
Figure.4

5.1 Attention Mechanism

Neural machine translations were previously based on encoder-decoder RNNs and LSTMs
until Bahdanau et al.[13] introduced the Attention mechanism in 2014. The problem with
the encoder-decoder structure is encoding the input sequences to a fixed vector. This can
be a bigger problem in cases where the URL string is very long. This problem is called the
’long-range dependency problem’ of the RNNs and LSTMs (suffering from vanishing gradients).
When Cho et al.[24] proposed the encoder-decoder structure in 2014, they demonstrated that
as the text length increases, the model’s performance decreases rapidly. In natural language
processing, the attention mechanism appeared as an improvement over the encoder decoder-
based neural machine translation system (NLP). The attention mechanism has been widely
used in applications such as computer vision, speech processing and other NLP tasks.

Since a URL includes a mixture of alphanumeric values rather than a simple string of letters,
it seems important to emphasize the sequence of characters or words that appeared together
in the URL. We undertook various tests with encoder-decoder structures only to find that
they still have the long-range dependency problem and need a lot of training time, making
them unsuitable for the SNet architecture. If we dig deeper into CNNs, we may find certain
limits. For example, consider a 4x4 convolution, in which the convolution filter comprises 16
char/words, and the value of the destination char/word may be computed by referencing to
the 15 char/words around it and itself. As a result, only local information may be utilized to
determine the destination char/word, which might lead to bias because the global information
is hidden. There are ways around this, such as building deeper networks or adding more
filters, which adds to the computational load. Hence, to address the issues faced by URLNet,
we applied an attention mechanism to the CNN, which creates a global reference for each
char/word-level prediction that may provide the char/words with additional significance. The
attention mechanism seemed to be a suitable choice for this particular architecture as it might
capture the semantic meaning behind the URLs and understand better which features are
essential.

The SNet architecture, a modification to the URLNet, has the same flow of information
throughout its structure. The difference is with the addition of the attention mechanism after
the CNNs. To include an attention mechanism in the URLNet, the output of the convolutional
layers from either Char-level CNN or Word-level CNN are passed to their respective attention

19

mechanisms by reusing the same weights. It computes the attention along the URLs. We take
the dot product of the weights and inputs along with the bias terms. The context vector ci for
output yi can be generated using the weighted sum of annotations which maintains the relative
importance of the inputs. After which, we apply the tanh activation function followed by a
softmax layer. With the help of the softmax layer, we can obtain the alignment scores. We use
the attention mechanism to maximize the number of computations in parallel, which minimizes
the total complexity. The attention mechanism allows the path between the input and output
sequences to be as minimum as possible, which helps solve the long-range dependency problem
by giving importance to those selected features. This kind of attention acts as a self-attention
within the architecture where the mechanism allows inputs to interact with each other. The
features obtained from the attention mechanism are then added to the max-pooling layer,
followed by a fully connected layer regularized by dropout. The results are concatenated and
followed by four fully connected layers, leading to the output classifier.

Figure 4: Architecture of SNet involving usage of Attention Mechanism

20

5.2 SNet v2

The SNet v2 was implemented in order to discover further improvements to SNet. We assume
that the lexical features or the special characters present in the URL might play a significant role
in the binary classification problem, specifically in cases where the dataset is highly imbalanced.

The variation of SNet implements the same architecture, with the difference being the placement
of the attention mechanism. Since the embeddings capture the semantics of the URL by placing
semantically similar characters and words closer to each other in the embedding space, it
seemed necessary for attention to be applied directly to the embeddings. The output of the
attention layer is forwarded to the convolutional layers, after which the structure of the SNet
v2 remains similar to the SNet architecture. This helps the model understand better to give
more importance to the quantitative features such as the number of ’@’,’:’,’/’ present in the
URL, thus capturing the semantic meaning of the special characters. This variant of the SNet
is illustrated in Figure.5

Figure 5: Architecture of SNet v2 involving usage of Attention Mechanism on the
embeddings

21

6 URL Dataset and Analysis

In this section, we describe the Mendeley dataset[10] used for our experiments and conduct an
exploratory data analysis to gain more insights into the statistical characteristics of the data.

6.1 Dataset

The Mendeley dataset has been used in many URL classification studies, and one such example
is the work of Singh et al.[14] where they describe the importance of URL attributes such as
HTML content, geographical location and JavaScript-based attributes. We use the Mendeley
dataset as a benchmark dataset for our work. The dataset is imbalanced, consisting of URLs,
and it is used for binary classification of URLs labelled as malicious or benign. The labels of
the dataset are converted as ’-1’ for benign URLs and ’+1’ for malicious URLs throughout
this work. Imbalance in the dataset may cause the models to be biased towards the majority
class and fail to capture the minority class. Due to this, the model might return high accuracy
by predicting the majority class. Hence, accuracy is not an appropriate metric to evaluate
imbalanced datasets. In such cases, average precision and balanced accuracy can be used to
evaluate the model’s performance. Experiments were also conducted on the balanced version
of the Mendeley dataset to investigate the models’ performance on a balanced set. To create
the balanced training set, random over-sampling was performed with the help of imblearn[25]
on the default Mendeley training set. The samples are randomly duplicated from the minority
class (malicious URLs). By doing so, more training samples are included in the dataset, which
becomes more balanced. We performed data analysis to understand the characteristics of the
data in depth.

Distribution of URLs

Distribution of the imbalanced dataset(Mendeley data) and the balanced dataset is illustrated
in Table. 2 and Table. 3.

Mendeley Dataset Malicious URLs Benign URLs Total
Training Set 27253 1172747 1200000
Testing Set 8062 353872 361934

Total 35315 1526619 1561934

Table 2: Distribution of Imbalanced(Mendeley) Dataset

Balanced Dataset Malicious URLs Benign URLs Total
Training Set 1172747 1172747 2345494
Testing Set 8062 353872 361934

Total 1180809 1526619 2707428

Table 3: Distribution of Balanced Dataset

The distribution of the imbalanced dataset is visualized in Figure.6. We perform analysis on the

22

imbalanced dataset because, in many URL classification problems, the dataset is imbalanced,
with the benign URLs being the majority class and malicious URLs being in the minority. This
is often the trait since the number of malicious URLs found on the internet may be much less
(but constantly growing) than benign URLs. From the distribution visualization(Figure.6), it is
observed that in the Mendeley Dataset, the number of benign URLs is much higher than that
of malicious URLs, making the task of identifying malicious URLs quite challenging.

Benign Malicious
Type Of URLs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Nu
m

be
r O

f U
RL

s

1e6 Count Of URLs

Figure 6: Distribution of Benign and Malicious URLs in the dataset

Quantitative Features : URL Length

The quantitative features present in the URL, such as the length of URLs, may play an essential
role in the classification of the URL. From Figure.7, we observe that most of the URLs have
less than 500 characters. From Figure.8 and Figure.9, we observe that malicious and benign
URLs have an almost similar length of approximately 20-100 characters each, making malicious
URLs harder to classify as they display similar characteristics to benign URLs.

0 100 200 300 400 500 600 700
URL-Length

0

100000

200000

300000

400000

Nu
m

be
r O

f U
rls

Length of URLs

Figure 7: Length of all URLs in the Mendeley Dataset

23

0 50 100 150 200 250 300 350 400
URL-Length

0

1000

2000

3000

4000

5000

6000

7000

Fr
eq

ue
nc

y

Malicious URL-Length

Figure 8: Length of Malicious URLs in the Mendeley Dataset

0 100 200 300 400 500 600 700
URL-Length

0

100000

200000

300000

400000

Fr
eq

ue
nc

y

Benign URL-Length

Figure 9: Length of Benign URLs in the Mendeley Dataset

Quantitative Features : Count ’www’

The ’www’ domain acts as a hostname and can contain multiple subdomains. Many top-level
domains (TLDs) have been added in recent years, and if a URL contains a TLD, which is
rare, the usage of ’www’ can help identify a legitimate website[26]. Many malicious URLs may
masquerade themselves to appear as benign websites by containing the ’www’ tag. As seen
from Figure.10, it can be observed that the ’www’ tag is present in most benign and malicious
URLs with a count of 0 or 1. This makes it hard to classify a malicious URL with this feature
alone. However, count ’www’ of 2-4 is present mostly in benign URLs. Therefore, a malicious
URL containing a count ’www’ of more than two could be classified as benign. The normalized
graph for count ’www’ is illustrated in Figure.11.

24

0 1 2 3 4
count-www

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Nu
m

be
r O

f U
RL

s

1e6 Use Of 'www' In URL
label
Benign
Malicious

Figure 10: Count ’www’ in the URLs

Figure 11: Normalized graph of Count ’www’ in the URLs

Quantitative Features : Count ’Directories’

From Figure.12, it can be observed that the number of directories in malicious URLs is
comparable to benign URLs. Malicious URLs are often short-lived (since they are created and
taken down very often) and may not contain much information/content present in them (apart
from malware). In the Mendeley dataset, the benign URLs have up to 15 directories, while
malicious URLs have only up to 7 directories. If a malicious URL contains similar number of
directories as a benign URL, it can be challenging to classify them. Genuine and constructed
malicious URLs can look the same in that respect. These directories are delimited by ’/’, which
indicates that the number of special characters present in the URL, such as ’/’,’@’,’.’, may
impact the classification of imbalanced datasets. The normalized graph for the number of
directories is illustrated in Figure.13.

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15
Number Of Directories

0

100000

200000

300000

400000

500000

600000

700000
Nu

m
be

r O
f U

RL
s

Number Of Directories In Url

label
Benign
Malicious

Figure 12: Number of directories present in the URL

Figure 13: Normalized graph of number of directories present in the URL

6.2 Error Analysis

To illustrate the impact of lexical features present in the URL on the predictions (especially
for an imbalanced dataset), we conducted an error analysis on the correctly and incorrectly
predicted URLs. The predictions from URLNet’s Char-based CNN on the Mendeley test set
(imbalanced dataset) were used as it achieved the highest average precision. We considered
several features such as count ’-’, ’@’, ’/’, ’.’ for the quantitative analysis of the predictions.
We illustrate the counts for ’/’ and ’.’ specifically as we assume these characters are more often
present in a URL than ’-’ and ’@’. This analysis helps to understand the importance of these
features in URL classification for an imbalanced dataset.

26

Correct Predictions Incorrect Predictions
Max Min Average Max Min Average

Length of URLs 620 13 35 121 14 30.46
Count ’-’ 18 0 0.16 10 0 0.20
Count ’@’ 5 0 0.0003 1 0 0.0009
Count ’/’ 16 0 0.46 8 2 3.17
Count ’.’ 12 1 2.34 5 1 2.05

Table 4: Statistical Analysis of correctly and incorrectly predicted URLs

From Table.4 it can be observed that, in the correctly predicted URLs, the maximum length
of the URL is 620 characters long, with the average being 35 characters. In the incorrectly
predicted URLs, the maximum length of the URL was found to be 121 characters long, with the
average URL length being 30 characters long. These statistical features were found to be much
higher in benign URLs than malicious URLs for correctly predicted URLs. The benign URLs
that depict malicious URL characteristics (having lesser or no lexical features present) may
be misclassified and vice-versa. This makes the problem of URL classification challenging as
benign and malicious URLs may display similar characteristics. Hence, it is essential to examine
the different features of a URL altogether to be able to classify it better.

Quantitative Features for Correct Predictions: Count ’/’ and Count ’.’

Figure.14 illustrates the distribution of ’/’ for both the class labels in correctly predicted URLs
where the feature count in benign URLs is much higher than in malicious URLs. The higher
count of ’/’ shows that most benign URLs have more directories, which is also an indication
of a well-structured website that can be long-lived. These benign URLs contain between 2-16
counts of ’/’ (with most of them containing 2-7), and malicious URLs contain between 2-4
counts of ’/’. Though, if a malicious URL displays similar properties to a benign URL (such as
having count ’/’ more than 7), it might lead to misclassification. Sometimes, there may also
be a dependence on the misspellings of words and special characters appearing together, which
may cause misclassification. The normalized graph for count ’/’ for correctly predicted URLs is
illustrated in Figure.15

Figure 14: Count ’/’ in correctly predicted URLs

27

Figure 15: Normalized graph of Count ’/’ in correctly predicted URLs

Figure.16 shows the distribution of ’.’ (dots) for both class labels in correctly predicted URLs,
the feature count in benign URLs is much higher than in malicious URLs. It was observed that
malicious URLs either did not contain any ’.’ present in the URLs or ranged between 1-4. Most
of the benign URLs that were correctly predicted contained 1-12 counts of ’.’. This indicates
that if a malicious URL contains more than four counts of ’.’ (displaying characteristics of
a benign URL) it may be classified as a benign URL. The normalized graph for count ’.’ for
correctly predicted URLs is illustrated in Figure.17

Figure 16: Count ’.’ in correctly predicted URLs

28

Figure 17: Normalized graph of Count ’.’ in correctly predicted URLs

Quantitative Features for Incorrect Predictions: Count ’/’ and Count ’.’

Figure.18 shows the distribution of ’/’ for both class labels in the incorrectly predicted URLs.
We observed that the count of ’/’ in benign URLs(maximum count of ’/’ being three and
ranging from 2-7) is much higher than in malicious URLs (maximum count of ’/’ being three
and ranging from 2-4). Here, the malicious URLs having a similar structure to benign URLs
have been misclassified due to the similar structure. Due to this, the model might confuse itself
to predict the malicious URLs as benign and vice versa. We also illustrate the normalized graph
for count ’/’ in incorrectly predicted URLs in Figure.19

Figure 18: Count ’/’ in incorrectly predicted URLs

29

Figure 19: Normalized graph of Count ’/’ in incorrectly predicted URLs

Figure.20 shows the distribution of ’.’ for both class labels in the incorrectly predicted URLs
where the count of the feature in malicious URLs is much lesser than in benign URLs. Malicious
URLs that were incorrectly predicted contained count ’.’ ranging between 1-4 (maximum at 2),
whereas the misclassified benign URLs contained count ’.’ ranging from 1-5 (maximum at 2),
indicating that malicious and benign URLs that were misclassified were showing characteristics
of each other. The normalized graph of count ’.’ in incorrectly predicted URLs is illustrated in
Figure.21

Figure 20: Count ’.’ in incorrectly predicted URLs

30

Figure 21: Count ’.’ in incorrectly predicted URLs

We observed that when URLs are correctly predicted, malicious URLs have a shorter length,
contain fewer features (such as ’/’, ’.’) and can have incomplete URL domain names. After
analysing the predictions, the number of features in incorrect predictions closely resembled that
of correct predictions (having more quantitative features present) and hence were misclassified.
Misclassification can also occur if there are grammatical errors in the URL (since the order of
words appearing together plays an essential role in URL classification). Since they bear such a
close resemblance, the models may classify malicious URLs as benign and vice versa. This may
expect to have an impact on the model’s performance.

7 Experiments and Results

In this section, we discuss the experiments conducted and their results obtained. When training
the models with an imbalanced dataset, the models can be biased towards the majority class
(in this case, benign URLs) and may produce erroneous results (i.e, results that show the
model has overfit). For such reasons, we consider two metrics mainly to evaluate our work;
average precision and balanced accuracy. Since our benchmark dataset is heavily imbalanced,
these metrics prove to be the most informative and relevant for classification of the URLs
and understanding the performance of the models. We also illustrate the best F1-scores and
conduct experiments on a balanced dataset for all the discussed models.

7.1 Results : Tree-Based Ensemble Machine Learning Models

The two ensemble based machine learning models undergo the same pre-processing methods
(see Figure.2). The Mendeley dataset (imbalanced) used to conduct the experiments is split by
default into training and testing sets. 77% of all the URLs present in the Mendeley dataset
are used for training and the rest for testing. Similarly, 87% of the balanced dataset is used
for training and the rest for testing. The default hyperparameters were used for training
of the ensemble methods. The results obtained from these models were recorded using the
tool MLFlow[27], which helps to keep track of the successes or failures of the experiments.

31

The classification reports and the confusion matrices for both the ensemble based supervised
machine learning models can be found in Appendix A.1. We present the average precision and
balanced accuracy obtained on the Mendeley dataset and the balanced version of the Mendeley
dataset in Table.5 and Table.6 respectively.

Mendeley Dataset (Imbalanced) Average Precision Balanced Accuracy
Random Forest 0.017 0.649

XGBoost 0.018 0.620

Table 5: Results for average precision and balanced accuracy of supervised ML models on
imbalanced dataset

Balanced Dataset Average Precision Balanced Accuracy
Random Forest 0.017 0.726

XGBoost 0.017 0.770

Table 6: Results for average precision and balanced accuracy of supervised ML models on
balanced dataset

From the experiments conducted for two ensemble models, we observed that the average
precision scores were poor. This may suggest that the models predict many false positives,
resulting in low average precision scores. The Random Forest classifier proved to perform the
best on the imbalanced dataset as it achieved a balanced accuracy of 0.649. XGBoost performed
the best on the balanced dataset by obtaining a balanced accuracy score of 0.770. Some of
the advantages of using these models are that they are fast to train, easy to understand and
implement.

The experiments conducted show that the Random Forest model performs better than the
XGBoost model on the imbalanced dataset, and XGBoost performs better than the Random
Forest on the balanced dataset in terms of balanced accuracy. It has the advantage of making
use of ’majority voting’ (see 4.1). XGBoost, on the other hand, is an efficient implementation of
the stochastic gradient boosting algorithm and is successful due to its scalability. These models
perhaps cannot capture the semantic meaning of the URLs and differentiate well between
malicious and benign URLs since they obtain very low average precision scores. Ensemble
models require extensive feature engineering, which can be time-consuming. Hence, from the
results we obtained for these models, we can assume that such models may not be appropriate
for URL classification as they may fail to capture the semantic meaning behind the URLs.

We calculate the confusion matrices for the models with the help of scikit-learn[20]. The best
confusion matrix obtained on the imbalanced dataset among both the supervised machine
learning models was found to be of Random forest (see Table.7). For the balanced dataset,
the best confusion matrix was found to be for XGBoost (see Table.8). We define the ’best’
confusion matrices to have the highest sensitivity (true positive rate) and highest specificity
(true negative rate).

32

Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2421 5641
Negative (-1) 631 353241

Table 7: Best confusion matrix belonging to Random Forest on the imbalanced dataset

Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 5342 2720
Negative (-1) 42735 31137

Table 8: Best confusion matrix belonging to XGBoost on the balanced dataset

7.2 Results : Deep Neural Network Models

This section compares the performances of URLNet, SNet and SNet v2. We conduct experiments
on both the Mendeley dataset as well as the balanced dataset that we created. The average
precision and balanced accuracy curves are calculated and compared for all the benchmark
models. We also show the best confusion matrices and F1-scores obtained for all of the models.

All of the URLs in the dataset are delimted by special characters and each of the special
characters are considered as words. The dataset by default was split into training and testing
where 77% of all the URLs present in the dataset were used for training and rest for testing.
Similarly on the balanced dataset, 87% of the URLs in the dataset were used for training and
rest for testing. The models were evaluated on the validation set after every 500 batches where
each batch contains 128 URLs. This way the models have a lesser chance of overfitting. The
models were trained with the Adam optimizer for 5 epochs with L2 regularization, a learning
rate of 0.001, and a Dropout rate of 0.5.

In order to find the best threshold value on the precision-recall curve, we indicate the Youden’s
Score (see 9) on the curve by finding the maximum index of precision and recall. A low precision
indicates a high number of false positives and a low recall indicates high number of false
negatives and vice-versa for high precision and recall. We find the confusion matrices for all
the models. The classification report, the Precision-Recall curve, Validation loss curve, and
Validation accuracy curve for the benchmark models have been plotted. These can be found
under Appendix A.2.

The results for the benchmark models on the imbalanced and balanced dataset are discussed
below.

33

Results for Imbalanced Dataset

Mendeley Data (Imbalanced) Average Precision Balanced Accuracy
URLNet SNet SNet v2 URLNet SNet SNet v2

Char-based CNN 0.698 0.684 0.685 0.769 0.772 0.754
Word-based CNN 0.418 0.423 0.423 0.623 0.627 0.632

Char and Word-based CNN 0.698 0.690 0.689 0.769 0.763 0.753
Char-level Word CNN 0.542 0.543 0.536 0.671 0.681 0.679

Char and Char-level Word CNN 0.698 0.693 0.691 0.749 0.763 0.758

Table 9: Average precision and balanced accuracy of benchmark models for imbalanced
data

Table.9 illustrates the results on the imbalanced dataset. The average precision and balanced
accuracy score for all methods of URLNet, SNet and SNet v2 have been calculated.

Our proposed model, SNet, obtains higher average precision scores than the benchmark model
URLNet for ’Word-based CNN’ and ’Char-level Word CNN’ by achieving scores of 0.423 and
0.543 respectively. Similarly, for SNet, the ’Char-based CNN’, ’Char-level Word CNN’ and
’Char and Char-level Word CNN’ obtains higher balanced accuracy score than the benchmark
model, URLNet, by achieving scores of 0.772, 0.681 and 0.763 respectively.

SNet v2 obtains a higher average precision compared to the benchmark URLNet for ’Word-based
CNN’ (similar to the ’Word-based CNN’ for SNet) by achieving an average precision of 0.423.
SNet v2 obtains a better balanced accuracy score than URLNet and SNet on the ’Word-based
CNN’ by achieving a score of 0.632.

The benchmark model URLNet obtains a higher average precision compared to SNet and SNet
v2 for ’Char-based CNN’, ’Char and Word-based CNN’, and ’Char and Char-level Word CNN’
by achieving scores of 0.698, 0.698 and 0.698 respectively. It also obtains higher balanced
accuracy score than SNet and SNet v2 for ’Char and Word-based CNN’ by achieving a score
of 0.769.

By comparing the results of URLNet, SNet and SNet v2, we conclude that the SNet has proven
to produce the best results among the models for an imbalanced dataset.

The best confusion matrices for each of the benchmark models are illustrated where the true
positive rate and true negative rate are the highest on the imbalanced dataset. All the confusion
matrices for the other methods of the benchmark models can be found under Appendix. A.2

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4347 3715
Negative (-1) 328 353544

Table 10: Best confusion matrix of URLNet on imbalanced dataset observed for ’Char and
Word-based CNN’

34

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4409 3653
Negative (-1) 570 353302

Table 11: Best confusion matrix of SNet on imbalanced dataset observed for ’Char-based
CNN’

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4176 3886
Negative (-1) 248 353624

Table 12: Best confusion matrix of SNet v2 on imbalanced dataset observed for ’Char and
Char-level Word CNN’

Results for Balanced Dataset

Mendeley Data (Balanced) Average Precision Balanced Accuracy
URLNet SNet SNet v2 URLNet SNet SNet v2

Char-based CNN 0.724 0.692 0.723 0.861 0.860 0.854
Word-based CNN 0.423 0.421 0.428 0.690 0.689 0.691

Char and Word-based CNN 0.598 0.596 0.600 0.728 0.715 0.716
Char-level Word CNN 0.383 0.380 0.359 0.662 0.652 0.653

Char and Char-level Word CNN 0.464 0.418 0.388 0.693 0.673 0.656

Table 13: Results for average precision and balanced accuracy of benchmark models for
balanced data

Table.13 illustrates the results on the balanced Mendeley dataset. The average precision and
balanced accuracy score for all the benchmark models have been calculated.

The benchmark model, URLNet obtains higher average precision scores compared to SNet
and SNet v2 for ’Char-based CNN’, ’Char-level Word CNN’ and ’Char and Char-level Word
CNN’ by achieving scores of 0.724, 0.383 and 0.464 respectively. URLNet also obtains a higher
balanced accuracy score for ’Char-based CNN’, ’Char and Word-based CNN’, ’Char-level Word
CNN’ and ’Char and Char-level Word CNN’ on the balanced dataset by achieving scores of
0.861, 0.728, 0.662 and 0.693 respectively.

SNet v2 obtains higher average precision scores for ’Word-based CNN’ and ’Char and Word-
based CNN’ compared to URLNet and SNet by achieving scores of 0.428 and 0.600 respectively.
SNet v2 also obtains higher balanced accuracy scores on ’Word-based CNN’ by achieving a
score of 0.691. SNet performs competitively to URLNet and SNet v2 for the balanced Mendeley
dataset.

The best confusion matrices for the benchmark models on the balanced dataset have been
illustrated below where the true positive rate and true negative rate are the highest. All

35

the confusion matrices for the other methods of the benchmark models can be found under
Appendix. A.2

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 6014 2048
Negative (-1) 8118 345754

Table 14: Best confusion matrix of URLNet on balanced dataset observed for ’Char-based
CNN’

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 6167 1895
Negative (-1) 15632 338240

Table 15: Best confusion matrix of SNet on balanced dataset observed for ’Char-based
CNN’

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 5871 2191
Negative (-1) 7000 346872

Table 16: Best confusion matrix of SNet v2 on balanced dataset observed for ’Char-based
CNN’

In Table.17, we illustrate the F1 scores (see 3) across all the models. This metric takes both
False Positives (FP) and False Negatives (FN) into account. Higher the values of precision
and recall, higher would be the F1-score as well. The perfect F1-score is 1, and the closer the
F1-score of the model is to 1, the better it is. From the experiments conducted, we observe
that the best F1-score of 0.68 belonged to both SNet and URLNet indicating that both the
models perform similar in accounting for false positives and false negatives. For URLNet, this
best score was obtained for ’Char-based CNN and Char and Word-based CNN’, whereas for
SNet, this score was obtained for ’Char-based CNN ’.

F1-Score Imbalanced Dataset Balanced Dataset
Malicious Benign Malicious Benign

Random Forest 0.44 0.99 0.17 0.93
XGBoost 0.38 0.99 0.19 0.93

URLNet Char-based CNN, Char and Word-based CNN Char and Word-based CNN
0.68 0.99 0.61 0.99

SNet Char-based CNN Char and Word-based CNN
0.68 0.99 0.59 0.99

SNet v2 Char and Char-level Word CNN Char and Word-based CNN
0.67 0.99 0.59 0.99

Table 17: Table illustrating the best F1 scores across all the models on imbalanced and
balanced Mendeley Data

36

In real-world scenarios, the number of malicious websites may be lesser than benign websites,
making it harder to classify malicious websites. SNet and the SNet v2 provide emphasis on the
features present in the ’malicious’ URLs, which allows the models to perform well and hence
be able to capture the semantic meaning of the URLs better. From the experiments conducted,
SNet has performed better than all the other models when performing URL classification on an
imbalanced dataset. URLNet performed better than the other models on the balanced dataset,
with SNet v2 and SNet performing competitively.

8 Conclusion and Future Scope

In this paper, we proposed two novel methods SNet and its variant SNet v2 for classifying URLs
using an attention mechanism. We also experimented with two of the most popular tree-based
ensemble machine learning models, Random Forest and XGBoost, as a baseline to compare to
our proposed methods. Compared to the deep neural network models, the tree-based ensemble
machine learning models did not perform competitively as the average precision proved to be
much lesser, indicating that the ensemble models might be classifying most of the positive
labels as false positives and vice versa. Even though the training time is much shorter compared
to the neural network models, these models perhaps fail to perform well as they are based
on bag-of-words and URLs consist sequence based terms. This shows that the tree-based
ensemble machine learning models might not be the best choice for such URL classification
tasks. In order to further improve the performance of the ensemble methods, we can perform
any one of the hyperparameter tuning methods such as bayesian optimization to obtain the
best hyperparameters and perform cross-validation that may increase the performance of these
models.

The importance of special characters in the URL inspired us to apply attention to the char/word
embeddings directly. SNet performed better compared to all the baseline models when performing
URL classification on the imbalanced dataset. URLNet achieved the best results on the balanced
dataset with SNet and SNet v2 performing competitively. In real-world scenarios, where the
number of benign URLs most likely outnumber malicious URLs, SNet can perform the best
compared to all other methods holistically on the imbalanced dataset. This conclusion was
drawn based on the total number of outcomes where SNet achieved higher average precision
and balanced accuracy scores compared to URLNet on the imbalanced dataset. This makes
SNet a better URL classifier than URLNet when dealing with imbalanced datasets as it was
able to achieve the highest balanced accuracy score of 0.772 when compared to the highest
balanced accuracy score of 0.769 of URLNet. The downsides of using the attention mechanism
is that it adds more weights to the model, slowing down the training process and making it
hard to parallelize processes.

An interesting approach to further classify malicious URLs can be to set up a system that visits
the websites and checks for the content present in them for misclassified URLs. If the page
is empty, has grammatical errors, does not contain a trust seal or contains many suspicious
words with links, such sites may be deemed as malicious.

Pan et al. proposed a paradigm for understanding transfer learning in their paper A Survey
on Transfer Learning [28], which uses domain, task, and marginal probability. The concept

37

of transfer learning may be well-made use of in URL classification. With the help of transfer
learning, we can leverage the features, weights and other learned representations from previously
trained models (such as the attention mechanism in SNet and SNet v2) and use them for
training on newer models. This may help reduce training time and the amount of data needed
for those who do not have the required computational resources. In terms of Natural Language
Processing, the word embeddings from pre-trained models can be used for feature extraction.
These character or word embeddings may provide the relevant information regarding the URL
and can perhaps help capture the semantic meaning behind them. There can be scenarios
where transfer learning might not add value to the model and instead reduce its performance,
called negative transfer[29]. Therefore, based on the use case, transfer learning can be used to
improve the target task performance.

In conclusion, one may give more importance to the letters and special characters appearing
together in the URL while performing a classification task since a URL is unlike a regular
text string containing alphabetical characters alone and varying text lengths. URLs can be
made of alphanumeric characters, and ’attention’ may be provided to these characters to get a
better semantic meaning of them. These characters may influence a model’s performance as
their quantitative values may enrich the data. Since many malicious websites masquerade as
legitimate websites and steal information, they must must be detected and taken down at the
earliest as it can affect systems and causes considerable losses to the economy.

38

References

[1] MDN Contributors. What is a url? https://developer.mozilla.org/en-US/docs/
Learn/Common_questions/What_is_a_URL. Accessed: 2022-06-04.

[2] Damjan Jugovic Spajic. Piracy is back: Piracy statistics for 2022. https://dataprot.
net/statistics/piracy-statistics/, note = Accessed: 2022-06-18.

[3] K Thirumoorthy and K Muneeswaran. Feature selection for text classification using
machine learning approaches. National Academy Science Letters, pages 1–6, 2021.

[4] Martyn Weedon, Dimitris Tsaptsinos, and James Denholm-Price. Random forest ex-
plorations for url classification. In 2017 International Conference On Cyber Situational
Awareness, Data Analytics And Assessment (Cyber SA), pages 1–4. IEEE, 2017.

[5] Hung Le, Quang Pham, Doyen Sahoo, and Steven CH Hoi. Urlnet: Learning a url repre-
sentation with deep learning for malicious url detection. arXiv preprint arXiv:1802.03162,
2018.

[6] Hoa T Le, Christophe Cerisara, and Alexandre Denis. Do convolutional networks need to
be deep for text classification? In Workshops at the Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[7] Ebubekir Buber and Banu Diri. Web page classification using rnn. Procedia Computer
Science, 154:62–72, 2019.

[8] Yongjie Huang, Qiping Yang, Jinghui Qin, and Wushao Wen. Phishing url detection via
cnn and attention-based hierarchical rnn. In 2019 18th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/13th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE), pages 112–119.
IEEE, 2019.

[9] Linqing Shi, Zeping Yu, and Gongshen Liu. Extensive pyramid networks for text classifica-
tion. Aust. J. Intell. Inf. Process. Syst., 17(1):17–23, 2019.

[10] AMIT KUMAR (2020) SINGH. “dataset of malicious and benign webpages”. Mendeley
Data, V2. doi:10.17632/gdx3pkwp47.2.

[11] MalCrawler. https://www.malcrawler.com/. Accessed: 2022-06-18.

[12] Google. Safe browsing api. https://developers.google.com/safe-browsing. Ac-
cessed: 2022-06-18.

[13] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[14] AK Singh and Navneet Goyal. A comparison of machine learning attributes for detecting
malicious websites. In 2019 11th International Conference on Communication Systems &
Networks (COMSNETS), pages 352–358. IEEE, 2019.

39

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_URL
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_URL
https://dataprot.net/statistics/piracy-statistics/
https://dataprot.net/statistics/piracy-statistics/
https://doi.org/10.17632/gdx3pkwp47.2
https://www.malcrawler.com/
https://developers.google.com/safe-browsing

[15] Alejandro Correa Bahnsen, Eduardo Contreras Bohorquez, Sergio Villegas, Javier Vargas,
and Fabio A González. Classifying phishing urls using recurrent neural networks. In 2017
APWG symposium on electronic crime research (eCrime), pages 1–8. IEEE, 2017.

[16] Tianyang Zhang, Minlie Huang, and Li Zhao. Learning structured representation for text
classification via reinforcement learning. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[17] Peng-Yeng Yin, Kuang-Cheng Chang, et al. Reinforcement learning for combining relevance
feedback techniques. In Proceedings Ninth IEEE International Conference on Computer
Vision, pages 510–515. IEEE, 2003.

[18] Alexis Conneau, Holger Schwenk, Löıc Barrault, and Yann Lecun. Very deep convolutional
networks for text classification. arXiv preprint arXiv:1606.01781, 2016.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[21] William J Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950.

[22] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[23] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM. URL: http:
//doi.acm.org/10.1145/2939672.2939785, doi:10.1145/2939672.2939785.

[24] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[25] Guillaume Lemâıtre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of
Machine Learning Research, 18(17):1–5, 2017. URL: http://jmlr.org/papers/v18/
16-365.html.

[26] Zac Harris. Www vs non www: Which is right from seo perspective.
https://www.benchmarkdesign.net/index.php/announcements/13/WWW-vs-
Non-WWW-Which-is-Right-from-SEO-Perspective.html. Accessed: 2022-06-10.

[27] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong, Andy Konwinski,
Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, et al. Accelerating the
machine learning lifecycle with mlflow. IEEE Data Eng. Bull., 41(4):39–45, 2018.

[28] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2009.

40

http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://jmlr.org/papers/v18/16-365.html
http://jmlr.org/papers/v18/16-365.html
https://www.benchmarkdesign.net/index.php/announcements/13/WWW-vs-Non-WWW-Which-is-Right-from-SEO-Perspective.html
https://www.benchmarkdesign.net/index.php/announcements/13/WWW-vs-Non-WWW-Which-is-Right-from-SEO-Perspective.html

[29] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, pages 242–264.
IGI global, 2010.

41

A Appendix

In this section, we list the confusion matrices for all the models along with the precision-recall
curve with the optimum threshold (obtained from Youden’s J score), the validation loss and
accuracy curves for URLNet, SNet and SNet v2. For all the ensemble based supervised machine
learning models, we illustrate the classification report along with confusion matrices. The
classification report consists of precision, recall, F1, and accuracy which has been discussed in
Section. 3. The samples present in the dataset are labelled as ’malicious’ and ’benign’. Malicious
URLs represent websites which may lead to malware, phishing attacks or even contain links
to pirated digital content. Benign URLs are genuine and safe websites, where, upon clicking
on them they would not lead to any harm to systems or would not steal personal information
unlike malicious URLs.

Accuracy displays the sum of true positives and true negatives divided by the total number of
samples. Accuracy although is not an appropriate measure of performance as the models may
easily be able to predict the majority class but unable to predict the minority class. The macro
average score is a score calculated against precision, recall and F1 where it is the unweighted
mean (regardless of number of samples per class) of per-class. The weighted average considers
the weighted mean (while considering number of samples per class) of per-class precision, recall
and F1 scores.

A.1 Tree-Based Ensemble Machine Learning Models

The classification reports, confusion matrices and results obtained for Random Forest and
XGBoost are illustrated in this section. The results for the balanced (weighted) versions of
Random Forest and XGBoost were obtained on the Mendeley Dataset. By doing so, we control
the balance of positive and negative weights, which is useful for unbalanced classes. This value
used for the balanced version of the ensemble methods was calculated by taking the sum
(negative instances) / sum (positive instances). In our case, this value was approximated to
44. For the weighted versions of the ensemble models, we illustrate the average precision and
balanced accuracy.

1. Random Forest

In this section, we illustrate the classification reports and confusion matrices for the Random
Forest Classifier.

42

1.1 Imbalanced Dataset

Classification Report
Precision Recall F1 Support

Malicious 0.79 0.30 0.44 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.89 0.65 0.71 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2421 5641
Negative (-1) 631 353241

1.2 Balanced Dataset

Classification Report
Precision Recall F1 Support

Malicious 0.10 0.58 0.17 8062
Benign 0.99 0.88 0.93 353872

Accuracy 0.87 361934

Macro Average 0.54 0.73 0.55 361934
Weighted Average 0.97 0.87 0.91 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4637 3425
Negative (-1) 43102 310770

43

1.3 Weighted Version of Random Forest

Average Precision 0.017
Balanced Accuracy 0.640

Classification Report
Precision Recall F1 Support

Malicious 0.83 0.28 0.42 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.91 0.64 0.71 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2273 5789
Negative (-1) 451 353421

44

2. XGBoost
In this section, we illustrate the classification reports and confusion matrices for the XGBoost
Classifier.

2.1 Imbalanced Dataset

Classification Report
Precision Recall F1 Support

Malicious 0.89 0.24 0.38 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.94 0.62 0.69 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 1947 6115
Negative (-1) 235 353637

2.2 Balanced Dataset

Classification Report
Precision Recall F1 Support

Malicious 0.11 0.66 0.19 8062
Benign 0.99 0.88 0.93 353872

Accuracy 0.97 361934

Macro Average 0.55 0.77 0.56 361934
Weighted Average 0.97 0.87 0.92 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 5342 2720
Negative (-1) 42735 311137

45

2.3 Weighted Version of XGBoost

Average Precision 0.019
Balanced Accuracy 0.589

Classification Report
Precision Recall F1 Support

Malicious 0.99 0.18 0.30 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.99 0.59 0.65 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 1437 6625
Negative (-1) 12 353860

46

A.2 Deep Neural Network Models

In this section, we illustrate the classification reports for URLNet, SNet and SNet v2. Along
with the classification report, we also illustrate the precision-recall curve with Youden’s J score
marked on the curve (indicating the point at which the precision and recall is maximum), the
validation and accuracy curves.

1. URLNet

In this section, we illustrate the classification reports, confusion matrices and curves on the
imbalanced dataset (Mendeley Dataset) and the balanced dataset for URLNet.

1.1 Imbalanced Data

Char-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.93 0.53 0.68 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.96 0.76 0.84 361934
Weighted Average 0.99 0.99 0.99 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4267 3795
Negative (-1) 299 353573

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.1: Precision-Recall
curve with Youden’s J score

of 0.548

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

lo
ss

of steps vs loss

Figure A.2: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.980

0.982

0.984

0.986

0.988

ac
c

of steps vs acc

Figure A.3: Validation
Accuracy Curve

47

Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.94 0.25 0.39 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.96 0.62 0.69 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 1988 6074
Negative (-1) 118 3535754

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.4: Precision-Recall
curve with Youden’s J score

of 0.800

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.075

0.080

0.085

0.090

0.095

lo
ss

of steps vs loss

Figure A.5: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.977

0.978

0.979

0.980

0.981

0.982

0.983

ac
c

of steps vs acc

Figure A.6: Validation
Accuracy Curve

Char and Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.93 0.54 0.68 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.96 0.77 0.84 361934
Weighted Average 0.99 0.99 0.99 361934

48

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4347 3715
Negative (-1) 328 353544

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.7: Precision-Recall
curve with Youden’s J score

of 0.557

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.05

0.06

0.07

0.08

0.09

lo
ss

of steps vs loss

Figure A.8: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.978

0.980

0.982

0.984

0.986

0.988

ac
c

of steps vs acc

Figure A.9: Validation
Accuracy Curve

Character-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.97 0.34 0.51 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.98 0.67 0.75 361934
Weighted Average 0.98 0.99 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2762 5300
Negative (-1) 97 353775

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.10:
Precision-Recall curve with
Youden’s J score of 0.474

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.065

0.070

0.075

0.080

0.085

0.090

0.095

lo
ss

of steps vs loss

Figure A.11: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.979

0.980

0.981

0.982

0.983

0.984

0.985

ac
c

of steps vs acc

Figure A.12: Validation
Accuracy Curve

49

Char and Char-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.97 0.50 0.66 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.98 0.75 0.83 361934
Weighted Average 0.99 0.99 0.99 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4323 3739
Negative (-1) 277 353595

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.13:
Precision-Recall curve with
Youden’s J score of 0.432

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.05

0.06

0.07

0.08

0.09

lo
ss

of steps vs loss

Figure A.14: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.980

0.982

0.984

0.986

0.988

ac
c

of steps vs acc

Figure A.15: Validation Ac-
curacy Curve

1.2 Balanced Data

Classification Report
Precision Recall F1 Support

Malicious 0.43 0.75 0.54 8062
Benign 0.99 0.98 0.99 353872

Accuracy 0.97 361934

Macro Average 0.71 0.86 0.76 361934
Weighted Average 0.98 0.97 0.98 361934

50

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 6014 2048
Negative (-1) 8118 345754

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.16:
Precision-Recall curve with
Youden’s J score of 0.988

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

lo
ss

of steps vs loss

Figure A.17: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

ac
c

of steps vs acc

Figure A.18: Validation Ac-
curacy Curve

Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.50 0.39 0.44 8062
Benign 0.99 0.99 0.99 353872

Accuracy 0.98 361934

Macro Average 0.74 0.69 0.71 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 3142 4920
Negative (-1) 3150 350722

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.19:
Precision-Recall curve with
Youden’s J score of 0.868

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

lo
ss

of steps vs loss

Figure A.20: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.92

0.93

0.94

0.95

0.96

0.97

0.98

ac
c

of steps vs acc

Figure A.21: Validation Ac-
curacy Curve

51

Char and Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.93 0.46 0.61 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.96 0.73 0.80 361934
Weighted Average 0.99 0.99 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 3684 4378
Negative (-1) 287 353585

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.22:
Precision-Recall curve with
Youden’s J score of 0.314

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lo
ss

of steps vs loss

Figure A.23: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.96

0.97

0.98

0.99

1.00

ac
c

of steps vs acc

Figure A.24: Validation Ac-
curacy Curve

Character-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.78 0.33 0.46 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.88 0.66 0.73 361934
Weighted Average 0.98 0.98 0.98 361934

52

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2632 5430
Negative (-1) 731 353141

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.25:
Precision-Recall curve with
Youden’s J score of 0.970

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

lo
ss

of steps vs loss

Figure A.26: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.95

0.96

0.97

0.98

0.99

1.00

ac
c

of steps vs acc

Figure A.27: Validation Ac-
curacy Curve

Char and Char-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.89 0.39 0.54 8062
Benign 0.89 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.94 0.69 0.77 361934
Weighted Average 0.98 0.99 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 3122 4940
Negative (-1) 399 353473

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.28:
Precision-Recall curve with
Youden’s J score of 0.903

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lo
ss

of steps vs loss

Figure A.29: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.96

0.97

0.98

0.99

1.00

ac
c

of steps vs acc

Figure A.30: Validation
Accuracy Curve

53

2. SNet
In this section, we illustrate the classification reports, confusion matrices and the curves on the
imbalanced dataset (Mendeley Dataset) and the balanced dataset for SNet.

2.1 Imbalanced Data

Char-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.89 0.55 0.68 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.94 0.77 0.84 361934
Weighted Average 0.99 0.99 0.99 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4409 3653
Negative (-1) 570 353302

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.31:
Precision-Recall curve with
Youden’s J score of 0.800

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.05

0.06

0.07

0.08

0.09

lo
ss

of steps vs loss

Figure A.32: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.982

0.983

0.984

0.985

0.986

0.987

0.988

ac
c

of steps vs acc

Figure A.33: Validation
Accuracy Curve

54

Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.95 0.26 0.40 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.97 0.63 0.70 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4409 3653
Negative (-1) 570 353302

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.34:
Precision-Recall curve with
Youden’s J score of 0.699

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.075

0.080

0.085

0.090

0.095

lo
ss

of steps vs loss

Figure A.35: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.978

0.979

0.980

0.981

0.982

0.983

ac
c

of steps vs acc

Figure A.36: Validation
Accuracy Curve

Char and Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.92 0.53 0.67 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.96 0.76 0.83 361934
Weighted Average 0.99 0.99 0.99 361934

55

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4255 3807
Negative (-1) 360 353512

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.37:
Precision-Recall curve with
Youden’s J score of 0.572

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

lo
ss

of steps vs loss

Figure A.38: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.980

0.982

0.984

0.986

0.988

ac
c

of steps vs acc

Figure A.39: Validation
Accuracy Curve

Character-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.94 0.36 0.52 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.96 0.68 0.76 361934
Weighted Average 0.98 0.99 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4255 3807
Negative (-1) 360 353512

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.40:
Precision-Recall curve with
Youden’s J score of 0.668

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.065

0.070

0.075

0.080

0.085

lo
ss

of steps vs loss

Figure A.41: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.979

0.980

0.981

0.982

0.983

0.984

0.985

ac
c

of steps vs acc

Figure A.42: Validation
Accuracy Curve

56

Char and Char-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.93 0.53 0.67 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.96 0.76 0.83 361934
Weighted Average 0.99 0.99 0.99 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4253 3809
Negative (-1) 318 353554

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.43:
Precision-Recall curve with
Youden’s J score of 0.571

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

lo
ss

of steps vs loss

Figure A.44: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.981

0.982

0.983

0.984

0.985

0.986

0.987

0.988

0.989

ac
c

of steps vs acc

Figure A.45: Validation
Accuracy Curve

2.2 Balanced Data

Char-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.28 0.76 0.41 8062
Benign 0.99 0.96 0.97 353872

Accuracy 0.95 361934

Macro Average 0.64 0.86 0.69 361934
Weighted Average 0.98 0.95 0.96 361934

57

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 6167 1895
Negative (-1) 15632 338240

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.46:
Precision-Recall curve with
Youden’s J score of 0.973

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

lo
ss

of steps vs loss

Figure A.47: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

ac
c

of steps vs acc

Figure A.48: Validation
Accuracy Curve

Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.49 0.39 0.44 8062
Benign 0.99 0.99 0.99 353872

Accuracy 0.98 361934

Macro Average 0.74 0.69 0.71 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 3219 4933
Negative (-1) 3195 350677

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.49:
Precision-Recall curve with
Youden’s J score of 0.909

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

lo
ss

of steps vs loss

Figure A.50: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.93

0.94

0.95

0.96

0.97

0.98

ac
c

of steps vs acc

Figure A.51: Validation
Accuracy Curve

58

Char and Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.92 0.43 0.59 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.95 0.72 0.79 361934
Weighted Average 0.99 0.99 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 3487 4575
Negative (-1) 302 353570

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.52:
Precision-Recall curve with
Youden’s J score of 0.274

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lo
ss

of steps vs loss

Figure A.53: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

ac
c

of steps vs acc

Figure A.54: Validation
Accuracy Curve

Character-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.76 0.31 0.44 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.87 0.65 0.71 361934
Weighted Average 0.98 0.98 0.98 361934

59

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2472 5590
Negative (-1) 790 353082

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.55:
Precision-Recall curve with
Youden’s J score of 0.987

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

lo
ss

of steps vs loss

Figure A.56: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.95

0.96

0.97

0.98

0.99

1.00

ac
c

of steps vs acc

Figure A.57: Validation
Accuracy Curve

Char and Char-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.87 0.35 0.50 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.93 0.67 0.74 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2805 5257
Negative (-1) 418 353454

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.58:
Precision-Recall curve with
Youden’s J score of 0.939

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lo
ss

of steps vs loss

Figure A.59: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.96

0.97

0.98

0.99

1.00

ac
c

of steps vs acc

Figure A.60: Validation
Accuracy Curve

60

3. SNet v2
In this section, we illustrate the classification reports, confusion matrices and the curves on the
imbalanced dataset (Mendeley Dataset) and the balanced dataset for SNet v2.

3.1 Imbalanced Data

Char-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.93 0.57 0.66 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.96 0.75 0.83 361934
Weighted Average 0.99 0.99 0.99 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4113 3949
Negative (-1) 292 353580

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.61:
Precision-Recall curve with
Youden’s J score of 0.529

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.05

0.06

0.07

0.08

0.09

0.10

0.11

lo
ss

of steps vs loss

Figure A.62: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.978

0.980

0.982

0.984

0.986

0.988

ac
c

of steps vs acc

Figure A.63: Validation
Accuracy Curve

61

Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.92 0.26 0.41 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.95 0.63 0.70 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2136 5926
Negative (-1) 185 353687

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.64:
Precision-Recall curve with
Youden’s J score of 0.823

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.070

0.075

0.080

0.085

0.090

0.095

0.100

0.105

lo
ss

of steps vs loss

Figure A.65: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.978

0.979

0.980

0.981

0.982

0.983

ac
c

of steps vs acc

Figure A.66: Validation
Accuracy Curve

Char and Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.96 0.57 0.66 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.98 0.75 0.83 361934
Weighted Average 0.99 0.99 0.99 361934

62

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4089 3973
Negative (-1) 155 353717

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.67:
Precision-Recall curve with
Youden’s J score of 0.460

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.05

0.06

0.07

0.08

0.09

0.10

lo
ss

of steps vs loss

Figure A.68: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.978

0.980

0.982

0.984

0.986

0.988

ac
c

of steps vs acc

Figure A.69: Validation
Accuracy Curve

Character-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.93 0.36 0.52 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.96 0.68 0.75 361934
Weighted Average 0.98 0.99 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2893 5169
Negative (-1) 234 353638

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.70:
Precision-Recall curve with
Youden’s J score of 0.661

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

lo
ss

of steps vs loss

Figure A.71: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.977

0.978

0.979

0.980

0.981

0.982

0.983

0.984

0.985

ac
c

of steps vs acc

Figure A.72: Validation
Accuracy Curve

63

Char and Char-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.94 0.52 0.67 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.97 0.76 0.83 361934
Weighted Average 0.99 0.99 0.99 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 4176 3886
Negative (-1) 248 353624

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.73:
Precision-Recall curve with
Youden’s J score of 0.485

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.05

0.06

0.07

0.08

0.09

0.10

lo
ss

of steps vs loss

Figure A.74: Validation loss
curve

0 5000 10000 15000 20000 25000 30000 35000
of steps

0.978

0.980

0.982

0.984

0.986

0.988

ac
c

of steps vs acc

Figure A.75: Validation
Accuracy Curve

3.2 Balanced Data

Char-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.48 0.73 0.56 8062
Benign 0.99 0.98 0.99 353872

Accuracy 0.97 361934

Macro Average 0.72 0.85 0.77 361934
Weighted Average 0.98 0.97 0.98 361934

64

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 5871 2191
Negative (-1) 7000 346872

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.76:
Precision-Recall curve with
Youden’s J score of 0.976

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.1

0.2

0.3

0.4

0.5

0.6

lo
ss

of steps vs loss

Figure A.77: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
c

of steps vs acc

Figure A.78: Validation
Accuracy Curve

Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.50 0.39 0.44 8062
Benign 0.99 0.99 0.99 353872

Accuracy 0.98 361934

Macro Average 0.74 0.69 0.71 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 3158 4904
Negative (-1) 3221 350651

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.79:
Precision-Recall curve with
Youden’s J score of 0.991

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

lo
ss

of steps vs loss

Figure A.80: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.90

0.92

0.94

0.96

0.98

ac
c

of steps vs acc

Figure A.81: Validation
Accuracy Curve

65

Char and Word-based CNN

Classification Report
Precision Recall F1 Support

Malicious 0.93 0.43 0.59 8062
Benign 0.99 1.00 0.99 353872

Accuracy 0.99 361934

Macro Average 0.96 0.72 0.79 361934
Weighted Average 0.99 0.99 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 3504 4558
Negative (-1) 248 353624

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.82:
Precision-Recall curve with
Youden’s J score of 0.185

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

lo
ss

of steps vs loss

Figure A.83: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

ac
c

of steps vs acc

Figure A.84: Validation
Accuracy Curve

Character-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.58 0.31 0.41 8062
Benign 0.98 0.99 0.99 353872

Accuracy 0.98 361934

Macro Average 0.78 0.65 0.70 361934
Weighted Average 0.98 0.98 0.98 361934

66

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2524 5538
Negative (-1) 1838 352034

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.85:
Precision-Recall curve with
Youden’s J score of 0.987

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

lo
ss

of steps vs loss

Figure A.86: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.94

0.95

0.96

0.97

0.98

0.99

ac
c

of steps vs acc

Figure A.87: Validation
Accuracy Curve

Char and Char-level Word CNN

Classification Report
Precision Recall F1 Support

Malicious 0.90 0.31 0.46 8062
Benign 0.98 1.00 0.99 353872

Accuracy 0.98 361934

Macro Average 0.94 0.66 0.73 361934
Weighted Average 0.98 0.98 0.98 361934

Confusion Matrix Predicted Values

Actual Values
Positive (1) Negative (-1)

Positive (1) 2524 5538
Negative (-1) 273 353599

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

Figure A.88:
Precision-Recall curve with
Youden’s J score of 0.935

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

lo
ss

of steps vs loss

Figure A.89: Validation loss
curve

0 10000 20000 30000 40000 50000 60000 70000
of steps

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

ac
c

of steps vs acc

Figure A.90: Validation
Accuracy Curve

67

	Introduction
	Related Work
	Fundamentals
	Baseline Methods
	Random Forest Classifier
	XGBoost Classifier
	Data Pre-Processing for Random Forest and XGBoost
	URLNet
	Architectural Setup

	SNet
	Attention Mechanism
	SNet v2

	URL Dataset and Analysis
	Dataset
	Error Analysis

	Experiments and Results
	Results : Tree-Based Ensemble Machine Learning Models
	Results : Deep Neural Network Models

	Conclusion and Future Scope
	Appendix
	Tree-Based Ensemble Machine Learning Models
	Deep Neural Network Models

